

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Gothenburg, Sweden, May 2012

Conference Networking Recommendations based on

Past Online Activity

Bachelor of Science Thesis in the Software Engineering and Management

Programme

Shan Huang

Petre Mihail Anton

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose make

it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author has

signed a copyright agreement with a third party regarding the Work, the Author warrants

hereby that he/she has obtained any necessary permission from this third party to let Chalmers

University of Technology and University of Gothenburg store the Work electronically and

make it accessible on the Internet.

Conference Networking Recommendations based on Past Online Activity

Shan Huang

Petre Mihail Anton

© Shan Huang, May 2012.

© Petre Mihail Anton, May 2012.

Examiner: Helena Holmström Olsson

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Gothenburg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Gothenburg, Sweden May 2012

Page 1 of 12

Conference Networking Recommendations
based on Past Online Activity

Shan Huang
Software Engineering and Management

Dept. of Computer Science
Chalmers University and University of Gothenburg

Gothenburg, Sweden

shan.huang@me.com

Petre Mihail Anton
Software Engineering and Management

Dept. of Computer Science
Chalmers University and University of Gothenburg

Gothenburg, Sweden

pemi.anton@gmail.com

ABSTRACT

Although many people attend conferences for the potential net-

working opportunities, the majority of the networking that happens

is random and unarranged. This is a problem realized by the com-

pany Shpare AB, who provided the research topic and the task to

build a back-end for a web application that handles gathering data

from social networking websites with the purpose of generating

networking recommendations for conference attendees. This paper

documents the technological and conceptual components, with a

highlight on the recommendation algorithm, of the back-end sys-

tem. Findings demonstrate that such a system cannot only be built,

but has potential to be enhanced and even mutated for solving

problems in other fields.

General terms

social recommendation systems, social network analysis, social

networking websites, data-mining

Keywords

recommendation, social networking, analysis

1. INTRODUCTION

During the past several decades, people have spent significant

amounts of time and money on attending conferences. Financially,

predictions show that the global market for conferencing services

is expected to be worth more than £1.2 billion a year by 2013 [1].

Presentations have educational value, but the bigger motivation for

people to attend conferences comes from the social aspect, to meet

and connect with interesting people. In practice, most of the social

networking at conferences is happening randomly.

The value social networking brings to conference has been well

recognized. However, services that implement the social aspects

for conferences focus on increasing exposure and do not directly

benefit the conference attendees. Software that helps people create

new social connections exists, yet for other purposes. A common

example is dating websites, which use data manually inputted by

the users, as opposed to making use of existing data from social

networking websites. Moreover, current research does not indicate

strategies applicable for generating networking recommendations.

Shpare AB is a company with the goal to solve this problem of

social networking at conferences. Their solution is to use the con-

ference attendees' existing information from their social network-

ing websites to generate networking recommendations, through a

web application. Shpare has developed an initial mockup that

however was missing the core algorithmic parts. There was a front-

end for handling user sign up and a page for presenting matches,

but a database for storing parsed data from social networking

websites did not exist, neither algorithms for the match-making to

take place.

This research attempts to create and present a back-end system for

software-generated valuable networking recommendations for the

attendees of a conference. Valuable networking recommendations

are seen as opportunities of establishing a contact with a person

who can bring value to oneself, for example by spreading know-

ledge or making use of their existing social networks. The process

of match-making is to be based on the analysis of social network-

Page 2 of 12

ing websites. Therefore, the research question addressed in this

paper is as follows:

How can networking recommendations for conference attendees be

inferred from existing information on past online activity on social

networks?

The paper details the research and construction of the back-end of

Shpare's web application. The back-end development consists of a

system that can parse social networking websites, store the parsed

data in a graph database, and an algorithm to calculate networking

recommendations. The technology involved in Shpare's back-end

can be largely categorized into two groups: using social network-

ing websites for conferences, and generating matches based on

user profiles.

An agile proof of concept method was used for the research. The

total development time was two months, where three iterations

were completed and validated. The first iteration focused on litera-

ture review and proof of technology [2]. It concluded with a proto-

type with restricted functionality and performance, technically

validated and integrated with the front-end. The following two

iterations involved developing, testing, refining and validating the

system. At the end of the two months, the system had been dep-

loyed to production and used at a conference of about 1 000 atten-

dees. The development period concluded with a functional system

and a features road map for Shpare's future uses. From the begin-

ning, the authors were aware of their bias and confidence towards

positive results from the research. Still, it was unexpected to ob-

serve the relatively low degree of complexity for an algorithm to

return satisfactory results, and in the numerous opportunities for

future work.

The rest of the paper presents the study's theoretical framework in

section 2, research methods in section 3, and research results in

section 4. Section 5 consists of a discussion of the development

and research experience, while also covering related work as well

as future work. Finally the conclusions are presented in section 6.

2. THEORETICAL FRAMEWORK

This section describes the core concepts this research study re-

volves around. These concepts are match-making, data mining, and

social networking website. Sections 2.1 to 2.3 introduce each

concept and describe their significance and how they are related to

the research.

2.1 Match-making

Traditionally, match-making signifies the involvement an agent

who selects two subjects from a pool based on their characteristics.

For example, this is common in arranged marriages, where charac-

teristics such as age, religion, and social status are important fac-

tors in determining whether two people are potentially suitable for

each other.

With the services from dating websites, people no longer have to

rely on a traditional match-maker. But the principle is fundamen-

tally the same, a dating website usually involves the functionality

for people to input personal information, which is then used as

criteria to calculate the compatibility to others. Other types of

match-making websites such as movie recommendations also

follow this general model.

2.2 Data mining

Data mining is the process or practice of examining large collec-

tions of data in order to generate new information, typically using

specialized computer software. The purpose of data mining is to

extract certain patterns and knowledge from a given set of data.

During the process of data mining, several tasks usually take place:

 Detecting anomalies. If a piece of data is not within the

target range, then it should be discarded or at least put

aside. For example when someone is searching for cook-

ing books in a library, other type of books such as novels

are anomalies.

 Sorting and storing data. When a relevant piece of data is

found and identified, it should be categorized and stored

in a way that is convenient for later usage.

 Summarizing data. When possible, aggregate data so that

it can accurately present a compact understanding of its

underlying data.

2.3 Social networking website

The meaning of social networking has slightly evolved from its

inception. A social network, in its general sense, is a group of

people who are socially connected to one another. Consequently,

social networking is the use or establishment of social networks or

connections. The extensive use the social networking concept has

made it shift its meaning, usually depicting a social networking

service. A social networking website is: „a web-based service that

allow individuals to construct a public or semi-public profile with-

in a bounded system, articulate a list of other users with whom they

share a connection, and view and traverse their list of connections

and those made by others within the system” [3].

The idea of social networking services emerged soon after the

creation of Internet. BBS (bulletin board services) and IRC (inter-

net relay chat) provided people with an Internet connection a vir-

tual platform to socially interact with others. Around the turn of the

millennium, a second generation of social networking websites

spawned with the idea of user-profile centric platforms. In addition

to the existing messaging exchange services, the user-profile al-

lows people to conveniently share personal information, including

their pictures and details about their daily activities, with others

who use the same social networking website. One of the first social

websites is almost two decades old [4]. In addition, social networks

has long been a studied domain: the „Social Networks” journal [5]

has been publishing quarterly issues for the past 33 years [6].

The essential feature of social networking websites, that makes

recommendations possible, is the persistent online activity history.

The need for this features arises from the fact that people provide

biased presentations of themselves [7]. With the help of the activity

history, that tracks all the changes one goes through via social

websites, it becomes easier to obtain a more detailed and precise

description of a person. The activity history can take many forms,

e.g. as the timeline for Facebook, or the feed for Twitter. The

persistence of the data is needed because the larger the span of the

activity history, the more information can be understood about a

person. Accordingly, the data volume only increases over time,

which justifies why social networking websites require large data

center solutions [8]. At the moment of this writing, Facebook has

almost 850 million users [9]. Another example of the amount of

Page 3 of 12

data social activities can generate is that social websites for confe-

rences gathered information on more than 9 000 [10], respectively

18 000 [11] conferences in 2011.

The social networking websites involved in this research are Face-

book, LinkedIn, and Twitter, which are not only some of the big-

gest social networking websites but are also at the top of most-

trafficked websites overall, with Alexa ranks of 2 [12], 12 [13] and

8 [14] at the time of research. Facebook [15] is a profile-based

general purpose social networking website where its users can

share basic as well as more personal information with friends and

the public. LinkedIn [16] is the leading website for business net-

working. Twitter [17] is a single purpose website where users can

only post one type of information, a message that is 140 characters

or less. All of these three websites allow users to make connections

to other users of the service.

3. RESEARCH METHODS

The following sections motivate the choice of proof of concept, as

research strategy (Sect. 3.1), present the research site (Sect. 3.2),

and outline the activities that as part of the proposed method (Sect.

3.3).

3.1 Proof of concept as a strategy

The uniqueness of the research question necessitated a research

method that would enable innovating based on existing technology

and research, and support rapid development. As with any innova-

tion, the set of requirements is known to be pivoting. Also, the time

frame in which the prototype would be developed requested by

Shpare AB was 2 months. The solution was to follow an agile

proof of concept [18] strategy; having incremental iterations

enabled the prototype to be confirmed at several stages, with dif-

ferent levels of functionality. For higher efficiency, test driven

development [19, 20] was adopted, because it provides the oppor-

tunity of not needing to provide documentation with the code, of

managing development tasks easily, and of ensuring the system is

functional at any given time.

3.2 Research site

After a couple face-to-face meetings with the people behind Shpare

AB, the research and development were done via telecommuting,

where contact was maintained via e-mail, instant messaging and

VoIP. Code sharing was done through a git repository [21, 22],

hosted on Bitbucket [23]. Deployment and testing with production

server was handled via SSH [24].

3.3 Research cycles

The process is illustrated in Figure 1, and described in detail in the

sections below. The time span of the iterations does not necessarily

reflect the man-hours spent, as the degree of pressure varied in

each stage.

3.3.1 Iteration 1

The first iteration, which lasted approximately 3 weeks, focused on

understanding the task, literature and technical research, and creat-

ing a simple prototype to kickstart the development.

This iteration started with a meeting between the author's and their

mentor from Shpare. The mentor made an introduction of the

structure of the entire system and what is required from the back-

end. As the meeting concluded, the authors had gained an under-

standing of Shpare's main use case.

Figure 1. Research cycles

Page 4 of 12

The authors began the research by conducting a literature and

technical review to gain the necessary understanding before devel-

opment can start. The literature review helped the authors learn

about match-making, data mining, and social networking websites

(as presented in Section 2. Theoretical framework). This process

not only provided insight into important concepts related to

Shpare, but also established an important foundation to have before

the technical review. On the technical review side, the main objec-

tive of this first iteration was to decide on a technology stack to use

for development, which should consist of a graph database, a pro-

gramming language, and a web development framework with a

matching web server.

Once the technology stack is defined, the authors could start

putting together an initial prototype. This prototype is an abstract

version of the finished product. The development process, which is

repeated throughout the development period, is represented as

shown in the following diagram.

After initial prototype was developed, it underwent technical vali-

dation that included integration testing against the front-end with

mock data. Both the authors and their mentor from Shpare per-

formed the validation.

3.3.2 Iteration 2

The second iteration, which spanned over 4 weeks, was dedicated

to expanding the initial prototype to a fully functioning beta ver-

sion [25].

Before further development could be continued, the authors did a

second round of literature and technical reviews focusing on what

type of information to target when data-mining the social network-

ing websites. The literature review continued from iteration 1 and

consisted of reading papers and online articles that are relevant to

data-mining social networks. The technical review consisted of

studying and testing the public developer APIs from Facebook,

LinkedIn, and Twitter. A need for creating background jobs ap-

peared when working with the social network's APIs. The purpose

of background jobs are to distribute time consuming requests, such

as parsing the social network APIs, to other processes so the web

server that communicates with Shpare's front-end does not get

clogged up. The technology stack was then expanded with a tool

that handles background jobs.

Development then resumed by first redefining the graph structure

and requirement specifications to cover the need for a functioning

beta version of the back-end. Once the requirement specifications

are written, the authors developed the rest of the system in the test

driven development fashion as described in iteration 1.

Iteration 2 concluded with a technical validation of the beta sys-

tem. The system was first tested with local machines and then

deployed to and tested on the production server. A significant

performance issue, with benchmarks that are unacceptable in a real

world situation, arose during testing with the production server.

This lead to some modifications to the technology stack, which

will be explained in the following section 3.3.3.

3.3.3 Iteration 3

Iteration 3 lasted about 1 week and consisted of rewriting the entire

system with a modified technology stack to meet the needs of the

production server.

This iteration was allocated with only 1 week because it was origi-

nally intended for only fixing small problems and perfecting the

system. However, a much more alarming problem showed up

during technical validation at the end of the second iteration. The

system was expected to be ready for a conference of more than

1 000 people at the end of the week. Given the limited remaining

time, the authors decided to resolve the problem by rewriting the

system with a modified technology stack. The rewrite was based

on the previously established data structure and requirement speci-

fications from iteration 2 and thus only involved rewriting the test

and implementation code. The new back-end was completed to-

wards the end of the week and was again deployed to and tested on

the production server. As expected, the new system's performance

was acceptable and it was staged into production just in time for

the conference.

In conclusion, of the efforts in research and development, the

authors' mentor from Shpare attended the conference and helped

the authors conduct a qualitative evaluation by interviewing the

conference attendees. In addition to the completed product, a set of

artifacts are documented: a list of requirement specifications, a

table consisting the selection process and resulting technology

stack, a visual representation of the graph structure, and a system

architecture diagram.

4. RESULTS

4.1 Use case scenario

The following use case scenario illustrates the process from creat-

ing a new conference to users getting back their matches. It served

as a foundation for the rest of the research and development.

 Shpare receives a list of conference attendees from the

conference's organizer. For each attendee in the list, an

email address is a required field; optional fields include

name, twitter username, etc.

 An admin imports and stores the conference attendees on

its front-end database.

 An admin populates Shpare's back-end for the confe-

rence.

 An admin sends out email invitations including an ac-

count activation link to each conference attendee.

 A user (conference attendee) activates her/his account

with the activation link from the invitation email.

 A user defines 'is' and 'wants' tags.

 A user logs on to Shpare's website and connects her/his

social network accounts (Facebook, LinkedIn, and Twit-

ter).

 A user visits Shpare's website's „People” page, which

shows a list of matches that are loaded from the back-

end, in real time.

Page 5 of 12

4.2 Requirement specification

4.2.1 Iteration 1

The following list of requirements are derived solely based on the

use case scenario from 4.1. The link between the front-end and the

back-end is done via an application programming interface (API),

based on POST and GET [26] requests.

Functional requirements

Front-end and back-end APIs

R1. An authenticated request between the front-end and back-end

should be possible.

R2. A POST request for creating a user should be possible.

R3. A POST request for updating a user's properties should be

possible.

R4. A POST request for tagging a user with a conference should be

possible.

R5. A POST request for adding user created tags should be possi-

ble.

R6. A POST request for creating a friendship through Shpare

should be possible.

R7. A POST request for making a batch insert of above POST

requests should be possible.

R8. A POST request for removing a user's tags should be possible.

R9. A POST request for removing a user should be possible.

User

R10. Creating a new user should insert a new user node into the

database.

R11. Managing user properties should update the user node's prop-

erties in the database.

R12. Retrieving a user's tags should obtain all tags connected to the

user node from the database.

R13. Removing a user should delete the user node and all of its

edges from the database.

Tag

R14. Adding a tag to a user should create a new tag node if it does

not already exist, and connect the tag to the user node in the data-

base.

R15. Batch insertion of adding tags should be possible.

R16. Removing a tag from a user should remove the connection

between the tag node and the user node, and the tag node should be

deleted if it is not connected to any other user nodes.

4.2.2 Iteration 2

The following list of requirements are derived after the graph

structure and algorithm are established.

Functional requirements

Front-end and back-end APIs

R17. A GET request for retrieving a user's matches should be

possible.

R18. A GET request for retrieving tag's connected to a user should

be possible.

User

R19. Merging two user nodes should combine the properties and

edges of two nodes in the database.

Social

R20. Requesting friends from the Facebook API should be possi-

ble.

R21. Requesting likes from the Facebook API should be possible.

R22. Requesting connections from the LinkedIn API should be

possible.

R23. Requesting job positions from the LinkedIn API should be

possible.

R24. Requesting skills from the LinkedIn API should be possible.

R25. Requesting groups from the LinkedIn API should be possible.

R26. Requesting followers from the Twitter API should be possi-

ble.

R27. Requesting followings from the Twitter API should be possi-

ble.

R28. Requesting mentions from the Twitter API should be possi-

ble.

R29. Requesting hashtags from the Twitter API should be possible.

Algorithm

R30. Calculating networking recommendations for a user should

return a list of user nodes, ranked by descending scoring, from the

database.

Non-functional requirements

R31. The front-end must receive the list of matches within maxi-

mum 3 seconds.

R32. The data stored on the back-end must be anonymous.

4.3 System architecture diagram

The system architecture diagram represents the back-end compo-

nents, and how they interact with each other as well as the rest of

the system including the front-end and social network websites'

APIs.

Page 6 of 12

Figure 2. The architecture of the back-end

4.4 Technology stack

The technology stack consists of a graph database, a programming

language, a web development framework and a web server. Decid-

ing on what technology to use for each component in the stack

depends on three main factors: compatibility with other compo-

nents in the stack, compatibility with the front-end, and perfor-

mance. Table 1 includes the chosen components for the stack, the

motivation for the selection, and the most important alternatives

that were considered.

Solution Motivation Alternatives

Graph data-

base: Neo4j

Important factors that were taken into considera-

tion for this decision are: license (is it open

source?), performance (will it be able to handle

the required complexity and responsiveness?),

ease of use (does it have good documentation and

good compatibility with different programming

languages?).

Neo4j [27] although not exceedingly impressive

in any factor, is good enough in all areas consi-

dered and was ultimately chosen. Another decid-

ing factor was that Neo4j comes with visualiza-

tion functionality that, according to social net-

working visualization concepts, enables higher

working memory capacity [28].

FlockDB [29]is an open source graph database that is used by

Twitter. Although it appears to be more superior to Neo4j in terms

of performance and scalability, its documentation was almost non-

existent at the time of research.

TinkerPop Blueprints [30] on the other hand is a mature and well

documented stack of graph related products. The downside though

is that it consists of 5 child projects which make up the stack and

thus the learning curve was much higher than what is required by

Neo4j.

Programming

language:

Ruby

Shpare's front-end is written in Ruby on Rails

[31, 32], so choosing Ruby [33, 34] for the back-

end provides great compatibility with it. Neo4j,

which is itself written in Java has two good Ruby

implementation in neo4j.rb [35] (a JRuby version

Java [38, 39] would have provided better performance with Neo4j.

But the language is more verbose in comparison to Ruby. As the

authors are more experienced in web development with Ruby, the

learning curve would have been higher with Java.

JRuby [40, 41] was not only strongly considered but was actually

Page 7 of 12

of Neo4j, that is Ruby running on top of the Java

Virtual Machine [36]) and Neography [37] (a

Ruby wrapper that works with Neo4j via its

REST API).

Neography eventually turned out to be the chosen

Neo4j implementation, and Ruby in turn the

programming language that was used.

used for most of the development. The authors had initially written

a few scripts to test the performances of the two Ruby implementa-

tions during the first iteration, and as expected the JRuby version,

neo4j.rb gave better benchmarks, thus JRuby was chosen. At a later

moment, the authors encountered the serious performance issue on

the production server, which led to the change to Ruby.

Web devel-

opment

framework:

Sinatra

Sinatra [42, 43] is a DSL (Domain Specific Lan-

guage) for writing web applications in Ruby. It is

a small framework that allows a developer to

quickly achieve a specific functionality with

minimal effort. Unlike most web frameworks,

Sinatra does not have any default project struc-

ture and does not rely on generators, which

makes it easy to understand exactly what happens

in all parts of the project. These factors made

Sinatra an ideal choice as a web framework for

Shpare's back-end.

Ruby on Rails is the most popular Ruby web framework and has

great documentation and a vast community behind it. However it

has a default project structure that included too many things that

are not needed for this system.

Grape [44] is a Ruby web framework that was written for the sole

purpose of creating APIs, which provides good compatibility with

requirements of the system. But at the time of research, Grape was

still a relatively new project and the authors encountered bugs

which provided enough reason to abandon it as an alternative.

Web server:

Unicorn

Unicorn [45] is a fast HTTP server for Rack [46]

applications (Sinatra is Rack based). It is ex-

tremely easy to set up and manage. Concurrency

can also be easily controlled by starting up other

Unicorn processes.

Other web servers for Rack applications exist, such as Mongrel

[47], Passenger [48], and Thin [49]. However Unicorn was such an

ideal solution compared to the alternatives that the others did not

receive much consideration.

Note: During much of the development, JRuby instead of Ruby

was used, and its web server was Mizuno [50]. Mizuno is a Jetty-

powered server that was built for JRuby/Rack applications. Like

Unicorn, Mizuno is easy to set up and manage.

Background

job: Resque

The two main advantages of Resque [51] are:

- Once it is set up, it is very easy to use.

- It has a web admin app built in for monitoring

processes.

Delayed_job [52] is easier to set up compared to Resque. However

Neo4j is not an officially supported back-end database, and al-

though it is potentially possible to configure Delayed_job to work

with Neo4j, the time required for that would make it lose its ease to

set up advantage over Resque.

Table 1. The technology stack of the back-end

4.5 Graph database

Firstly, all the relevant data types that describe users were ga-

thered. Shpare's front-end provides the functionality to manually

input tags. These tags can be one of two categories, either a tag

describing who the user is, or a tag describing what the user wants.

After studying the public APIs from Facebook, LinkedIn, and

Twitter, the relevant types of information to target were selected.

The result of this is displayed in Table 2.

Website Data

Front-end is, wants

Facebook Friends, Likes

LinkedIn Connections, Jobs, Skills, Groups

Twitter Followers, Followings, Hash tags, Mentions

Table 2. Data used in the graph database

Secondly, a graph database management system was chosen to

store the data to be used by the algorithm. Graph databases use

graph structures with nodes, edges, and properties to represent and

store data [53]. It has already been established that graph theory is

useful in solving social networking problems [54]. In addition, a

graph DBMS (database management system) perform better than

normal DBMS by several order of magnitude [55, 56].

Thirdly, the database structure was designed to follow the three-

mode network model [54] of users, conferences and tags. This

structure can be seen as the result of combining two two-mode

network models, one with users and conferences, and the other one

with users and tags, both having the same user base. In contrast

with the one-mode model, this structure creates the possibility of

generating matches by identifying common tag nodes between

pairs of user nodes for a certain conference. On the long term,

performing statistics on the tag nodes can reveal information useful

on how these tags should be handled, e.g. cases where they are

similar. Similarly, performing statistics on conference nodes can

reveal information useful for conference organizers, e.g. confe-

rences with the same user base. One might argue that conference

nodes introduce a great number of edges, equal to the number of

conference participants. However, without these nodes the algo-

rithm might return as networking recommendations users who are

not participating to the current conference. Popular tag nodes can

easily have over 1 000 edges, whereas only big conferences can

generate so many edges.

The final structure of the graph database contains three types of

nodes: user, tag and conference. Besides the user to conference

edges, users are to tag nodes by is, want, Facebook likes, LinkedIn

jobs, LinkedIn skills, LinkedIn groups, Twitter hashtags edges and

Page 8 of 12

Figure 3. An example of the structure of the graph database

to other users by Facebook friends, LinkedIn connections, Twitter

followers, and Twitter followings edges.

Figure 3 shows an example of this structure; for clarity, the confe-

rence node is omitted, as all the conference edges would clutter the

diagram. The users are represented by numbers, and only the front-

end can convert actual users to numbers and vice versa; this way,

anonymity is preserved during the matching process.

4.6 Algorithm

In order to generate the networking recommendations, the software

algorithm performs several steps. The first 6 of these steps are

done in 3 database queries, followed by a scoring mechanism. At

Shpare's request, the details of the scoring portion of the algorithm

are with kept.

1. The node which represents the target user is identified.

2. The node which represents the target conference is identified.

3. All the users who participate the target conference are identified,

except the target user.

4. From all participants to the target conference, only the ones who

haven't established a direct social networking connection with the

target user are kept.

5. The match quality of users is determined by calculating the

scores based on the individual tags connecting the filtered partici-

pants to the target user.

6. The final list of users is sorted based on the resulting scores.

7. Only the top scoring 20 matches are returned.

According to the graph figure, which gives an example of a sim-

plistic graph, the algorithm would function in the following way

for user 4:

1. User 4 is identified.

2. The conference node is omitted from the diagram for the sake of

clarity. In this example it is assumed that all user nodes are con-

nected to the same target conference.

3. Users 1, 2, 3, 5, 6, 7 are identified.

4. Users 1, 2, 5 are kept.

Page 9 of 12

5, 6. The scoring algorithm is applied to to the target user and the

filtered users from step 4.

7. Values 1, 2, 5 are returned. There is no difference in score be-

tween 2 and 5 so their order is irrelevant.

4.7 Qualitative evaluation

Inconclusive. The feedback obtained during the conference from

the interviews were not suitable to be used for analysis. In retros-

pect, this makes sense because of the following reasons.

1. People who attend the same conference usually have at least one

thing and likely several things in common. This makes it difficult

to generate bad matches. The general attitude of conference atten-

dees is that they seemed to be more excited about the idea of get-

ting networking recommendations rather than the actual people

recommended to them. These factors lead to biased responses.

2. A proper assessment of the quality of the recommendations

takes much longer time. For a connection made through Shpare, it

could require a follow up investigation in a few months, or even a

few years time for a full evaluation of the match.

5. DISCUSSIONS

5.1 Lessons learnt

The authors strived to design an algorithm that would generate

matches that would help people in networking at conferences.

Given the vast potential of reusing social networking websites' data

for this purpose, we have only achieved a core foundation. This

solution is yet simple to deploy and use, and produces accurate

results, which makes it a good basis for further development. At

the end of iteration 3, the beta product went through rigorous test-

ing during a live conference, where the authors' mentor from

Shpare as well as the conference attendees and deemed it success-

ful.

5.1.1 Frequent testing with real data and envi-

ronment

The biggest lesson learnt to test more frequently with real data on

the production server. The performance issue encountered at the

end of iteration 2 was of extreme severity, especially considering

that the system was expected to be fully functional within a week.

The specific problem was due to the conversion of a Java object to

a JRuby object, which took minutes instead of milliseconds. This

problem was previously undiscovered due to the difference in size

of the graph database with mock data compared to the graph data-

base with real data. With mock data there were around 3 000 nodes

in the database, where as with real data there were around 50 000

nodes. The conversion problem directly caused other problems

such as the JVM running out of memory, which froze the back-end

core.

To solve this problem the authors had two options, attempt to

optimize the technology stack and production server or rewrite the

entire back-end with neography instead of neo4j.rb. After attempt-

ing the first option for a few days and getting nowhere, the authors

decided to move to the second option. Neography uses pure Ruby

and interacts with the Neo4j database through the Neo4j REST api.

This means that there is never any direct conversion of Java objects

to Ruby objects.

The authors spent a combined ~200 hours in the final week in

order to produce a working system. Needless to say, this problem

could have been catastrophic. To avoid such panic and stress in the

future, the development process should be enhanced with frequent

testing on the production server using real data.

5.1.2 Test the examples provided by the docu-

mentation

When working with implementation of the algorithm, the authors

had initially followed a query style from Neo4j's official documen-

tation [57]. The specific query style however proved to be not

scalable and would get exponentially slower as the size of the

database increases. To solve this problem, the authors had to break

down the initial query into three smaller queries that are chained

together. It is important to point out that the three smaller queries

did not alter the abstract algorithm, which means that the Neo4j's

official documentation was misleading. Thus, the lesson learnt here

is to not be over confident with the referenced documentation and

encourage the practice of frequent technical evaluation.

5.1.3 Test driven development

As for the rest of the development process, the authors are quite

satisfied with the experience especially using test driven develop-

ment practice. Requirement specifications provided a one-to-one

matching to writing test code, which provided clear instructions for

the ensuing implementation code. Running the test suites frequent-

ly also points out any previously passed tests which could later fail

due to adding new features or changing previous code. Test driven

development allowed the authors to work efficiently and confiden-

tially, which was important considering the amount of develop-

ment required in the given time frame.

5.2 Related Work

Researchers from IBM and University of Minnesota have analyzed

the performance of 4 different recommendations algorithms [58].

Their study, performed on the social networking website Beehive

within IBM, contains a survey of 500 users and a field study of

3 000 users to benchmark Content matching, Content-plus-Link,

Friend-of-Friend and SONAR algorithms for friend recommenda-

tion. The Content matching algorithm finds users with similar

content; Content-plus-Link builds on top of the content matching

algorithm, taking into account social link information obtained

from the social network structure. The friend-of-friend algorithm

computes matches based solely on social network links, and SO-

NAR „aggregates social relationship information from different

public data sources within IBM”. Based on the survey results on

the recommendations of unknown people rated „good”, the order

of the algorithms is Content matching, Content-plus-Link, Friend-

of-Friend and SONAR, with Content matching having the highest

score. Peculiarly, the score of „not good” recommendations fol-

lows the same order. It is interesting to see that for known matches,

the benchmark reveals a mirroring order of performance, both for

„good” and „not good” recommendations. The same pattern, where

the SONAR algorithm leads, emerges also from the controlled

field study, based on „good” matches, and the number of resulting

connections. However, the order was again reversed for the percen-

tage of „introductions”.

Therefore, the aforementioned study shows that the Content match-

ing algorithm is the highest rating when the focus is having the

chance of being introduced to unknown people, which is the scena-

Page 10 of 12

rio of business networking. Besides the slightly lower success

ratio, the time required for computing Content-plus-Link was 25%

longer in the tests the authors performed for Shpare.

Another IBM study on the same 4 algorithms has shown that the

Content matching algorithm generates the „highest increase in

betweenness centrality for a connecting user, i.e. the new connec-

tions gained by the user placed the participant in a role of connect-

ing users that were previously disconnected” [59]. The same study

has also analyzed the activity levels of the resulting connections of

the 4 algorithms, out of which the Content matching algorithm has

generated the most active connections over a period of 12 months.

StreetSpark [60] is a mobile app that creates an „interest graph”

based on your social networking activity. Here are a few examples

of such activity: being fan of the same page on Facebook, follow-

ing the same people on Twitter, checking-in to the same places on

Foursquare, or liking the same music on Pandora. Even if their

algorithm seems to be based on similar data input to Shpare's,

StreetSpark scores friends-of-friends connection. This indicates

that their focus is on a different market than business networking.

StreetSpark's solution is supposed to be location-aware and real-

time, but without more information it is hard to say if there is a

precompiled list of recommendations out of which a few are se-

lected based on geographic location or if this is is recompiled at

location changes.

Friend recommendation algorithms have been implemented by

popular social websites. Myspace [61] launched Friend Recom-

mendation, dubbed „People you may know” on November 15,

2008, and their algorithm generated recommendations for their 140

million users in 40 to 50 minutes on a 16 CPU machine [62]. In

comparison, Shpare's algorithm produces recommendations for one

thousand users in about 30 minutes, on a relatively basic dual-core

machine. Although the details of the algorithms were not made

public, the fact that a recommendation algorithm can give results

so fast shows how much more performance can be improved.

5.3 Future Work

5.3.1 Adding other social networking websites

The development from this research used data from Facebook,

LinkedIn, and Twitter, which make a great set to begin with due to

their popularity. There are of course plenty of other social network-

ing websites that could be integrated to make the database richer.

The authors have made a selection these websites as shown in the

listing below.

 Google+ [63] is a social networking website introduced

by Google in June, 2011. Despite its 'youth' Google+ has

established a user base competitive to Facebook and

Twitter. This was made possible by the convenience pro-

vided by Google to convert existing Google account to

Google+ accounts. Google+ does not provide many new

types of information due to its similarity in features to

Facebook. However, Google+ would still provide great

value due to the size of its user base.

 Foursquare [64] is a social networking website with a

niche on location based services. This brings a new help-

ful type of data that makes it possible to assign higher

points to matches who live closer by.

 Github [65] is an online platform where users can host

their programming projects. Its social aspect allows users

to follow other users and even specific projects. Incorpo-

rating Github thus provides good value for tech confe-

rences.

5.3.2 Diverse analysis mechanisms and a self-

improving algorithm

The version of the algorithm this research presents has achieved

only the easiest of social networking analysis types, and that is

static analysis. Given the time frame, it was the optimal choice for

proving the concept. The next steps that can be done are semantic

analysis and dynamic analysis [66].

In the case of Content matching algorithms, semantic analysis did

not yield significantly better results [58]. In fact, another study [67]

observes that, with semantic analysis, „similarities between users

[who are not friends] are approximately equal, irrespective of the

topological distance between them”. Above this, the work required

to implement semantic analysis on the amount of data harvested by

Shpare cannot be neglected. However, semantic analysis has not

yet been done, to the authors knowledge, with the scope of under-

standing the attitude people have in public debates. The results of

this analysis is supported by the current structure of the graph

database, as it only needs replacing the edge that links a person to a

tag.

A suggested approach for implementing dynamic analysis with the

benefit of improving the algorithm is to follow if users make con-

tact with each other on the social networking sites after Shpare's

recommendations. In time, this would lead to better recommenda-

tions. Also, in this scenario adding a feature to allow users to rate

each match would be helpful. By understanding the pattern of

users’ rating, both the algorithm can be enhanced and the users can

have the algorithm provide custom tailored matches. Allowing

users to rate the matches and semantic analysis pave they way to a

dynamic and self-improving system. The algorithm can be written

in such a way where it functions as a brain that constantly updates

the scoring system depending on the changes in the graph database.

5.3.3 New graph database project

Neo4j was deemed the best graph database project during the

technical evaluation. However it was problematical in numerous

occasions, most often regarding performance. Neo4j is technically

scalable but achieving high performance for a database with large

amount of nodes and edges requires a lot of environment configu-

ration and expensive hardware. The authors believe there is a need

to start a new graph database project, where good performance

should be a built-in feature even for large databases running on

moderate hardware. Due to the scope of this paper, not much re-

search has been done on how to build a graph database. Neverthe-

less the authors believe that using a functional language like Erlang

[68], instead of Java which is used by Neo4j, would be a better

option. Erlang is concurrent, distributed, and fault-tolerant, all of

which are characteristics ideal for the environment of a graph

database.

5.3.4 Extended functionality

One of the areas in which the social networking analysis can be

used is marketing [69]. Presdo Match [70], a competitor to Shpare,

has created functionality through which exhibitors and sponsors

can search attendee profiles by matching keywords, thus being able

to connect with targeted prospects even before the start of the

Page 11 of 12

event. In the current setup of the system, the same functionality can

be achieved by implementing user nodes in the database structure,

and filter them out in the matching process.

5.3.5 Recommendation evidence

The quality of any system that generates recommendations is

evaluated by the user satisfaction and acceptance. When users are

presented evidence along with the recommendations, it was noticed

that these quality indicators have higher values [59]. Thus, com-

plementing the front-end so that it displays publicly available data

used by the algorithm is a valuable addition.

6. CONCLUSIONS

The research began by applying a proof of concept method with

the aim to build a system that can be used to generate networking

recommendations for conference attendees based on existing in-

formation on past online activity on social networks. The outcome

of the research was a functional version of such a system that is not

only easy to set up, but also easy to monitor with the help of cer-

tain components of the technology stack such as the Neo4j and

Resque web-admin interfaces. This system is accompanied by a

description of its technology stack, and an overview of its architec-

ture.

The response from the author's mentor confirmed the validity of

the system, which was also tested at a conference of more than

1 000 attendees. The result of the study demonstrates the technolo-

gy and concepts, and shows that such a system is indeed possible

to be used in a real world situation.

The idea of providing networking recommendations for conference

attendees is a fresh idea from Shpare, as is the approach to com-

bine the concepts of reusing data from social networking websites

and match-making algorithms. During the study, the authors began

to understand the vast potential of the product. Although a proof of

concept product was built and made fully functional, there remains

untapped potential in advancing this idea by incorporating seman-

tic analysis and machine learning. With small tweaks of the code

base, the system can be applied to more fields such as marketing

and various other types of recommendations.

ACKNOWLEDGEMENT

We would like to thank Lars Pareto, who dedicated many hours to

provide invaluable guidance and feedback on this paper. We would

also like to thank our mentor from Shpare AB, Anders Fredriksson,

who presented a unique thesis topic and the opportunity to build a

part of an exciting project. Last but not least, we would like to

thank the many helpful users of Stackoverflow [71] who shared

their experience on similar coding problems and saved us a lot of

frustration during the development period.

REFERENCES

All the web references were accessed the 15th of May 2012.

1. BT Conferencing. Available from:

http://www.btconferencing.co.uk/about-us/fast-facts.

2. Wikipedia. Available from:

http://en.wikipedia.org/wiki/Proof_of_concept#In_software_de

velopment.

3. Boyd, D.M. and N.B. Ellison. Social Network Sites: Definition,

History, and Scholarship. Journal of Computer-Mediated

Communication, 2007. 13(1): p. 210-230.

4. Wikipedia. Available from:

http://en.wikipedia.org/wiki/Classmates.com.

5. Elsevier. Available from:

http://www.journals.elsevier.com/social-networks/#description.

6. Science Direct. Available from:

http://www.sciencedirect.com/science/journal/03788733.

7. Bar-Anan, Y., T.D. Wilson, and R.R. Hassin. Inaccurate self-

knowledge formation as a result of automatic behavior. Journal

of Experimental Social Psychology, 2010. 46(6): p. 884-894.

8. Kant, K. Data center evolution: A tutorial on state of the art,

issues, and challenges. Computer Networks, 2009. 53(17): p.

2939-2965.

9. Socialbakers. Available from:

http://www.socialbakers.com/countries/continents.

10. Lanyrd. Available from: http://lanyrd.com/2011.

11. Conference Hound. Available from:

http://conferencehound.com/conferences/2011.

12. Alexa. Available from:

http://www.alexa.com/siteinfo/facebook.com.

13. Alexa. Available from:

http://www.alexa.com/siteinfo/linkedin.com.

14. Alexa. Available from:

http://www.alexa.com/siteinfo/twitter.com.

15. Facebook. Available from: http://www.facebook.com.

16. LinkedIn. Available from: http://www.linkedin.com.

17. Twitter. Available from: http://twitter.com.

18. Parker, P.M. Proof-of-concept: Webster's Timeline History,

1962 - 2007, 2010: ICON Group International, Inc.

19. Beck, K. Test-driven development : by example, 2003, Boston:

Addison-Wesley.

20. Chelimsky, D. The RSpec book : behaviour-driven

development with RSpec, Cucumber, and Friends, 2010,

Lewisville, Tex.: Pragmatic.

21. Loeliger, J. Version Control with Git: Powerful Tools and

Techniques for Collaborative Software Development, 2009:

O'Reilly Media, Inc. 336.

22. Git. Available from: http://git-scm.com/.

23. Bitbucket. Available from: www.bitbucket.org.

24. Barrett, D.J., R.E. Silverman, and R.G. Byrnes. SSH, the

Secure Shell: The Definitive Guide, 2005: O'Reilly Media, Inc.

25. The Linux Documentation Project. Available from:

http://www.tldp.org/HOWTO/Software-Proj-Mgmt-

HOWTO/users.html#ALPHABETA.

26. HTTP Protocol. Available from:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

27. Neo4j. Available from: http://neo4j.org/.

28. Zhu, B., S. Watts, and H. Chen. Visualizing social network

concepts. Decis. Support Syst., 2010. 49(2): p. 151-161.

29. FlockDB. Available from: http://github.com/twitter/flockdb.

30. TinkerPop. Available from: http://www.tinkerpop.com.

http://www.btconferencing.co.uk/about-us/fast-facts
http://en.wikipedia.org/wiki/Proof_of_concept#In_software_development
http://en.wikipedia.org/wiki/Proof_of_concept#In_software_development
http://en.wikipedia.org/wiki/Classmates.com
http://www.journals.elsevier.com/social-networks/#description
http://www.sciencedirect.com/science/journal/03788733
http://www.socialbakers.com/countries/continents
http://lanyrd.com/2011
http://conferencehound.com/conferences/2011
http://www.alexa.com/siteinfo/facebook.com
http://www.alexa.com/siteinfo/linkedin.com
http://www.alexa.com/siteinfo/twitter.com
http://www.facebook.com/
http://www.linkedin.com/
http://twitter.com/
http://git-scm.com/
http://www.bitbucket.org/
http://www.tldp.org/HOWTO/Software-Proj-Mgmt-HOWTO/users.html#ALPHABETA
http://www.tldp.org/HOWTO/Software-Proj-Mgmt-HOWTO/users.html#ALPHABETA
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://neo4j.org/
http://github.com/twitter/flockdb
http://www.tinkerpop.com/

Page 12 of 12

31. Ruby on Rails. Available from: http://rubyonrails.org.

32. Hartl, M. Ruby on Rails 3 tutorial : learn Rails by example,
2011, Upper Saddle River, NJ: Addison-Wesley.

33. Flanagan, D. and Y. Matsumoto. The Ruby Programming

Language, 2008: O'Reilly. 444.

34. Ruby. Available from: http://www.ruby-lang.org/en.

35. neo4j.rb. Available from: http://neo4j.rubyforge.org.

36. JVM. Available from:

http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-

1.html#jvms-1.2.

37. Neography. Available from:

http://github.com/maxdemarzi/neography.

38. Flanagan, D. Java in a Nutshell, Fourth Edition, 2002:

O'Reilly & Associates, Inc. 700.

39. Oracle. Available from:

http://www.oracle.com/technetwork/java/index.html.

40. Edelson, J. and H. Liu. JRuby Cookbook, 2008: O'Reilly

Media, Inc. 222.

41. JRuby. Available from: http://www.jruby.org.

42. Sinatra. Available from: http://www.sinatrarb.com.

43. Harris, A. and K. Haase. Sinatra : up and running, 2012,

Sebastopol, CA: O'Reilly & Associates, Inc.

44. Grape. Available from: http://github.com/intridea/grape/wiki.

45. Unicorn. Available from: http://unicorn.bogomips.org.

46. Rack. Available from: http://rack.github.com.

47. RubyGems. Available from:

http://rubygems.org/gems/mongrel.

48. Passenger. Available from: http://www.modrails.com.

49. Thin. Available from: http://code.macournoyer.com/thin.

50. Mizuno. Available from: http://github.com/matadon/mizuno.

51. Resque. Available from: http://github.com/defunkt/resque.

52. delayed_job. Available from:

http://github.com/collectiveidea/delayed_job.

53. Wikipedia. Available from:

http://en.wikipedia.org/wiki/Graph_database.

54. Wasserman, S. and K. Faust. Social network analysis :

methods and applications, 1994, Cambridge; New York:

Cambridge University Press.

55. Neo4j. Available from: http://video.neo4j.org/ajgJ/how-to-get-

started-with-neo4j-209.

56. Rene Pickhardt. Available from: http://www.rene-

pickhardt.de/time-lines-and-news-streams-neo4j-is-377-times-

faster-than-mysql.

57. Cypher. Available from:

http://docs.neo4j.org/chunked/1.8.M01/query-

match.html#match-zero-length-paths.

58. Chen, J., et al. Make new friends, but keep the old:

recommending people on social networking sites. in

Proceedings of the 27th international conference on Human

factors in computing systems. 2009. Boston, MA, USA: ACM.

59. Daly, E.M., W. Geyer, and D.R. Millen. The network effects of

recommending social connections. in Proceedings of the fourth

ACM conference on Recommender systems. 2010. Barcelona,

Spain: ACM.

60. StreetSpark. Available from:

http://blog.streetspark.com/#about.

61. Myspace. Available from: http://www.myspace.com.

62. Moricz, M., Y. Dosbayev, and M. Berlyant. PYMK: friend

recommendation at myspace. in Proceedings of the 2010

international conference on Management of data. 2010.

Indianapolis, Indiana, USA: ACM.

63. Google+. Available from: https://plus.google.com.

64. Foursquare. Available from: https://foursquare.com.

65. Github. Available from: http://github.com.

66. Thovex, C. and F. Trichet. Semantic social networks analysis.

Social Network Analysis and Mining, 2012: p. 1-15.

67. Bhattacharyya, P., A. Garg, and S. Wu. Analysis of user

keyword similarity in online social networks. Social Network

Analysis and Mining, 2011. 1(3): p. 143-158.

68. Erlang. Available from: http://www.erlang.org.

69. Bonchi, F., et al. Social Network Analysis and Mining for

Business Applications. ACM Trans. Intell. Syst. Technol.,

2011. 2(3): p. 1-37.

70. Presdo. Available from: http://match.presdo.com/about.

71. Stackoverflow. Available from: http://stackoverflow.com.

http://rubyonrails.org/
http://www.ruby-lang.org/en
http://neo4j.rubyforge.org/
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2
http://docs.oracle.com/javase/specs/jvms/se7/html/jvms-1.html#jvms-1.2
http://github.com/maxdemarzi/neography
http://www.oracle.com/technetwork/java/index.html
http://www.jruby.org/
http://www.sinatrarb.com/
http://github.com/intridea/grape/wiki
http://unicorn.bogomips.org/
http://rack.github.com/
http://rubygems.org/gems/mongrel
http://www.modrails.com/
http://code.macournoyer.com/thin
http://github.com/matadon/mizuno
http://github.com/defunkt/resque
http://github.com/collectiveidea/delayed_job
http://en.wikipedia.org/wiki/Graph_database
http://video.neo4j.org/ajgJ/how-to-get-started-with-neo4j-209
http://video.neo4j.org/ajgJ/how-to-get-started-with-neo4j-209
http://www.rene-pickhardt.de/time-lines-and-news-streams-neo4j-is-377-times-faster-than-mysql
http://www.rene-pickhardt.de/time-lines-and-news-streams-neo4j-is-377-times-faster-than-mysql
http://www.rene-pickhardt.de/time-lines-and-news-streams-neo4j-is-377-times-faster-than-mysql
http://docs.neo4j.org/chunked/1.8.M01/query-match.html#match-zero-length-paths
http://docs.neo4j.org/chunked/1.8.M01/query-match.html#match-zero-length-paths
http://blog.streetspark.com/#about
http://www.myspace.com/
http://github.com/
http://www.erlang.org/
http://match.presdo.com/about
http://stackoverflow.com/

	Cover_page
	thesis_final

