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ABSTRACT 

Although many people attend conferences for the potential net-

working opportunities, the majority of the networking that happens 

is random and unarranged. This is a problem realized by the com-

pany Shpare AB, who provided the research topic and the task to 

build a back-end for a web application that handles gathering data 

from social networking websites with the purpose of generating 

networking recommendations for conference attendees. This paper 

documents the technological and conceptual components, with a 

highlight on the recommendation algorithm, of the back-end sys-

tem. Findings demonstrate that such a system cannot only be built, 

but has potential to be enhanced and even mutated for solving 

problems in other fields. 

General terms 

social recommendation systems, social network analysis, social 

networking websites, data-mining 

Keywords 

recommendation, social networking, analysis 

1. INTRODUCTION 

During the past several decades, people have spent significant 

amounts of time and money on attending conferences. Financially, 

predictions show that the global market for conferencing services 

is expected to be worth more than £1.2 billion a year by 2013 [1]. 

Presentations have educational value, but the bigger motivation for 

people to attend conferences comes from the social aspect, to meet 

and connect with interesting people. In practice, most of the social 

networking at conferences is happening randomly. 

The value social networking brings to conference has been well 

recognized. However, services that implement the social aspects 

for conferences focus on increasing exposure and do not directly 

benefit the conference attendees. Software that helps people create 

new social connections exists, yet for other purposes. A common 

example is dating websites, which use data manually inputted by 

the users, as opposed to making use of existing data from social 

networking websites. Moreover, current research does not indicate 

strategies applicable for generating networking recommendations. 

Shpare AB is a company with the goal to solve this problem of 

social networking at conferences. Their solution is to use the con-

ference attendees' existing information from their social network-

ing websites to generate networking recommendations, through a 

web application. Shpare has developed an initial mockup that 

however was missing the core algorithmic parts. There was a front-

end for handling user sign up and a page for presenting matches, 

but a database for storing parsed data from social networking 

websites did not exist, neither algorithms for the match-making to 

take place. 

This research attempts to create and present a back-end system for 

software-generated valuable networking recommendations for the 

attendees of a conference. Valuable networking recommendations 

are seen as opportunities of establishing a contact with a person 

who can bring value to oneself, for example by spreading know-

ledge or making use of their existing social networks. The process 

of match-making is to be based on the analysis of social network-
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ing websites. Therefore, the research question addressed in this 

paper is as follows: 

How can networking recommendations for conference attendees be 

inferred from existing information on past online activity on social 

networks? 

The paper details the research and construction of the back-end of 

Shpare's web application. The back-end development consists of a 

system that can parse social networking websites, store the parsed 

data in a graph database, and an algorithm to calculate networking 

recommendations. The technology involved in Shpare's back-end 

can be largely categorized into two groups: using social network-

ing websites for conferences, and generating matches based on 

user profiles. 

An agile proof of concept method was used for the research. The 

total development time was two months, where three iterations 

were completed and validated. The first iteration focused on litera-

ture review and proof of technology [2]. It concluded with a proto-

type with restricted functionality and performance, technically 

validated and integrated with the front-end. The following two 

iterations involved developing, testing, refining and validating the 

system. At the end of the two months, the system had been dep-

loyed to production and used at a conference of about 1 000 atten-

dees. The development period concluded with a functional system 

and a features road map for Shpare's future uses. From the begin-

ning, the authors were aware of their bias and confidence towards 

positive results from the research. Still, it was unexpected to ob-

serve the relatively low degree of complexity for an algorithm to 

return satisfactory results, and in the numerous opportunities for 

future work. 

The rest of the paper presents the study's theoretical framework in 

section 2, research methods in section 3, and research results in 

section 4. Section 5 consists of a discussion of the development 

and research experience, while also covering related work as well 

as future work. Finally the conclusions are presented in section 6. 

2. THEORETICAL FRAMEWORK 

This section describes the core concepts this research study re-

volves around. These concepts are match-making, data mining, and 

social networking website. Sections 2.1 to 2.3 introduce each 

concept and describe their significance and how they are related to 

the research. 

2.1 Match-making 

Traditionally, match-making signifies the involvement an agent 

who selects two subjects from a pool based on their characteristics. 

For example, this is common in arranged marriages, where charac-

teristics such as age, religion, and social status are important fac-

tors in determining whether two people are potentially suitable for 

each other. 

With the services from dating websites, people no longer have to 

rely on a traditional match-maker. But the principle is fundamen-

tally the same, a dating website usually involves the functionality 

for people to input personal information, which is then used as 

criteria to calculate the compatibility to others. Other types of 

match-making websites such as movie recommendations also 

follow this general model. 

2.2 Data mining 

Data mining is the process or practice of examining large collec-

tions of data in order to generate new information, typically using 

specialized computer software. The purpose of data mining is to 

extract certain patterns and knowledge from a given set of data. 

During the process of data mining, several tasks usually take place: 

 Detecting anomalies. If a piece of data is not within the 

target range, then it should be discarded or at least put 

aside. For example when someone is searching for cook-

ing books in a library, other type of books such as novels 

are anomalies. 

 Sorting and storing data. When a relevant piece of data is 

found and identified, it should be categorized and stored 

in a way that is convenient for later usage. 

 Summarizing data. When possible, aggregate data so that 

it can accurately present a compact understanding of its 

underlying data. 

2.3 Social networking website 

The meaning of social networking has slightly evolved from its 

inception. A social network, in its general sense, is a group of 

people who are socially connected to one another. Consequently, 

social networking is the use or establishment of social networks or 

connections. The extensive use the social networking concept has 

made it shift its meaning, usually depicting a social networking 

service. A social networking website is: „a web-based service that 

allow individuals to construct a public or semi-public profile with-

in a bounded system, articulate a list of other users with whom they 

share a connection, and view and traverse their list of connections 

and those made by others within the system” [3]. 

The idea of social networking services emerged soon after the 

creation of Internet. BBS (bulletin board services) and IRC (inter-

net relay chat) provided people with an Internet connection a vir-

tual platform to socially interact with others. Around the turn of the 

millennium, a second generation of social networking websites 

spawned with the idea of user-profile centric platforms. In addition 

to the existing messaging exchange services, the user-profile al-

lows people to conveniently share personal information, including 

their pictures and details about their daily activities, with others 

who use the same social networking website. One of the first social 

websites is almost two decades old [4]. In addition, social networks 

has long been a studied domain: the „Social Networks” journal [5] 

has been publishing quarterly issues for the past 33 years [6]. 

The essential feature of social networking websites, that makes 

recommendations possible, is the persistent online activity history. 

The need for this features arises from the fact that people provide 

biased presentations of themselves [7]. With the help of the activity 

history, that tracks all the changes one goes through via social 

websites, it becomes easier to obtain a more detailed and precise 

description of a person. The activity history can take many forms, 

e.g. as the timeline for Facebook, or the feed for Twitter. The 

persistence of the data is needed because the larger the span of the 

activity history, the more information can be understood about a 

person. Accordingly, the data volume only increases over time, 

which justifies why social networking websites require large data 

center solutions [8]. At the moment of this writing, Facebook has 

almost 850 million users [9]. Another example of the amount of 
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data social activities can generate is that social websites for confe-

rences gathered information on more than 9 000 [10], respectively 

18 000 [11] conferences in 2011. 

The social networking websites involved in this research are Face-

book, LinkedIn, and Twitter, which are not only some of the big-

gest social networking websites but are also at the top of most-

trafficked websites overall, with Alexa ranks of 2 [12], 12 [13] and 

8 [14] at the time of research. Facebook [15] is a profile-based 

general purpose social networking website where its users can 

share basic as well as more personal information with friends and 

the public. LinkedIn [16] is the leading website for business net-

working. Twitter [17] is a single purpose website where users can 

only post one type of information, a message that is 140 characters 

or less. All of these three websites allow users to make connections 

to other users of the service. 

3. RESEARCH METHODS 

The following sections motivate the choice of proof of concept, as 

research strategy (Sect. 3.1), present the research site (Sect. 3.2), 

and outline the activities that as part of the proposed method (Sect. 

3.3). 

3.1 Proof of concept as a strategy 

The uniqueness of the research question necessitated a research 

method that would enable innovating based on existing technology 

and research, and support rapid development. As with any innova-

tion, the set of requirements is known to be pivoting. Also, the time 

frame in which the prototype would be developed requested by 

Shpare AB was 2 months. The solution was to follow an agile 

proof of concept [18] strategy; having incremental iterations 

enabled the prototype to be confirmed at several stages, with dif-

ferent levels of functionality. For higher efficiency, test driven 

development [19, 20] was adopted, because it provides the oppor-

tunity of not needing to provide documentation with the code, of 

managing development tasks easily, and of ensuring the system is 

functional at any given time. 

3.2 Research site 

After a couple face-to-face meetings with the people behind Shpare 

AB, the research and development were done via telecommuting, 

where contact was maintained via e-mail, instant messaging and 

VoIP. Code sharing was done through a git repository [21, 22], 

hosted on Bitbucket [23]. Deployment and testing with production 

server was handled via SSH [24]. 

3.3 Research cycles 

The process is illustrated in Figure 1, and described in detail in the 

sections below. The time span of the iterations does not necessarily 

reflect the man-hours spent, as the degree of pressure varied in 

each stage. 

3.3.1 Iteration 1 

The first iteration, which lasted approximately 3 weeks, focused on 

understanding the task, literature and technical research, and creat-

ing a simple prototype to kickstart the development. 

This iteration started with a meeting between the author's and their 

mentor from Shpare. The mentor made an introduction of the 

structure of the entire system and what is required from the back-

end. As the meeting concluded, the authors had gained an under-

standing of Shpare's main use case. 

 

Figure 1. Research cycles 
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The authors began the research by conducting a literature and 

technical review to gain the necessary understanding before devel-

opment can start. The literature review helped the authors learn 

about match-making, data mining, and social networking websites 

(as presented in Section 2. Theoretical framework). This process 

not only provided insight into important concepts related to 

Shpare, but also established an important foundation to have before 

the technical review. On the technical review side, the main objec-

tive of this first iteration was to decide on a technology stack to use 

for development, which should consist of a graph database, a pro-

gramming language, and a web development framework with a 

matching web server. 

Once the technology stack is defined, the authors could start 

putting together an initial prototype. This prototype is an abstract 

version of the finished product. The development process, which is 

repeated throughout the development period, is represented as 

shown in the following diagram. 

After initial prototype was developed, it underwent technical vali-

dation that included integration testing against the front-end with 

mock data. Both the authors and their mentor from Shpare per-

formed the validation. 

3.3.2 Iteration 2 

The second iteration, which spanned over 4 weeks, was dedicated 

to expanding the initial prototype to a fully functioning beta ver-

sion [25]. 

Before further development could be continued, the authors did a 

second round of literature and technical reviews focusing on what 

type of information to target when data-mining the social network-

ing websites. The literature review continued from iteration 1 and 

consisted of reading papers and online articles that are relevant to 

data-mining social networks. The technical review consisted of 

studying and testing the public developer APIs from Facebook, 

LinkedIn, and Twitter. A need for creating background jobs ap-

peared when working with the social network's APIs. The purpose 

of background jobs are to distribute time consuming requests, such 

as parsing the social network APIs, to other processes so the web 

server that communicates with Shpare's front-end does not get 

clogged up. The technology stack was then expanded with a tool 

that handles background jobs. 

Development then resumed by first redefining the graph structure 

and requirement specifications to cover the need for a functioning 

beta version of the back-end. Once the requirement specifications 

are written, the authors developed the rest of the system in the test 

driven development fashion as described in iteration 1. 

Iteration 2 concluded with a technical validation of the beta sys-

tem. The system was first tested with local machines and then 

deployed to and tested on the production server. A significant 

performance issue, with benchmarks that are unacceptable in a real 

world situation, arose during testing with the production server. 

This lead to some modifications to the technology stack, which 

will be explained in the following section 3.3.3. 

3.3.3 Iteration 3 

Iteration 3 lasted about 1 week and consisted of rewriting the entire 

system with a modified technology stack to meet the needs of the 

production server. 

This iteration was allocated with only 1 week because it was origi-

nally intended for only fixing small problems and perfecting the 

system. However, a much more alarming problem showed up 

during technical validation at the end of the second iteration. The 

system was expected to be ready for a conference of more than 

1 000 people at the end of the week. Given the limited remaining 

time, the authors decided to resolve the problem by rewriting the 

system with a modified technology stack. The rewrite was based 

on the previously established data structure and requirement speci-

fications from iteration 2 and thus only involved rewriting the test 

and implementation code. The new back-end was completed to-

wards the end of the week and was again deployed to and tested on 

the production server. As expected, the new system's performance 

was acceptable and it was staged into production just in time for 

the conference. 

In conclusion, of the efforts in research and development, the 

authors' mentor from Shpare attended the conference and helped 

the authors conduct a qualitative evaluation by interviewing the 

conference attendees. In addition to the completed product, a set of 

artifacts are documented: a list of requirement specifications, a 

table consisting the selection process and resulting technology 

stack, a visual representation of the graph structure, and a system 

architecture diagram. 

4. RESULTS 

4.1 Use case scenario 

The following use case scenario illustrates the process from creat-

ing a new conference to users getting back their matches. It served 

as a foundation for the rest of the research and development. 

 Shpare receives a list of conference attendees from the 

conference's organizer. For each attendee in the list, an 

email address is a required field; optional fields include 

name, twitter username, etc. 

 An admin imports and stores the conference attendees on 

its front-end database. 

 An admin populates Shpare's back-end for the confe-

rence. 

 An admin sends out email invitations including an ac-

count activation link to each conference attendee. 

 A user (conference attendee) activates her/his account 

with the activation link from the invitation email. 

 A user defines 'is' and 'wants' tags. 

 A user logs on to Shpare's website and connects her/his 

social network accounts (Facebook, LinkedIn, and Twit-

ter). 

 A user visits Shpare's website's „People” page, which 

shows a list of matches that are loaded from the back-

end, in real time. 
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4.2 Requirement specification 

4.2.1 Iteration 1 

The following list of requirements are derived solely based on the 

use case scenario from 4.1. The link between the front-end and the 

back-end is done via an application programming interface (API), 

based on POST and GET [26] requests. 

Functional requirements 

Front-end and back-end APIs 

R1. An authenticated request between the front-end and back-end 

should be possible. 

R2. A POST request for creating a user should be possible. 

R3. A POST request for updating a user's properties should be 

possible. 

R4. A POST request for tagging a user with a conference should be 

possible. 

R5. A POST request for adding user created tags should be possi-

ble. 

R6. A POST request for creating a friendship through Shpare 

should be possible. 

R7. A POST request for making a batch insert of above POST 

requests should be possible. 

R8. A POST request for removing a user's tags should be possible. 

R9. A POST request for removing a user should be possible. 

 

User 

R10. Creating a new user should insert a new user node into the 

database. 

R11. Managing user properties should update the user node's prop-

erties in the database. 

R12. Retrieving a user's tags should obtain all tags connected to the 

user node from the database. 

R13. Removing a user should delete the user node and all of its 

edges from the database. 

 

Tag 

R14. Adding a tag to a user should create a new tag node if it does 

not already exist, and connect the tag to the user node in the data-

base. 

R15. Batch insertion of adding tags should be possible. 

R16. Removing a tag from a user should remove the connection 

between the tag node and the user node, and the tag node should be 

deleted if it is not connected to any other user nodes. 

4.2.2 Iteration 2 

The following list of requirements are derived after the graph 

structure and algorithm are established. 

Functional requirements 

Front-end and back-end APIs 

R17. A GET request for retrieving a user's matches should be 

possible. 

R18. A GET request for retrieving tag's connected to a user should 

be possible. 

 

User 

R19. Merging two user nodes should combine the properties and 

edges of two nodes in the database. 

 

Social 

R20. Requesting friends from the Facebook API should be possi-

ble. 

R21. Requesting likes from the Facebook API should be possible. 

R22. Requesting connections from the LinkedIn API should be 

possible. 

R23. Requesting job positions from the LinkedIn API should be 

possible. 

R24. Requesting skills from the LinkedIn API should be possible. 

R25. Requesting groups from the LinkedIn API should be possible. 

R26. Requesting followers from the Twitter API should be possi-

ble. 

R27. Requesting followings from the Twitter API should be possi-

ble. 

R28. Requesting mentions from the Twitter API should be possi-

ble. 

R29. Requesting hashtags from the Twitter API should be possible. 

 

Algorithm 

R30. Calculating networking recommendations for a user should 

return a list of user nodes, ranked by descending scoring, from the 

database. 

 

Non-functional requirements 

R31. The front-end must receive the list of matches within maxi-

mum 3 seconds. 

R32. The data stored on the back-end must be anonymous. 

4.3 System architecture diagram 

The system architecture diagram represents the back-end compo-

nents, and how they interact with each other as well as the rest of 

the system including the front-end and social network websites' 

APIs. 
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Figure 2. The architecture of the back-end 

 

4.4 Technology stack 

The technology stack consists of a graph database, a programming 

language, a web development framework and a web server. Decid-

ing on what technology to use for each component in the stack 

depends on three main factors: compatibility with other compo-

nents in the stack, compatibility with the front-end, and perfor-

mance. Table 1 includes the chosen components for the stack, the 

motivation for the selection, and the most important alternatives 

that were considered. 

 

Solution Motivation Alternatives 

Graph data-

base: Neo4j 

Important factors that were taken into considera-

tion for this decision are: license (is it open 

source?), performance (will it be able to handle 

the required complexity and responsiveness?), 

ease of use (does it have good documentation and 

good compatibility with different programming 

languages?). 

Neo4j [27] although not exceedingly impressive 

in any factor, is good enough in all areas consi-

dered and was ultimately chosen. Another decid-

ing factor was that Neo4j comes with visualiza-

tion functionality that, according to social net-

working visualization concepts, enables higher 

working memory capacity [28]. 

FlockDB [29]is an open source graph database that is used by 

Twitter. Although it appears to be more superior to Neo4j in terms 

of performance and scalability, its documentation was almost non-

existent at the time of research. 

TinkerPop Blueprints [30] on the other hand is a mature and well 

documented stack of graph related products. The downside though 

is that it consists of 5 child projects which make up the stack and 

thus the learning curve was much higher than what is required by 

Neo4j. 

Programming 

language: 

Ruby 

Shpare's front-end is written in Ruby on Rails 

[31, 32], so choosing Ruby [33, 34] for the back-

end provides great compatibility with it. Neo4j, 

which is itself written in Java has two good Ruby 

implementation in neo4j.rb [35] (a JRuby version 

Java [38, 39] would have provided better performance with Neo4j. 

But the language is more verbose in comparison to Ruby. As the 

authors are more experienced in web development with Ruby, the 

learning curve would have been higher with Java. 

JRuby [40, 41] was not only strongly considered but was actually 
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of Neo4j, that is Ruby running on top of the Java 

Virtual Machine [36]) and Neography [37] (a 

Ruby wrapper that works with Neo4j via its 

REST API). 

Neography eventually turned out to be the chosen 

Neo4j implementation, and Ruby in turn the 

programming language that was used. 

used for most of the development. The authors had initially written 

a few scripts to test the performances of the two Ruby implementa-

tions during the first iteration, and as expected the JRuby version, 

neo4j.rb gave better benchmarks, thus JRuby was chosen. At a later 

moment, the authors encountered the serious performance issue on 

the production server, which led to the change to Ruby.  

Web devel-

opment 

framework: 

Sinatra 

Sinatra [42, 43] is a DSL (Domain Specific Lan-

guage) for writing web applications in Ruby. It is 

a small framework that allows a developer to 

quickly achieve a specific functionality with 

minimal effort. Unlike most web frameworks, 

Sinatra does not have any default project struc-

ture and does not rely on generators, which 

makes it easy to understand exactly what happens 

in all parts of the project. These factors made 

Sinatra an ideal choice as a web framework for 

Shpare's back-end. 

Ruby on Rails is the most popular Ruby web framework and has 

great documentation and a vast community behind it. However it 

has a default project structure that included too many things that 

are not needed for this system. 

Grape [44] is a Ruby web framework that was written for the sole 

purpose of creating APIs, which provides good compatibility with 

requirements of the system. But at the time of research, Grape was 

still a relatively new project and the authors encountered bugs 

which provided enough reason to abandon it as an alternative. 

Web server: 

Unicorn 

Unicorn [45] is a fast HTTP server for Rack [46] 

applications (Sinatra is Rack based). It is ex-

tremely easy to set up and manage. Concurrency 

can also be easily controlled by starting up other 

Unicorn processes. 

Other web servers for Rack applications exist, such as Mongrel 

[47], Passenger [48], and Thin [49]. However Unicorn was such an 

ideal solution compared to the alternatives that the others did not 

receive much consideration. 

Note: During much of the development, JRuby instead of Ruby 

was used, and its web server was Mizuno [50]. Mizuno is a Jetty-

powered server that was built for JRuby/Rack applications. Like 

Unicorn, Mizuno is easy to set up and manage. 

Background 

job: Resque 

The two main advantages of Resque [51] are: 

- Once it is set up, it is very easy to use. 

- It has a web admin app built in for monitoring 

processes. 

Delayed_job [52] is easier to set up compared to Resque. However 

Neo4j is not an officially supported back-end database, and al-

though it is potentially possible to configure Delayed_job to work 

with Neo4j, the time required for that would make it lose its ease to 

set up advantage over Resque. 

Table 1. The technology stack of the back-end 

 

4.5 Graph database 

Firstly, all the relevant data types that describe users were ga-

thered. Shpare's front-end provides the functionality to manually 

input tags. These tags can be one of two categories, either a tag 

describing who the user is, or a tag describing what the user wants. 

After studying the public APIs from Facebook, LinkedIn, and 

Twitter, the relevant types of information to target were selected. 

The result of this is displayed in Table 2.  

 

Website Data 

Front-end is, wants 

Facebook Friends, Likes 

LinkedIn Connections, Jobs, Skills, Groups 

Twitter Followers, Followings, Hash tags, Mentions 

Table 2. Data used in the graph database 

 

Secondly, a graph database management system was chosen to 

store the data to be used by the algorithm. Graph databases use 

graph structures with nodes, edges, and properties to represent and 

store data [53]. It has already been established that graph theory is 

useful in solving social networking problems [54]. In addition, a 

graph DBMS (database management system) perform better than 

normal DBMS by several order of magnitude [55, 56]. 

Thirdly, the database structure was designed to follow the three-

mode network model [54] of users, conferences and tags. This 

structure can be seen as the result of combining two two-mode 

network models, one with users and conferences, and the other one 

with users and tags, both having the same user base. In contrast 

with the one-mode model, this structure creates the possibility of 

generating matches by identifying common tag nodes between 

pairs of user nodes for a certain conference. On the long term, 

performing statistics on the tag nodes can reveal information useful 

on how these tags should be handled, e.g. cases where they are 

similar. Similarly, performing statistics on conference nodes can 

reveal information useful for conference organizers, e.g. confe-

rences with the same user base. One might argue that conference 

nodes introduce a great number of edges, equal to the number of 

conference participants. However, without these nodes the algo-

rithm might return as networking recommendations users who are 

not participating to the current conference. Popular tag nodes can 

easily have over 1 000 edges, whereas only big conferences can 

generate so many edges. 

The final structure of the graph database contains three types of 

nodes: user, tag and conference. Besides the user to conference 

edges, users are to tag nodes by is, want, Facebook likes, LinkedIn 

jobs, LinkedIn skills, LinkedIn groups, Twitter hashtags edges and  
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Figure 3. An example of the structure of the graph database 

 

to other users by Facebook friends, LinkedIn connections, Twitter 

followers, and Twitter followings edges.  

Figure 3 shows an example of this structure; for clarity, the confe-

rence node is omitted, as all the conference edges would clutter the 

diagram. The users are represented by numbers, and only the front-

end can convert actual users to numbers and vice versa; this way, 

anonymity is preserved during the matching process. 

4.6 Algorithm 

In order to generate the networking recommendations, the software 

algorithm performs several steps. The first 6 of these steps are 

done in 3 database queries, followed by a scoring mechanism. At 

Shpare's request, the details of the scoring portion of the algorithm 

are with kept. 

1. The node which represents the target user is identified. 

2. The node which represents the target conference is identified. 

3. All the users who participate the target conference are identified, 

except the target user. 

4. From all participants to the target conference, only the ones who 

haven't established a direct social networking connection with the 

target user are kept. 

5. The match quality of users is determined by calculating the 

scores based on the individual tags connecting the filtered partici-

pants to the target user. 

6. The final list of users is sorted based on the resulting scores. 

7. Only the top scoring 20 matches are returned. 

According to the graph figure, which gives an example of a sim-

plistic graph, the algorithm would function in the following way 

for user 4: 

1. User 4 is identified. 

2. The conference node is omitted from the diagram for the sake of 

clarity. In this example it is assumed that all user nodes are con-

nected to the same target conference. 

3. Users 1, 2, 3, 5, 6, 7 are identified. 

4. Users 1, 2, 5 are kept. 
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5, 6. The scoring algorithm is applied to to the target user and the 

filtered users from step 4. 

7. Values 1, 2, 5 are returned. There is no difference in score be-

tween 2 and 5 so their order is irrelevant. 

4.7 Qualitative evaluation 

Inconclusive. The feedback obtained during the conference from 

the interviews were not suitable to be used for analysis. In retros-

pect, this makes sense because of the following reasons. 

1. People who attend the same conference usually have at least one 

thing and likely several things in common. This makes it difficult 

to generate bad matches. The general attitude of conference atten-

dees is that they seemed to be more excited about the idea of get-

ting networking recommendations rather than the actual people 

recommended to them. These factors lead to biased responses. 

2. A proper assessment of the quality of the recommendations 

takes much longer time. For a connection made through Shpare, it 

could require a follow up investigation in a few months, or even a 

few years time for a full evaluation of the match. 

5. DISCUSSIONS 

5.1 Lessons learnt 

The authors strived to design an algorithm that would generate 

matches that would help people in networking at conferences. 

Given the vast potential of reusing social networking websites' data 

for this purpose, we have only achieved a core foundation. This 

solution is yet simple to deploy and use, and produces accurate 

results, which makes it a good basis for further development. At 

the end of iteration 3, the beta product went through rigorous test-

ing during a live conference, where the authors' mentor from 

Shpare as well as the conference attendees and deemed it success-

ful. 

5.1.1 Frequent testing with real data and envi-

ronment 

The biggest lesson learnt to test more frequently with real data on 

the production server. The performance issue encountered at the 

end of iteration 2 was of extreme severity, especially considering 

that the system was expected to be fully functional within a week. 

The specific problem was due to the conversion of a Java object to 

a JRuby object, which took minutes instead of milliseconds. This 

problem was previously undiscovered due to the difference in size 

of the graph database with mock data compared to the graph data-

base with real data. With mock data there were around 3 000 nodes 

in the database, where as with real data there were around 50 000 

nodes. The conversion problem directly caused other problems 

such as the JVM running out of memory, which froze the back-end 

core. 

To solve this problem the authors had two options, attempt to 

optimize the technology stack and production server or rewrite the 

entire back-end with neography instead of neo4j.rb. After attempt-

ing the first option for a few days and getting nowhere, the authors 

decided to move to the second option. Neography uses pure Ruby 

and interacts with the Neo4j database through the Neo4j REST api. 

This means that there is never any direct conversion of Java objects 

to Ruby objects. 

The authors spent a combined ~200 hours in the final week in 

order to produce a working system. Needless to say, this problem 

could have been catastrophic. To avoid such panic and stress in the 

future, the development process should be enhanced with frequent 

testing on the production server using real data. 

5.1.2 Test the examples provided by the docu-

mentation 

When working with implementation of the algorithm, the authors 

had initially followed a query style from Neo4j's official documen-

tation [57]. The specific query style however proved to be not 

scalable and would get exponentially slower as the size of the 

database increases. To solve this problem, the authors had to break 

down the initial query into three smaller queries that are chained 

together. It is important to point out that the three smaller queries 

did not alter the abstract algorithm, which means that the Neo4j's 

official documentation was misleading. Thus, the lesson learnt here 

is to not be over confident with the referenced documentation and 

encourage the practice of frequent technical evaluation. 

5.1.3 Test driven development 

As for the rest of the development process, the authors are quite 

satisfied with the experience especially using test driven develop-

ment practice. Requirement specifications provided a one-to-one 

matching to writing test code, which provided clear instructions for 

the ensuing implementation code. Running the test suites frequent-

ly also points out any previously passed tests which could later fail 

due to adding new features or changing previous code. Test driven 

development allowed the authors to work efficiently and confiden-

tially, which was important considering the amount of develop-

ment required in the given time frame. 

5.2 Related Work 

Researchers from IBM and University of Minnesota have analyzed 

the performance of 4 different recommendations algorithms [58]. 

Their study, performed on the social networking website Beehive 

within IBM, contains a survey of 500 users and a field study of 

3 000 users to benchmark Content matching, Content-plus-Link, 

Friend-of-Friend and SONAR algorithms for friend recommenda-

tion. The Content matching algorithm finds users with similar 

content; Content-plus-Link builds on top of the content matching 

algorithm, taking into account social link information obtained 

from the social network structure. The friend-of-friend algorithm 

computes matches based solely on social network links, and SO-

NAR „aggregates social relationship information from different 

public data sources within IBM”. Based on the survey results on 

the recommendations of unknown people rated „good”, the order 

of the algorithms is Content matching, Content-plus-Link, Friend-

of-Friend and SONAR, with Content matching having the highest 

score. Peculiarly, the score of „not good” recommendations fol-

lows the same order. It is interesting to see that for known matches, 

the benchmark reveals a mirroring order of performance, both for 

„good” and „not good” recommendations. The same pattern, where 

the SONAR algorithm leads, emerges also from the controlled 

field study, based on „good” matches, and the number of resulting 

connections. However, the order was again reversed for the percen-

tage of „introductions”. 

Therefore, the aforementioned study shows that the Content match-

ing algorithm is the highest rating when the focus is having the 

chance of being introduced to unknown people, which is the scena-
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rio of business networking. Besides the slightly lower success 

ratio, the time required for computing Content-plus-Link was 25% 

longer in the tests the authors performed for Shpare. 

Another IBM study on the same 4 algorithms has shown that the 

Content matching algorithm generates the „highest increase in 

betweenness centrality for a connecting user, i.e. the new connec-

tions gained by the user placed the participant in a role of connect-

ing users that were previously disconnected” [59]. The same study 

has also analyzed the activity levels of the resulting connections of 

the 4 algorithms, out of which the Content matching algorithm has 

generated the most active connections over a period of 12 months. 

StreetSpark [60] is a mobile app that creates an „interest graph” 

based on your social networking activity. Here are a few examples 

of such activity: being fan of the same page on Facebook, follow-

ing the same people on Twitter, checking-in to the same places on 

Foursquare, or liking the same music on Pandora. Even if their 

algorithm seems to be based on similar data input to Shpare's, 

StreetSpark scores friends-of-friends connection. This indicates 

that their focus is on a different market than business networking. 

StreetSpark's solution is supposed to be location-aware and real-

time, but without more information it is hard to say if there is a 

precompiled list of recommendations out of which a few are se-

lected based on geographic location or if this is is recompiled at 

location changes. 

Friend recommendation algorithms have been implemented by 

popular social websites. Myspace [61] launched Friend Recom-

mendation, dubbed „People you may know” on November 15, 

2008, and their algorithm generated recommendations for their 140 

million users in 40 to 50 minutes on a 16 CPU machine [62]. In 

comparison, Shpare's algorithm produces recommendations for one 

thousand users in about 30 minutes, on a relatively basic dual-core 

machine. Although the details of the algorithms were not made 

public, the fact that a recommendation algorithm can give results 

so fast shows how much more performance can be improved. 

5.3 Future Work 

5.3.1 Adding other social networking websites 

The development from this research used data from Facebook, 

LinkedIn, and Twitter, which make a great set to begin with due to 

their popularity. There are of course plenty of other social network-

ing websites that could be integrated to make the database richer. 

The authors have made a selection these websites as shown in the 

listing below. 

 Google+ [63] is a social networking website introduced 

by Google in June, 2011. Despite its 'youth' Google+ has 

established a user base competitive to Facebook and 

Twitter. This was made possible by the convenience pro-

vided by Google to convert existing Google account to 

Google+ accounts. Google+ does not provide many new 

types of information due to its similarity in features to 

Facebook. However, Google+ would still provide great 

value due to the size of its user base. 

 Foursquare [64] is a social networking website with a 

niche on location based services. This brings a new help-

ful type of data that makes it possible to assign higher 

points to matches who live closer by. 

 Github [65] is an online platform where users can host 

their programming projects. Its social aspect allows users 

to follow other users and even specific projects. Incorpo-

rating Github thus provides good value for tech confe-

rences. 

5.3.2 Diverse analysis mechanisms and a self-

improving algorithm 

The version of the algorithm this research presents has achieved 

only the easiest of social networking analysis types, and that is 

static analysis. Given the time frame, it was the optimal choice for 

proving the concept. The next steps that can be done are semantic 

analysis and dynamic analysis [66]. 

In the case of Content matching algorithms, semantic analysis did 

not yield significantly better results [58]. In fact, another study [67] 

observes that, with semantic analysis, „similarities between users 

[who are not friends] are approximately equal, irrespective of the 

topological distance between them”. Above this, the work required 

to implement semantic analysis on the amount of data harvested by 

Shpare cannot be neglected. However, semantic analysis has not 

yet been done, to the authors knowledge, with the scope of under-

standing the attitude people have in public debates. The results of 

this analysis is supported by the current structure of the graph 

database, as it only needs replacing the edge that links a person to a 

tag. 

A suggested approach for implementing dynamic analysis with the 

benefit of improving the algorithm is to follow if users make con-

tact with each other on the social networking sites after Shpare's 

recommendations. In time, this would lead to better recommenda-

tions. Also, in this scenario adding a feature to allow users to rate 

each match would be helpful. By understanding the pattern of 

users’ rating, both the algorithm can be enhanced and the users can 

have the algorithm provide custom tailored matches. Allowing 

users to rate the matches and semantic analysis pave they way to a 

dynamic and self-improving system. The algorithm can be written 

in such a way where it functions as a brain that constantly updates 

the scoring system depending on the changes in the graph database. 

5.3.3 New graph database project 

Neo4j was deemed the best graph database project during the 

technical evaluation. However it was problematical in numerous 

occasions, most often regarding performance. Neo4j is technically 

scalable but achieving high performance for a database with large 

amount of nodes and edges requires a lot of environment configu-

ration and expensive hardware. The authors believe there is a need 

to start a new graph database project, where good performance 

should be a built-in feature even for large databases running on 

moderate hardware. Due to the scope of this paper, not much re-

search has been done on how to build a graph database. Neverthe-

less the authors believe that using a functional language like Erlang 

[68], instead of Java which is used by Neo4j, would be a better 

option. Erlang is concurrent, distributed, and fault-tolerant, all of 

which are characteristics ideal for the environment of a graph 

database. 

5.3.4 Extended functionality 

One of the areas in which the social networking analysis can be 

used is marketing [69]. Presdo Match [70], a competitor to Shpare, 

has created functionality through which exhibitors and sponsors 

can search attendee profiles by matching keywords, thus being able 

to connect with targeted prospects even before the start of the 
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event. In the current setup of the system, the same functionality can 

be achieved by implementing user nodes in the database structure, 

and filter them out in the matching process. 

5.3.5 Recommendation evidence 

The quality of any system that generates recommendations is 

evaluated by the user satisfaction and acceptance. When users are 

presented evidence along with the recommendations, it was noticed 

that these quality indicators have higher values [59]. Thus, com-

plementing the front-end so that it displays publicly available data 

used by the algorithm is a valuable addition. 

6. CONCLUSIONS 

The research began by applying a proof of concept method with 

the aim to build a system that can be used to generate networking 

recommendations for conference attendees based on existing in-

formation on past online activity on social networks. The outcome 

of the research was a functional version of such a system that is not 

only easy to set up, but also easy to monitor with the help of cer-

tain components of the technology stack such as the Neo4j and 

Resque web-admin interfaces. This system is accompanied by a 

description of its technology stack, and an overview of its architec-

ture. 

The response from the author's mentor confirmed the validity of 

the system, which was also tested at a conference of more than 

1 000 attendees. The result of the study demonstrates the technolo-

gy and concepts, and shows that such a system is indeed possible 

to be used in a real world situation. 

The idea of providing networking recommendations for conference 

attendees is a fresh idea from Shpare, as is the approach to com-

bine the concepts of reusing data from social networking websites 

and match-making algorithms. During the study, the authors began 

to understand the vast potential of the product. Although a proof of 

concept product was built and made fully functional, there remains 

untapped potential in advancing this idea by incorporating seman-

tic analysis and machine learning. With small tweaks of the code 

base, the system can be applied to more fields such as marketing 

and various other types of recommendations. 
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