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Preface 

The main task of the Nordic Expert Group for Criteria Documentation of Health 

Risks from Chemicals (NEG) is to produce criteria documents to be used by the 

regulatory authorities as the scientific basis for setting occupational exposure 

limits for chemical substances. For each document, NEG appoints one or several 

authors. An evaluation is made of all relevant published, peer-reviewed original 

literature found. The document aims at establishing dose-response/dose-effect 

relationships and defining a critical effect. No numerical values for occupational 

exposure limits are proposed. Whereas NEG adopts the document by consensus 

procedures, thereby granting the quality and conclusions, the authors are re-

sponsible for the factual content of the document. 

The evaluation of the literature and the drafting of this document on Carbon 

monoxide were done by Dr Helene Stockmann-Juvala at the Finnish Institute of 

Occupational Health. 

The draft versions were discussed within NEG and the final version was 

accepted by the present NEG experts on August 21, 2012. Editorial work and 

technical editing were performed by the NEG secretariat. The following present 

and former experts participated in the elaboration of the document: 
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1. Introduction 

Carbon monoxide (CO) is an odourless and colourless gas. It is a major atmos-

pheric pollutant in urban areas, chiefly from exhaust of combustion engines, but 

also from incomplete burning of other fuels. CO is also a constituent of tobacco 

smoke. Exposure to CO is common in many occupational areas, mainly in those 

associated with exhaust emissions (229). CO is also an important industrial gas, 

which is increasingly being used for the production of chemical intermediates 

(25). CO is formed endogenously and acts as a signalling substance in the 

neuronal system (249). 

The main mechanism behind CO-induced toxicity has for long times been known 

as the binding of CO to haemoglobin, resulting in carboxyhaemoglobin (COHb) 

formation and hypoxia. Health effects associated with acute CO poisoning have 

been extensively documented by others. The present document is focused on 

examining health effects of low-level CO exposure as this forms the basis for 

occupational exposure limit setting. The evaluation builds partly on the reviews 

by the World Health Organization/International Programme on Chemical Safety 

(WHO/IPCS) from 1999, the United States Environmental Protection Agency  

(US EPA) from 2000 which was superseded by an update in 2010, the National 

Research Council (NRC) from 2010, and the Agency for Toxic Substances and 

Disease Registry (ATSDR) from 2012 (16, 96, 151, 229, 230). Data bases used  

in search of literature are given in Chapter 19. 

2. Substance identification 

Table 1. Substance identification data for carbon monoxide (152). 

IUPAC name:  Carbon monoxide 

Common name:  Carbon monoxide 

CAS number:  630-08-0 

Synonyms:  carbon oxide, carbonic oxide 

Molecular formula: CO 

Molecular weight: 28.01 

3. Physical and chemical properties 

CO is an odourless and colourless gas with a density close to that of air. General 

physical properties of CO are given in Table 2.  

The CO molecule consists of one atom of carbon and one atom of oxygen, co-

valently bonded by a double bond and a dative (dipolar) covalent bond. Despite 

oxygen’s greater electronegativity, the effects of atomic formal charge and electro-

negativity result in a small bond dipole moment with its negative end on the carbon 

atom. Most chemical reactions involving CO occur through the carbon atom, and 

not the oxygen. Most metals form coordination complexes containing covalently 

attached CO (25). 
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Table 2. Physical and chemical properties of carbon monoxide (152). 
Freezing point at 101.3 kPa: -205 °C 

Boiling point at 101.3 kPa: -191.5 °C 

Vapour density (air = 1):  0.968  

Vapour pressure at 20 °C: > 101 kPa (1 atm) 

Flammability range in air (vol/vol): 12–75% 

Solubility in water at 20 °C: 2.4 ml/100 ml 

Conversion factors at 25 °C: 1 ppm = 1.145 mg/m
3
 

1 mg/m
3
 = 0.873 ppm 

4. Occurrence, production and use 

4.1 Occurrence 

CO is a minor atmospheric constituent. The ambient concentrations range from  

a minimum of about 30 ppb during summer in the Southern Hemisphere to about 

200 ppb in the Northern Hemisphere during winter. CO originates chiefly as a 

product of volcanic activity but also from natural and man-made fires and the 

burning of fossil fuels. It occurs dissolved in molten volcanic rock at high pres-

sures in the earth’s mantle. CO is a major atmospheric pollutant in urban areas, 

chiefly from exhaust of combustion engines, but also from incomplete burning  

of other fuels (including wood, coal, charcoal, oil, kerosene, propane, natural gas 

and trash). It reacts photochemically to produce peroxy radicals, which react  

with nitric oxide (NO) to increase the ratio of nitrogen dioxide (NO2) to NO. This 

reaction reduces the quantity of NO that is available to react with ozone (O3) (229). 

CO is also a constituent of tobacco smoke. In various studies, the CO emission 

has been estimated to vary between 0.5 and 78 mg per cigarette, and 82–200 mg 

for large cigars (229). 

The CO levels in indoor air vary depending on whether there are CO producing 

sources, like gas stoves, kerosene heaters or smoking in the building. In a study 

including 400 homes in the US, the average CO concentration was 2.23 ± 0.17 

ppm (measured in 203 homes). Use of gas stoves and kerosene space heaters was 

associated with increased CO levels (229). 

Small amounts of CO are formed endogenously in the human blood as a result 

of breakdown of haemoglobin and other haemoproteins (myoglobin, cytochromes, 

peroxidases and catalase) (see Section 7.2). 

4.2 Production and use 

CO is formed by the incomplete combustion of carbonaceous materials, by the 

reduction of carbon dioxide, or by the decomposition of organic compounds (e.g. 

aldehydes). CO may also be recovered from the off-gas of industrial processes, 

like blast furnace processes or calcium carbide synthesis (25). 

In industrial production of CO, the initial product is usually a gas mixture 

containing CO. The three most important processes include gasification of coal, 

steam reforming/carbon dioxide reforming (for light hydrocarbons), and partial 
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oxidation of hydrocarbons (for hydrocarbons heavier than naphtha). CO can then 

be separated, or the CO-hydrogen ratio can be adjusted, by various procedures. 

The most common procedures for separation are: a) Copper ammonium salt wash 

(reversible complexation) at elevated pressure, followed by desorption at lower 

pressure, b) Cryogenic separation, including low-temperature partial condensation 

and fractionation, and liquid methane scrubbing and separation, c) Pressure-swing 

adsorption, and d) Permeable membranes (25). 

Laboratory scale production of CO can be based on the slow addition of con-

centrated formic acid to concentrated sulphuric acid, followed by removal of 

traces of sulphur dioxide and carbon dioxide by passing the gas through potassium 

hydroxide pellets (25). 

Syngas (synthesis gas) is a gas mixture that contains varying amounts of CO 

and hydrogen. The name comes from their use as intermediates in creating 

synthetic natural gas (SNG) and for producing ammonia or methanol. Most of  

the syngas production is nowadays based on natural gas and sulphur-rich heavy 

vacuum residues. Other usable raw materials include naphtha, coal, heavy fuel 

and residual oil (25). 

CO is an important industrial gas which is increasingly being used for the pro-

duction of chemical intermediates (25). 

CO is frequently used as a reducing agent in the production of inorganic chemicals 

e.g. in the direct reduction of iron to sponge iron and in the preparation of very 

pure metals, like nickel metals. The reaction of CO with chlorine yields phosgene 

which can be used to prepare aluminium chloride by the chlorination of bauxite 

(25). 

The major use of CO is in the production of acetic acid, by catalytic carbony-

lation of methanol. Other organic chemicals formed in reactions including pure 

CO are formic acid, methyl formiate, acrylic acid and propanoic acid.  

The most important chemicals produced using syngas are methanol, hydro-

carbons and linear aliphatic aldehydes (25). 

In 2009, the total reported use of CO in preparations in Sweden, Norway and 

Finland was 2.4 million tonnes. In 2001, the corresponding value was 2.3 million 

tonnes, indicating a stable use, although the number of reported preparations 

decreased from 48 in 2001 to 28 in 2009. The main use categories included manu-

facture of basic metals, chemicals, and chemical products, scientific research, as 

well as the category “electricity, gas, steam and air condition supply” (207). 

Based on studies showing that CO is acting as a secondary messenger mole- 

cule in the cell, research is ongoing on the potential use of CO as a therapeutic 

gas, using doses of 3 mg/kg body weight (resulting on COHb 12%) (145). It has 

been suggested that CO could be used in order to obtain anti-apoptotic or anti-

inflammatory effects through modulation of protein kinase pathways (187, 229). 

A large number of experimental studies show promising results, but so far the 

number of clinical trials is low, and do not show any clear anti-inflammatory or 

other protective effects (18, 116). 
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5. Measurements and analysis of workplace exposure 

5.1 Air samples 

The most commonly used techniques for CO detection in air samples are based on 

the principle of non-dispersive infrared detection (NDIR), and they may include a 

gas filter correlation (GFC) methodology. The most sensitive versions of these 

instruments can detect CO at a level of about 0.04 ppm. These techniques are also 

the federal reference methods recommended by the US EPA (96, 229). 

If a more sensitive technique is needed, gas chromatography with flame ionisa-

tion detector is the best choice (detection limit 0.02 ppm) (96, 229). 

The US National Institute for Occupational Safety and Health (NIOSH) method 

for the occupational hygienic measurement of CO uses a portable direct reading 

monitor. The limit of quantification is reported to be 1 ppm and the working range 

is 0–200 ppm (147). 

5.2 Biological samples 

The exposure to CO is usually estimated by measuring carboxyhaemoglobin 

(COHb) in blood (for a definition of COHb, see Section 7.3). CO in exhaled 

breath can be used to reflect CO levels in blood. 

5.2.1 Blood carboxyhaemoglobin measurement 

COHb in blood can be measured using a variety of methods. The majority of 

clinical measurements are carried out using direct-reading spectrophotometers, 

such as CO-oximeters. Traditionally, these instruments utilised 2–7 wavelengths 

in the visible region, but modern instruments use up to 128 wavelengths, thus 

allowing for the determination of proportions of oxyhaemoglobin, COHb, reduced 

haemoglobin and methaemoglobin. The detection limits of the currently available 

oximeters are well below the COHb concentrations of unexposed persons (see 

Section 8.1) (26, 96, 193). 

Among new methods for CO measurement are the pulse oximeters, which 

enable non-invasive measurement of COHb. The pulse oximeters emit near-infra-

red and long-wavelength visible light, which diffuse through the tissue. COHb 

levels measured using fingertip pulse-oximetry correlate well with blood COHb 

results obtained by traditional blood CO-oximetry, but may slightly overestimate 

the CO levels. This device can be used in clinical practise for screening purposes, 

but could in theory also be used in field studies at workplaces (26, 96, 193, 214). 

The most sensitive techniques measuring COHb are based on gas chromato-

graphy (limit of detection 0.005% COHb). The basis for these methods is the 

analysis of the CO gas released from the blood when COHb is dissociated. The 

detection methods include infrared absorption, flame ionisation and thermal 

conductivity (17, 44, 75, 121, 131, 229). 
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5.2.2 Carbon monoxide in expired breath 

CO in breath can be measured using any of the techniques used to measure 

ambient CO concentrations. The main techniques include portable analysers  

with electrochemical detection, infrared spectrometry, gas chromatography and 

tuneable diode laser spectrometry. Method development has recently focused  

on creating linear and reliable techniques working at a broad range of CO con-

centrations. The sample detection limits are low, even below 1 ppb (106, 118, 

119, 150, 229). 

In the measurement of CO in exhaled air, it is important to consider the dead-

space gas volume, as it serves to dilute the alveolar CO concentration. Different 

methods for taking the dead-space dilution into account have been developed.  

The breath-hold technique (20 seconds breath-hold was found to provide almost 

maximal values for CO pressures) is the mostly used technique, the others being 

the Bohr computation (mathematical determination of the dead space) and the 

rebreathing technique (5 litres of oxygen are re-breathed for 2–3 minutes while 

the carbon dioxide is removed) (96, 229). 

6. Occupational exposure data 

Occupational exposure to CO occurs in a large number of situations and is nearly 

always concomitant with other exposures (mixed exposure). Workers exposed to 

vehicle exhausts, construction workers, firefighters and cooks are at increased risk 

for CO exposure. Industrial processes producing CO directly or as a by-product, 

including steel production, nickel refining, coke ovens, carbon black production 

and petroleum refining have also been associated with CO exposure (96).  

CO exposure levels in different occupational situations in Norway and Finland 

are listed in Tables 3 and 4, respectively.  

CO emissions from logs, and in particular from wood pellets, have been reported 

in Sweden and Finland as causes of accidents (5, 81, 216-218). During the transport 

and storage, the auto-oxidation of unsaturated lipids and other organic compounds 

gives rise to high CO concentrations which, in combination with significantly de-

creased oxygen levels, may be life-threatening or lethal in confined spaces like the 

hatches in ships and warehouses (217).  

The distribution of biomonitoring data on COHb concentrations in 585 blood 

samples from workers, measured at the Finnish Institute of Occupational Health 

during 2000–2010, are presented in Table 5. Most of the samples were from 

workers exposed to CO, and some were also exposed to methylene chloride. One 

hundred and thirty four of the 585 workers showed COHb concentrations above 

the Finnish reference value of 5% (206). These high concentrations were mainly 

observed among different types of foundry workers. 
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Table 3. Carbon monoxide (CO) levels measured at various workplaces in Norway 2000–

2009. About 15% of the measurements were obtained by personal monitoring in the 

breathing zone and the remaining 85% by stationary monitoring (EXPO data base
 a
).  

Occupational field Number of 

measurements 

CO max 

(ppm) 

CO mean 

(ppm) 

Defence activities (incl. submarines) 20 1 189 273 

Manufacture of carbides 859 NA 124 

Scheduled air transport 7 NA 44 

Casting of iron 15 375 43 

Other preventive health care 6 175 30 

Stuff, tunnel, construction site 5 892 19 

Manufacture of electrical equipment 4 NA 17 

Manufacture of coke oven products 12 NA 14 

Wholesale of mining, construction and civil 

engineering machinery 

10 NA 11 

Operation of gravel and sand pits 5 NA 11 

Construction 107 210 10 

Maintenance and repair of motor vehicles 9 37 6 

Construction of motorways, roads, airfields 

and sport facilities 

83 650 5 

Installation of electrical wiring and fittings 9 38 4 

Manufacture of veneer sheets, plywood, 

laminboard, particle board 

8 682 3 

Manufacture of other non-metallic mineral 

products n.e.c. 

30 NA 3 

Production of primary aluminium 9 63 2 

Aluminium production  4 NA 2 

Mining of non-ferrous metal ores, except 

uranium and thorium ores 

7 160 < 2 

Toll bar stations 15 20 < 2 

Manufacture of industrial gases 5 9 < 2 

Manufacture of paper and paperboard 4 3 < 2 
a
 Description of data base in Rajan et al (174). 

NA: not available. 

 

There are some welding operations where CO exposure should be considered, 

although welding in general is not associated with CO formation. Blood COHb 

concentrations reaching 20% have been demonstrated after metal active gas 

(MAG) welding with shielding-gas containing carbon dioxide (47). The CO 

concentration in the breathing zone may reach 100 ppm during arc-air gouging 

with a carbon-graphite electrode (189). Acetylene gas welding or cutting is 

generally not related to hazardous CO-exposure. Some serious CO intoxications 

have, however, been reported during acetylene gas welding of pipes, when 

acetylene gas has degraded to CO in an atmosphere with oxygen depletion (10). 
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Table 4. Finnish occupational carbon monoxide (CO) air concentration ranges according 

to exposure situations, measured 2004–2007. Data obtained by personal monitoring in the 

breathing zone (18% of the measurements), fixed sampling at the working site (60%) and 

room air samples (22%) (188).  

Occupational field Number of measurements 

 

Total ≤ 3 

ppm 

3–15 

ppm 

15–30 

ppm 

> 30 

ppm 

Metal ore mining 11 5 6   

Production of wood products (except furniture) 36 8 10 4 14 

Production of paper and paper products 64 61 3   

Production of coke, oil products and nuclear fuel  2 1 1   

Production of rubber and plastic products 3  3   

Production of non-metallic mineral products 12 10 2   

Refining of metals 61 6 28 14 13 

Production of metal products (except machines) 52 34 14 2 2 

Production of machines 33 17 15 1  

Production of cars and trailers 9 6 3   

Production of other vehicles 4 4    

Recycling of waste 4 2 2   

Electricity-, gas- and heating service work 11 9 2   

Building/construction work 9 7 2   

Vehicle repairing, selling and service, fuel retail trade 3  3   

Official and defence sector 45 37 6  2 

Control of the environment 9 9    

Work in the recreational, cultural and sports sector 4  1 1 2 

Total 372 216 101 22 33 

% 100 58 27 6 9 

 

 
Table 5. Carboxyhaemoglobin (COHb) concentrations (%) measured in 585 blood 

samples from workers in 2000–2010 (unpublished data from the Finnish Institute of 

Occupational Health, 2011). The effects of cigarette smoking cannot be excluded. 

Type of work Mean 

(%) 

Median 

(%) 

95
th

 per-

centile (%) 

Maximum 

(%) 

Number of samples 

COHb > 5% 
a
 Total 

Foundry 5.2 5.0 9.6 16.9 121 245 

Car inspection  1.7 1.5 3.5 8.8 1 83 

Laboratory work 1.8 1.7 4.2 5.5 1 62 

Vehicle repairing, service 

and selling 

1.7 1.3 4.8 6.2 3 59 

Production and maintenance 

of plastic products 

2.3 2.0 5.4 6.9 3 49 

Waste treatment, recycling 2.8 2.2 8.0 8.5 3 26 

Production of chemicals 0.7 0.6 1.7 2.2 0 20 

Production of metal products 2.5 1.8 5.4 7.6 2 19 

Heating, use of smoke oven 2.6 2.7 3.9 4.5 0 12 

Chimney sweeping 2.5 1.9 4.4 4.6 0 10 
a 
Finnish reference value: 5% COHb (206). 
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7. Toxicokinetics 

7.1 Absorption, distribution, metabolism and excretion 

7.1.1 Uptake  

The pulmonary uptake of CO is affected not only by the ambient CO concentration 

but also by physical (mass transfer, diffusion) as well as physiological factors 

(mainly alveolar ventilation and cardiac output) and environmental conditions. 

Dead space volume, gas mixing and homogeneity, and ventilation/perfusion 

matching are additional factors that affect the rate of CO uptake (96). 

Inhaled CO diffuses from the alveolar gas phase to the red blood cells. To reach 

and bind to haemoglobin, CO has to pass across the alveoli-capillary membranes, 

diffuse in the plasma, pass across the erythrocyte cell membrane and diffuse in the 

cytosol to bind to haemoglobin. In the other cells, CO can bind to other haeme-

containing molecules like myoglobin and cytochromes (229). 

There are no reports indicating any significant uptake of CO via the oral or 

dermal route. Schoenfisch et al studied the COHb formation after a 5-second 

exposure of the oronasal cavity of four monkeys with 400 ppm CO. This exposure 

increased the COHb to < 3.5% (mean change in COHb < 0.5%) whereas compara-

tive exposures of the lungs elevated COHb to almost 60% (194). This indicated 

that CO diffusion across the oronasal mucosa has a very small effect on the over-

all COHb concentration.  

Factors modifying CO uptake are discussed in Section 7.4. 

7.1.2 Distribution 

7.1.2.1 Respiratory tract 

Although generally all CO is taken up via the respiratory tract, there is not any 

detectable storage in these organs. A study with human volunteers inhaling CO in-

dicated that CO was only taken up from the alveolar region of the lungs. Thus, a 

slight inhalation, leaving the gas just in the mouth and large airways, did not have 

any effects on blood levels (79). Similar results were also obtained in monkeys 

when cigarette smoke was passed either into the oronasal cavities only, or directly 

into the lungs (194). Post-mortem samples of humans exposed to CO showed a 

significant correlation between COHb levels and lung tissue CO concentrations. In 

patients who had died from CO poisoning (n = 7), the mean lung tissue CO concen-

tration, expressed as % of blood CO concentration, was 52%. The corresponding 

value for non-exposed controls (patients that died for other reasons) was 34% (248). 

7.1.2.2 Heart and skeletal muscles 

Myoglobin (Mb) is a haemoprotein that binds oxygen in muscle tissues and 

facilitates its diffusion from the muscle sarcoplasm to the mitochondria. Small 

changes in tissue partial oxygen pressure (pO2) can thus allow the release of a 

large amount of O2 from oxymyoglobin (O2Mb), in order to maintain a stable  

pO2 in the mitochondria. CO binds reversibly to Mb with an affinity constant 

approximately 8 times lower than for haemoglobin (80, 190). Notable is that the 
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dissociation constant is approximately 630 times lower for carboxymyoglobin 

(COMb) than O2Mb, making it possible for CO to be retained and stored in muscle 

tissue (73). In addition, the binding of CO to Mb decreases the storage capacity of 

O2 to Mb, which may have marked consequences on the supply of O2 to tissues. 

The transfer of CO into muscle tissue is generally larger in males, than in 

females, most likely due to differences in muscle mass and capillary density (29). 

CO levels of 15 and 31 pmol CO/100 g wet weight on average have been measured 

in human muscle and heart tissue, respectively, when the background levels of 

COHb were less than 2%. During CO asphyxiation with COHb levels over 50%, 

the tissue concentrations increased to 265 pmol CO/100 g wet weight for muscle, 

and to 527 pmol CO/100 g wet weight for heart muscle, the inter-individual 

differences being marked (248). 

7.1.2.3 Other tissues  

CO can bind to other haemoproteins (cytochrome P450, cytochrome c oxidase, 

catalase and some peroxidases) but the significance of such binding on the whole 

body (CO/O2) toxicokinetics has not been established. 

Recent studies on the transport kinetics of CO show that redistribution to the 

extravascular tissues continues long after exposure has ended (31). The tissue CO 

concentrations of humans, rats and mice under various exposure conditions were 

studied by Vreman et al (247, 248). In humans, the correlation between COHb 

levels and tissue CO concentrations was strongest for the spleen (tissue CO 48–

67%, expressed as % of blood CO). The tissue concentrations of adipose and 

kidney remained low (< 20% of the blood CO) even in tissues from persons who 

died due to CO asphyxiation. 

7.1.3 Elimination  

The absorbed CO is eliminated from the body by exhalation and oxidative meta-

bolism. Endogenous oxidative metabolism has been estimated to account for only 

a small fraction of the elimination, and exhalation of CO is thus the major route of 

elimination of absorbed CO. The exhalation is based on diffusion, which occurs 

due to the difference in partial pressure of CO in alveolar air and alveolar capillary 

blood. Also the release of CO from intracellular stores to blood occurs due to 

diffusion mechanisms, driven by CO binding to extravascular haemoproteins and 

blood haemoglobin (16). 

Recent reports have indicated that the elimination of CO is biphasic, especially 

after short-term (< 1 hour) CO exposure (31, 198). The elimination can be charac-

terised by a 2-compartment model with an initial rapid decrease, followed by a 

slower phase.  

The elimination half-times in sheep exposed to 2% CO for 1–3 minutes (peak 

COHb 30–40%) were 5.7 ± 1.5 minutes for the first fast phase and 103 ± 20.5 

minutes for the subsequent slow phase (198). 

Bruce and Bruce used model simulations to interpolate between measured 

COHb levels in 15 human volunteers after exposure to CO, in order to calculate 
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COHb half-times. The mean half-time for washout (t0–50) was 4.1 ± 0.7 hours 

(range 3.4–5.5) (31). 

The fact that the COHb elimination half-time depends on the inspired O2 con-

centration has also been shown by others. At sea level, atmospheric pressure, the 

average expected COHb half-time when breathing air was 4.8 hours, according  

to Landaw (117). Inhalation of normobaric 40% O2 decreased the expected half-

times to 75 minutes, and further to 21 minutes when inhaling 100% O2. The report 

by Weaver et al showed a COHb half-time of 74 minutes (range 26–148 minutes) 

when breathing 100% O2 (235). 

Elimination of foetal CO is slower than maternal elimination, showing half-

times of 7.5 hours and 4 hours for foetal and maternal COHb, respectively (87). 

7.2 Endogenous formation of carbon monoxide 

The COHb levels of non-smokers are typically below 2%. Approximately 0.4–

0.7% stem from endogenous formation of CO. For comparison, the COHb levels 

may in worst cases reach 10% immediately after cigarette smoking (16). Approxi-

mately 0.4 ml CO/hour is formed endogenously by haemoglobin catabolism and 

0.1 ml/hour by catabolism of other haemoproteins. CO formation by catabolism of 

other than haemoproteins is minimal (41). The first indications of endogenous CO 

formation were observed already in the end of the 19th century, and in the early 

1950s it was demonstrated that decomposition of haemoglobin in vivo produced 

CO (43, 202, 203). 

A significant increase in the endogenous CO formation can be observed among 

neonates (average 0.9 ± 0.3%) (246) and pregnant women (98, 138) as well as in 

the premenstrual phase of the menstrual cycle (52, 130) due to increased breakdown 

of red blood cells (96). CO formation during pregnancy is 2–5 times that of the 

production during the oestrogen phase of the menstrual cycle, and returns to pre-

pregnancy levels within a few days following delivery (124). The formation of CO 

is also accelerated during certain pathological conditions, like anaemia, haema-

tomas, thalassaemia, Gilbert’s syndrome and other haematological diseases (96). 

The CO formation rates are 2–3 times higher in patients with haemolytic anaemia 

than in healthy individuals (42). 

The degradation of haemoglobin is induced by haeme oxygenase (HO). The 

porphyrin ring of the haeme molecule is broken resulting in the formation of iron, 

CO and biliverdin, which is further broken down to bilirubin. The reaction is in-

duced by HO, which is complexed with reduced nicotinamide adenine dinucleo-

tide phosphate (NADPH) cytochrome P450 reductase and biliverdin reductase 

(96). 

There are two main isoforms of HO. HO-1 is an inducible isoform, which is 

present in high amounts in the spleen and other tissues participating in the erythro-

cyte degradation, including specialised reticuloendothelial cells of the liver and 

bone marrow. In most other tissues, the basal level of HO-1 is very low, but 

increases rapidly upon stimulation by different chemical and physical stimuli  
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like haeme and haeme derivatives, oxidative stress, hypoxia (including altitude-

induced hypoxia), various metals, cytokines, and exogenous CO (reviewed in  

(1, 134, 186, 249)). 

The isoform HO-2 is expressed constitutively in the brain and central nervous 

system, vasculatory system, liver, kidney and gut. The highest expression seems 

to occur in the testes. HO-2 may respond to developmental regulation by adrenal 

glucocorticoids in the brain, but the expression is not affected by environmental 

factors (reviewed in (186, 249)). 

A third isoform, HO-3, has only been found in rat brain, liver and spleen (136). 

Gene characterisation, however, indicates that there are no functional HO-3 genes 

in rat (84). 

Currently, numerous studies focus on the potential role of induction of HO-1 

and endogenous CO as targets for pharmaceutical applications, utilising the 

signalling molecule properties of CO (reviewed in (1, 186, 249)). 

7.3 Carboxyhaemoglobin formation 

COHb (%) describes the percentage of the total CO binding capacity of haemo-

globin. COHb (%) can be defined by the following formula: 
 

COHb (%) = [CO content/(Hb x 1.389)] x 100 
 

where CO content is the CO concentration (ml/dl) in blood at standard temperature 

and pressure, Hb is the haemoglobin concentration (g/dl), and 1.389 is the stoichio-

metric combining capacity of CO for Hb (ml CO/g Hb) (96). 

Different types of models for predicting COHb formation have been created. 

Empirical models may be used to estimate COHb formation as a function of con-

centration and duration of exogenous CO exposure (229). 

Mechanistic models are commonly used for COHb prediction. The most 

common and well known model is the Coburn-Forster-Kane (CFK) equation (42): 
 

VBd[COHb]/dt =V dotCO-[COHb]PcO2/MB[O2Hb]+PICO/B 
 

where  

B = 1/DLCO + PL/V dotA 

VB = blood volume (ml) (5 500 ml)  

[COHb] = CO volume/blood volume (ml/ml)  

V dotCO = endogenous CO production (ml/minute) (0.007 ml/min)  

PcO2 = average partial pressure of oxygen in lung capillaries (mmHg) (100 mmHg)  

M = Haldane affinity ratio (ratio: 218)  

[O2Hb] = volume of oxygen/volume of blood (maximum is 0.2)  

PICO = partial pressure of CO in inhaled air (mmHg)  

DLCO = pulmonary diffusing capacity for CO (ml/min/mmHg) (30 ml/min/mmHg) 

PL = pressure of dry gases in the lungs (mmHg) (713 mmHg)  

V dotA = alveolar ventilation rate (ml/min) (6 000 ml/min) 
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The values in parentheses indicated for the variables are standard values given 

by Peterson and Stewart (167). The binding affinity of CO for human adult Hb is 

about 218 times greater than that of O2 (60, 182, 185). The Haldane coefficient (M 

= 210–250) in the Haldane equation presented in 1912 (58) is a measure of this 

relationship, and is used in the CFK model. 

The CFK equation is linear when the oxyhaemoglobin (O2Hb) concentration is 

constant (COHb concentration is low). The model gives a good approximation of 

the COHb concentration at a steady level of inhaled CO. However, the linearity  

of the relationship also assumes equilibration of COHb concentrations between 

venous and arterial blood and gases in the lung, as well as between blood and 

extravascular tissues. Various modifications of the CFK model have been created 

to take into account physiological aspects in a more accurate way (24, 204, 205). 

Modifications for COHb prediction in rats have also been made (22). 

As the CFK model does not account for extravascular storage sites of CO, a 

multicompartment model was created by Bruce et al (29-31). This model consists 

of separate compartments for lung, arterial blood, venous blood, muscle tissue and 

non-muscle tissue. Compared to the CFK model, the Bruce et al model predicts 

COHb levels better when the inhaled CO levels are rapidly changing. It also gives 

better predictions of the CO washout time course compared to the CFK model. 

The affinity of human foetal Hb for CO is higher than that of adult Hb. Model-

ling maternal and foetal COHb concentrations with a modified CFK model in-

dicates that foetal COHb can be up to 10% higher than the maternal levels. After 

treatment with 100% O2, the foetal COHb levels are not reduced as fast as the 

mother’s COHb levels (53, 87). 

A competitive situation is related to the binding of CO and O2 to Hb. The greater 

the number of haeme sites bound to CO is, the greater is the affinity of the re-

maining free haeme sites for O2. CO binding to Hb also results in changes in the 

normal O2Hb dissociation curve, causing tissues to have difficulties in obtaining 

O2 from the blood (the so called Haldane effect) (6, 185). 

7.4 Factors modifying carbon monoxide uptake and carboxyhaemoglobin 

formation 

Altitude 

At high altitudes, physiological changes occur to compensate the decreased baro-

metric pressure. This can result in hypobaric hypoxia, causing humans to hyper-

ventilate, which then results in reduced arterial blood carbon dioxide, and increased 

blood pressure and cardiac output. The compensatory mechanisms also include re-

distribution of blood from blood vessels to extravascular compartments and from 

skin to organs. As a general outcome, increased CO uptake and COHb formation 

as well as CO elimination can be observed (229). 

In a study with human volunteers breathing ambient air, the COHb levels 

measured at an altitude of 3 500 meters were significantly higher than at sea level 

(0.95 versus 0.79%). The result was similar for both men and women. Breathing  
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9 ppm CO at rest at an altitude of 3 500 meters increased the COHb from the basal 

level of 0.95% at this altitude to 2.0% (137). On the contrary, the COHb levels 

measured in healthy volunteers after exposure to 150 ppm CO combined with exer-

cise at an altitude of 3 000 meters were comparable to or even lower than the levels 

observed after the same exposure at sea level (90). 

Exercise 

During exercise, the respiratory exchange ratio and cardiac output are increased, 

red blood cell reserves are mobilised from the spleen and the diffusing capacity  

of CO increases. When the gas exchange efficiency increases, the CO uptake is 

promoted. As a consequence, the rates of CO uptake and COHb formation are 

proportional to the intensity of exercise (229).  

Kinker et al studied the CO inhalation kinetics in six male volunteers by ex-

posing them to about 500 ppm CO while changing from rest to increased work-

load levels corresponding to 40%, 60% and 80% of the maximal oxygen uptake 

(VO2max). Oxygen uptake (VO2), CO uptake (VCO) and diffusing capacity for CO 

(DLCO) were measured. DLCO increased more steeply than VCO with increased 

workload and VCO rose more steeply than VO2. Furthermore, the increase in DLCO 

plateaued at about 60–80% VO2max. The faster kinetics of CO compared to oxygen 

was interpreted by the authors as a consequence of increased recruitment of 

alveolar-capillary surface areas with increased exercise up to about 60% VO2max, 

where after no further recruitment occurs (105). 

Gender  

Male subjects generally have higher COHb concentrations than females and the 

COHb half-time is longer in healthy men than in women of the same age. How-

ever, the difference in half-time between male and female subjects is usually < 6% 

(101). Women are showing variations in the COHb levels through the menstrual 

cycle, and during pregnancy the endogenous COHb production is increased (52). 

No differences in COHb levels between males and females were observed at high 

altitude (137). 

Age 

Age has been shown to have a greater effect on the half-time of COHb than does 

the gender (101). The CO uptake and elimination rates decrease with age. It has 

been established that the diffusing capacity for CO decreases with increasing age. 

In middle-aged women, the decline in CO-diffusing capacity with age is lower 

than in men, but at older ages, the rates are similar (146). The steady state transfer 

capacity of the lung for CO has been shown to be about 35 ml/min/kPa/m
2
 in old 

persons (76 subjects, average age 82 years), which is approximately 50% of the 

capacity observed in younger persons (76, 229). 
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8. Biological monitoring 

CO exposure is usually estimated by measuring COHb in blood, which can be 

considered as a reliable biomarker. CO in exhaled breath can also be used as  

an estimate of CO exposure. The relation between CO exposure and COHb is 

affected if exposure to dihalomethanes occurs, and therefore it is important to 

check the possibility for such co-exposure. 

8.1 Carboxyhaemoglobin levels in blood 

The COHb levels of non-smokers are typically < 2%. Approximately 0.4–0.7%  

is formed through endogenous production of CO (16). 

During exogenous exposure to CO, the COHb levels increase based on the 

duration time and CO concentrations (see Figure 1).  

Non-occupational factors affecting and modifying the basal COHb levels are 

for example: 

 smoking (COHb may be up to 10% directly after smoking) 

 metabolism of dihalomethanes (see below) 

 environmental CO exposure 

 altitude, exercise, gender, age (see Section 7.4)   

Metabolism of dihalomethanes to CO 

Dihalomethanes, including dichloromethane (methylene chloride) are industrial 

chemicals known to be metabolised to CO via a cytochrome P450 dependent 

pathway, both in humans and experimental animals. The metabolism results in 

elevated levels of COHb in the blood and increased levels of CO in expired air.  

In addition to CO, carbon dioxide and chlorine (or iodine or bromine) are also 

formed (95). Exposure of healthy volunteers to methylene chloride alone at 180 

and 350 mg/m
3
, levels which are within the range of occupational exposure limits 

for most countries, for 7.5 hours resulted in COHb levels of 1.9 and 3.4%, re-

spectively (55). 

Other sources causing CO formation 

Other sources of CO production are for example the HO catalysis of products  

of auto-oxidation of phenols, photo-oxidation of organic compounds and lipid 

peroxidation of different cell membrane lipids (96). 

8.2 Carbon monoxide levels in expired air 

The partial pressure of CO in arterial blood is in equilibrium with the partial 

pressure of CO in the alveolar gas. COHb levels can be estimated by measuring 

CO in breath and by using the CFK relationship (Section 7.3).   

As the CFK relationship is based upon attainment of an equilibrium, the results 

are always estimates (96).  
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Figure 1. COHb levels for different CO exposure concentration-time combinations  

based on the CFK equation, taking into consideration the workload; a) at rest, b) at  

light workload, and c) at heavy workload. Modified from NRC 2010 and Peterson  

and Stewart 1975 (151, 168). 
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9. Mechanisms of toxicity 

Binding of CO to haemoglobin and replacing oxyhaemoglobin with COHb has  

for decades been considered as the main mechanism behind CO toxicity. Studies 

during later years do, however, provide evidence that CO poisoning is a combined 

effect of COHb formation, direct cellular effects, and increased nitric oxide 

activity. Even long after the COHb levels have decreased to a normal level, the 

cellular energy metabolism is inhibited. This may explain the observations that 

measured COHb levels do not correlate with the severity of clinical effects (28, 

103, 169, 170). The proposed mechanisms behind CO toxicity are presented in 

Figure 2. 

The best known of the pathways behind CO toxicity is the haemoglobin binding, 

resulting in hypoxia or ischaemia. Other suggested pathways are the direct cellular 

toxic effects and the increased nitric oxide formation. Direct cellular toxicity is 

caused by CO binding to other haeme-containing proteins, like cytochromes, myo-

globin and guanylyl cyclase. The clinical outcomes of such protein binding include 

arrhythmias and cardiac dysfunction, direct skeletal muscle toxicity and loss of 

consciousness. Nitric oxide activity is thought to cause loss of consciousness and 

is also important for oxidative damage, which can culminate in increased brain 

lipid peroxidation, and a clinical syndrome with delayed neurologic sequelae.  

 

 

 

Figure 2. Proposed mechanisms for CO toxicity; a) Haemoglobin binding, b) Direct 

cellular toxicity, and c) Increased nitric oxide formation, and their biological and clinical 

effects. Modified from Kao and Nanagas 2006 (103). 
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Increased brain lipid peroxidation may also be an outcome of the combined effects 

of induced nitric oxide levels, hypoxia/ischaemia and direct cellular toxicity. It 

has been speculated that this cascade of events may require initiation by an immuno-

logical mechanism, but this has not been confirmed (reviewed in (103)). 

The pathophysiological changes seen in relation to CO poisoning are often 

similar to those observed with post-ischaemic reperfusion injuries. The same type 

of pathology occurs also in the brain when hypoxia, followed by intervals of 

ischaemia, is created under circumstances other than CO exposure. The formation 

of oxygen radicals during reperfusion has thus been implicated as the major com-

ponent of post-ischaemic brain injury caused by CO (112, 153, 232). Rat studies 

showing CO-induced brain lipid peroxidation after, but not during, CO exposure 

support this theory (221). 

Endogenously produced CO (see Section 7.2) acts as a signalling substance in 

the neuronal system. The functions of endogenous CO involve the regulation of 

neurotransmitters and neuropeptide release, and it is thought to have an important 

role for neuronal activities like odour adaptation, learning and memory (249). 

9.1 Haemoglobin binding 

The major toxic effect of CO is hypoxia, which is caused by COHb formation 

resulting in impaired oxygen carrying capacity of the blood. CO can also cause 

injury by causing ischaemia due to impaired tissue perfusion. Both human and 

animal studies indicate that myocardial depression, peripheral vasodilatation and 

ventricular dysrhythmia, causing hypotension, may contribute to the generation  

of neurologic injury (reviewed in (158, 234)). 

The most clear-cut mechanism by which CO toxicity occurs is the competitive 

binding of CO to the haemoglobin haeme groups (for details, see Section 7.1.1). 

When CO is bound at one of the four haeme sites of the haemoglobin molecule, 

its tetrameric structure undergoes a conformational change, resulting in an in-

creased affinity of the remaining haeme groups for oxygen. The oxygen-haemo-

globin dissociation curve is shifted to the left and the final result is a haemoglobin 

molecule which releases oxygen poorly at the tissue level. The decreased oxygen 

delivery is sensed centrally, stimulating ventilator efforts and increasing minute 

ventilation. The latter will increase uptake of CO and raise COHb levels. In ad-

dition, exhalation of carbon dioxide increases, resulting in respiratory alkalosis 

and further shifting of the oxygen-haemoglobin dissociation curve to the left. The 

clinical outcome of COHb formation may be hypoxia or ischaemia, resulting in 

ischaemic cardiac and neurological injuries (78, 96, 155, 183, 234). 

Oxygen has been used as the main treatment for CO poisoning since the 1860s. 

In order to inhibit an induction of tissue hypoxia, the supplementation with 100% 

of normobaric oxygen is a critical step. The duration of the oxygen treatment is 

dependent of the COHb levels. If arrhythmia, ischaemia or haemodynamic in-

stability occurs despite the therapy with 100% oxygen, treatment with hyperbaric 

oxygen (pressure >1.4 atm) should be considered. Hyperbaric oxygen treatment 
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increases the partial pressure of oxygen in the blood and the rate of displacement 

of CO from haemoglobin (242). 

9.2 Direct cellular toxicity and protein binding 

CO binds to many haeme-containing proteins other than haemoglobin (37, 86). 

Cytochrome binding may result in impaired oxidative metabolism and formation 

of free radicals. Inactivation of mitochondrial enzymes and impaired electron 

transport from oxygen radicals may also be responsible for the impaired cellular 

respiration (225, 251, 252). 

Binding of CO to myoglobin causes reduced oxygen availability in the heart, 

which can cause arrhythmias and cardiac dysfunction. CO binding to myoglobin 

may also result in direct skeletal muscle toxicity leading to rhabdomyolysis, or 

indirect muscle toxicity due to local ischaemia (49, 68, 177, 190). 

9.3 Increased nitric oxide formation 

CO-induced elevation of nitric oxide (NO) has been documented in vivo in both 

lung and brain of experimental animals, as well as in different in vitro studies 

(bovine lung endothelial cells, human and rat platelets). The elevation of NO 

appears to be caused by competition between CO and NO for intracellular haemo-

protein binding sites, and not on an increase in enzymatic production of NO (222, 

224, 226). 

Cerebral vasodilatation, associated with temporal loss of consciousness and 

increased NO levels, has been observed in animals exposed to CO. It has thus 

been speculated that syncope may be related to NO-mediated low blood flow and 

cerebral vessel relaxation (97, 103, 201). 

The role of CO-induced NO in the events culminating in oxidative damage of 

the brain, and possibly also the clinical syndrome delayed neurologic sequelae,  

is presented in Figure 2. NO can affect the adherence of neutrophils to the endo-

thelium resulting in oxidative damage, lipid peroxidation and delayed neurologic 

sequelae (97, 221, 223, 225, 251). 

9.4 Other mechanisms 

CO is known to be a messenger molecule, affecting mechanisms like activation of 

cyclic guanosine monophosphate (cGMP), direct activation of calcium dependent 

potassium channels, and acting as a signalling molecule in modulating mitogen-

activated protein kinases (MAPKs) (18).  
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10. Effects in animals and in vitro studies 

10.1 Irritation and sensitisation  

No animal studies on irritation or sensitisation caused by CO have been located.  

10.2 Effects of single exposure  

A number of lethality studies on acute inhalation of CO have been published. 

Table 6 summarises lethal concentrations at single inhalation exposure to CO. A 

clear inverse relation is seen between exposure duration and lethal concentration 

in both rats and mice.  

The chemical company DuPont (E.I. du Pont de Nemours and Co) determined 

the LC50 values for male rats by exposure to CO for 5, 15, 30 and 60 minutes 

(Table 6). The exposures were carried out by head-only or in exposure chambers. 

The COHb levels were 50–60% for the rats which died after the treatment (151). 

In the study by Rose et al, LC50 values were determined for rats, mice and 

guinea pigs exposed to CO for 4 hours (Table 6). The COHb levels for animals 

that had died were 50–80% and 57–90% for rats and guinea pigs, respectively. 

The COHb levels of mice were not reported (184). 

Table 6. Lethal concentrations, expressed as LC50, observed in animals after single 

inhalation exposure to carbon monoxide (CO). 

LC50 value 

(ppm) 

Exposure duration 

(min) 

Species Reference 

14 200 5 Rat Darmer et al 1972 in (151) 

10 151 5 Rat DuPont 1981 in (151) 

8 636 15 Rat Hartzell et al 1985 (82) 

5 664 15 Rat DuPont 1981 in (151) 

5 607 30 Rat Herpol et al 1976 in (151) 

5 500 30 Rat Kimmerle 1974 in (151) 

5 207 30 Rat Hartzell et al 1985 (82) 

4 710 30 Rat DuPont 1981 in (151) 

4 070 30 Rat Haskell laboratories 1978 in (151) 

4 670 60 Rat Kimmerle 1974 in (151) 

3 954 60 Rat DuPont 1981 in (151) 

1 807 240 Rat Rose et al 1970 (184) 

10 127 15 Mouse Kishitani and Nakamura 1979 in (151) 

3 570 30 Mouse Hilado et al 1978 (85) 

8 000 30 Mouse Hilado et al 1978 (85) 

2 444 240 Mouse Rose et al 1970 (184) 

5 718 240 Guinea pig Rose et al 1970 (184) 

DuPont: E.I. du Pont de Nemours and Co., LC50: lethal concentration for 50% of the animals at 

single inhalation exposure. 
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The study design and outcome of a number of single exposure studies (exposure 

time up to 24 hours) are compiled in Table 7.  

Low-dose studies have demonstrated pulmonary vascular effects already after 

single exposure to 50–100 ppm CO in rats. Thom et al showed that 1 hour of ex-

posure to 50 ppm CO (COHb not reported) resulted in increased rat lung capillary 

leakage. Furthermore, elevated nitrotyrosine concentrations in aorta and lung 

homogenates and increased nitric oxide levels in the lungs were detected, in-

dicating an induction of pulmonary vascular stress (222, 224). In a study by Ghio 

et al signs of direct cellular effects were observed, as 24-hour exposure of rats to 

50 ppm CO (COHb 6.9%) resulted in markedly increased levels of lavagable iron 

and decreased concentrations of non-haeme iron in the lungs, indicating an active 

removal of cellular iron. Similar results were also obtained in vitro in cultured 

normal human bronchial epithelium (BEAS-2) cells. The authors stated that the 

loss of non-haeme iron after CO reduced cellular oxidative stress (72).  

Haemodynamic alterations, occurring as compensatory mechanisms for CO-

induced hypoxia, were observed in rats at higher exposures (150–250 ppm). The 

observations included increased heart rate, cardiac output, coronary perfusion 

pressure and contractility, and decreased tissue oxygen tension (61, 102, 238). 

Reduction of the threshold for ventricular fibrillation was observed both in  

dogs (COHb 6.4%) and monkeys (COHb 9.3%) with induced myocardial injury, 

but also in healthy animals, after exposure to 100 ppm CO for 2 or 6 hours, re-

spectively (13, 14, 49). 

10.3 Effects of short-term exposure (up to 90 days)  

Animal studies examining the effects of repeated short-term exposure (up to 90 

days) are summarised in Table 8. The main parameters studied are the haemato-

logical, pulmonary and cardiovascular effects. 

Many of the older studies focus on haematological effects, occurring as com-

pensatory mechanisms due to the hypoxia induced by CO. These effects include 

increased blood volume, haemoglobin, haematocrit, erythrocyte count and erythro-

cyte volume, and have been observed for example in rats at ≥ 7.5% COHb and in 

monkeys at ≥ 10% COHb (50, 100, 156, 157).  

Exposure of rats to 50 ppm CO for up to 21 days under hypobaric condition re-

sulted in increased pulmonary vascular resistance and increased number of small 

muscular vessels. No such effects were seen when the exposure was carried out 

under normobaric condition (36). 

Alterations in cardiac rhythm have been followed in a number of studies, also 

involving animals with induced myocardial ischaemia. Right ventricle ischaemia 

and dysfunction were observed in rats with pulmonary hypertension after expo-

sure to 50 ppm CO (COHb 4.1%) for 1 week (71). Continuous exposure of healthy 

dogs to 50 or 100 ppm CO for 6 weeks caused significant histopathological 

changes in the brain. Both doses also caused alterations in the cardiac rhythm, 

heart dilation, and small histological alterations, like fatty degeneration of the 
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heart muscle (172). DeBias et al exposed two groups of dogs, healthy ones and 

dogs with induced myocardial infarction, to 100 ppm, 23 hours/day for 14 weeks 

(COHb 14%). Neither group showed any signs of abnormalities in electrocardio-

grams, serum enzymes or haematological parameters (51). Exposure of monkeys 

(100 ppm, 23 hours/day, 12 or 24 weeks; COHb 12%), on the other hand, resulted 

in significant cardiac effects. Electrocardiograms showed higher P-wave ampli-

tudes in both infarcted and non-infarcted monkeys, and higher incidence of T-

wave inversion in infarcted monkeys (50). 

In some reports it has been suggested that CO might induce changes in lipid 

metabolism, resulting in atherosclerosis, or that atherosclerosis could be promoted 

by CO-induced oxidative stress, causing injuries of the vascular epithelium (229). 

In the evaluation by US EPA it was concluded that there is conflicting evidence, 

but that based on the weight-of-evidence there are no strong indications that CO 

exposure would result in atherosclerosis (229).  

10.4 Mutagenicity and genotoxicity 

No genotoxicity studies performed according to standard protocols were retrieved. 

The genotoxic potential of CO was tested in pregnant ICR mice. One group of 

animals was given a single exposure of 0, 1 500, 2 500 or 3 500 ppm CO for 10 

minutes during gestation day 5, 11 or 16. The other groups were repeatedly ex-

posed to 0 or 500 ppm CO for 1 hour/day on gestation days 0–6, 7–13 or 14–20. 

The incidence of micronuclei and sister chromatid exchanges in bone marrow 

cells from animals in the first group showed a dose-dependent increase in both 

maternal and foetal cell samples. These effects were also observed in both 

maternal and foetal samples from the repeatedly exposed group (500 ppm) (115) 

(see also Table 9). Some concern can be raised regarding the validity of the 

report, e.g. timing between exposure and cell harvesting and timing between 

labelling of the cells for the sister chromatid exchange assay and cell sampling. 

No other valid studies were found. 

10.5 Effects of long-term exposure and carcinogenicity  

No carcinogenicity studies were retrieved. Sørhaug et al exposed 51 female rats to 

200 ppm CO for 72 weeks (Table 8). The mean COHb concentration was 14.7%. 

No changes in morphology of the lungs, but significantly increased left and right 

ventricle weights, were reported (220). 

 

 

 



2
2

 

T
a

b
le

 7
. 
E

ff
ec

ts
 i

n
 a

n
im

al
s 

af
te

r 
si

n
g
le

 i
n

h
al

at
io

n
 e

x
p
o
su

re
 t

o
 c

ar
b
o

n
 m

o
n

o
x
id

e 
(C

O
).

  

C
O

 l
ev

e
l 

(p
p

m
) 

E
x
p

o
su

re
 

d
u
ra

ti
o

n
  

M
ea

n
 b

lo
o

d
  

C
O

H
b

 (
%

) 
 

S
p

ec
ie

s 
N

o
. 

an
d

 s
ex

 o
f 

C
O

 

ex
p

o
se

d
 a

n
im

al
s 

E
ff

ec
ts

 
R

ef
er

e
n
ce

 

3
5
 

1
 h

 
–

 
R

at
 

1
9

 m
al

e
s 

w
it

h
 m

y
o

-

ca
rd

ia
l 

in
fa

rc
ti

o
n

 

R
ed

u
ce

d
 v

e
n
tr

ic
u

la
r 

b
ea

t 
fr

eq
u
en

c
y
 a

n
d

 d
ec

re
as

ed
 

su
p

ra
v
e
n
tr

ic
u
la

r 
ec

to
p

ic
 b

ea
ts

. 
N

o
 e

ff
ec

ts
 o

n
 h

ea
rt

 r
at

e.
 

(2
3

9
, 
2

4
0

) 

5
0
 

2
4

 h
 

6
.9

  
R

at
 

N
o

t 
g
iv

e
n

 
E

le
v
at

ed
 i

ro
n
 l

ev
el

s,
 m

il
d

 n
eu

tr
o

p
h
il

 a
cc

u
m

u
la

ti
o

n
, 

in
cr

ea
se

d
 l

ac
ta

te
 d

eh
y
d

ro
g
e
n
a
se

 i
n
 l

u
n

g
 l

a
v
ag

e.
 

D
ec

re
as

ed
 n

o
n

-h
ae

m
e 

ir
o

n
 c

o
n
ce

n
tr

at
io

n
s 

in
 t

h
e 

lu
n

g
s.

 

(7
2

) 

5
0
 

1
 h

 
–

 
R

at
 

5
–

8
 m

al
es

/g
ro

u
p

 
L

u
n

g
 c

ap
il

la
ry

 l
ea

k
a
g
e 

in
cr

ea
se

d
. 

E
le

v
at

ed
 n

it
ro

-

ty
ro

si
n
e 

co
n
ce

n
tr

at
io

n
 i

n
 a

o
rt

a.
 N

it
ri

c 
o

x
id

e 
sy

n
th

a
se

 

le
v
el

s 
n
o

t 
af

fe
ct

ed
. 

(2
2

2
, 
2

2
4

) 

8
0
 

2
0

 m
in

 
3

.3
 (

at
 t

h
e 

en
d

 o
f 

th
e 

to
ta

l 
ex

p
er

im
e
n
t a ) 

R
at

, 

an
ae

st
h
et

is
ed

 

3
3

 i
n
 t

o
ta

l,
 s

ex
 n

o
t 

sp
ec

if
ie

d
 

N
o

 e
ff

ec
t 

o
n
 b

ra
in

 t
is

su
e 

o
x

y
g

en
 t

en
si

o
n
. 

D
ec

re
as

ed
 

ti
ss

u
e 

o
x

y
g
e
n
 t

e
n
si

o
n
 i

n
 t

h
e 

b
ic

ep
s 

b
ra

ch
ii

 m
u
sc

le
. 

(2
3

8
) 

1
0

0
 

1
 h

 
–

 
R

at
 

M
al

es
, 

to
ta

l 
n

u
m

b
er

 n
o

t 

g
iv

e
n
, 

n
u

m
b

er
s 

u
se

d
 f

o
r 

d
if

fe
re

n
t 

as
sa

y
s 

v
ar

ie
s 

 

L
u
n

g
 c

ap
il

la
ry

 l
ea

k
a
g
e 

in
cr

ea
se

d
. 

E
le

v
at

ed
 n

it
ro

-

ty
ro

si
n
e 

co
n
ce

n
tr

at
io

n
s 

in
 a

o
rt

a 
an

d
 l

u
n

g
 h

o
m

o
g
e
n
at

e
s,

 

an
d

 i
n
cr

ea
se

d
 n

it
ri

c 
o

x
id

e 
le

v
e
ls

 i
n
 t

h
e 

lu
n

g
s 

in
d

ic
at

in
g
 

in
d

u
ct

io
n
 o

f 
p

u
lm

o
n
ar

y
 v

a
sc

u
la

r 
st

re
ss

. 
N

it
ri

c 
o

x
id

e 

sy
n
th

as
e 

le
v
el

s 
n
o

t 
af

fe
ct

ed
. 

(2
2

2
, 
2

2
4

) 

1
0

0
 

2
 h

 
6

.4
  

D
o

g
 

1
0

 h
ea

lt
h

y
 a

n
d

 1
1

 w
it

h
 

m
y
o

ca
rd

ia
l 

in
ju

ry
. 

S
ex

 

n
o

t 
sp

ec
if

ie
d

 

R
ed

u
ce

d
 v

e
n
tr

ic
u

la
r 

fi
b

ri
ll

at
io

n
 t

h
re

sh
o

ld
 i

n
 b

o
th

 

g
ro

u
p

s.
  

(1
3

, 
1

4
) 

1
0

0
 

6
 h

 
9

.3
 

M
o

n
k
e
y

 
5

 h
ea

lt
h

y
 a

n
d

 5
 w

it
h
 

m
y
o

ca
rd

ia
l 

in
fa

rc
ti

o
n
. 

S
ex

 n
o

t 
sp

ec
if

ie
d

 

R
ed

u
ce

d
 v

e
n
tr

ic
u

la
r 

fi
b

ri
ll

at
io

n
 t

h
re

sh
o

ld
 i

n
 b

o
th

 

g
ro

u
p

s.
 

(4
9

) 

1
5

0
 

0
.5

–
2
 h

 
7

.5
  

R
at

, 

an
ae

st
h
et

is
ed

 

6
 m

al
e
s 

In
cr

ea
se

d
 h

ea
rt

 r
at

e,
 c

ar
d

ia
c 

o
u
tp

u
t,

 c
ar

d
ia

c 
in

d
e
x
, 

 

ti
m

e 
d

er
iv

at
iv

e 
o

f 
m

a
x
im

al
 f

o
rc

e 
an

d
 s

tr
o

k
e 

v
o

lu
m

e.
 

D
ec

re
as

ed
 m

ea
n
 a

rt
er

ia
l 

p
re

ss
u
re

, 
to

ta
l 

p
er

ip
h
er

al
 

re
si

st
a
n
ce

 a
n
d

 l
ef

t 
v
e
n
tr

ic
u

la
r 

sy
st

o
li

c 
p

re
ss

u
re

. 

(1
0

2
) 



2
3

 

T
a

b
le

 7
. 
E

ff
ec

ts
 i

n
 a

n
im

al
s 

af
te

r 
si

n
g
le

 i
n

h
al

at
io

n
 e

x
p
o
su

re
 t

o
 c

ar
b
o

n
 m

o
n

o
x
id

e 
(C

O
).

  

C
O

 l
ev

e
l 

(p
p

m
) 

E
x
p

o
su

re
 

d
u
ra

ti
o

n
  

M
ea

n
 b

lo
o

d
  

C
O

H
b

 (
%

) 
 

S
p

ec
ie

s 
N

o
. 

an
d

 s
ex

 o
f 

C
O

 

ex
p

o
se

d
 a

n
im

al
s 

E
ff

ec
ts

 
R

ef
er

e
n
ce

 

1
6

0
 

2
0

 m
in

 
3

.3
 (

at
 t

h
e 

en
d

 o
f 

th
e 

to
ta

l 
ex

p
er

im
e
n
t a

) 

R
at

, 

an
ae

st
h
et

is
ed

 

3
3

 i
n
 t

o
ta

l,
 s

ex
 n

o
t 

sp
ec

if
ie

d
 

D
ec

re
as

ed
 t

is
su

e 
o

x
y
g
e
n
 t

en
si

o
n
 i

n
 t

h
e 

ce
re

b
ra

l 
co

rt
ex

 

o
f 

th
e 

b
ra

in
 a

n
d

 i
n
 t

h
e 

b
ic

ep
s 

b
ra

ch
ii

 m
u
sc

le
. 

(2
3

8
) 

2
5

0
 

1
.5

 h
 

1
1

  
R

at
 

1
2

 m
al

e
s/

g
ro

u
p

 
D

ec
re

as
ed

 c
ar

d
ia

c 
cG

M
P

/c
A

M
P

 r
at

io
 (

in
d

ic
at

in
g
 

v
as

c
u
la

r 
re

la
x
at

io
n
 a

b
n
o

rm
al

it
y
).

 I
n
cr

ea
se

d
 c

o
ro

n
ar

y
 

p
er

fu
si

o
n
 p

re
ss

u
re

 a
n
d

 c
o

n
tr

ac
ti

li
ty

. 

(6
1

) 

1
 5

0
0
 

3
0

 m
in

 
2

3
  

D
o

g
, 

an
ae

st
h
et

is
ed

 

1
0

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

In
cr

ea
se

d
 c

o
ro

n
ar

y
 f

lo
w

 a
n
d

 h
ea

rt
 r

at
e.

 D
ec

re
as

ed
 

m
y
o

ca
rd

ia
l 

o
x

y
g
e
n
 c

o
n

su
m

p
ti

o
n
. 

(2
) 

1
 5

0
0
 

1
 h

 
–

 
C

at
 

5
, 

se
x
 n

o
t 

sp
ec

if
ie

d
 

S
li

g
h
tl

y
 d

ec
re

as
ed

 v
en

ti
la

ti
o

n
. 

(7
0

) 

1
 5

0
0
 

1
.5

 h
 

–
 

R
at

 
8

–
2

2
 f

em
al

e
s/

g
ro

u
p

 
A

lt
er

ed
 b

lo
o

d
 g

lu
co

se
, 

u
n
co

n
sc

io
u
sn

es
s,

 c
er

eb
ra

l 

o
ed

em
a,

 c
en

tr
al

 n
er

v
o

u
s 

sy
st

e
m

 d
a
m

a
g
e 

an
d

 h
y
p

o
-

th
er

m
ia

. 
 

(5
6

, 
1

5
9

, 
1

6
5

) 

2
 7

0
0
 

1
.5

 h
  

–
 

R
at

 
9

–
1

0
 f

em
al

e
s/

g
ro

u
p

 
H

y
p

o
th

er
m

ia
, h

y
p

o
te

n
si

o
n
 a

n
d

 b
ra

d
y
ch

ar
d

ia
. M

o
rt

al
it

y
 

ra
te

 4
4

%
. 

M
o

rt
al

it
y
 r

at
es

 w
er

e
 5

0
%

 i
n
 t

h
e 

g
ro

u
p

 k
ep

t 

in
 +

4
 °

C
 f

o
r 

4
 h

 a
ft

er
 t

h
e 

e
x
p

o
su

re
 a

n
d

 2
2

%
 i

n
 t

h
e 

g
ro

u
p

 k
ep

t 
o

n
 a

 h
ea

ti
n

g
 p

ad
. 

(2
1

5
) 

5
 0

0
0
 

5
 s

eq
u
en

ti
al

 

ex
p

o
su

re
s 

w
it

h
in

 4
0

–

5
0

 m
in

 

4
.9

 a
n
d

 1
7
.0

 (
af

te
r 

 

1
st
 a

n
d

 5
th

 ex
p

o
su

re
, 

re
sp

ec
ti

v
el

y
) 

D
o

g
, 

an
ae

st
h
et

is
ed

 

1
1

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

In
cr

ea
se

d
 m

y
o

ca
rd

ia
l 

is
c
h
ae

m
ia

 1
 h

 a
ft

er
 c

o
ro

n
ar

y
 

ar
te

ry
 l

ig
at

io
n
 (

al
re

ad
y
 a

t 
4

.9
%

 C
O

H
b

).
 

(1
9

) 

5
 0

0
0
 

9
0

 m
in

 
2

0
  

D
o

g
, 

an
ae

st
h
et

is
ed

 

N
o

. 
o

f 
ex

p
o

se
d

 a
n
im

al
s 

u
n
cl

ea
r,

 m
al

es
 

E
n
h
a
n
ce

d
 s

en
si

ti
v
it

y
 t

o
 d

ig
it

al
is

-i
n
d

u
ce

d
 v

en
tr

ic
u
la

r 

ta
ch

y
ca

rd
ia

. 
N

o
 e

ff
ec

t 
o

n
 s

e
n

si
ti

v
it

y
 t

o
 e

p
in

ep
h
ri

n
e
- 

o
r 

d
ig

it
al

is
 i

n
d

u
ce

d
 v

e
n
tr

ic
u
la

r 
fi

b
ri

ll
at

io
n
. 

(1
0

4
) 

8
 0

0
0
 

1
5

–
4
5

 m
in

 
6

3
  

R
ab

b
it

 
5

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

D
ec

re
as

ed
 m

ea
n
 b

lo
o

d
 p

re
ss

u
re

 a
n
d

 a
rt

er
ia

l 
p

H
 a

ft
er

 

3
0

 m
in

. 
In

d
u
ct

io
n
 o

f 
o

ed
e
m

a 
o

f 
ca

p
il

la
ry

 e
n
d

o
th

e
li

u
m

 

an
d

 a
lv

eo
la

r 
ep

it
h
el

iu
m

, 
su

g
g
e
st

in
g
 i

n
cr

ea
se

d
 a

lv
eo

la
r-

ep
it

h
el

ia
l 

p
er

m
ea

b
il

it
y
. 

T
h
e 

h
e
ar

t 
ra

te
 w

as
 n

o
t 

af
fe

ct
ed

. 

(6
7

) 



2
4

 

T
a

b
le

 7
. 
E

ff
ec

ts
 i

n
 a

n
im

al
s 

af
te

r 
si

n
g
le

 i
n

h
al

at
io

n
 e

x
p
o
su

re
 t

o
 c

ar
b
o

n
 m

o
n

o
x
id

e 
(C

O
).

  

C
O

 l
ev

e
l 

(p
p

m
) 

E
x
p

o
su

re
 

d
u
ra

ti
o

n
  

M
ea

n
 b

lo
o

d
  

C
O

H
b

 (
%

) 
 

S
p

ec
ie

s 
N

o
. 

an
d

 s
ex

 o
f 

C
O

 

ex
p

o
se

d
 a

n
im

al
s 

E
ff

ec
ts

 
R

ef
er

e
n
ce

 

1
0

 0
0
0
 

3
 +

 3
 m

in
 

2
1

 (
af

te
r 

3
 m

in
),

  

2
8

 (
af

te
r 

3
 +

 3
 m

in
) 

R
ab

b
it

, 

an
ae

st
h
et

is
ed

 

N
o

. 
o

f 
ex

p
o

se
d

 a
n
im

al
s 

u
n
cl

ea
r,

 b
o

th
 s

e
x
es

 

In
cr

ea
se

d
 r

eg
io

n
al

 b
lo

o
d

 f
lo

w
 t

o
 t

h
e 

m
y
o

ca
rd

iu
m

. 

D
ec

re
as

ed
 m

ea
n
 b

lo
o

d
 p

re
ss

u
re

. 

(1
1

0
) 

1
0

 0
0
0
 

th
en

 1
 0

0
0

 

1
5

–
2
0

 m
in

 

(t
o

ta
l)

 

6
1

–
6
7

 (
ra

n
g
e)

 
D

o
g
, 

an
ae

st
h
et

is
ed

 

7
, 

se
x
 n

o
t 

sp
ec

if
ie

d
 

C
ar

d
ia

c 
o

u
tp

u
t 

an
d

 s
tr

o
k
e 

v
o

lu
m

e 
in

cr
ea

se
d

. 
M

ea
n

 

ar
te

ri
al

 p
re

ss
u
re

 a
n
d

 t
o

ta
l 

p
er

ip
h
er

al
 r

es
is

ta
n
ce

 d
e-

cr
ea

se
d

. 
 

(2
1

9
) 

2
8

 4
0
0
 

4
 m

in
 

>
 6

0
 

R
at

, 

an
ae

st
h
et

is
ed

 

1
5

 m
al

e
s 

In
cr

ea
se

d
 t

o
ta

l 
p

u
lm

o
n
ar

y
 r

es
is

ta
n
ce

. 
(2

1
2

) 

2
8

 4
0
0
 

4
 m

in
 

>
 6

0
 

G
u
in

ea
 p

ig
, 

an
ae

st
h
et

is
ed

 

1
5

 m
al

e
s 

In
cr

ea
se

d
 t

o
ta

l 
p

u
lm

o
n
ar

y
 r

es
is

ta
n
ce

. 
(2

1
2

) 

a 
2

 ×
 2

0
 m

in
 a

t 
1

6
0

 p
p

m
 a

n
d

 2
 ×

 2
0

 m
in

 a
t 

8
0

 p
p

m
 i

n
 r

a
n
d

o
m

 o
rd

er
, 

w
it

h
 3

0
 m

in
 b

re
ak

 b
et

w
ee

n
 e

x
p

o
su

re
s.

 

cA
M

P
: 

c
y
cl

ic
 a

d
en

o
si

n
e 

m
o

n
o

p
h
o

sp
h
at

e,
 c

G
M

P
: 

c
y
cl

ic
 g

u
a
n
o

si
n
e 

m
o

n
o

p
h
o

sp
h
at

e
, 

C
O

: 
c
ar

b
o

n
 m

o
n

o
x
id

e,
 C

O
H

b
: 

ca
rb

o
x

y
h
ae

m
o

g
lo

b
in

. 

 



2
5

 

T
a

b
le

 8
. 
E

ff
ec

ts
 i

n
 a

n
im

al
s 

af
te

r 
re

p
ea

te
d

 i
n
h

al
at

io
n
 e

x
p
o

su
re

 t
o
 c

ar
b

o
n

 m
o

n
o

x
id

e 
(C

O
).

 

C
O

 l
ev

e
l 

(p
p

m
) 

E
x
p

o
su

re
 d

u
ra

ti
o

n
  

M
ea

n
 b

lo
o

d
 

C
O

H
b

 (
%

) 

S
p

ec
ie

s 
N

o
. 

an
d

 s
ex

  

o
f 

an
im

al
s 

E
ff

ec
ts

 
R

ef
er

e
n
ce

 

5
0
 

1
0

 w
ee

k
s 

co
n
ti

n
u
o

u
sl

y
 

–
 

R
at

 
9

/g
ro

u
p

, 
b

o
th

 s
ex

es
 

In
cr

ea
se

d
 c

ar
d

ia
c 

d
il

at
io

n
 a

n
d

 d
ec

re
as

ed
 l

ef
t 

v
e
n
tr

ic
u
la

r 
fu

n
c
ti

o
n
 i

n
 

ra
ts

 w
it

h
 c

ar
d

ia
c 

h
y
p

er
tr

o
p

h
y
 b

u
t 

n
o

t 
in

 h
ea

lt
h

y
 r

at
s.

 

(1
3

9
) 

5
0
 

3
 w

ee
k

s 
–

 
R

at
 

8
/g

ro
u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

V
as

cu
la

r 
re

m
o

d
el

li
n

g
 a

n
d

 i
n
cr

ea
se

d
 p

u
lm

o
n
ar

y
 v

a
sc

u
la

r 
re

si
st

an
ce

 

in
 r

at
s 

w
it

h
 h

y
p

o
b

ar
ic

 h
y
p

o
x
ia

. 
N

o
 e

ff
ec

t 
at

 n
o

rm
o

b
ar

ic
 c

o
n
d

it
io

n
s.

 

(3
6

) 

5
0
 

1
 w

ee
k

 
4

.1
 

R
at

 
8

–
1

0
 m

al
es

/g
ro

u
p

 
R

ig
h
t 

v
en

tr
ic

le
 i

sc
h
ae

m
ia

 a
n
d

 d
y
sf

u
n
ct

io
n
 i

n
 r

at
s 

w
it

h
 p

u
lm

o
n
ar

y
 

h
y
p

er
te

n
si

o
n
 (

h
y
p

o
b

ar
ic

 h
y
p

o
x
ia

 t
re

at
m

en
t)

 b
u
t 

n
o

t 
in

 n
o

rm
al

 r
at

s.
 

(7
1

) 

5
0
 

In
te

rm
it

te
n
tl

y
 o

r 
co

n
-

ti
n

u
o

u
sl

y
 f

o
r 

6
 w

ee
k

s 

2
.6

–
1
2

 

(r
an

g
e)

 

D
o

g
 

4
–

8
/g

ro
u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

S
ig

n
if

ic
a
n
t 

ch
a
n

g
es

 i
n
 b

ra
in

 a
n
d

 h
ea

rt
 m

o
rp

h
o

lo
g

y
. 

A
b

n
o

rm
al

 

el
ec

tr
o

ca
rd

io
g
ra

m
s.

 S
a
m

e 
e
ff

e
ct

s 
se

en
 a

t 
1

0
0

 p
p

m
. 

(1
7

2
) 

5
1
 

9
0

 d
ay

s 
co

n
ti

n
u
o

u
sl

y
 

5
.3

 
M

o
n
k
e
y

 
9

 m
al

e
s 

H
ae

m
at

o
cr

it
 a

n
d

 h
ae

m
o

g
lo

b
in

 n
o

t 
af

fe
ct

ed
. 

(1
0

0
) 

5
1
 

9
0

 d
ay

s 
co

n
ti

n
u
o

u
sl

y
 

5
.1

 
R

at
 

1
5

/g
ro

u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

H
ae

m
at

o
cr

it
 a

n
d

 h
ae

m
o

g
lo

b
in

 n
o

t 
af

fe
ct

ed
. 

(1
0

0
) 

9
6
 

9
0

 d
ay

s 
co

n
ti

n
u
o

u
sl

y
 

1
0

.3
 

M
o

n
k
e
y

 
9

 m
al

e
s 

In
cr

ea
se

d
 h

ae
m

at
o

cr
it

. 
H

ae
m

o
g
lo

b
in

 n
o

t 
a
ff

ec
te

d
. 

(1
0

0
) 

9
6
 

9
0

 d
ay

s 
co

n
ti

n
u

o
u

sl
y
 

7
.5

 
R

at
 

1
5

/g
ro

u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

In
cr

ea
se

d
 h

ae
m

o
g
lo

b
in

 a
n
d

 h
a
e
m

at
o

cr
it

. 
S

a
m

e 
ef

fe
ct

s 
se

en
 a

t 
2

0
0

 

p
p

m
. 

(1
0

0
) 

9
6
 

9
0

 d
ay

s 
co

n
ti

n
u
o

u
sl

y
 

4
.9

 
G

u
in

ea
 

p
ig

 

1
5

/g
ro

u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

H
ae

m
at

o
cr

it
 a

n
d

 h
ae

m
o

g
lo

b
in

 n
o

t 
af

fe
ct

ed
. 

(1
0

0
) 

1
0

0
 

2
3

 h
/d

ay
 f

o
r 

1
4

 w
ee

k
s 

1
4
 

D
o

g
 

1
2

 m
al

e
s/

g
ro

u
p

 
N

o
 e

ff
ec

ts
 o

n
 s

er
u

m
 e

n
z
y
m

e
s,

 e
le

ct
ro

ca
rd

io
g
ra

m
s 

o
r 

h
ae

m
at

o
-

lo
g
ic

al
 p

ar
a
m

et
er

s 
in

 n
o

rm
al

 a
n
im

al
s 

o
r 

in
 a

n
im

al
s 

w
it

h
 i

n
d

u
ce

d
 

m
y
o

ca
rd

ia
l 

in
fa

rc
ti

o
n
. 

(5
1

) 

1
0

0
 

2
3

 h
/d

ay
 f

o
r 

1
2

 o
r 

2
4

 

w
ee

k
s 

1
2

.4
 

M
o

n
k
e
y

 
7

/g
ro

u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

In
cr

ea
se

d
 h

ae
m

at
o

cr
it

, 
h
ae

m
o

g
lo

b
in

 a
n
d

 r
ed

 b
lo

o
d

 c
el

l 
n
u

m
b

er
s 

in
 

m
o

n
k
e
y
s 

w
it

h
 i

n
d

u
ce

d
 m

y
o

ca
rd

ia
l 

in
fa

rc
ti

o
n
 a

n
d

 i
n
 n

o
n

-i
n

fa
rc

te
d

 

m
o

n
k
e
y
s 

a
ft

er
 1

2
 w

ee
k
s 

o
f 

C
O

 e
x
p

o
su

re
. 

E
le

ct
ro

ca
rd

io
g
ra

m
s 

sh
o

w
ed

 h
ig

h
er

 P
-w

a
v
e 

a
m

p
li

tu
d

es
 i

n
 b

o
th

 i
n

fa
rc

te
d

 a
n
d

 n
o

n
-

in
fa

rc
te

d
 a

n
im

al
s,

 a
n
d

 h
ig

h
er

 i
n
ci

d
en

ce
 o

f 
T

-w
av

e 
in

v
er

si
o

n
 i

n
 

in
fa

rc
te

d
 a

n
im

al
s.

 

(5
0

) 



2
6

 

T
a

b
le

 8
. 
E

ff
ec

ts
 i

n
 a

n
im

al
s 

af
te

r 
re

p
ea

te
d

 i
n
h

al
at

io
n
 e

x
p
o

su
re

 t
o
 c

ar
b

o
n

 m
o

n
o

x
id

e 
(C

O
).

 

C
O

 l
ev

e
l 

(p
p

m
) 

E
x
p

o
su

re
 d

u
ra

ti
o

n
  

M
ea

n
 b

lo
o

d
 

C
O

H
b

 (
%

) 

S
p

ec
ie

s 
N

o
. 

an
d

 s
ex

  

o
f 

an
im

al
s 

E
ff

ec
ts

 
R

ef
er

e
n
ce

 

1
0

0
 

4
6

 d
ay

s 
9

.3
 

R
at

 
1

2
 m

al
e
s 

In
cr

ea
se

d
 h

ae
m

o
g
lo

b
in

 c
o

n
ce

n
tr

at
io

n
. 

H
ea

rt
 w

ei
g
h

t 
an

d
 b

o
d

y
 

w
ei

g
h
t 

n
o

t 
a
ff

ec
te

d
. 

(1
5

6
, 
1

5
7

) 

1
0

0
 

1
 w

ee
k

 
1

2
 

R
at

 
1

0
 f

e
m

al
es

/g
ro

u
p

 
In

cr
ea

se
d

 m
y
o

ca
rd

ia
l 

en
d

o
th

el
in

-1
 e

x
p

re
ss

io
n
, 

in
cr

ea
se

d
 r

ig
h

t 
an

d
 

le
ft

 v
en

tr
ic

u
la

r 
w

ei
g
h
t.

 S
a
m

e 
ef

fe
c
ts

 o
b

se
rv

ed
 w

h
e
n
 t

h
e 

ex
p

o
su

re
 

w
a
s 

fo
ll

o
w

ed
 b

y
 1

 w
ee

k
 o

f 
e
x

p
o

su
re

 a
t 

2
0

0
 p

p
m

. 

(1
2

3
) 

1
0

0
–
 

3
0

0
 

4
 h

/d
a
y
, 

5
 d

ay
s/

w
ee

k
  

fo
r 

7
 m

o
n
th

s;
  

0
.5

%
 c

h
o

le
st

er
o

l 
ad

d
ed

  

to
 d

ie
t 

 

2
3
 

M
o

n
k
e
y

 
1

0
–

1
2

 f
e
m

al
es

/ 

g
ro

u
p

 

C
o

ro
n
ar

y
 a

th
er

o
sc

le
ro

si
s 

ag
g
ra

v
at

ed
, 

b
u
t 

n
o

t 
ao

rt
ic

 a
th

er
o

sc
le

ro
si

s.
  

(2
3

7
) 

1
5

0
 

6
 h

/d
a
y
, 

5
 d

ay
s/

w
ee

k
  

fo
r 

5
2

 w
ee

k
s;

  

0
.5

–
2

%
 c

h
o

le
st

er
o

l 
ad

d
ed

 

to
 d

ie
t 

1
0
 

P
ig

eo
n

 
2

0
 f

e
m

al
es

/g
ro

u
p

 
In

cr
ea

se
d

 i
n
ci

d
en

ce
 a

n
d

 s
ev

er
it

y
 o

f 
co

ro
n
ar

y
 a

th
er

o
sc

le
ro

si
s,

 c
o

m
-

p
ar

ed
 t

o
 n

o
n

-C
O

-e
x
p

o
se

d
 b

ir
d
s,

 i
n
 g

ro
u
p

s 
g
iv

e
n
 0

.5
%

 o
r 

1
%

 d
ie

ta
ry

 

ch
o

le
st

er
o

l 
+

 C
O

, 
b

u
t 

n
o

t 
in

 t
h

e 
g
ro

u
p

 g
iv

en
 2

%
 c

h
o

le
st

er
o

l 
+

 C
O

. 

S
im

il
ar

 r
es

u
lt

s 
o

b
ta

in
ed

 a
t 

3
0

0
 p

p
m

 C
O

 (
1

%
 c

h
o

le
st

er
o

l)
; 

in
cr

ea
se

 

in
 c

o
ro

n
ar

y
 a

th
er

o
sc

le
ro

si
s 

d
o

se
-d

ep
en

d
en

t.
 

(2
2

7
) 

1
6

0
  

4
 h

/d
a
y
 f

o
r 

1
–

1
6

 d
ay

s 
–

 
M

in
i-

p
ig

 
1

1
 i

n
 C

O
-g

ro
u
p

, 

se
x
 n

o
t 

sp
ec

if
ie

d
 

A
d

h
es

io
n
 o

f 
p

la
te

le
ts

 t
o

 a
rt

er
ia

l 
en

d
o

th
el

iu
m

 (
in

 s
o

m
e 

ca
se

s 
al

re
ad

y
 

se
en

 a
ft

er
 a

 s
in

g
le

 e
x
p

o
su

re
),

 p
la

te
le

t 
ag

g
re

g
at

io
n
, 

in
cr

ea
se

d
 

h
ae

m
a
to

cr
it

 a
n
d

 b
lo

o
d

 v
is

co
si

ty
. 

S
a
m

e 
e
ff

ec
ts

 o
b

se
rv

ed
 a

t 
1

8
5

 p
p

m
. 

(1
3

5
) 

1
8

0
 

2
 w

ee
k

s 
1

6
–

1
8

 

(r
an

g
e)

 

R
ab

b
it

 
4

 m
al

e
s 

U
lt

ra
st

ru
ct

u
ra

l 
ch

a
n

g
es

 i
n
 t

h
e 

ao
rt

a 
(o

ed
em

a,
 i

rr
eg

u
la

r 
ce

ll
u
la

r 

st
ru

ct
u
re

).
 

(1
0

8
) 

2
0

0
 

3
0

 d
ay

s 
1

5
.8

 
R

at
  

7
 m

al
e
s 

In
cr

ea
se

d
 h

ae
m

o
g
lo

b
in

 c
o

n
ce

n
tr

at
io

n
 a

n
d

 h
ea

rt
 w

ei
g
h
t.

 B
o

d
y
 

w
ei

g
h
t 

n
o

t 
a
ff

ec
te

d
. 

 

(1
5

6
, 
1

5
7

) 

2
0

0
 

9
0

 d
ay

s 
co

n
ti

n
u
o

u
sl

y
 

2
0
 

M
o

n
k
e
y

 
9

 m
al

e
s 

In
cr

ea
se

d
 h

ae
m

o
g
lo

b
in

 c
o

n
ce

n
tr

a
ti

o
n
 a

n
d

 h
ae

m
at

o
cr

it
. 

(1
0

0
) 

2
0

0
 

9
0

 d
ay

s 
co

n
ti

n
u
o

u
sl

y
 

9
.4

 
G

u
in

ea
 

p
ig

  

1
5

/g
ro

u
p

, 
se

x
 n

o
t 

sp
ec

if
ie

d
 

In
cr

ea
se

d
 h

ae
m

o
g
lo

b
in

 c
o

n
ce

n
tr

at
io

n
 a

n
d

 h
ae

m
at

o
cr

it
. 

 
(1

0
0

) 



2
7

 

T
a

b
le

 8
. 
E

ff
ec

ts
 i

n
 a

n
im

al
s 

af
te

r 
re

p
ea

te
d

 i
n
h

al
at

io
n
 e

x
p
o

su
re

 t
o
 c

ar
b

o
n

 m
o

n
o

x
id

e 
(C

O
).

 

C
O

 l
ev

e
l 

(p
p

m
) 

E
x
p

o
su

re
 d

u
ra

ti
o

n
  

M
ea

n
 b

lo
o

d
 

C
O

H
b

 (
%

) 

S
p

ec
ie

s 
N

o
. 

an
d

 s
ex

  

o
f 

an
im

al
s 

E
ff

ec
ts

 
R

ef
er

e
n
ce

 

2
0

0
 

7
2

 w
ee

k
s 

1
4

.7
 

R
at

 
5

1
 f

e
m

al
es

 
In

d
u
ct

io
n
 o

f 
v
e
n
tr

ic
u
la

r 
h

y
p

er
tr

o
p

h
y
. 

N
o

 c
h
an

g
es

 i
n
 l

u
n

g
 m

o
rp

h
o

-

lo
g

y
 o

r 
si

g
n

s 
o

f 
at

h
er

o
sc

le
ro

si
s.

 

(2
2

0
) 

2
5

0
–
1

 3
0
0
 

2
5

0
 p

p
m

 f
o

r 
1

7
 d

ay
s 

fo
ll

o
w

ed
 b

y
 5

0
0

 p
p

m
  

1
3

–
1
4

 d
ay

s,
 7

5
0

 p
p

m
 1

0
 

d
ay

s,
 1

 3
0

0
 p

p
m

 1
0

 d
ay

s 

–
 

R
at

 
6

–
9

 m
al

es
/g

ro
u
p

 
In

cr
ea

se
d

 h
ae

m
at

o
cr

it
, 

re
d

 b
lo

o
d

 c
el

l 
v
o

lu
m

e 
a
n
d

 b
lo

o
d

 v
o

lu
m

e 
 

at
 2

5
0

 p
p

m
 a

n
d

 a
b

o
v
e.

 P
la

sm
a
 v

o
lu

m
e 

w
as

 n
o

t 
af

fe
ct

ed
 a

t 
an

y
 

co
n
ce

n
tr

at
io

n
s.

 G
ro

ss
 l

u
n

g
 w

e
ig

h
t i

n
cr

ea
se

d
 a

t 
7

5
0

 a
n
d

 1
 3

0
0

 p
p

m
. 

(1
6

3
) 

4
0

0
 

6
 w

ee
k

s 
3

5
 

R
at

 
7

 m
al

e
s/

g
ro

u
p

 
In

cr
ea

se
d

 h
ae

m
o

g
lo

b
in

, 
h
ae

m
at

o
cr

it
 a

n
d

 r
el

at
iv

e 
h
ea

rt
 w

ei
g

h
t.

 

M
y
o

ca
rd

ia
l 

la
ct

at
e 

d
eh

y
d

ro
g
e
n
as

e 
M

 s
u
b

u
n
it

s 
el

ev
at

ed
. 

(2
1

3
) 

5
0

0
 

2
0

–
4
2

 d
ay

s 
4

1
.1

 
R

at
 

7
 m

al
e
s 

In
cr

ea
se

d
 h

ae
m

o
g
lo

b
in

 c
o

n
ce

n
tr

at
io

n
, 

h
ea

rt
 w

e
ig

h
t 

a
n
d

 b
o

d
y
 

w
ei

g
h
t.

 

(1
5

6
, 
1

5
7

) 

5
0

0
 

3
8

–
4
7

 d
ay

s 
–

 
R

at
 

1
1

 m
al

e
s/

g
ro

u
p

 
In

cr
ea

se
d

 h
ae

m
at

o
cr

it
, 

w
ei

g
h
t 

o
f 

ri
g

h
t 

an
d

 l
e
ft

 v
e
n
tr

ic
le

s,
 r

at
io

 o
f 

th
e 

su
m

 o
f 

ri
g

h
t 

a
n
d

 l
ef

t 
v
en

tr
ic

le
s 

to
 b

o
d

y
 w

ei
g
h
t,

 l
e
ft

 v
en

tr
ic

u
la

r 

ap
ex

-t
o

-b
as

e 
le

n
g
th

 a
n
d

 l
e
ft

 v
en

tr
ic

u
la

r 
o

u
ts

id
e 

d
ia

m
et

er
. 

 

(1
6

6
) 

C
O

: 
ca

rb
o

n
 m

o
n
o

x
id

e,
 C

O
H

b
: 

ca
rb

o
x
y
h
ae

m
o

g
lo

b
in

. 

 

 



28 

10.6 Reproductive and developmental effects  

A large number of studies on the developmental effects of exposure during the 

gestational or early postnatal period have been published (Table 9).  

Exposure of rabbits to 90 ppm CO throughout gestation resulted in decreased 

birth weights and increased neonatal mortality (15). Decreased birth weights  

were also observed among rats exposed to CO concentrations of 100–150 ppm  

or higher during the gestational period (62, 129, 173). The pups of rats exposed  

to 75–300 ppm CO throughout the gestation and until postnatal day 10, showed 

dose-dependently decreased body weights at 10 days of age (211). 

Adverse effects of CO on the development of the central nervous system have 

been observed in many studies. Impairment of aerial righting was observed at 

postnatal day 1 in mice pups exposed to 65 ppm or 125 ppm CO during pregnancy. 

Impairment of the righting reflex and negative geotaxis were observed in the pups 

of the 125 ppm-group on postnatal days 1 and 10, respectively (199). Delays in 

the development of negative geotaxis and homing behaviour were seen in rat pups 

of dams exposed throughout the gestation to 150 ppm CO (63). Exposure to 150 

ppm CO throughout gestation resulted also in impairment of acquisition and 

retention of a learned active avoidance task in male rat pups at postnatal days 30–

31 (133). De Salvia et al showed impairment of acquisition of a two-way active 

avoidance task in 90-day-old rats and impairment of acquisition and reacquisition 

of a two-way active avoidance task in 18-month-old rats after exposure of the 

mothers to 150 ppm CO throughout gestation. No effects were seen in a lower 

dose group (75 ppm) (48). 

In a study on the developing peripheral auditory system of rats exposed to CO 

on postnatal days 8–22, swollen nerve terminals innervating the inner hair cells 

were observed at 25 ppm. No morphological differences were observed in the 

inner and outer hair cells of the organ of Corti. No effects were seen at 12 ppm 

(125). When studying the expression of neuroglobin and cytochrome c in the 

cochlea of the developing rat, Lopez et al observed a decrease in neuroglobin 

immunoreactivity and mRNA in the spiral ligament cells and spiral ganglia 

neurons but not in supporting cells after prenatal only or pre- and postnatal ex-

posure to 25 ppm CO. Cytochrome c immunoreactivity decreased in the spiral 

ligament, spiral ganglia neurons and also in supporting cells. No significant 

changes were observed in rats exposed postnatally only (128). In a study on ox-

idative stress in the cerebellum of the developing rat, three study groups were 

included: prenatal only, prenatal and postnatal, and postnatal only exposure of rats 

to 25 ppm CO. Evidence for oxidative stress was seen in all groups, as indicated 

by increased expression of superoxide dismutase-1 and -2, and HO-1 in the cere-

bellar cortex and by an increase in inducible nitric oxide synthase and nitrotyrosine 

in blood vessels and Purkinje cells. The most marked effects were observed after 

prenatal or pre- and postnatal exposure (127). The same parameters related to 

oxidative stress were investigated in the cochlea of rats exposed to 25 ppm CO 

prenatally or pre- and postnatally. Superoxide dismutase-1 and HO-1 immuno-

reactivity increased in the stria vascularis and blood vessels in pups exposed pre- 
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and postnatally, but not in those exposed only during pregnancy. Inducible nitric 

oxide synthase and nitrotyrosine immunoreactivity increased in blood vessels of 

the cochlea of rats in both exposure groups. Vacuolisation of the afferent terminals 

at the basal portion of the cochlea was observed in both exposure groups (126). The 

same research group also investigated the effects of 25 ppm CO on the expression 

of neuroglobin and cytoglobin, which are potentially protective against hypoxia 

and oxidative stress. The mRNAs of neuroglobin and cytoglobin in the cerebellum 

were not affected in any of the exposed groups (prenatal only, pre- and postnatal, 

and postnatal only), but the cytoglobin protein levels were significantly increased 

in each of the exposed groups. This indicates that cytoglobin may play a role in 

protecting cerebellar cells from hypoxia-related oxidative stress (20). Few animals 

were used and the clinical relevance of the changes in protein levels is unclear.  

The same research group also studied the effects of mild CO exposure on audi-

tory function. Exposure of newborn rats to 12, 25, 50 or 100 ppm on postnatal 

days 6–22 resulted in an attenuation of the amplitude of action potential of the 8
th

 

cranial nerve. At the age of 73 days, the effect was not completely reversed in the 

50 ppm group (not examined in the other groups). The authors stated that this re-

duction could affect the processing of auditory input, and could be a link to a mild 

form of the disorder auditory neuropathy, if exposed to CO during childhood. The 

otoacoustic emission amplitude was reduced at 50 ppm, but not at 25 ppm (not 

examined at 12 ppm). Auditory brainstem conduction times did not differ from 

those of the control animals in any of the study groups (208). 

Exposure of rat pups to 12.5, 25, and 50 ppm CO, using the same protocol as  

in the study above (208) caused a significant decrease in the number of cells ex-

pressing a basal level of c-Fos in the central nucleus of the inferior colliculus.  

The expression of c-Fos was not attenuated in the other subregions of the inferior 

colliculus. At 75–77 days of age (55 days after the ending of the exposures), the c-

Fos expression was still significantly lower than in the control animals. The authors 

concluded that this indicates a persistent effect. c-Fos belongs to the immediate 

early gene family of transcription factors. Its expression is increased by sound 

stimulation, and it is considered as a good marker for neuronal activation in the 

auditory system. However, the persistent decrease in basal c-Fos activity from  

CO exposure may not necessarily indicate that the central nucleus of the inferior 

colliculus is the location of the deficit (236). 

CO also affects the development of the peripheral nervous system of the off-

spring of exposed dams. Significantly reduced myelin sheath thickness of sciatic 

nerve fibres was observed in rats after exposure to 75 ppm or 150 ppm CO during 

gestation days 0–20. No changes in axon diameters or motor activity were ob-

served (33). Another study, with the same exposure pattern (75 and 150 ppm on 

gestation days 0–20), showed effects on ion channel development, as indicated  

by significantly slowed inactivation kinetics of transient sodium current in sciatic 

nerves isolated on postnatal day 40. A negative shift in sodium equilibration 

potential was observed both on postnatal days 40 and 270 (35). 
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Decreased haemoglobin and haematocrit values were observed in rats after 

exposure to 200–250 ppm CO throughout the gestation (160, 173). Gestational 

exposure (60–157 ppm) resulted also in a dose-related increase in absolute and 

relative heart weight of newborn rat pups (162, 173). 

10.7 Combined exposures 

The auditory effects of CO have recently been reviewed (99). In rat inhalation 

studies, CO alone did not affect the auditory function in adults at concentrations 

up to 1 500 ppm (no observed adverse effect level, NOAEL). However, it can 

potentiate the effects of noise even when noise levels alone would not cause a 

change in hearing. In combination with excessive noise (100 dB at 13.6 kHz 

OBN), the experimental NOAEL was 300 ppm and the lowest observed adverse 

effect level (LOAEL) 500 ppm. The calculated lower bounds for benchmark 

doses of CO that produced either an increase in auditory threshold equivalent to 

10% of the effect of noise alone (100 dB at 13.6 kHz OBN) or produced a 5-dB 

potentiation of noise-induced hearing loss were 194 and 320 ppm (LOAELs), 

respectively (38, 64, 99). 

Dihalomethanes are known to be metabolised via a cytochrome P450 dependent 

pathway to CO and to induce the CO levels, and an additive effect on blood COHb 

concentration by simultaneous exposure to CO and dichloromethane has been 

observed (95, 114). 

Animal studies with combined exposure to CO and hydrogen cyanide indicate  

a synergistic effect (141, 149, 171). Dodds et al observed a synergistic effect  

for neurologic index and blood glucose concentration in rats exposed to CO and 

hydrogen cyanide. No synergistic relationship was observed with respect to hae-

matocrit, blood pressure, body temperature or lactate concentration (56). 

CO has been shown to inhibit the oxidation of acetonitrile to cyanide in rats (66, 

69). 
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11. Observations in man 

11.1 Irritation and sensitisation 

No studies or reports on skin, eye or respiratory irritation in humans have been 

found. Based on its chemical and physical properties and the lack of reports, CO 

is not likely to be irritating at relevant exposure levels. 

No studies or reports on dermal sensitisation have been found. Based on its 

chemical and physical properties, CO is not likely to be a skin sensitiser. 

11.2 Effects of single and short-term exposure  

11.2.1 Acute poisoning 

CO intoxication resulting in COHb levels of 50–60% is often lethal. However, 

much lower concentrations of CO may cause lethality in susceptible subgroups, 

primarily persons with coronary artery disease and foetuses. Patients with severe 

coronary artery disease may die, due to coronary events, if their COHb levels are 

around 20% (96, 151). 

The acute symptoms depend on the CO concentration and the exposure duration. 

Exposure to low CO levels may result in subtle changes in time discrimination, 

visual vigilance and choice response. The symptoms observed after exposure to 

high concentrations of CO include severe headache, dizziness, nausea, vomiting, 

mental confusion, visual disturbances, reddening of the skin, compartment 

syndrome (increased pressure within muscles, leading to decreased blood flow 

and lack of oxygen), fatigue, hypotension and coma (59). The main symptoms 

occurring at different COHb levels are summarised in Table 10. The effects 

observed in healthy individuals are grouped separately from the effects in risk 

groups. The main susceptible subgroups for non-lethal CO effects are patients 

with coronary artery disease and children. 

Acute poisoning cases have been reported in relation to CO exposure in closed 

rooms, like wood pellet storages and the hatches in ships and warehouses (5, 81, 

216-218). 

11.2.2 Effects in children 

Retrospective data is available from some case studies on children accidentally 

exposed to CO. 

A total of 564 persons, of whom 504 children, were exposed to CO in an ele-

mentary school due to a CO leak. One third of the children (n = 177) (mean age 

8.7 years) were examined at one hospital and their mean COHb level was shown 

to be 7.0%. Of these 177 children, 139 reported headache, 69 nausea, 30 dizziness, 

19 dyspnoea, 13 vomiting, 11 abdominal pain and 9 drowsiness. The authors con-

cluded that there was a correlation between the COHb concentrations and total 

number of symptoms reported (109). 
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Table 10. Acute effects related to CO exposure in healthy adults and susceptible sub-

populations at different COHb levels. Taken from IPCS 1999 and NRC 2010 (96, 151). 

COHb% Effects 

Background concentrations 

ca 1 Physiological background concentration. 

3–8 Background concentration in smokers. 

Effects observed in healthy adults 

10 Shortness of breath on vigorous exercise, dilation of cutaneous blood vessels, 

possible tightness across the forehead. 

20 Shortness of breath on moderate exercise, occasional headache. 

30 Headache, irritability, disturbed judgement, possible dizziness, dimness of 

vision. 

40–50 Headache, confusion, collapse, fainting on exertion. 

60–70 Unconsciousness, intermittent convulsion, respiratory failure. Death if exposure 

is long continued. 

80 Rapidly fatal. 

Effects observed in susceptible subpopulations 

2 Reduced time to onset of angina and signs of myocardial ischaemia after 

physical exercise in persons with coronary artery disease.  

5–6 Increase in cardiac arrhythmias in persons with coronary artery disease. 

7 Headache and nausea in children. 

13 Cognitive development deficits in children. 

15 Myocardial infarction in persons with coronary artery disease. 

25 Syncopes in children. 

25 Stillbirths. 

CO: carbon monoxide, COHb: carboxyhaemoglobin. 

 

In a study analysing 16 children with CO poisoning (mean age 7.0 years,  

COHb > 15%) the following symptoms were reported: nausea (16/16 patients), 

vomiting (12/16), headache (13/14), lethargy (11/16), visual problems (3/14), at 

least one syncopal episode (9/16) (45). 

More examples on case studies on children are presented in NRC 2010 and 

White 2000 (151, 241). 

The observations in human studies are supported by a large number of animal 

studies indicating developmental effects at relatively low doses. In conclusion, 

children can be regarded as being more sensitive towards the hazardous effects 

caused by CO. 

11.2.3 Cardiovascular and circulatory effects 

Studies on the cardiovascular effects of CO in adults are summarised in Table 11. 

The reports include controlled exposure studies in healthy persons and in patients 

with diagnosed cardiovascular disease, as well as one study of a group exposed 

occupationally. 

The clinical studies carried out with healthy subjects were mainly focusing on 

exercise performance after acute CO exposure. Davies and Smith exposed healthy 

volunteers to CO for 8 days continuously in indoor air in a closed exposure room. 

Smoking was not allowed during the experiment, or three days before it began. 
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The electrocardiograms of 3 of 15 subjects exposed at 15 ppm CO (COHb 2.4%) 

showed P-wave deviations and the same effect was observed in 6 of 15 subjects 

exposed at 50 ppm CO (COHb 7.1%). The smoking status of the subjects was not 

reported (46). In the evaluation by ATSDR it was concluded that the interpretation 

of these effects is limited due to lack of statistical analyses and data on confounding 

factors (e.g. smoking) (16). Unspecific P-wave changes are quite common and may, 

for example, occur as a result of stress. The clinical relevance of these changes is 

not clear, therefore the effects observed in the study by Davies and Smith (46) 

cannot be considered as adverse effects. 

Horvath et al exposed 4 healthy male volunteers to 75 or 100 ppm CO in an 

environmental exposure chamber resulting in COHb levels of 3.4% and 4.3%, 

respectively. After exposure, the volunteers participated in an exercise challenge 

test. The CO exposure caused decreased lung ventilation at maximum performance 

at both exposure levels and decreased maximal aerobic capacity (VO2max) at 4.3% 

COHb only. No signs of abnormalities in electrocardiograms were observed (91). 

No explanation for the decreased lung ventilation was given. The COHb of 4.3% 

is taken as the LOAEL. 

Adir et al exposed 15 healthy male volunteers to a high concentration of CO  

for 4 minutes resulting in COHb levels of 5.1%. In the exercise test following the 

exposure, decreased exercise duration and maximal effort were observed. No 

arrhythmias, ST-segment changes or changes in myocardial perfusion were de-

tected (4). Similarly, Kizakevich et al reported that CO exposure of 16 healthy 

male volunteers resulting in COHb levels of 5.0%, did not induce any exercise-

induced ST-segment changes or other signs of cardiac arrhythmias, which have 

commonly been observed among coronary artery disease patients exposed to CO 

(107). In the evaluation by US EPA (229) it was concluded that in the controlled 

studies with healthy volunteers, the reported reductions in maximal exercise 

duration and performance were small, and thus likely to affect only competing 

athletes.  

The controlled exposure studies on patients with exertional angina clearly in-

dicate an induction of symptoms, as measured by evaluating the effects on several 

different parameters. The lowest COHb level at which significant symptoms 

occurred was 2.4%. At this concentration, Allred et al observed decreased time  

to onset of angina symptoms, time to onset of ischaemic ST-segment changes (in-

dicative of myocardial ischaemia) and mean duration of exercise (7, 8). A number 

of other studies on patients indicate similar results at COHb levels between 2.9 

and 5.9% (3, 9, 12, 111). However, Sheps et al did not observe any change in time 

to onset of angina, ST-segment depression, heart rate, blood pressure or exercise 

duration in patients exposed to CO (COHb 4.1%) compared to the same subjects’ 

responses to air exposure (196). 

Significantly increased number of ventricular arrhythmias and increased heart 

rate during exercise were observed in exercise challenge tests with angina patients 

(COHb 5.9%) (197). In contrast, another study did not show any effects on fre-

quency of arrhythmias in patients after CO exposure resulting in 5.8% COHb (88).
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11.2.4 Central nervous system and behavioural effects 

Central nervous system effects occur commonly in acute CO poisoning cases 

(COHb > 20%), and have unambiguously been demonstrated in humans (see 

Section 11.2.1). The central nervous system effects after exposure to lower con-

centrations are less known, and available study results are inconsistent. 

Studies of central nervous system effects of controlled CO exposure have mostly 

been carried out with healthy volunteers, mainly at COHb concentrations of 5–20%, 

and the study results include observations on decreases in visual and auditory 

vigilance and visual tracking (229). Benignus performed extensive meta-analyses 

of the available CO-behavioural literature and concluded that 18–25% COHb 

would be required to produce a 10% decrement in behaviour (21). Furthermore, 

Benignus concluded that the studies focusing on CO induced effects on behaviour 

suffer from some technical problems, as single-blind and non-blind experiments 

tend to show a much higher rate of significant effects than do double-blind studies 

(21). The same authors concluded in another literature review that COHb should 

not be expected to produce behavioural effects at concentrations lower than 20% 

(175). 

Benignus and Coleman estimated using a whole-body human physiological 

model that the brain aerobic metabolism remains unaffected at COHb levels < 25% 

in healthy subjects. A similar simulation of the situation in subjects with stenosis 

showed that the brain aerobic metabolism, which might affect behaviour, was 

impaired immediately as COHb increased above the baseline. No threshold level 

could thus be identified for these types of patients (23). 

The effect on visual luminance and contrast detection was studied by a battery 

of visual tests in healthy male volunteers exposed to CO. At a COHb level of 

15.8–19.8%, no effects on the studied parameters were observed (92). 

In the study by Aronow et al, 20 men with diagnosed cardiovascular disease 

were exposed to 100 ppm CO resulting in 3.9% COHb (mean) and to compressed 

air under the same exposure conditions on another day (double-blind, randomised, 

crossover study). After the exposure, the effect of CO was evaluated by carrying 

out a set of performance tests, including seven measures of higher mental pro-

cesses, the critical flicker fusion test, and one measure of reaction time. The results 

showed impairment in the visualisation test performance (P < 0.001). In that test, 

the ability to visualise the contemplated outcome of objects manipulated in space 

was followed. Perceptual speed, flexibility of closure, number facility, digit symbol, 

time perception, flicker fusion, or reaction time tests did not indicate any effects 

of CO (11). 

It can be concluded that relatively high doses of CO may cause central nervous 

system and behavioural effects. The majority of the studies are also focusing on CO 

poisoning or exposure to high concentrations of CO. Due to lack of valid reports 

on studied performed at low CO concentrations it is not possible to establish a 

dose-response relationship or to identify a reliable NOAEL for central nervous 

system effects caused by CO. 
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11.3 Effects of long-term exposure  

Chronic CO poisoning is generally characterised by headache, dizziness and tired-

ness. CO poisoning was commonly occurring during the World War II, due to the 

use of wood as fuel for generator vehicles. These cases are uncommon nowadays, 

although some case reports have been found. Tvedt and Kjuus reported on a crane 

driver at a smelting works, who developed permanent symptoms after 20 years of 

exposure. Long-lasting symptoms have also been observed in residents exposed to 

CO due to a faulty oil fired central heating system (228). 

Electrocardiographic changes among indoor barbeque workers occupationally 

exposed to CO (mean work duration 15.6 years) were investigated by Sari et al. 

The average COHb level among the exposed was 6.5%, whereas the corresponding 

value in the control group was 2.2%. Several electrocardiographic parameters 

differed between the groups with increased values for maximum P-wave duration, 

P-wave dispersion, maximum QT interval, QT dispersion and corrected QT disper-

sion in the exposed group. Significant correlations were found between COHb and 

P-wave dispersion, maximum QT interval, QT- and corrected QT dispersion (191). 

However, no exposure measurements other than COHb were carried out in this 

study, and therefore it cannot be ruled out that the electrocardiographic distur-

bances were caused by other environmental pollutants. 

Many studies focusing on air quality and pollution have also evaluated the pres-

ence of asthma among study subjects. Positive associations between long-term 

exposures to CO and asthma or asthma symptoms were observed in population 

studies among 6–16-year-old children in Taiwan and Germany (77, 89, 94, 233). 

Hirsch et al concluded that the increased prevalence of cough and bronchitis was 

related to exposure to traffic-related air pollutants (i.e. NO2, CO and benzene) (89). 

Hwang et al conducted a co-pollutant analysis and concluded that long-term expo-

sure to traffic related air pollutants (NOx, CO and O3) increased the risk of asthma 

in children, and that the risk of asthma was not related to the levels of PM10 (particu-

late matter with aerodynamic diameter up to 10 µm) and SO2 (94). However, there 

is a strong correlation between NOx and NO2 and CO, making it difficult to separate 

the effects attributed to each pollutant. The other reports either did not interpret 

the association between long-term exposure to CO and adolescent asthma (233) or 

concluded that it is unlikely that CO directly affects the respiratory system (77).  

The effects of long-term exposure to air pollutants and the prevalence of allergic 

rhinitis were studied among school children in Taiwan. An association between 

CO, but also NOx, exposure and allergic rhinitis was observed (93, 120). 

11.4 Combined exposure  

The principal mechanism underlying the hypoxic effects of CO is the binding  

to haemoglobin and myoglobin and concomitant displacement of O2 (see also 

Chapter 7) (30, 31, 247, 248). Decreased levels of O2 facilitates CO binding, 

whereas increased O2 concentration in inspired air reverses the binding, thereby 

increasing the elimination rate of CO. 
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Methylene chloride and other dihalomethanes are metabolised to CO in the 

body (see Section 8.1). Therefore, combined exposure to dihalomethanes and CO 

results in COHb levels which are higher than could be expected based on the CO 

exposure alone (95). 

Acute human CO poisoning has been associated with hearing loss, despite lack 

of excessive noise exposure. However, most field studies lack noise exposure esti-

mates. It is therefore not clear if noise exposure is a prerequisite for the auditory 

effects seen following long-term occupational exposure to CO. In a study analysing 

6 812 audiograms, exposure to CO and noise levels below 90 dBA had no effect 

on hearing thresholds, whereas workers who were exposed to CO and noise levels 

above 90 dBA displayed significantly poorer hearing thresholds at high frequencies 

(CO levels not given) (conference proceedings cited in (99)). In a small subset 

(two subjects), the adjusted ORs for audiometric hearing loss were significant for 

exposures in the 16 to 35 ppm range in combination with noise exposure (reviewed 

by (99)). 

There is no direct information available on CO interactions with drugs, but some 

studies provide data on the effects of combined exposure to CO and alcohol. In 

the report by IPCS, it was concluded that there is some evidence that CO toxicity 

may be enhanced by drug use, and also that the toxicity of other drugs may be 

altered after exposure to CO (96). Enhanced CO induced central nervous system 

toxicity has been reported at concomitant intake of barbiturates, amphetamine, 

chlorpromazine, nicotine, diazepam and morphine. Drugs used to treat patients 

with coronary artery disease might also affect the susceptibility to CO (229). 

Rockwell and Weir investigated interactive effects of CO and alcohol on actual 

driving and driving-related performances in young non-smoking college students. 

Combined exposure (resulting in COHb levels of 0, 2, 8 and 12% and blood alco-

hol levels of 0.5‰) caused perceptual narrowing and decreased eye movement. 

The effects of CO and alcohol were often additive. At the 12% COHb level, a 

supra-additive interaction between CO and alcohol was observed, indicating 

effects many times higher than would have been expected by summarising the 

effects caused by CO and alcohol separately (96, 181). 

11.5 Genotoxic effects 

Only one study focusing on the potential of CO to induce genotoxic effects has 

been found. 

Oztürk et al studied the frequency of sister chromatide exchanges among non-

smoking persons visiting the emergency room due to acute CO intoxication, 

caused by dysfunctioning coal or wood stoves. A significant increase in the mean 

frequency of sister chromatide exchanges was observed among the CO-exposed 

group as compared to the healthy non-smoking controls. No dose-response cor-

relation was seen between COHb level and frequency of sister chromatide ex-

changes (154). 
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11.6 Carcinogenic effects 

No data on carcinogenic effects of CO have been found. 

11.7 Reproductive and developmental effects 

11.7.1 Effects on fertility 

No data have been found related to fertility effects of CO. 

11.7.2 Developmental effects 

CO is transferred to the foetus via the placenta, and foetal haemoglobin has higher 

affinity for CO than maternal haemoglobin. Therefore, it is not possible to assess 

the severity of foetal intoxication based on the state of the mother. The rate of 

COHb formation and dissociation differs between the mother and the foetus, re-

sulting in a delay in foetal CO elimination and a prolonged exposure (16, 96). 

High doses of CO may result in preterm birth, developmental disorders, reduced 

foetal growth or even foetal death (16, 96). Epidemiological data also show some 

evidence that exposure to CO via ambient air pollution during early pregnancy 

may be associated with an increased risk of preterm birth or with reduced birth 

weight. However, the interpretation of epidemiological studies is often complicated 

due to lack of specific exposure level data during particular periods of gestation. 

There is usually a clear correlation between ambient CO concentrations and other 

air quality variables that may affect developmental outcomes which should also  

be considered. Therefore, based on the available epidemiological data, it is not 

possible to make any conclusions on dose-response relationships, or to define any 

safe levels of exposure (16, 87, 96, 124). 

In the assessment by US EPA, a large number of epidemiological studies of 

birth outcomes and developmental effects in relation to ambient CO exposure 

among the general population were reviewed. It was concluded that there is some 

evidence that ambient CO exposure during the first trimester is associated with 

preterm birth. A relationship between reduced foetal growth and CO levels was 

also suggested. However, there was an inconsistency concerning the results on  

the correlation between CO and the parameters “low birth weight”; “intrauterine 

growth restriction”; and “small for gestational age” obtained in the different 

studies (230). 

Some of the most extensive retrospective cohort studies were conducted in 

California by Ritz et al (178-180, 245). The mean air CO concentrations ranged 

from 0.75 to 2.4 ppm. The cohorts included 97 000 births in 1989–1993 and 

106 000 births in 1994–2000. In the study by Ritz and Yu published 1999, ex-

posure to > 5.5 ppm CO (3-month average) in the outdoor air during the last 

trimester was associated with a significantly increased risk of low birth weight 

(odds ratio 1.22, 95% confidence interval (CI) 1.03–1.44). The relative risks of 

preterm birth, low birth weight and congenital anomalies were estimated after 

adjustment for other risk factors and ambient air concentrations of NO2, O3, and 

PM10. The relative risk of preterm birth was estimated to be 1.12 (95% CI 1.04–
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1.21) per 3 ppm increase in CO during the last 6 weeks of pregnancy (180). In the 

follow-up, a relative risk of 1.10 (95% CI 1.03–1.08) per ppm increase in air CO 

during the last 6 weeks of pregnancy was obtained when no adjustment was made 

for PM10. No significant association was seen, however, when the results were 

adjusted for PM10 (relative risk 0.98; 95% CI 0.83–1.18) (245). When considering 

the correlation between CO and low birth weight, and including NO2, O3, and PM10 

in the model, an elevated risk was observed in the first study, covering 126 000 

births (179), but not in a follow-up (245). 

Sixty case reports related to CO exposure, pregnancy, and teratogenicity were 

evaluated by Norman and Halton. Among the 60 cases, there was only one de-

scription of an acute occupational CO exposure affecting pregnancy (32). CO 

exposure was not related to occupational situations in any of the other cases. In 

the studied cases, there was a direct relationship between foetal effects, maternal 

COHb and maternal toxicity. Norman and Halton concluded that, although no 

such cases have been reported, there is a risk of occupationally related develop-

mental toxicity of CO, as exposure to CO is very likely at certain working places 

(148). 

In a prospective study, data on the foetal outcome following accidental CO poi-

soning during pregnancy were collected and followed. The main conclusion was 

that no indications of adverse effects could be observed among the babies of the 

mothers (n = 31) with mild signs of CO poisoning (COHb range 0.8–18%). Among 

the mothers suffering from severe CO poisoning (COHb = 21–50%) during preg-

nancy (n = 5), two were giving birth to babies with no signs of developmental 

effects, whereas the babies of three of the mothers showed developmental delays 

during follow-up examinations (113). 

12. Dose-effect and dose-response relationships 

The main mechanism behind CO-induced toxicity has for long times been known 

as the binding of CO to haemoglobin, resulting in COHb formation and hypoxia. 

The relations between CO in air and the subsequent COHb levels are also well-

known, and can be calculated using the CFK equation for rest or during exercise 

(42). 

Endogenous CO formation leads to a background COHb concentration in blood 

of about 0.4–0.7%. Non-smokers typically have COHb levels up to 2% whereas 

smokers may have COHb levels up to 10% immediately after smoking (16). 

Studies examining acute health effects of low CO levels have focused on organ 

systems particularly vulnerable to hypoxia, including the heart and the brain. 

Patients with coronary artery disease as well as the developing foetus appear 

especially sensitive to CO. 

Human studies 

The effects of single/short-term exposure to CO (summarised in Table 11) have 

been investigated in several controlled exposure studies in healthy volunteers  
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and patients with coronary artery disease. Generally, the CO exposures were de-

signated to reach target blood COHb levels between 2 and 6% and cardiovascular 

function assessments were made during exercise challenge.  

In controlled exposure studies of healthy volunteers, CO exposures producing 

COHb levels between 3.4 and 5.1% have been related to effects on exercise per-

formance including decreased lung ventilation at maximum performance, decreased 

maximal aerobic capacity, decreased maximal effort and decreased exercise dura-

tion (4, 91). Exposure to CO (COHb levels up to 5.1%) was not observed to induce 

myocardial ischaemia or cardiac arrhythmias (4, 91, 107). 

In a large controlled exposure study of patients with coronary artery disease, 

CO exposures resulting in COHb concentrations of 2.4% (lowest concentration 

evaluated) and 4.7% significantly reduced the time to onset of angina symptoms 

and of ST-segment changes during exercise in a dose-dependent manner (7, 8). 

Other studies on patients have also shown that CO exposure (COHb 2.9–5.9%) 

aggravated exercise-induced myocardial ischaemia including decreased time to 

onset of angina symptoms, decreased time to onset of ST-segment changes and 

increased duration of angina symptoms (3, 9, 111). In another study on patients, 

no change in time to onset of angina and of ST-segment changes were observed at 

a COHb of 4.1% (196). At a COHb level of 5.9%, but not at 4.0%, an increase in 

number of ventricular arrhythmias was reported (197). In contrast, no such effect 

was seen in another study on patients at same COHb level (5.8%) (88).  

Behavioural effects, including decrease in visual and auditory vigilance and 

visual tracking, following controlled CO exposures resulting in COHb levels 

between 5 and 20% have been observed in healthy subjects. The findings have, 

however, not been consistent across studies and dose-response relationships have 

not been firmly established (229). In the only study conducted on patients with 

coronary artery disease, impaired performance in a visualisation test following 

controlled CO exposure resulting in a COHb level of 3.9% was observed. Other 

performance tests did not indicate any effects of CO at this level (11).  

Effects in individuals suffering acute CO poisoning cover a wide range, de-

pending on severity of exposure (Table 10). At COHb levels of 20%, the effects 

observed are mild, like shortness of breath during exercise or occasional headache. 

At higher levels (COHb ≥ 30%) symptoms include headache, dizziness, disturbed 

judgement, dimness of vision, confusion, unconsciousness, intermittent convulsion 

and respiratory failure. COHb levels of 50–60% are often lethal. For patients  

with coronary artery disease, COHb levels around 20% may be lethal. Children 

appear also to be particularly vulnerable to CO and experience headache and 

nausea already at COHb levels of 7%. At higher levels, cognitive development 

deficits (COHb 13%) and syncopes and stillbirths (COHb 25%) have been re-

ported (96, 151). 

In studies investigating health effects of occupational and environmental ex-

posures to CO, the presence of other pollutant gases and particles hamper the 

interpretation. The utility of these types of studies for establishing dose-response 

relationships is therefore limited.  
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Animal studies 

The findings in the animal studies (summarised in Tables 7 and 8) are consistent 

with those in humans, indicating effects on the cardiovascular and the central 

nervous systems.  

Brief exposure to CO increased myocardial ischaemia (as indicated by ST-

segment alteration) in coronary artery ligated dogs at a COHb level of 4.9% and 

increased further with increasing CO exposure (19). In another study, single CO 

exposure (COHb 6.4%) reduced the threshold for ventricular fibrillation in healthy 

dogs and in dogs with myocardial injury (13, 14). This effect was also seen in 

healthy and infarcted monkeys following single exposure to CO (COHb 9.3%). 

The cardiovascular disease made the animals more vulnerable to CO exposure,  

i.e. the voltage required to induce fibrillation was lowest in infarcted animals 

breathing CO (49).  

Abnormal cardiograms were observed for dogs exposed to CO for 6 weeks 

(COHb 2.6–12%) and monkeys exposed for 24 weeks (COHb 12.4%) (50, 172). 

In contrast, no sign of such abnormalities was seen in a study on dogs exposed to 

CO for 14 weeks (COHb 14%) (51). Exposure to CO for 30 days (COHb 15.8%) 

or for 72 weeks (COHb 14.7%) induced cardiomegaly in rats (156, 157, 220). 

Haematological effects, occurring as compensatory mechanism due to hypoxia, 

including increases in haemoglobin and/or haematocrit following repeated ex-

posure CO, were seen in rats at COHb ≥ 7.5% and in monkeys at COHb ≥ 10% 

(50, 100, 156, 157). 

Gestational and early postnatal exposures to CO have been shown to cause ad-

verse effects in e.g. the central and peripheral nervous system, in behaviour and 

the cardiovascular system (Table 9). Effects on the developing auditory system, 

i.e. a consistent attenuation of the amplitude of action potential of the 8
th

 cranial 

nerve, were observed in newborn rats exposed from 12 ppm (lowest dose tested, 

estimated to correspond a COHb level of 2%) up to 50 ppm on postnatal days  

6–22 (208). Using the same protocol, decreased c-Fos immunoreactivity in the 

central inferior colliculus (marker for neuronal activation in the nervous system) 

was observed over all dose groups (12.5, 25 and 50 ppm) (236). Furthermore,  

CO exposure of newborn rats caused swelling of the nerve terminals innervating 

the inner hair cells of Corti at 25 ppm but not at 12 ppm (125) and decreased oto-

acoustic emission at 50–100 ppm but not at 25 ppm (208). Gestational exposure of 

rats to 75 ppm CO caused effects in offspring peripheral nervous system including 

reduced myelin sheath thickness of sciatic nerve fibres (33, 35).  

Gestational exposures to CO have also been shown to impair multiple be-

haviour outcomes in offspring including aerial righting (65 ppm CO, mice), 

negative geotaxis (125 ppm, mice), homing behaviour (150 ppm, rats) and 

avoidance behaviour (150 ppm, rats) (48, 63, 65, 199). 

Cardiovascular effects have also been observed in offspring of dams exposed 

during gestation from 60 ppm CO (i.e. cardiomegaly) (173) and higher (Table 9). 
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In addition, there are consistent data showing that gestational exposure to CO 

significantly decreased birth weight in a dose-related manner in rabbits (≥ 90 ppm 

CO) and rats (≥ 100 ppm CO) (15, 129, 173).  

13. Previous evaluations by national and international bodies 

The Nordic Expert Group for Documentation of Occupational Exposure Limits 

(previous name for NEG) concluded in 1980 that when setting an occupational 

exposure limit value, the effects of CO on the following organs and functions 

have to be considered: heart, arteries, central nervous system, foetus and maximal 

aerobic capacity (114). 

 

In the International Programme on Chemical Safety (IPCS) report from 1999, the 

basis for the recommendations is that the COHb level should not exceed 2.5% 

even during moderate or light exercise. The values aim to protect the most sensitive 

groups, non-smokers with coronary artery disease from acute ischaemic heart 

attacks, and to protect foetuses of non-smoking pregnant women from hypoxic 

effects. In addition, the Task Group agreed that the COHb of workers exposed 

occupationally to CO should not exceed 5%. This recommendation was based  

on the assumption that workers are mainly healthy, physiologically resilient and 

under regular supervision. The guideline values for CO in ambient air given were: 

87 ppm for 15 minutes, 52 ppm for 30 minutes, 26 ppm for 1 hour and 9 ppm for 

8 hours (96). 

 

The World Health Organization (WHO) guideline values from 2000 for outdoor 

air are 90 ppm for 15 minutes, 50 ppm for 30 minutes, 25 ppm for 1 hour, and 10 

ppm for 8 hours. WHO based its recommendation on the same assumptions that 

were made by IPCS (96), meaning that the COHb should not exceed 2.5% in 

order to protect patients with coronary artery disease and foetuses from the health 

hazards caused by CO (243). 

The updated WHO indoor air recommendations from 2010 are 90 ppm for 15 

minutes and 30 ppm for 1 hour, assuming light exercise and that such exposure 

levels do not occur more than once per day. The recommended upper level for 8 

hours is 9 ppm (arithmetic mean concentration, light to moderate exercise) and  

6 ppm for 24 hours (arithmetic mean, assuming that the exposure occurs when a 

person is awake but not exercising). The exposure-related decrease in maximal 

exercise performance and increase in symptoms of ischaemic heart disease after 

CO exposure in persons with stable angina were identified as the critical effects. 

Based on these symptoms, it was concluded that the COHb should not be over 

2%, and the corresponding CO levels were calculated accordingly (244).  

 

The US Environmental Protection Agency (US EPA) published a document on air 

quality criteria for CO in 2000 (229). The document contains an extensive evalua-
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tion and synthesis of the exposure and health hazard data relevant for reviewing 

national ambient air quality standards. It was concluded that young, healthy non-

smokers are not at risk when exposed to CO at ambient concentrations resulting  

in COHb below 5%. Patients with exercise-induced angina were identified as a 

susceptible subgroup. US EPA’s latest evaluation on health effects associated with 

ambient CO exposure were released 2010 (230). It was concluded that consistent 

and coherent evidence from epidemiologic and human clinical studies, along with 

biological plausibility provided by the role of CO in limiting O2 availability, is 

sufficient to conclude that a causal relationship is likely to exist between relevant 

short-term exposures to CO and cardiovascular morbidity.  

 

In the National Research Council (NRC) documentation published 2010 (151) 

Acute Exposure Guideline Levels (AEGLs) were proposed for CO as follows: 

No AEGL-1 values (Airborne concentration causing “notable discomfort, 

irritation, or certain asymptomatic, nonsensory effects”, which are transient and 

reversible, in the general population, including susceptible subgroups) were given 

as it was concluded that serious effects may occur among susceptible persons at 

concentrations which are not causing AEGL-1 effects in the general population.  

The AEGL-2 values (Airborne concentration above which the general popula-

tion, including susceptible individuals, could suffer from “irreversible or other 

serious, long-lasting adverse health effects, or an impaired ability to escape”) given 

were: 10 minutes for 420 ppm, 30 minutes for 150 ppm, 1 hour for 83 ppm, 4 hours 

for 33 ppm and 8 hours for 27 ppm. The AEGL-2 values were based on observed 

cardiovascular effects in coronary artery disease patients, who were considered as 

the most susceptible subpopulation. 

The AEGL-3 values (Airborne concentration above which life-threatening 

health effects or death might occur among the exposed general population, in-

cluding susceptible subgroups) given were: 10 minutes for 1 700 ppm, 30 minutes 

for 600 ppm, 1 hour for 330 ppm, 4 hours for 150 ppm and 8 hours for 130 ppm. 

The starting points for the AEGL-3 values were analyses of poisoning cases, in-

dicating that the threshold for lethality is 40% COHb. 

 

In the Agency for Toxic Substances and Disease Registry (ATSDR) evaluation from 

2012 no minimal risk levels (MRLs) were proposed. This decision was justified 

by the fact that the LOAELs observed in clinical and experimental animal studies 

(2.4% COHb and 12 ppm CO, respectively) are relatively low. Application of 

standard uncertainty factors to the LOAELs would thus result in CO concentrations 

within the range of ambient CO levels in the US. The decision not to propose any 

minimal risk levels was also justified by the fact that if there is a threshold for the 

toxic effects, it is likely to be very close to the endogenous production rate of CO. 

It was also concluded that an exposure level determined to be of minimal risk at 

sea level might not be applicable at higher altitudes with lower partial pressures of 

O2 (16). 
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14. Evaluation of human health risks  

14.1 Assessment of health risks  

The effects seen in acute CO poisoning cover a wide range (Table 10) from mild 

symptoms, like shortness of breath during exercise or occasional headache at 

COHb 20% to more severe ones like headache, dizziness, disturbed judgement, 

dimness of vision, confusion, unconsciousness, intermittent convulsion and re-

spiratory failure at COHb above 30%. COHb levels of 50–60% are often lethal. 

Even COHb levels of 20% may be lethal for patients with coronary artery disease. 

The foetus is at higher risk than the healthy adult because of higher CO haemo-

globin affinity. Children appear also to be particularly vulnerable to CO and 

experience headache and nausea already at COHb levels of 7%. At higher levels, 

cognitive development deficits (COHb 13%) and syncopes and stillbirths (COHb 

25%) have been reported (96, 151). 

Exposure to low or moderate CO levels causes different kinds of symptoms,  

the major ones related to cardiovascular or central nervous system effects. These 

types of effects have been observed in both animal tests and controlled human 

exposure studies.  

The clinical studies carried out with healthy subjects were mainly focusing on 

exercise performance after acute CO exposure (Table 11). In the study by Horvath 

et al, 4 healthy males were exposed to concentrations of 75 or 100 ppm CO in an 

environmental exposure chamber, resulting in COHb levels of 3.4% and 4.3%, 

respectively. After exposure, the volunteers participated in an exercise challenge 

test. The maximal aerobic capacity was decreased in the group exposed to the 

higher concentration. The LOAEL identified in this study was 4.3% COHb (91). 

In the study by Adir et al, 15 male volunteers were exposed to a high concentration 

of CO for 4 minutes, resulting in 5.1% COHb. In the exercise test following the 

exposure, the maximal effort and the duration of the exercise were significantly 

decreased. No arrhythmias, ST-segment changes or changes in myocardial per-

fusion were detected (4). In the evaluation by US EPA (229) it was concluded that 

in the controlled studies with healthy volunteers, the reported reductions in maxi-

mal exercise duration and performance were small, and thus likely to affect only 

competing athletes. In the study by Davies and Smith, healthy volunteers were 

exposed continuously to 15 or 50 ppm CO for 8 days. The electrocardiograms of  

3 of 15 subjects exposed to 15 ppm CO (COHb 2.4%) showed P-wave deviations 

and the same effect was observed in 6 of 15 subjects exposed to 50 ppm CO 

(COHb 7.1%). Marked ST-segment depression was seen in one subject (heavy 

smoker) exposed at 15 ppm but in none of the subjects exposed at 50 ppm (46). 

P-wave changes are generally not considered as being specific markers of toxicity  

or as clinically relevant, and are therefore not considered as adverse effects. COHb 

4.3% is identified as an overall LOAEL in healthy volunteers.  

In other clinical studies, the effect of controlled CO exposure on various per-

formance parameters were investigated in patients with diagnosed coronary artery 

disease (Table 11). In the studies by Allred et al, 63 men with stable angina were 
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exposed to a mean concentration of 117 ppm CO for 1 hour, resulting in COHb 

levels of 2.4%. The exposure resulted in decreased time to onset of angina 

symptoms and ischaemic ST-segment changes, and decreased mean duration of 

exercise in exercise tests. Similar, dose-dependent effects were also seen after 

exposure to a mean CO concentration of 253 ppm (COHb 4.7%) (7, 8) as well as 

in other studies on patients exposed to CO (COHb 2.9–5.9%) (3, 9, 111). Aronow 

et al reported impaired results in a visualisation test among angina patients after 

exposure to CO (COHb 3.9%, only dose tested) compared with the results of the 

same test persons without previous CO exposure (11). COHb 2.4% is identified  

as an overall LOAEL in patients with coronary artery disease.  

The lowest CO exposure causing health effects in animals have been observed 

in studies evaluating effects of CO on the developing auditory system (Table 9). 

In the study by Stockard-Sullivan et al, exposure of rats to 12–50 ppm CO post-

natally caused a consistent attenuation of the amplitude of the action potential of 

the 8
th

 cranial nerve in all dose groups and decreased otoacoustic emission at 50 

ppm (208). Using the same protocol, decreased c-Fos immunoreactivity in the 

central inferior colliculus (marker for neuronal activation in the nervous system) 

was observed in all dose groups (12.5, 25 and 50 ppm) (236). Exposure of new-

born rats to 25 ppm CO, but not to 12 ppm, caused swelling of the nerve terminals 

innervating the inner hair cells of the organ of Corti. No morphological changes 

were observed on the inner and outer hair cells of the Corti (125). In other studies 

by the same group, exposure to 25 ppm CO was also up-regulating markers of 

oxidative stress (superoxide dismutase-1, HO-1, and inducible nitric oxide) in the 

cerebellum of rat pups exposed prenatally, pre- and postnatally, or postnatally. 

The effects were most significant if the exposure period included the prenatal 

period (days 5–20) (127). Superoxide dismutase-1 and HO-1 were also elevated in 

the stria vascularis and blood vessels of rat pups exposed to 25 ppm CO pre- and 

postnatally. Inducible nitric oxide synthase and nitrotyrosine immunoreactivity 

were increased in blood vessels of the cochlea both in the group exposed pre-

natally and in that exposed pre- and postnatally. Afferent terminals innervating the 

inner hair cells were swollen in both exposure groups (126). Based on these studies, 

all performed by the same research group, 12 ppm is identified as an overall 

LOAEL in animals (NOAEL not identified). 

No or limited data were found regarding genotoxicity, carcinogenicity, irritation 

and sensitisation. 

Combined exposure to CO and dihalomethanes causes increased formation  

of COHb. Combined exposure to CO and noise may potentiate noise-induced 

hearing loss. 
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14.2 Groups at extra risk  

In relation to CO exposure, the following sensitive risk groups have been 

identified: 

 Subjects with coronary heart disease, as both human and animal data clearly 

indicate that these patients may get symptoms at lower CO exposure levels 

than healthy subjects (see Section 11.2.3). 

 Pregnant women and their offspring, because CO is causing developmental 

toxicity (Sections 10.6 and 11.7.2). 

 Children, who are known to be more sensitive towards the hazardous effects 

caused by CO than adults (Section 11.2.2). 

 Smokers, as their basal COHb levels are significantly elevated (Section 8.1). 

 Subjects performing heavy exercise, including those with heavy work load, as 

the rates of CO uptake and COHb formation are proportional to the intensity  

of exercise (Section 7.4). 

 Subjects at low oxygen pressure, including high altitude, as those conditions 

may result in elevated CO uptake and COHb formation (Section 7.4). 

 Subjects co-exposed to chemicals that are metabolised to CO in the body (e.g. 

dihalomethanes), resulting in increased COHb levels (Sections 8.1 and 11.4). 

 Subjects co-exposed to asphyxiants such as hydrogen cyanide, as synergistic 

effects may occur (Section 10.7). 

 Subjects co-exposed to noise, as CO may potentiate noise-induced hearing loss 

(Sections 10.7 and 11.4).  

14.3 Scientific basis for an occupational exposure limit 

When inhaled, CO binds rapidly to haemoglobin forming COHb. Upon continued 

exposure COHb builds up in a curvilinear fashion. COHb correlates better with 

the observed health effects than the concentration of CO in air or the product of 

CO concentration and exposure time. COHb is therefore regarded as a more 

accurate dose measure than the two latter ones. 

Several adverse effects appear at approximately the same COHb level, there-

fore no single critical effect can be identified. The adverse effects of concern  

are impaired exercise performance in healthy volunteers, increased myocardial 

ischaemia in patients with coronary artery disease and persistent changes in the 

developing auditory system of the rat.  

Decreased maximal aerobic performance at COHb 4.3% and decreased maximal 

effort and exercise duration at COHb 5.1% were observed in two independent 

controlled exposure studies on healthy volunteers. According to the CFK equation, a 

COHb level of 4.3% corresponds to a concentration of CO in air of 33 ppm and 26 

ppm, assuming 8 hours of constant exposure at rest and heavy work, respectively. 

Induced myocardial ischaemia, i.e. decreased time to onset of exercise induced 

angina symptoms and of ST-segment changes, were observed at COHb levels of 

2.4% (LOAEL, corresponding to 17 ppm and 14 ppm at rest and heavy work, re-

spectively) and 4.7% in a large controlled exposure study on patients with coronary 
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artery disease. Other studies on patients have also shown that CO exposure (COHb 

2.9–5.9%) aggravated exercise-induced myocardial ischaemia. 

Persistent changes in the developing auditory system of the rat, i.e. a consistent 

attenuation of the amplitude of action potential of the 8
th

 cranial nerve, were ob-

served in pups exposed to 12–50 ppm on postnatal days 6–22. Using the same pro-

tocol, decreased c-Fos immunoreactivity in the central inferior colliculus (marker 

for neuronal activation in the auditory system) was observed at 12.5–50 ppm. In 

addition, the nerve terminals innervating the inner hair cells of Corti were swollen 

and the otoacoustic emission decreased at 25 and 50 ppm, respectively. The 

LOAEL of 12 ppm corresponds to a COHb level in humans of 1.8% and 2.0% at 

rest and heavy work, respectively. 

No NOAELs have been identified for the cardiovascular and developmental 

effects described above. 

It should be noted that endogenous CO formation leads to a background COHb 

level of about 0.4–0.7%. Non-smokers typically have COHb levels up to 2% where-

as smokers may have COHb levels up to 10% immediately after smoking. 

15. Research needs 

Although numerous studies on the health effects of CO have been published, 

further information would be needed in order to complete the data on the potential 

health hazards related to exposure levels relevant for occupational exposure. The 

following data gaps and research needs were identified: 

 Exercise performance test at low CO exposure levels. 

 Electrocardiographic alterations during controlled exposure and occupational 

exposure. 

 Epidemiological studies on co-exposure to noise and CO and hearing impair-

ment. 
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16. Summary 

Stockmann-Juvala H. The Nordic Expert Group for Criteria Documentation of 

Health Risks from Chemicals. 147. Carbon monoxide. Arbete och Hälsa 

2012;46(7):1-78. 

 

Carbon monoxide (CO) is an odourless and colourless gas produced by in-

complete burning of carbon-based fuels. CO is also a constituent of tobacco 

smoke. Exposure to CO is common in many occupational areas, including those 

associated with vehicle exhaust. CO is an important industrial gas used in the 

production of chemical intermediates. CO is formed endogenously and acts as  

a signalling substance in the neuronal system. 

The main mechanism behind CO-induced toxicity is the binding of CO to haemo-

globin in the blood, resulting in carboxyhaemoglobin (COHb) formation, reduced 

oxygen transport capacity of the blood and hypoxia. The relation between CO in 

air and COHb is well known and can be calculated using the Coburn-Forster-Kane 

(CFK) equation. Endogenous CO formation leads to a background COHb of 0.4–

0.7%. Non-smokers typically have COHb levels up to 2% whereas smokers may 

have COHb levels up to 10% immediately after smoking. 

The effects seen in acute CO poisoning cover a wide range, from mild symptoms, 

like shortness of breath during exercise or occasional headache at COHb 20%, to 

more severe ones like headache, dizziness, disturbed judgement, dimness of vision, 

confusion, unconsciousness, intermittent convulsion and respiratory failure at 

COHb above 30%. COHb levels of 50–60% are often lethal. Even COHb levels  

of 20% may be lethal for patients with coronary artery disease. The foetus is at 

higher risk than the healthy adult because of higher CO haemoglobin affinity.  

From controlled human and animal exposure studies the adverse effects of con-

cern are impaired exercise performance, i.e. decreased maximal aerobic capacity in 

healthy volunteers (lowest observed adverse effect level (LOAEL) COHb 4.3%), 

increased myocardial ischaemia in patients with coronary artery disease (LOAEL 

COHb 2.4%), and persistent changes in the developing auditory system of the rat 

(LOAEL 12 ppm, corresponding to COHb 1.8% and 2.0% assuming 8 hours con-

stant exposure at rest and heavy work, respectively). It was not possible to identify 

any no observed adverse effect levels (NOAELs) in these studies. 

No or limited data were found regarding genotoxicity, carcinogenicity, irritation 

and sensitisation.  

Combined exposure to CO and dihalomethanes causes increased formation of 

COHb. Combined exposure to CO and noise may potentiate noise-induced hearing 

loss. 

 

Keywords: auditory, carbon monoxide, carboxyhaemoglobin, cardiovascular, 

central nervous system, developmental, occupational exposure limit, review, risk 

assessment, toxicity. 
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17. Summary in Swedish 

Stockmann-Juvala H. The Nordic Expert Group for Criteria Documentation of 

Health Risks from Chemicals. 147. Carbon monoxide. Arbete och Hälsa 

2012;46(7):1-78. 

 

Kolmonoxid (CO) är en luktfri och färglös gas som bildas vid ofullständig för-

bränning av kolbaserade bränslen. CO finns också i tobaksrök. Exponering för  

CO är vanligt inom många yrkesområden, bland annat de som förknippas med 

bilavgaser. CO är en viktig industriell gas som används vid framställning av 

kemiska intermediärer. CO bildas endogent och fungerar som en signalsubstans  

i nervsystemet. 

Den huvudsakliga mekanismen för CO-inducerad toxicitet är bindning till hemo-

globin i blodet, dvs bildning av karboxyhemoglobin (COHb), vilket resulterar  

i försämrad syretransport i blodet och hypoxi. Relationen mellan CO i luft och 

COHb är välkänd och kan beräknas med hjälp av Coburn-Forster-Kane (CFK) 

ekvationen. Endogen bildning av CO leder till bakgrundsnivåer mellan 0,4 och 

0,7% COHb. Icke-rökare har vanligtvis COHb-nivåer upp till 2%, medan rökare 

kan ha nivåer upp till 10% omedelbart efter rökning. 

Effekterna vid akut CO-förgiftning omfattar ett brett spektrum från milda sym-

tom som andfåddhet och sporadisk huvudvärk vid 20% COHb, till mer allvarliga 

som huvudvärk, yrsel, försämrat omdöme, synstörningar (dimsyn), förvirring, 

medvetslöshet, kramper och andningssvikt vid 30% COHb. COHb-nivåer runt 50-

60% är ofta dödliga. För patienter med kranskärlsjukdom kan även COHb nivåer 

runt 20% vara dödliga. Foster löper högre risk än friska vuxna på grund av att 

deras hemoglobin har högre affinitet till CO. 

Kontrollerade exponeringsstudier visar att de viktigaste negativa hälsoeffekterna 

är försämrad fysisk prestation i form av nedsatt maximal syreupptagningsförmåga 

hos friska frivilliga (lägsta observerade effektnivå (LOAEL) 4,3% COHb) och ökad 

myokardiell ischemi (kärlkramp) hos patienter med kranskärlssjukdom (LOAEL 

2,4% COHb). På råtta har bestående förändringar under den tidiga utvecklingen av 

hörselsystemet observerats vid 12 ppm (LOAEL), vilket motsvarar 1,8% och 2,0% 

COHb vid 8 timmars konstant exponering under vila respektive tungt arbete. I 

dessa studier kunde inga icke-effektnivåer (NOAEL) identifieras. 

Det går inte att bedöma om CO har genotoxisk eller carcinogen potential eller 

om CO orsakar irritation och sensibilisering eftersom data saknas eller är begrän-

sade.  

Kombinerad exponering för CO och dihalometaner orsakar ökad bildning av 

COHb. Kombinerad exponering för CO och buller kan förvärra bullerinducerad 

hörselnedsättning. 

 

Nyckelord: centrala nervsystemet, hygieniskt gränsvärde, hörsel, karboxyhemo-

globin, kardiovaskulär, kolmonoxid, riskbedömning, toxicitet, utveckling, översikt.  
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19. Data bases used in search of literature 

In the search for literature the following data bases were used: 

Chemical abstracts 

Google Scholar 
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NIOSHTIC 
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Appendix 1. Occupational exposure limits 

Occupational exposure limits for carbon monoxide (CO) in different countries. 

Country  8-hour TWA  STEL Reference 

(organisation) ppm mg/m
3
 ppm mg/m

3
  

Denmark 25 29 50 58  (1) 

Finland  30 35 75 87  (2) 

Norway 25 29 -   -    (3) 

Sweden 35 40 100 120  (4) 

The Netherlands - 29 -   -    (5) 

Germany (DFG) 30 35 60 70  (6) 

United Kingdom 30 35 200 232  (7) 

US (ACGIH) 25 -   -   -    (8) 

US (NIOSH) 35 40 200 C 229 C (9) 

US (OSHA) 50 55 -   -    (9) 

EU  - -   -   -    (10-12) 

C: ceiling value, STEL: Short-term exposure limit (15-min TWA), TWA: time-weighted average 

(8 hours or for NIOSH up to 10 hours). 
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Appendix 2. Previous NEG criteria documents 

NEG documents published in the scientific serial Arbete och Hälsa (Work and Health). 

Substance/Agent Arbete och Hälsa issue 

Acetonitrile 1989:22, 1989:37* 

Acid aerosols, inorganic 1992:33, 1993:1* 

Acrylonitrile 1985:4 

Allyl alcohol 1986:8 

Aluminium and aluminium compounds 1992:45, 1993:1*, 2011;45(7)*D 

Ammonia 1986:31, 2005:13* 

Antimony 1998:11* 

Arsenic, inorganic 1981:22, 1991:9, 1991:50* 

Arsine 1986:41 

Asbestos 1982:29 

Benomyl 1984:28 

Benzene 1981:11 

1,2,3-Benzotriazole 2000:24*D 

Boric acid, Borax 1980:13 

1,3-Butadiene 1994:36*, 1994:42 

1-Butanol 1980:20 

γ-Butyrolactone 2004:7*D 

Cadmium 1981:29, 1992:26, 1993:1* 

7/8 Carbon chain aliphatic monoketones 1990:2*D 

Carbon monoxide 1980:8 

Ceramic Fibres, Refractory 1996:30*, 1998:20 

Chlorine, Chlorine dioxide 1980:6 

Chloromequat chloride 1984:36 

4-Chloro-2-methylphenoxy acetic acid 1981:14 

Chlorophenols 1984:46 

Chlorotrimethylsilane 2002:2 

Chromium 1979:33 

Cobalt 1982:16, 1994:39*, 1994:42 

Copper 1980:21 

Creosote 1988:13, 1988:33* 

Cyanoacrylates 1995:25*, 1995:27 

Cyclic acid anhydrides 2004:15*D 

Cyclohexanone, Cyclopentanone 1985:42 

n-Decane 1987:25, 1987:40* 

Deodorized kerosene 1985:24 

Diacetone alcohol 1989:4, 1989:37* 

Dichlorobenzenes 1998:4*, 1998:20 

Diesel exhaust 1993:34, 1993:35* 

Diethylamine 1994:23*, 1994:42 

2-Diethylaminoethanol 1994:25*N 

Diethylenetriamine 1994:23*, 1994:42 

Diisocyanates 1979:34, 1985:19 

Dimethylamine 1994:23*, 1994:42 

Dimethyldithiocarbamates 1990:26, 1991:2* 

Dimethylethylamine 1991:26, 1991:50* 

Dimethylformamide 1983:28 

Dimethylsulfoxide 1991:37, 1991:50* 

Dioxane 1982:6 

Endotoxins 2011;45(4)*D 

Enzymes, industrial 1994:28*, 1994:42 
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NEG documents published in the scientific serial Arbete och Hälsa (Work and Health). 
Substance/Agent Arbete och Hälsa issue 

Epichlorohydrin 1981:10 

Ethyl acetate 1990:35* 

Ethylbenzene 1986:19 

Ethylenediamine 1994:23*, 1994:42 

Ethylenebisdithiocarbamates and Ethylenethiourea 1993:24, 1993:35* 

Ethylene glycol 1980:14 

Ethylene glycol monoalkyl ethers 1985:34 

Ethylene oxide 1982:7 

Ethyl ether 1992:30* N 

2-Ethylhexanoic acid 1994:31*, 1994:42 

Flour dust 1996:27*, 1998:20 

Formaldehyde 1978:21, 1982:27, 2003:11*D 

Fungal spores 2006:21* 

Furfuryl alcohol 1984:24 

Gasoline 1984:7 

Glutaraldehyde 1997:20*D, 1998:20 

Glyoxal 1995:2*, 1995:27 

Halothane 1984:17 

n-Hexane 1980:19, 1986:20 

Hydrazine, Hydrazine salts 1985:6 

Hydrogen fluoride 1983:7 

Hydrogen sulphide 1982:31, 2001:14*D 

Hydroquinone 1989:15, 1989:37* 

Industrial enzymes 1994:28* 

Isoflurane, sevoflurane and desflurane 2009;43(9)* 

Isophorone 1991:14, 1991:50* 

Isopropanol 1980:18 

Lead, inorganic 1979:24, 1992:43, 1993:1* 

Limonene 1993:14, 1993:35* 

Lithium and lithium compounds 2002:16* 

Manganese 1982:10 

Mercury, inorganic 1985:20 

Methacrylates 1983:21 

Methanol 1984:41 

Methyl bromide 1987:18, 1987:40* 

Methyl chloride 1992:27*D 

Methyl chloroform 1981:12 

Methylcyclopentadienyl manganese tricarbonyl 1982:10 

Methylene chloride 1979:15, 1987:29, 1987:40* 

Methyl ethyl ketone 1983:25 

Methyl formate 1989:29, 1989:37* 

Methyl isobutyl ketone 1988:20, 1988:33* 

Methyl methacrylate 1991:36*D 

N-Methyl-2-pyrrolidone  1994:40*, 1994:42 

Methyl-tert-butyl ether 1994:22*D 

Microbial volatile organic compounds (MVOCs) 2006:13* 

Microorganisms 1991:44, 1991:50* 

Mineral fibers 1981:26 

Nickel 1981:28, 1995:26*, 1995:27 

Nitrilotriacetic acid 1989:16, 1989:37* 

Nitroalkanes 1988:29, 1988:33* 

Nitrogen oxides 1983:28 

N-Nitroso compounds 1990:33, 1991:2* 
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NEG documents published in the scientific serial Arbete och Hälsa (Work and Health). 
Substance/Agent Arbete och Hälsa issue 

Nitrous oxide 1982:20 

Occupational exposure to chemicals and hearing impairment 2010;44(4)* 

Oil mist 1985:13 

Organic acid anhydrides 1990:48, 1991:2* 

Ozone 1986:28 

Paper dust 1989:30, 1989:37* 

Penicillins 2004:6* 

Permethrin 1982:22 

Petrol 1984:7 

Phenol 1984:33 

Phosphate triesters with flame retardant properties 2010;44(6)* 

Phthalate esters 1982:12 

Platinum 1997:14*D, 1998:20 

Polychlorinated biphenyls (PCBs) 2012;46(1)* 

Polyethylene,  1998:12* 

Polypropylene, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polystyrene, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polyvinylchloride, Thermal degradation products in the 

processing of plastics 

1998:12* 

Polytetrafluoroethylene, Thermal degradation products in 

the processing of plastics 

1998:12* 

Propene 1995:7*, 1995:27 

Propylene glycol 1983:27 

Propylene glycol ethers and their acetates 1990:32*N  

Propylene oxide 1985:23 

Refined petroleum solvents 1982:21 

Refractory Ceramic Fibres 1996:30* 

Selenium 1992:35, 1993:1* 

Silica, crystalline 1993:2, 1993:35* 

Styrene 1979:14, 1990:49*, 1991:2 

Sulphur dioxide 1984:18 

Sulphuric, hydrochloric, nitric and phosphoric acids 2009;43(7)* 

Synthetic pyretroids 1982:22 

Tetrachloroethane 1996:28*D 

Tetrachloroethylene 1979:25, 2003:14*D 

Thermal degradation products of plastics 1998:12* 

Thiurams 1990:26, 1991:2* 

Tin and inorganic tin compounds 2002:10*D 

Toluene 1979:5, 1989:3, 1989:37*, 2000:19* 

1,1,1-Trichloroethane 1981:12 

Trichloroethylene 1979:13, 1991:43, 1991:50* 

Triglycidyl isocyanurate 2001:18* 

n-Undecane 1987:25, 1987:40* 

Vanadium 1982:18 

Vinyl acetate 1988:26, 1988:33* 

Vinyl chloride 1986:17 

Welding gases and fumes 1990:28, 1991:2* 

White spirit 1986:1 

Wood dust 1987:36 

Xylene 1979:35 

Zinc 1981:13 
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* in English, remaining documents are in a Scandinavian language.  

D = collaboration with the Dutch Expert Committee on Occupational Safety (DECOS).  

N = collaboration with the US National Institute for Occupational Safety and Health (NIOSH).  
To order further copies in this series, please contact: 

Arbets- och miljömedicin, Göteborgs universitet 

Att: Cina Holmer, Box 414, SE-405 30 Göteborg, Sweden  

E-mail: arbeteochhalsa@amm.gu.se  

The NEG documents are also available on the web at: 

www.nordicexpertgroup.org or www.amm.se/aoh 
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