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Abstract

In [4], the authors introduced a Markov copula model of portfolio credit risk. This
model solves the top-down versus bottom-up puzzle in achieving efficient joint calibra-
tion to single-name CDS and to multi-name CDO tranches data. In [4], we studied a
general model, that allows for stochastic default intensities and for random recoveries,
and we conducted empirical study of our model using both deterministic and stochastic
default intensities, as well as deterministic and random recoveries only. Since, in case of
some “badly behaved” data sets a satisfactory calibration accuracy can only be achieved
through the use of random recoveries, and, since for important applications, such as
CVA computations for credit derivatives, the use of stochastic intensities is advocated
by practitioners, efficient implementation of our model that would account for these
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two issues is very important. However, the details behind the implementation of the
loss distribution in the case with random recoveries were not provided in [4]. Neither
were the details on the stochastic default intensities given there. This paper is thus
a complement to [4], with a focus on a detailed description of the methodology that
we used so to implement these two model features: random recoveries and stochastic
intensities.

Keywords: Portfolio Credit Risk, Markov Copula Model, Common Shocks, Stochastic
Spreads, Random Recoveries.

1 Introduction

In [4] we introduced a common-shock Markov copula model of default times providing an effective
joint calibration to single-name CDS and multi-name CDO tranches data. In this sense this model
solves the portfolio credit risk top-down bottom-up puzzle [6]. For earlier, partial progress in this
direction, see [11, 12, 13, 17] and the discussion in [4]. The main model feature is the use of common
jumps to default, triggered by common shocks, as a powerful dependence device also compatible
with the Markov copula properties [9], the latter being required to decouple the calibration of the
individual (single-name) model parameters from the few model dependence parameters.

On the other hand, the model presented in [4] is also a fully dynamic model in which the
critical issue of modeling counterparty risk embedded in credit derivatives, and consequently the
issue of computation and hedging of CVA, can be consistently and practically addressed [2, 5, 7, 10].
However, as it was emphasized in a June 2011 Bank of International Settlements press release that
“During the financial crisis of 2007-09, roughly two-thirds of losses attributed to counterparty credit
risk were due to CVA losses and only about one-third were due to actual defaults”. In other words,
the volatility of CVA matters as much as its level. Consequently (and also to be consistent with
the optional nature of the CVA), for CVA computations for credit derivatives, practitioners strongly
advocate the use of stochastic default intensities. Moreover, in case of some “badly behaved" data
sets, a satisfying calibration accuracy can only be achieved by resorting to random recoveries.

In order to respond to these considerations, in the present paper, which is a companion pa-
per to [4], we provide more background, implementation hints, as well as numerical illustration
accounting for these two features which are important for applications: stochastic spreads and
random recoveries. Section 2 reviews the model of default times which is used, including the spec-
ification of the stochastic intensities and recoveries. Regarding the default intensities, we resort to
time-inhomogenous affine processes with time-dependent piecewise-constant mean-reversion level,
resulting in analytical tractability (see below) and calibration flexibility (of the term-structure of
CDS spreads in particular). For tractability reasons, random recoveries are taken to be independent
between them, as well as independent from everything else in the model.

Section 3 is about pricing in this setup. In particular pricing of CDS, as well as of CDO
tranches, ultimately boils down here to computations of Laplace transform for time-inhomogenous
affine processes. Proposition 3.2 shows how this can be done explicitly, exploiting the piecewise-
constant mean-reversion structure of the intensities.

Again, effective joint calibration of this model to CDS and CDO data is an important achieve-
ment. Section 4 reviews in detail and illustrates the calibration methodology, regarding in particular
the stochastic affine intensities and random recovery specifications which are used.

In the rest of the paper we consider a risk neutral pricing model (Ω,F ,P), for a filtration
F = (Ft)t∈[0,T ] which will be specified below, and where T ≥ 0 is a fixed time horizon. We denote
Nn = {1, . . . , n} and we let Nn denote the set of all subsets of Nn where n represents the number of
obligors in the underlying credit portfolio. We also let τi and Hi

t = 1{τi≤t} denote the default time
of name i = 1, 2, . . . , n and the corresponding indicator process.
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2 Model of Default Times

We recall a common shocks portfolio credit risk model of [4]. In order to describe the defaults we
define a certain number m (typically small: a few units) of groups Ij ⊆ Nn, of obligors who are
likely to default simultaneously, for j ∈ Nm. More precisely, the idea is that at every time t, there
will be a positive probability that the survivors of the group of obligors Ij (obligors of group Ij still
alive at time t) default simultaneously. Let I = {I1, . . . , Im}, Y = {{1}, . . . , {n}, I1, . . . , Im}. Given
non-negative constants a, c and non-negative deterministic functions bY (t) for Y ∈ Y, let a group
intensity process XY be defined in the form of an extended CIR process as: XY

0 a given constant,
and for t ∈ [0, T ]

dXY
t = a

(
bY (t) − XY

t

)
dt + c

√
XY

t dWY
t (1)

where the Brownian motions WY are independent. We refer the reader to [7] for a two-obligors
preliminary version of this model dedicated to valuation and hedging of counterparty risk on a CDS.
Consistently with the discussion of Section 1, the numerical results of [7] illustrate that such affine
specifications of the intensities are appropriate for dealing with counterparty credit risk.

Remark 2.1 The (simpler) case of deterministic time-dependent intensities will also be used in the
numerical experiments. It can essentially be thought of as letting c vanish in (1), so we will not
make any specific theoretical developments in this regard, referring the reader if need be to [4] about
this.

For k = (k1, . . . , kn) ∈ {0, 1}n, we introduce supp(k) = {i ∈ Nn; ki = 1} and suppc(k) =
{i ∈ Nn; ki = 0}. Hence, supp(k) denotes the obligors who have defaulted in the portfolio-state
k and similarly suppc(k) are the survived names in state k. Given X = (XY )Y ∈Y , we aim for a
model in which the predictable intensity of a jump of H = (H i)i∈Nn

from Ht− = k to Ht = l, with
supp(k)  supp(l) in {0, 1}n, would be given by

∑

{Y ∈Y;kY =l}

XY
t , (2)

where k
Y denotes the vector obtained from k = (ki)i∈Nn

by replacing the components ki, i ∈ Y , by
numbers one. The intensity of a jump of H from k to l at time t is thus equal to the sum of the
intensities of the groups Y ∈ Y such that, if the default of the survivors in group Y occurred at time
t, the state of H would move from k to l.

This is achieved by constructing H through an X-related change of probability measure, start-
ing from a continuous-time Markov chain with intensity one. As a result (see [4]), the pair-process
(X,H) is a Markov process with respect to the filtration F generated by the Brownian Motion W

and the random measure counting the jumps of H, with infinitesimal generator A of (X,H) acting
on every function u = u(t,x,k) with t ∈ R+,x = (xY )Y ∈Y and k = (ki)i∈Nn

as

Atu(t,x,k) =
∑

Y ∈Y

(
a (bY (t) − xY ) ∂xY

u(t,x,k) +
1

2
c2 xY ∂2

x2
Y
u(t,x,k) + xY δuY (t,x,k)

)
(3)

where we denote

δuY (t,x,k) = u(t,x,kY ) − u(t,x,k).

2.1 Markov Copula Properties

Note that the SDEs for processes the XY have the same coefficients except for bY (t), to the effect
that for i ∈ Nn,

X i :=
∑

Y∋Y ∋i

XY = X{i} +
∑

I∋I∋i

XI (4)
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is again an extended CIR process, with parameters a, c and

bi(t) :=
∑

Y∋Y ∋i

bY (t) = b{i}(t) +
∑

I∋I∋i

bI(t), (5)

driven by an F -Brownian motion W i such that

√
X i

tdW i
t =

∑

Y ∋i

√
XY

t dWY
t , dW i

t =
∑

Y ∋i

√
XY

t√∑
Y ∋i XY

t

dWY
t . (6)

The fact that W i defined by (6) is an F -Brownian motion results from Paul Lévy’s characterization
of a Brownian motion as a continuous local martingale with bracket process equal to time t. One
can then check, as is done in [4], that the so-called Markov copula property holds (see [9]), in the
sense that for every i ∈ Nn, (X i, Hi) is an F – Markov process admitting the following generator,
acting on functions vi = vi(t, xi, ki) with (xi, ki) ∈ R× {0, 1}:

Ai
tvi(t, xi, ki) = (7)

a(bi(t) − xi)∂xi
vi(t, xi, ki) +

1

2
c2 xi∂

2
x2

i
vi(t, xi, ki) + xi

(
vi(t, xi, 1) − vi(t, xi, ki)

)
.

Also, the F – intensity process of H i is given by (1−Hi
t)X

i
t . In other words, the process M i defined

by,

M i
t = Hi

t −
∫ t

0

(1 − Hi
s)X

i
sds, (8)

is an F -martingale. Finally, the conditional survival probability function of name i ∈ Nn is given
by, for every ti > t,

P(τi > ti | Ft) = E

{
exp

(
−
∫ ti

t

X i
sds
)
|X i

t

}
. (9)

3 Pricing

Regarding the dynamics of CIR intensity processes, we assume in the sequel that the mean-reversion
functions bY (t) are piecewise-constant with respect to a time tenor (Tk)k=1,...,M . So, for every
k = 1 . . .M,

bY (t) = b
(k)
Y , t ∈ [Tk−1, Tk). (10)

where T0 = 0. The time tenor (Tk) is a set of pillars corresponding to standard CDS maturities.
In this framework, we are able to provide explicit expressions for survival probabilities of triggering
events, which are the main building blocks in the calculation of CDS and CDO tranche spreads.

3.1 Survival Probabilities of Trigger-Events

In this subsection, we provide an analytical expression for survival probabilities in an extended CIR
intensity model with piecewise constant mean-reversion parameter. This result derives from Prop.
8.2 in [7]. Contrary to the latter result which involves recursively-defined parameters, Proposition
3.2 provides closed form expressions for survival probabilities and conditional density functions. This
allows us to compute CDS and CDO tranche spreads almost as fast as in a (deterministic) piecewise
constant intensity model.

Let X be an extended CIR process with dynamics

dXt = a(b(t) − Xt)dt + c
√

XtdWt (11)
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where a and c are positive constants and b(·) is a non-negative deterministic function. When the
mean-reversion function b is constant, the following lemma is a standard result in the affine processes
literature (see e.g. [16]). Note that (13), which is obtained from (12) with y = 0, by differentiating
with respect to t, gives the conditional density of default time in a classical CIR intensity model.

Lemma 3.1 Consider the process X in (11). If b(·) is constant on [t0, t], then for every y ≥ 0,

E
(
e
−
∫

t

t0
Xsds−yXt

∣∣Xt0

)
= e−φ(t−t0;y)Xt0

−ξ(t−t0;y)b , (12)

E
(
Xte

−
∫

t

t0
Xsds

∣∣Xt0

)
=
(
φ̇(t − t0; 0)Xt0 + ξ̇(t − t0; 0)b

)
e−φ(t−t0;0)Xt0

−ξ(t−t0;0)b , (13)

where φ and ξ satisfy the following Riccati system of ODE:
{

φ̇(s; y) = −aφ(s; y) − c2

2 (φ(s; y))2 + 1 ; φ(0; y) = y

ξ̇(s; y) = aφ(s; y) ; ξ(0; y) = 0.
(14)

Note that the latter ODE can be solved explicitly, i.e.,

φ(s; y) =
1 + D(y)e−A(y)s

B + C(y)e−A(y)s
, (15)

ξ(s; y) =
a

B

{C(y) − BD(y)

A(y)C(y)
log

B + C(y)e−A(y)s

B + C(y)
+ s
}

. (16)

where A, B, C and D are given by

B =
1

2

(
a +

√
a2 + 2c2

)
, C(y) = (1 − By)

a + c2y −
√

a2 + 2c2

2ay + c2y − 2
,

D(y) = (B + C(y))y − 1, A(y) =
−C(y)(2B − a) + D(y)(c2 + aB)

BD(y) − C(y)
.

In the following proposition, we extend Lemma 3.1 to the case of generalized CIR processes
where the mean-reversion function b(·) is assumed to be piecewise constant. We denote T0 = 0.
The functions φ and ξ are those of Lemma 3.1. As a sanity-check observe that when bi = · · · = bj ,
Proposition 3.2 gives the same results than the ones established in Lemma 3.1 for constant mean-
reversion CIR processes. Also note that the partial derivative ∂sI of I with respect to s in (18)
depends on the functions φ̇ and ξ̇, which can be computed explicitly thanks to (14), (15) and (16).

Proposition 3.2 Assume that b(·) is a piecewise constant function: b(t) = bk on t ∈ [Tk−1, Tk] for
k = 1, ..., m. For t < s, let i ≤ j such that t ∈ [Ti−1, Ti) and s ∈ (Tj, Tj+1]. Then
(i) For any y ≥ 0,

E
(

exp(−
∫ s

t

Xudu − yXs)|Xt

)
= exp (−I(t, s, Xt, y)) (17)

where

I(t, s, x, y) := xφ(s − t; y) + bi [ξ(s − t; y) − ξ(s − Ti; y)]

+

j∑

k=i+1

bk (ξ(s − Tk−1; y) − ξ(s − Tk; y))

+ bj+1ξ(s − Tj; y).

(ii) One has,

E
(
Xs exp

(
−
∫ s

t

Xudu
)
|Xt

)
= ∂sI(t, s, Xt, 0)E

(
exp

(
−
∫ s

t

Xudu
)
|Xt

)
. (18)
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Proof. Expression (18) can be obtained by differentiating (17) with respect to s and by letting
y = 0. Let us prove (17). Note that the piecewise constant function b(·) is characterized by the time
tenor T = (Tk)k=1,...,m and the corresponding set of parameters b = (bk)k=1,...,m. From Prop. 8.2
in [7], we know that when t < s such that t ∈ [Ti−1, Ti) and s ∈ (Tj, Tj+1] with i ≤ j, the following
relation holds

E(T , b, x, y) := E
(

exp(−
∫ s

t

Xudu − yXs)|Xt = x
)

=

exp
{
− xφ(Ti − t; yi(s)) − biξ(Ti − t; yi(s)) −

j∑

k=i+1

bkξ(Tk − Tk−1; yk(s)) − bj+1ξ(s − Tj; y)
} (19)

where the yk(s), k = i, . . . , j, are defined by the following backward recursion

yj(s) := φ(s − Tj; y) ,

yk(s) := φ(Tk+1 − Tk; yk+1(s)) , k < j.
(20)

Note that in the particular case where bj = bj+1, expression (19) must be equal to the one obtained
when Tj is removed from the set T and bj is removed from the set b. More precisely, if the adjusted

set of parameters are defined by T̃ := T \ {Tj} and b̃ := b \ {bj} then, the following relation holds

E(T , b, x, y)|bj=bj+1
= E(T̃ , b̃, x, y). (21)

By letting x, bi, . . . , bj−1 be equal to zero in the previous relation, we obtain

ξ (Tj − Tj−1; yj(s)) = ξ (s − Tj−1; y) − ξ (s − Tj; y) . (22)

We can then replace ξ (Tj − Tj−1; yj(s)) in (19) by the right hand side of (22) and apply the previous
argument in the particular case where bj−1 = bj = bj+1. We then obtain

ξ (Tj−1 − Tj−2; yj−1(s)) = ξ (s − Tj−2; y) − ξ (s − Tj−1; y) . (23)

This reasoning can be done backward from k = j − 2 to k = i which shows that

ξ (Tk − Tk−1; yk(s)) = ξ (s − Tk−1; y) − ξ (s − Tk; y) (24)

and
ξ (Ti − t; yi(s)) = ξ (s − t; y) − ξ (s − Ti; y) . (25)

Eventually, in the particular case where bi = · · · = bj+1, expression (19) must be the same as the
one given by application of Lemma 3.1, i.e.,

E(T , b, x, y) = exp (−xφ(s − t; y) − biξ(s − t; y)) .

So, by letting bi equal to 0, we obtain φ(Ti − t; yi(s)) = φ(s − t; y) which concludes the proof.
2

Remark 3.3 Proposition 3.2 could also be used to estimate survival probabilities or conditional
densities when the mean-reversion function b(·) is more complex (non necessarily piecewise constant).
Indeed, we could look for a good piecewise-constant approximation of b(·) and then apply Proposition
3.2 to it.

3.2 CDS Pricing

We assume in the sequel that recovery rates are independent of default times. Under this assumption,
the CDS spread of a particular name can be expressed as deterministic functions of its survival
probabilities and of its expected recovery. Let t1 < · · · < tp = T be the remaining premium
payment dates where T stands for the maturity date. We assume for simplicity that the risk-free
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interest rate is constant and equal to r and we denote β(t) = e−rt the corresponding discount factor.
In our numerical experiment, the current fair CDS spread of name i is approximated by the following
expression

Si(T ) = (1 − R∗
i )

∑p
j=1 β(tj) (P (τi > tj−1) − P (τi > tj))∑p

j=1 β(tj)(tj − tj−1)P (τi > tj)
(26)

where R∗
i denotes the expected recovery rate of name i. To derive the previous expression, we

implicitly assume that, if a default occur at time τi < T , the protection payment occurs at the
premium payment date that immediately follows τi.

Recall that (cf. (9))

P (τi > tj) = E exp
(
−
∫ tj

0

X i
sds
)

(27)

where X i is an extended CIR process with parameters a, c and piecewise-constant mean-reversion
function bi(·) in (5) (assuming piecewise-constant functions bY (·)). Hence, provided the expected
recovery is known, the CDS spread of name i can be efficiently calculated using part (i) of Proposition
3.2 with y = 0.

3.3 CDO Tranche Pricing with Random Recoveries

In this subsection we outline how to modify the Markov copula to include possibly random but
independent recoveries, giving numerical details in complement of the brief outline in [4]. Stochastic
recoveries do not break the Markovian nor the Markovian copula structure. However by introducing
random recoveries we can no longer use exact convolution recursion procedures for pricing CDO
tranches. As briefly outlined in [4] one can instead use an approximate procedure based on the
exponential approximations of the so called hockey stick function of [3, 19, 20]. In this subsection
we explain in detail how to use this method for computing the price of a CDO tranche in our Markov
model when the individual losses are random.

The mathematical ideas underlying the method of exponential approximations were originally
developed by [3], and was later adopted by Iscoe et al. in [19] and [20] to price CDO tranches in a
Gaussian-copula model. While [19], [20] uses constant recoveries, we will in this paper adopt their
techniques to random recoveries. Below we will outline the techniques given in [19], [20] and our
presentation also introduces notation needed later on. First, recall that the portfolio credit loss Lt

at time t is defined as Lt :=
∑

i(1 − Ri)H
i
t where the variables Ri are random and independent

fractional recoveries with values in [0, 1]. Next, the so called tranche-loss function La,b
t for the tranche

[a, b] as a function of the portfolio credit loss Lt is given by

La,b
t = (Lt − a)+ − (Lt − b)+ (28)

where x+ = max(x, 0), see also Figure 1.

Lt

La,b
t

a b

b − a

Figure 1: The tranche loss for [a, b] as function of the total loss Lt.
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Furthermore, as in [3], we introduce the so-called hockey stick function h(x) given by

h(x) =

{
1 − x if 0 ≤ x ≤ 1,
0 if 1 < x

(29)

see also in Figure 2.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

h(
x)

The hockey stick function h(x)

 

 

h(x)

Figure 2: The hockey stick function h(x) for x ∈ [0, 2].

Let c > 0 be scalar. By using (29) one can show that

min(x, c) = c − ch
(x

c

)
(30)

and for any two scalars a and b it holds that

(x − a)+ − (x − b)+ = min(x, b) − min(x, a) (31)

so (30) and (31) then yields

(x − a)+ − (x − b)+ = b
(
1 − h

(x

b

))
− a

(
1 − h

(x

a

))
. (32)

Hence, (28) and (32) implies that

La,b
t = b

(
1 − h

(
Lt

b

))
− a

(
1 − h

(
Lt

a

))
(33)

and this observations was done by [19] which combined (33) with the results of [3]. More specifically,
[3] shows that for any fixed ǫ > 0, the function h(x) can be approximated by a function h(q)

exp
(x) on

[0, d] with d = d(ǫ) so that |h(x) − h(q)
exp

(x)| ≤ ǫ for all x ∈ [0, d] where q = q(ǫ) is a positive integer

and h(q)
exp

(x) is given by

h(q)
exp

(x) =

q∑

ℓ=1

ωℓ exp
(
γℓ

x

d

)
. (34)

Here (ωℓ)
q
ℓ=1 and (γℓ)

q
ℓ=1 are complex numbers obtained as roots of polynomials whose coefficients

can be computed numerically in a straightforward way. Figure 3 visualizes the approximation h(q)
exp

(x)
of h(x) on x ∈ [0, 10] for q = 2, 5, 10 and q = 50. As can be seen in Figure 3, the approximation is
fairly good already for small values values of q. In [19] the authors choose the algorithm for computing
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(ωℓ)
q
ℓ=1 and (γℓ)

q
ℓ=1 so that d(ǫ) = 2, and then they show that the approximation accuracy ǫ satisfies

1
4(q+1) ≤ ǫ where q are the number terms in (34). Thus, q can be chosen first, implying an accuracy

ǫ so that 1
4(q+1) ≤ ǫ. In practice, the error |h(x) − h(q)

exp
(x)| will for almost all x ∈ [0,∞) be much

smaller than the lower bound 1
4(q+1) for ǫ, as can bee seen in Figure 4. More specifically, in [19], [20]

the authors show that Re(γℓ) < 0 for all ℓ (see also in Figure 5) which implies that h(q)
exp

(x) → 0 as

x → ∞ and, as pointed out by [19], since h(x) = 0 for x ≥ 1 this guarantees that h(q)
exp

(x) → h(x)
when x → ∞. In the rest of this paper we will, just as in [19, 20, 4], use d = 2 in the approximation
h(q)

exp
(x) given by (34).
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Figure 3: The function h(q)
exp

(x) as approximation of h(x) for x ∈ [0, 10] with q = 2, 5, 10 and
q = 50.

Since (ωℓ)
q
ℓ=1 are roots to a certain polynomial, then if ζ ∈ (ωℓ)

q
ℓ=1 it will also hold that

ζ ∈ (ωℓ)
q
ℓ=1. The same also holds for the complex numbers (γℓ)

q
ℓ=1 . Thus, it will hold that

Im (
∑q

ℓ=1 γℓ exp (γℓx/d)) = 0 and Figure 5 displays the coefficients (ωℓ)
q
ℓ=1 and (γℓ)

q
ℓ=1 in the case

q = 50.
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Figure 4: The approximation error |h(x) − h(q)
exp

(x)| for x ∈ [0, 10] with q = 2, 5, 10 and
q = 50.

It is well known that in order to price synthetic CDO tranches, one needs to compute the

quantity E
[
La,b

t

]
for t > 0, see e.g. in [18]. So by replacing h(x) with h(q)

exp
(x) in (33) with d = 2

and using (34) then implies that we can approximate La,b
t as follows

La,b
t ≈ b − a − b

q∑

ℓ=1

ωℓ exp

(
γℓ

Lt

2b

)
+ a

q∑

ℓ=1

ωℓ exp

(
γℓ

Lt

2a

)
(35)

and consequently

E
[
La,b

t

]
≈ b − a − b

q∑

ℓ=1

ωℓE

[
exp

(
γℓ

Lt

2b

)]
+ a

q∑

ℓ=1

ωℓE

[
exp

(
γℓ

Lt

2a

)]
. (36)
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Figure 5: The coefficients (γℓ)
q
ℓ=1 (top) and some of the coefficients (ωℓ)

q
ℓ=1 (bottom) when

q = 50.

Thus, in view of (36), the pricing of a CDO tranche of maturity T , boils down to computation
of expectations of the form

Eeγℓ
Lt
2c (37)

for ℓ = 1, 2, . . . , q and different attachment points c and time horizons 0 ≤ t ≤ T .

Remark 3.4 One can extend the present developments to conditional expectations given Fs for any
0 < s < t. The case s = 0 is used in the calibration (our focus in this paper), while the case s > 0
is needed for pricing the credit valuation adjustment (CVA) on a CDO tranche in a counterparty
risky environment, a topical issue since the 2007-09 credit crisis (see [15]).

Since the algorithm for computing Eeγℓ
Lt
2c is the same for each ℓ = 1, 2, . . . , q and any attachment

point c, we will below for notational convenience simply write EeγLt instead of Eeγℓ
Lt
2c

We now use the common shock model representation developed in Subsection 2.3 of [4], with
the same notation that was introduced there except that θ there is t here, and t there is simply 0
here, as we focus here on expectations and not conditional expectations; moreover we now use a
“ .̂ ” notation for the common shocks model representation at the starting time 0 below, instead of a



12

“ (t) ” which is used for common shocks model representation with a varying forward starting time
t in [4].

We thus introduce a common shocks copula model of default times τ̂Y defined by, for every
Y ∈ Y,

τ̂Y = inf{t > 0;

∫ t

0

XY
s ds > EY },

where the random variables EY are i.i.d. and exponentially distributed with parameter 1. For every
obligor i we let

τ̂i = min
{Y ∈Y; i∈Y }

τ̂Y , (38)

which defines the default time of obligor i in the common shocks copula model. We also introduce
the indicator processes ĤY

t = 1{τ̂Y ≤t} and Ĥi
t = 1{τ̂i≤t}, for every triggering-event Y and obligor i.

One then has much like in Proposition 2.10(ii) of [4] that

EeγLt = EeγL̂t (39)

where L̂t :=
∑

i(1 − Ri)Ĥ
i
t .

We henceforth assume a nested structure of the sets Ij given by

I1 ⊂ . . . ⊂ Im. (40)

This structure implies that if all obligors in group Ik have defaulted, then all obligors in group
I1, . . . , Ik−1 have also defaulted. As detailed in [4], the nested structure (40) yields a particularly
tractable expression for the portfolio loss distribution. This nested structure also makes sense finan-
cially with regards to the hierarchical structure of risks which is reflected in standard CDO tranches.
Denoting conventionally I0 = ∅ and ĤI0

t = 1, then the event-sets

Ω̂j
t := {ĤIj

t = 1, Ĥ
Ij+1

t = 0, . . . , ĤIm

t = 0}, 0 ≤ j ≤ m

form a partition of Ω with

P
(
Ω̂j

t

)
=
(
1 − Ee−

∫
t

0
X

Ij
s ds

) ∏

j+1≤l≤m

Ee−
∫

t

0
X

Il
s ds

where the expectations are explicitly given by Proposition 3.2(i). One then has in (39) that

EeγL̂t =
∑

0≤j≤m

E
(
eγL̂t | Ω̂j

t

)
P(Ω̂j

t ) (41)

in which by conditional independence of the Ĥi
t given every Ω̂j

t

E
(
eγL̂t | Ω̂j

t

)
= E

(
eγ
∑

i
(1−Ri)Ĥ

i
t | Ω̂j

t

)
=
∏

i∈Z

E
(
eγ(1−Ri)Ĥ

i
t | Ω̂j

t

)
.

Now observe that by independence of Ri

E
(
eγ(1−Ri)Ĥ

i
t | Ω̂j

t

)
=

{
Eeγ(1−Ri), i ∈ Ij

Eeγ(1−Ri)Ĥ
{i}
t , else

(42)

with
Eeγ(1−Ri)Ĥ

{i}
t = 1 − p̂i,j

t

(
1 − Eeγ(1−Ri)

)
(43)

where

p̂i,j
t =

{
1, i ∈ Ij ,

1 − Ee−
∫

t

0
X{i}

s ds else
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in which the expectation is explicitly given by Proposition 3.2(i). Hence, the above formulas together
with Equation (39) will determine the quantity (37) which in turn is needed to compute the expected
tranche loss given by Equation (36). Furthermore, from the above equations we see that what is
left to compute is the quantity Eeγ(1−Ri) and in Subsection 4.2 we will give an explicitly example
of the recovery rate Ri (and the quantity Eeγ(1−Ri)) which was used in [4] with the hockey-stick
methodwith the above hockey-stick method when calibrating the Markov copula against market
data on CDO tranches. As seen in [4], using random recoveries will for some data sets render much
better calibration results compared with the case of using constant recoveries.

4 Calibration

4.1 Stochastic Intensity and Constant Recovery

In this subsection, we discuss in more details the calibration methodology that has been used in [4]
when fitting the stochastic intensity Markov copula model against CDO tranches on CDX.NA.IG
series. We use here extended CIR intensities with piecewise-constant mean-reversion coefficients (as
described previously) and we assume that recovery rates are constant. In Subsection 4.2 we will inves-
tigate the “dual” model specification where intensities are deterministic and recoveries are stochastic.

Recall that, given non-negative constants a and c, the intensity process of any group Y ∈ Y is
defined by

dXY
t = a

(
bY (t) − XY

t

)
dt + c

√
XY

t dWY
t (44)

where XY
0 is a given constant and bY (t) is a piecewise constant function such that, for every k =

1 . . .M, bY (t) = b
(k)
Y , t ∈ [Tk−1, Tk) with T0 = 0. In this paper we will use a time tenor consisting

of two maturities T1 = 3y and T2 = 5y. Moreover, in order to reduce the number of parameters at
hands, we consider that, for every group Y ∈ Y, the starting point of the corresponding intensity

process is given by its first-pillar mean-reversion parameter, i.e., XY
0 = b

(1)
Y . Note that in that case,

given a and c, the intensity dynamics of any group Y ∈ Y is completely characterized by b
(k)
Y ,

k = 1, 2. In particular, thanks to (4), the survival probability of name i up to T2 is characterized by

(b
(k)
i )k=1,2 where

b
(k)
i = b

(k)
{i} +

∑

I∋I∋i

b
(k)
I . (45)

The calibration is done in two steps. The first step consists in boostrapping (b
(k)
i )k=1,2 on the

single-name CDS curve associated with obligor i, for any i = 1, . . . , n. The CDS curve of name i is
composed of two market spreads: S∗

i (T1) corresponding to maturity T1 and S∗
i (T2) corresponding

to maturity T2. We first remark from (26) and Proposition 3.2 that the model spread of CDS i with

maturity T1 only depends on b
(1)
i whereas the model spread of CDS i with maturity T2 depends on

b
(1)
i and b

(2)
i . As soon as a and c are fixed, we can then find b

(1)
1 as the solution of the non-linear

(univariate) equation Si(T1) = S∗
i (T1), plugged this solution into the expression of Si(T2) and then

find b
(2)
1 as the solution of the non-linear (univariate) equation Si(T2) = S∗

i (T2). Figure 6 and 7
respectively show the 3y- and the 5y-implied mean-reversion coefficients bootstrapped from the 125
CDS curves of the CDX.NA.IG index constituents as of December 17, 2007. We compare three
different specifications of the underlying individual intensities : piecewise-constant deterministic
intensities (standard bootstrap procedure), CIR intensities with a = 3 and c = 0.05 and CIR
intensities with a = 3 and c = 2. We can see that the volatility parameter c has little impact on
implied coefficients whereas individual intensities may be relatively volatile even for small volatility
parameter as illustrated by Figure 8.
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Figure 6: 3-year mean-reversion coefficients b
(1)
i , i = 1, . . . , 125 bootstrapped from

CDX.NA.IG December 17, 2007 single-name CDS curves and sorted in decreasing order.
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Figure 7: 5-year mean-reversion coefficients b
(2)
i , i = 1, . . . , 125 bootstrapped from

CDX.NA.IG December 17, 2007 single-name CDS curves and sorted in decreasing order.
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Figure 8: Sample paths of generalized CIR intensities with a = 3 and c = 0.05 where mean-
reversion parameters are implied from AIG CDS curve at December 17, 2007. The first and
the second pillar coefficients are (resp.) equal to b(1) = 0.096 and b(2) = 0.075.

The second step is to calibrate group parameters (b
(k)
Ij

)k=1,2, j = 1, . . . , m so that the model
CDO tranche spreads coincide with the corresponding market spreads. The hockey-stick method
described in Subsection 3.3 can be used to compute model CDO tranche spreads.

Moreover, in view of (45), we impose that, for all k = 1, 2 and i = 1, . . . , n, the group
parameters are such that ∑

I∋I∋i

b
(k)
I ≤ b

(k)
i (46)

for all i = 1, . . . , 125. The previous constraints guarantee that the long-term averages b
(k)
{i} of single-

group intensities are all positive. This in turn implies by construction that the starting points of

single-group intensities X
{i}
0 are all positive. Given the nested structure of the groups Ij-s specified

in (40), the following constrains must hold for all l = 1, . . . , m and k = 1, 2:

m∑

j=l

b
(k)
Ij

≤ min
i∈Il\Il−1

b
(k)
i . (47)

Next, the group parameters b = (b
(k)
Ij

)j,k = {b(k)
Ij

: j = 1, . . . , m and k = 1, 2} are then

calibrated so that the five-year model spread Sal,bl
(λ) =: Sl(λ) will coincide with the corresponding

market spread S∗
l for each tranche l. To be more specific, the parameters b = (b

(k)
Ij

)j,k are obtained
according to

b = argmin
b̂

∑

l

(
Sl(b̂) − S∗

l

S∗
l

)2

(48)

under the constraints that all elements in b are nonnegative and that b satisfies the inequalities

(47). In Sl(b̂) we have emphasized that the model spread for tranche l is a function of b = (b
(k)
Ij

)j,k

but we suppressed the dependence in other parameters like interest rate, payment frequency or bi,
i = 1, . . . , n. In the calibration we used an interest rate of 3%, the payments in the premium leg
were quarterly and the integral in the default leg was discretized on a quarterly mesh. We use a
constant recovery of 40%. The calibration results on CDX.NA.IG December 17, 2007 market quotes
can be found in [4].
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As a matter of comparison, we plot in Figure 9 the loss distribution functions obtained from
fitted parameters of the generalized CIR intensity model with a = 3 and c = 0.5 and from the
fitted parameters of the piecewise-constant (deterministic) intensity model. Note that the grouping
is not the same in the two calibrated models. For the deterministic intensity model, we used 5
groups I1, I2, . . . , I5 where Ij = {1, . . . , ij} for ij = 6, 19, 25, 61, 125 when calibrating the joint
default intensities. However, for the two cases, we label the obligors by decreasing level of riskiness.
We use the average over 3-year and 5-year CDS spreads as a measure of riskiness. Consequently,
obligor 1 has the highest average CDS spread while company 125 has the lowest average CDS spread.
Moreover, the obligors in the set I5 \ I4 consisting of the 64 safest companies are assumed to never
default individually, and the corresponding CDSs are excluded from the calibrations constraints.
This specification renders a perfect fit. For the CIR intensity model, we also use 5 groups but with
ij = 8, 19, 27, 102, 125 and, contrary to the deterministic intensity model, we do not remove any
name from the calibration constraints. This specification renders a very good fit (see [4] for more
details).
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Figure 9: Comparison of 5-year implied loss distributions (P(
∑

i H
i
t = k), k = 0, . . . , 125)

from CDX.NA.IG December 17, 2007 calibration of the generalized CIR intensity model and
the piecewise constant intensity model.

4.2 Binomially Distributed Random Recoveries

In this subsection we describe and discuss the distribution for the individual random recoveries,
a binomial mixture distribution, which was used in [4] with the hockey-stick method and piece-
wise constant default intensities, when calibrating the Markov copula against market data on CDO
tranches. As seen in [4], using this type of random recoveries will for some data sets render much
better calibration results compared with the case of using constant recoveries. In particular, we will
in this subsection give a detailed derivation of the accompanying constraints which in [4] was added
to the calibration of the CDO tranches simultaneously with the other constraints for the common
shock intensities, in the case with piecewise constant default intensities. This constraint for the
parameters connected to the random recovery was stated in [4] without a proof. We however remark
that the outline in this subsection is independent of the type of default intensities that are used for
the groups and individual names.

We assume that the individual recoveries {Ri} are i.i.d and have a binomial mixture distribution
on the following form

Ri ∼
1

K
Bin (K, R∗(p0 + (1 − Θ)p1)) where Θ ∈ {0, 1} and P [Θ = 1] = q (49)
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where R∗, q p0 and p1 are positive constants and K is an integer (in this paper and in [4] we let
K = 10). As a result, the distribution function for the recovery rate is given by

P

[
Ri =

k

K

]
=

1∑

ξ=0

µ(ξ)

(
K

k

)
p(ξ)k(1 − p(ξ))K−k where p(ξ) = R∗ (p0 + (1 − ξ)p1) (50)

where ξ ∈ {0, 1} and µ(1) = q, µ(0) = 1 − q. Figure 10 displays the recovery distribution with
calibrated parameters q as in [4], for the two different data sets CDX.NA.IG series sampled at 2007-
12-07 and iTraxx Europe sampled at 2008-03-31. Here E [R] = R∗ = 0.4 and p0 = 0.4 in both cases.
The calibrated parameter was q = 0.4405 for the 2007 data set and q = 0.6002 for the 2008 case.
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Figure 10: The implied recovery distribution with calibrated parameters q in [4], for the two
different data sets CDX.NA.IG series sampled at 2007-12-07 and iTraxx Europe sampled at
2008-03-31, where E [R] = R∗ = 0.4 in both cases.

As seen in Figure 10, the implied probability for a recovery of 0%, 10% and 20% was consistenly
higher in the 2008 sample compared with the 2007 data set (in March 2008 Bear Stearns was bailed
out leading to around three times higher credit spreads than in December 2007, both in Europe and
North America). Recall that a recovery of 0% means that everything is lost at a default.

In view of (49) and (50) we can give an explicit expression for the quantity Eeγ(1−Ri) specified
in Subsection 3.3, as follows

Eeγ(1−Ri) =

1∑

ξ=0

K∑

k=0

eγ(1− k
K )
(

K

k

)
p(ξ)k(1 − p(ξ))K−k. (51)

Recall that Eeγ(1−Ri) together with the corresponding computations in Subsection 3.3 and Equation

(39) will determine the quantity Eeγℓ
Lt
2c in (37) which in turn is needed to compute the expected

tranche loss given by Equation (36).
Let R∗ be a constant representing the average recovery for each obligor in the portfolio. We

now impose the constraint E [R] = R∗ which is necessary in order to have a calibration of the
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single-name CDSs that is separate from the calibration of the common-shock parameters. The
condition E [R] = R∗ leads to constraints on the parameters p0, q and p1 that must be added to
the constraints for the common shock intensities used in the calibration of the CDO tranches (recall
that the calibration is a constrained minimization problem for these parameters). Below we derive
these constraints for p0, q and p1. First, note that

E [R] =
R∗

K
KE [p0 + (1 − ξ)p1] = R∗p0 + (1 − q)p1

so the condition E [R] = R∗ implies p0 + (1 − q)p1 = 1 which yields

p1 =
1 − p0

1 − q
. (52)

Thus, p1 can be seen as a function of q and p0. Next, in view of (49) we have for any scalar ξ ∈ {0, 1}
that

P

[
R =

k

K

∣∣∣∣Θ = ξ

]
=

(
K

k

)
p(ξ)k(1 − p(ξ))K−k (53)

where p(ξ) is defined as in (50). Since p(ξ) is a probability for ξ ∈ {0, 1} it must hold that

p(1) = R∗p0 ∈ (0, 1) and p(0) = R∗(p0 + p1) ∈ (0, 1)

that is,
0 < R∗p0 < 1 and 0 < R∗(p0 + p1) < 1. (54)

We can always assume that p0 > 0 and 0 < R∗ < 1 so the first condition in (54) then implies

p0 <
1

R∗
. (55)

Furthermore, by inserting (52) into the second condition in (54) we retrieve the following constraint

0 < R∗ 1 − p0q

1 − q
< 1. (56)

Since q ∈ (0, 1) and consequently 1 − q > 0, then (56) implies 1 − p0q > 0, that is

q <
1

p0
. (57)

However, we note that this is a “soft” condition since (55) implies that p0 < 1
R∗ and if p0 < 1

then (57) is superfluous since we already know that 0 < q < 1. Next, (56) also tells us that
R∗(1 − p0q) < (1 − q) which after some computation yields

q <
1 − R∗

1 − R∗p0
. (58)

Finally, it must obviously hold that q < 1 since P [Θ = 1] = q. Thus, combining this with (57) and
(58) gives us the following final constraint for the parameter q,

q < min

(
1,

1

p0
,

1 − R∗

1 − R∗p0

)
. (59)

This constraint was stated in [4] but without a proof. Furthermore, in [4] the constraint (59) was used
in the calibration of the CDO tranches simultaneously with the other constraints for the common
shock intensities. In [4] the parameters p0 and R∗ are treated as exogenously given parameters with
R∗ = 40% while p0 can be any positive scalar satisfying (55). The scalar p0 will give some freedom to
fine-tune the CDO calibrations, although it is of course possible to also let p0 be another parameter
used in the calibration.
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Conclusions

In this paper we make a focus on two practically important features of the Markov copula portfolio
credit risk model of [4]: random recoveries and stochastic intensities. Regarding random recoveries
it would be interesting to find ways to add some dependence features without breaking the model
tractability (in the current specifications one is only able to work with independent recoveries). As
for stochastic intensities it would nice to find a good way of fixing the parameters a and c, maybe
based on historical observation of the dynamics of CDS spreads, rather than quite arbitrarily in
this paper, as these dynamic parameters have little impact on CDS and CDO spreads. Also note
that other specification of the intensities could be used, in particular Lévy Hull-White intensities
driven by subordinators (for the sake of non-negativity, cf. Example 3.6 in [14]). Finally it would
be interesting to apply these alternative specifications and to compare them in the context of CVA
computations on portfolios of CDS and/or CDOs.
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