
 

 

University of Gothenburg 

Chalmers University of Technology 

Department of Computer Science and Engineering 

Göteborg, Sweden,  May 2012 

 

 

 

 

 

 

 

 

Design and Implementation for Report Layout 

Merging 
 

 

Bachelor of Science Thesis [in the Programme Software Engineering and 

Management] 
 

 

 

YANLING JIN 

AMBER OLSSON 



 

The Author grants to Chalmers University of Technology and University of Gothenburg  

the non-exclusive right to publish the Work electronically and in a non-commercial 

purpose make it accessible on the Internet.  

The Author warrants that he/she is the author to the Work, and warrants that the Work 

does not contain text, pictures or other material that violates copyright law.  

 

The Author shall, when transferring the rights of the Work to a third party (for example a 

publisher or a company), acknowledge the third party about this agreement. If the Author 

has signed a copyright agreement with a third party regarding the Work, the Author 

warrants hereby that he/she has obtained any necessary permission from this third party to 

let Chalmers University of Technology and University of Gothenburg  store the Work 

electronically and make it accessible on the Internet. 
 

 

 

 

Design and Implementation for Report Layout Merging 

 

 

YANLING JIN 

AMBER OLSSON 

 

© YANLING JIN, May 2012. 

© AMBER OLSSON, May 2012. 

 

Examiner: HELENA HOLMSTRÖM OLSSON 

 

University of Gothenburg 

Chalmers University of Technology 

Department of Computer Science and Engineering 

SE-412 96 Göteborg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

 

 

 

 

Department of Computer Science and Engineering 

Göteborg, Sweden May 2012 

 



1 

Design and Implementation for Report Layout Merging 

 Yanling Jin 
 University of Gothenburg 
 Göteborg, Sweden 

 yanling.jin@student.gu.se 

Amber Olsson 
University of Gothenburg 

Göteborg, Sweden 

AmberOlsson@gmail.com 

 

ABSTRACT 

Merge tools are an increasingly used feature in col-

laborative environments. Being able to combine ver-

sions gives greater access to contributors as they can 

work independently on the same work. However, 

merge tools for working with data beyond textual 

comparisons have less research devoted to them. This 

thesis focuses on the creation of merging functionali-

ty for report layouts in Report Definition Language 

(RDL) through the design of an intuitive interface and 

effective merge algorithm. Interviews were conducted 

to gather requirements from the application users. A 

prototype was implemented for a two file merge with 

user interaction. The approach taken was to analyze 

the layout and find the corresponding matches. The 

interface was designed to maximize usability and 

included features using colors and viewing windows 

for comparison.  

General Terms 

merging algorithms, differencing algorithm, cognitive user 

interface 

Keywords 

report definition language; intuitive; merging; versioning 

1 INTRODUCTION 

Merge tools play an important role in a collaborative 

environment. There are often several versions of a 

document being created during the collaboration pro-

cess. These file versions can be considered revisions 

that can be combined to achieve the final copy with 

the possibility of desired changes taken from either 

revision [1]. Merge tools are used to assist the collabo-

rators to find the differences between file versions and 

selectively merge them into the same file. 

Merge tools have generally been limited to line by line 

comparison between two text files [2]. For a task such 

as programming, line by line comparison has been 

established as a functional, intuitive way of solving 

the merging task [3]. For report layout design, the 

complexities have challenged the common design of 

the merge tools. Current text based or binary version 

control systems are not adequate for documents with 

graphics [3]. 

During the report layout merging process, the users 

need to see how things have changed in order to un-

derstand how one change fits in the report. The user 

must understand a large amount of data for each item 

change, which can include position, size, color, or 

attached conditions. Merging the textual representa-

tion of the report layout does not provide a visualized 

view of the changes made nor handle the larger 

amount of data for each item change, which might 

lead to inconsistency of the overall layout as the re-

sult.  

Most of the report layouts are recorded in XML-based 

documents. XML is considered a standard, and it is a 

language increasing in popularity [4]. Many languages 

have been developed based on XML, including 

XHTML and RSS. This makes XML a primary data 

format for the publishing and transport of documents 

on the internet [5].  

Textual based merge tools are sensitive to changes of 

the order in which lines appear in a text file, as well as 

the indentation of the text file [3, 6]. For report layouts 

in the XML documents, the changes of the line order 

or the indentation of the text is irrelevant. Thus, using 

textual merge tools will not produce the result wanted 

for report layout merging. 

As a response to the challenges described above, this 

thesis presents a novel design for merging report lay-

outs recorded in Report Definition Language (RDL). 

RDL is an XML-based language for representing 

reports. It is an open schema proposed by Microsoft 

in order to encourage the interchange of the report 

definition [7].  

This thesis focuses on the following objectives: 

1. The identification of requirements for report 

layout merging. 

2.  The implementation of functions for differ-

encing and merging report layout in RDL 

documents. 

3. The implementation of an intuitive interface 

that supports the user in making the appro-

priate merge decisions.  

Munson and Dewan along with Förtsch and West-

fechtel identified requirements for merge tools, but 

the-se are not originally meant for RDL [2, 3]. Algo-

rithms previously used for differencing in XML [6, 8, 

9] are not ready for RDL without changes. This thesis 

provides new ideas in the research area of report lay-

out merging tools which has previously not been a 

subject with much innovation. 

mailto:yanling.jin@student.gu.se
mailto:AmberOlsson@gmail.com


2 

The solution in this thesis involves three major fields: 

differencing, merging, and user interface. The differ-

encing uses an algorithm to compare report layouts in 

RDL documents from a conceptual level. “Conceptu-

al” means that the comparison is not done on the 

plain text, but that it is based on a logical, structural 

understanding of the data recorded in the RDL docu-

ments. Merging includes finding out the dependen-

cies between the differences and performing the 

merge process to each independent set of differences.  

The merge process results in a set of differences. 

These differences are presented to the user in an in-

tuitive way. The user interface of the solution is de-

signed to meet the visual requirements for report lay-

outs merging which includes high usability require-

ments. The interface should enable the merge process 

to be easier for the user than the alternative of manu-

ally differencing and merging. 

The findings of this thesis are implemented as added 

prototype functionality to the IFS Report Designer 

Tool. The IFS Report Designer Tool allows a user to 

make a change to a default template, when this de-

fault template is updated by IFS, the user may want to 

switch to this updated version. Including the user’s 

previously revised changes to the updated version is 

the functionality to be designed for this report design-

er tool. Two kinds of merging can be performed de-

pending on the existence of the original template: a 

two-way merge between the user’s changed version 

and the new template, and a three-way merge with 

some degree of automated merge between the user’s 

changed version and the new template based on the 

original template. For prototype design and develop-

ment in this thesis, the focus is on two-way merging. 

1.1 Background 

This thesis is relevant to industry. Specifically, merg-

ing report layouts is an important task at IFS. Though 

the need to merge layouts seldom occurs, it is almost 

guaranteed to happen. Changes made to the base ver-

sion of the layout provided by IFS result in a new 

version, and version changes often occur several 

years apart.  

Since the IFS default template provides information 

with great detail, the customers usually need to re-

move items from the template to fit their needs. 

Whenever the default templates are updated by IFS, 

in order to switch to the newest versions, all the 

changes made to the old default templates by the cus-

tomers are needed to apply to the new ones. 

The current solution is based on a process of mostly 

manual updates. The manual method is slow and in-

convenient. Each merge process can take up to be-

tween 30 and 40 hours. The manual process of merg-

ing two layouts involves having the user make a list 

of changes from one layout compared to another. The 

user then resolves the changes one by one using the 

normal editing process of the report layout designer 

tool.  

This manual merging of revisions can be challenging 

for users due to the large amount of information, with 

some information being hidden or subtle. Although 

graphically similar, hidden data between versions can 

have been updated. 

The users sometimes use a line-by-line merge tool 

known as Delta Engine, an in-house versioning tool 

for getting the delta between report layouts. The tool 

may ease the job of differencing but is not considered 

the solution for the merge process and suffers from 

the drawbacks of line-by-line merging such as low 

contextual understanding. The tool does not give the 

user any data on changes that have been made. It is a 

difficult task for the user to accomplish calculating 

this data unaided. 

1.2 Structure of the thesis 

The thesis is structured as following: Section 2 intro-

duces the basic notions. The research method for this 

thesis is given in Section 3. Section 4 reviews the 

related work on merge tools and user interface princi-

ples. Section 5 presents the requirements taken from 

the data collected. Section 6 explains the implementa-

tion of the solution, including the algorithms used and 

the user interface design details. Section 7 provides 

the conclusion. Recommended future work is speci-

fied in Section 8. 

2 BASIC NOTIONS 

2.1 Report Definition Language (RDL) 

RDL is an XML-based schema that defines a report 

file. A report can be seen as a combination of Data, 

Layout, and Properties [7]. The data includes the 

structure and methods for obtaining data. The layout 

describes how to present the data. The properties are 

the parameters that customize attributes of individual 

parts. RDL is highly customizable allowing develop-

ers (e.g. IFS) to create their own versions.  

 
Figure 1 A portion of the report layout in RDL 



3 

Figure 1 presents the structure of a table recorded in a 

page body in RDL. This can be recognized as similar 

to the hierarchical structure of XML. The hierarchical 

data form of XML is opposed to the flat data of a text 

file[5]. This portion of RDL can be read such that 

page-body has a table that has properties; table has 

three table-columns, and each column has properties; 

table has a table-body; table is linked to a data source 

which is titled as YEAR, etc. 

This thesis uses the IFS customized RDL version as 

an example to approach the merging problems for 

report layouts. The report layouts get the data infor-

mation from a data source file. The RDL cannot op-

erate without the data source file [10].  

 
Figure 2 An example of a tree-structure of report layout 

The RDL documents can be parsed into tree-based 

structures. The page sections and the pages are pre-

sented as the direct children of the report layout. This 

is seen in Figure 2. 

2.1.1 Page Sections 

There are total seven types of page sections. The 

types shown in Figure 2 include: First Header, First 

Footer, Repeating Header, Repeating Footer, Last 

Header, Last Footer and Page Body. Each page sec-

tion contains layout items that belong to the section. 

The page body is a flow area since it can be expanded 

according to its content. The header and footer are 

static area as they are fixed. 

2.1.2 Report Settings 

There are three different types of pages: first, repeat-

ing and last. Each page consists of three sections: 

header, body, and footer. All three types of pages can 

have different designs by referring to different page 

sections.  

One report can have different headers and footers for 

each page, but can only have one page body. The first 

page and last page optionally include the flow area. 

The repeating page must contain a page body. 

For example, in Figure 2 An example of a tree-

structure of report layout, there are three pages: first 

page repeating page, and the last page. The repeating 

page uses repeating header, page body, and repeating 

footer. The first page and last page have their own 

headers and footers. 

2.1.3 Layout Items 

An item can be thought of as an object. An item can 

be one of the following: Text, Block [Container], 

Tables, Chart, Line. Each item contains a variety of 

properties that specify the attributes, such as font, 

position, and stored data. The table consists of table 

columns, table rows, table cells, and table conditions. 

Tables, table cells, rows, and columns have separate 

properties. 

2.1.4 Properties 

 
Figure 3 An example of text field in RDL documents 

The report layout, page sections, and layout items 

have their own properties. The properties are different 

depending on the types of the layout objects. Differ-

ent objects can have different property values. In Fig-

ure 3, the text field has properties such as font, 

height, width, location, etc. 

2.1.5 Data Source 

The data source in the report layout contains a query 

to retrieve stored data. Not all layout items contain 

data sources. Most commonly, a text field, a table, or 

a chart contains data sources. Items such as lines and 

containers do not have data sources since these items 

cannot contain data information. In Figure 3, the text 

field can retrieve the data from the specified data 

source. 

2.1.6 Conditions 

Conditions are used to control the properties of an 

object, including the visibility. Conditions can be 

added to tables, table rows, table cells and block con-

tainers. Not all layout objects contain conditions. In 

Figure 3, the text field has a visibility condition. 

2.2 Difference (Delta)  

There are three types of differences while making 

file-to-file comparison: change, insertion, and dele-

tion. The differences are between two versions of an 

item belonging to two revisions of a layout. The iden-

tification of these differences is determined by the 

existence of the matching item on the other revision. 

These differences should be treated separately from 



4 

both the user interface perspective and from the algo-

rithm. 

Detailed merges may have the user wishing to accept 

or reject all differences down to each individual prop-

erty change of an item. However, multiple property 

changes can be seen as one large change. Using one 

large change to represent the difference can achieve 

higher efficiency. 

2.3 Graphical user interface (GUI) related terms 

 
Figure 4, Overview of GUI components 

The following terms are used throughout the thesis. 

Figure 4 is an overview of GUI components related to 

the report layout merge tool. Figure 4 provides an 

idea of how each component related to the GUI 

frame. The following definitions, labeled A to F de-

fine the sections of Figure 4 with the same letter. 

A. Report Paper (Main canvas) 

The report paper is the visual working space for edit-

ing a report layout. 

B. Definition Tree (Schema) 

The definition tree is the data definition source for the 

report layout. 

C. Layout Tree 

The layout tree is the tree-based data display of all 

items of the layout. 

D. Difference Tree 

The difference tree, often referred to as diff-tree, is 

the categorized tree-based data display of all differ-

ences calculated between revisions.  

E. Property Window 

The property window contains a list of settings, or 

properties, displayed for the currently selected item. 

F. Preview Window 

The preview window is the display for understanding 

placement and highlighted items between two revi-

sions. The preview window consists of two preview 

screens, one for each revision. 

3 METHOD 

3.1 Design Paper Prototyping 

Example interface design mockups were created, af-

ter initial research began, that were used as discussion 

points during the interviews and as guides during 

development. The prototypes were made to look more 

realistic for the interviewees by editing images manu-

ally taken from the IFS Report Designer Tool. Addi-

tional picture clips were added to the images to visu-

alize the interface ideas such as highlighting, compo-

nents for merge, etc. These paper prototypes are in-

cluded under Interview Questions, section PROTO-

TYPE. 

3.2 Interview Study 

Semi-Structured interviews with the users of the IFS 

Report Designer Tool were conducted to gather re-

quirements. The interviews were focused on how the 

users understand the merging task and how the merg-

ing task is currently performed. Interviewing allowed 

the research to be more controlled as opposed to es-

tablishing requirements based only by documentation 

[11].The cooperating company, IFS, had granted the 

permission and time.  

A set of interview questions was formalized before 

the interview. These interview questions are listed in 

Appendix 1- Interview Questions. The questions 

marked Developers Questions, were asked as an addi-

tion in the developer interview. The interview started 

with asking how often the conflict occurs. This ques-

tion was included to help rate the importance of 

merging functionality related to the entire application. 

This would affect if icons for merging functionality 

should be visible and inactive or hidden, for example. 

Questions two, three, and four were asked to gain an 

understanding on the current working method for 

solving the merge problem. Knowledge from the cur-

rent working method was for gaining the cognitive 

aspects of the user’s thinking process, which should 

be taken into consideration during the design. 

For interview section part two, with the first two 

questions, the user’s goals for the functionality were 

requested. The answers were used to help formalize 

the requirements of the report-layout merging. Ques-

tion three was asked for input on the customer. This 

information presented an overview on the most com-

monly occurred difference types for merging. Ques-

tion four discovered information about the user’s trust 

in the system as well as their desired level of control. 

Question five provided information on what data is 

considered important or should be hidden. With ques-

tion six, the priority of the properties window was 

taken into account when changing the GUI for merg-

ing. 



5 

With interview section part three, the developer ques-

tion one and three answered whether or not the inter-

face paper prototypes showed GUI features that are 

conflicting with other GUI plans. The answer helped 

split the GUI appropriately. Question two was de-

signed to find information about past design features, 

specifically on the preview window. The technical 

challenge of this aspect or if it proved a negative ad-

dition for the user, was important to know. Question 

four was asked in order to benefit from the experi-

ence of someone familiar with the tool’s development 

for upcoming challenges during implementation. 

Four paper prototype designs (Interview Questions, 

section PROTOTYPE) were shown to the interview-

ees. The interview was directed towards reviewing 

these designs for criticism and comments. Finally the 

participants were asked their preference of the four 

example interfaces. 

All interviews followed the same basic structure with 

some variation which included some additions or 

subtractions. Follow-up questions were allowed in the 

case of interesting directions the interview took.  

The individuals interviewed included Eva Sedola, 

Daniel Svantesson, and Edina Becirovic. These three 

individuals were selected based on their experience 

around the IFS Report Designer Tool. Daniel 

Svantesson was interviewed as a developer, and Eva 

and Edina were interviewed as consultants and the 

IFS Report Designer Tool users. Daniel Svantesson 

attended the other two interviews because of his ex-

perience and interest in the tool. 

Interviews were conducted on the date of April 3rd, 

2012. Participants were given consent papers to de-

cide if their material would need to be anonymously 

used and whether or not the interview could be rec-

orded. This was done to promote trust and maintain 

an ethical research approach [11]. 

The interviews were carried out in English since all 

parties involved speak fluent English. The interviews 

were audio-recorded. The duration set for each meet-

ing was between half of an hour and one hour. Spe-

cifically interview 1 was 35 minutes, interview 2 was 

38 minutes, and interview 3 was 48 minutes.  

The three interviews were studied for analysis and 

notes were taken on the contents. When a suggestion 

or comment was given, it was rephrased as a re-

quirement. The list was then prioritized based on how 

strong the feature was wanted by the interviewee. 

Both authors of the thesis were present during each 

interview and interpreted the recordings for data col-

lection. Using two observers provides the advantage 

of increasing accuracy of the data collected [7]. In-

formation retrieved from the user interviews was used 

as the first hand information for formulating and pri-

oritizing requirements.  

3.3 Development 

The prototype functionality was implemented in Java. 

The design of the prototype was based on the re-

quirements formalized throughout the interview. The 

prototype was developed as functionality built into an 

already existing application, the IFS Report Designer 

Tool. 

The source code of the IFS Report Designer Tool was 

studied. A set of user stories was created to cover the 

planned functionality. This includes the list of merge 

requirements and interface requirements. 

The development was iterative, and the work was 

done using agile methods. Working agilely provided 

the ability to adapt to changes, so feedback during 

this stage could directly affect development. Modifi-

cations were made to the requirements during the 

development according to new data discovered or 

prioritized. 

4 RELATED WORK 

This section describes work related to the problem of 

merging functionality design. This is described in the 

form of strategies and solutions for algorithms ob-

tained from the studied literature and requirements 

information of a merge tool.  

The section is structured with a list of general re-

quirements for merge tools, followed by the studies 

on the XML merging algorithms. The user interface 

principles are presented afterwards.  

4.1 Merge Tools Requirements 

Requirements in this section were taken from previ-

ously identified requirements [2, 3].These require-

ments were analyzed during the design research and 

the decision to include the requirement or not was 

ultimately based on the research conducted for the 

design.  

Munson and Dewan identified a list of high level re-

quirements for a merge tool during the development 

of an object merging framework. These requirements 

explained how it was believed a merge tool should 

behave based on their observation of user situations 

for merging [2]. 

Other requirements were identified during develop-

ment of a version control and merging system for 

UML diagrams by Förtsch and Westfechtel. These 

requirements represent a collection of requirements 

based on what was judged as good in the applications 

[3]. 

The decision of including these requirements depends 

on the context of the specific tool. In some cases the 

requirements have higher or lower priority. The 

choice of including the merge requirements is de-

pendent on the data or file type which the tool sup-



6 

ports. Only for text or binary would line-by-line 

methods be appropriate. In some cases, the require-

ment may contradict each other. For example, effi-

ciency may have to trade-off against accuracy.  

Differencing Merging 

(R1) Accuracy- The differ-

ences between two files 

should be detailed and trust-

able as correct. 

(R10) Conflict detection- 

When merging, conflicts are 

automatically found be-

tween versions. 

(R2) High conceptual lev-

el- The context of the dif-

ferences should be under-

stood beyond the textual 

representation.  

(R11) Conflict resolution- 

When merging, conflicts 

can be resolved between 

versions. 

(R3) Domain independ-

ence- The differencing 

should not be limited to a 

single data type. 

(R12) Interactive merging- 

Merging can be automated 

or manual. With interactive 

merging, the user is given 

control to keep or remove 

changes. 

(R4) Tool independence- 

The differencing should be 

free from limitations of the 

tool that created the files. 

(R13) Three-way merging- 

Merging can be made with a 

base version between two 

files taken into the algo-

rithm. 

(R5) History independ-

ence- A history of changes 

should not be required to 

find the differences between 

two files. 

(R14) Preservation of con-

sistency- The consistency of 

the input is kept as close as 

possible to the same level 

when finished merging. 

(R6) Efficiency- The tool 

should have a high perfor-

mance level with the least 

amount of resources. 

 

(R7) User-friendly repre-

sentation- The tool shall 

have high usability. 

 

(R8)Line-by-Line Com-

parison- is done using cor-

responding line numbers 

between versions. 

 

(R9) Lightweight ap-

proach- Implementation 

should be as efficient as 

possible. 

 

Table 1 Requirements from Munson & Dewan and Förtsch & 

Westfechtel [2, 3] 

Table 1 is the combination of requirements. Duplicate 

requirements were removed. 

4.2 XML differencing  

RDL and XML share most of the characteristics such 

as hierarchical structure and usage of tags. Reviewing 

XML differencing algorithms can help to understand 

RDL differencing and merging. 

There are two trends for merging [3]. The first is a 

category in which unique identifiers are assigned to 

elements in structured data for merging. The unique 

identifiers can then be tracked through the different 

versions. While efficient, it does not guarantee accu-

rate results [12, 13]. The second category files differ-

enced without the use of unique identifiers [3]. With-

out unique identifiers, similarity values must be es-

tablished before differencing. 

Similarity Flooding [8] is a way to associate directed 

graphs without unique identifiers. Similarity flooding 

calculates related nodes by finding adjacent node 

similarity. If the adjacent nodes between two models 

are similar, there is an increasing likelihood that an 

adjacent node is similar. 

SiDiff [9] compares elements with the same types, 

and starts with a bottom-up traversal at the leaves of 

the composition tree by checking the similarity of the 

child nodes. The matching algorithm has a low suc-

cess rate on the most bottom nodes since they are 

almost the same. Opposite to SiDiff, UML Diff [6] is 

an algorithm for detecting structural change in a top-

down approach. It compares the root node first, and 

then goes down to the sub trees.  

These algorithms have described merging UML dia-

grams in XML documents, but they do not cover im-

plementing these algorithms specifically with RDL. 

RDL documents contain layout items with data 

sources that can be used as an identifier. This helps to 

find corresponding items between different versions. 

However, for finding the matching objects in RDL 

documents, the algorithms cannot entirely depend on 

the data sources, since they are not unique. There are 

cases in which the same data source can be used by 

two layout items, and some items do not contain data 

sources, such as lines and containers.  

The algorithm used in this thesis for finding matched 

objects is a combination of using unique identifiers 

and processing without unique identifiers, such as 

Similarity Flooding, SiDiff and UML Diff. The child 

node’s similarity was used to finding the matches of 

table cells, rows and columns. The process that starts 

from the root object, finds the corresponding page 

sections, and then compares its content follows a top 

down approach. This is similar to the approach UML 

Diff takes. 

4.3 User Interface principles 

User interface analysis is important for creating a tool 

with intuitive interface and for tasks requiring visual 

support. An intuitive user interface is vital to a good 

merge tool. An unintuitive interface will result in the 

loss of the benefits of efficiency potential the merge 

tool has [14]. Cognitive engineering principles have 



7 

an emphasis on the mental process which would aid 

creating an intuitive design [15].  

1. Automate unwanted workload. 

2. Reduce uncertainty. 

3. Fuse data. 

4. Present new information with meaningful aids to 

interpretation. 

5. Use names that are conceptually related to func-

tion. 

6. Limit data-driven tasks. 

7. Include in the displays only that information 

needed by the user at a given time. 

8. Provide multiple coding of data when appropri-

ate. 

9. Practice judicious redundancy. 

These principles were used to plan the design of the 

prototype. The principals also allowed some features 

to be identified and implemented. 

5 REQUIREMENTS 

This section contains the data collected in the form of 

requirements. Part of this data was collected from the 

interviews conducted. Additional information was 

recorded during development. The full list of re-

quirements is contained in Appendix 2. The non-

functional requirements are primarily tool specific 

and are efficiency, accuracy, usability, and reliability.  

5.1 Diff-Algorithm 

2-diff is the merge function which processes two re-

visions to result in a single revision with the desired 

parts of both. 3-diff can make an automated merge 

possible. If two documents share the same base ver-

sion, the base version can serve as an arbitrator to 

increase the automation.  

2-diff is a critical function, and 3-diff would first be 

reliant on the implementation of 2-diff. The merge 

process requires that the algorithm is able to match 

items between revisions in order to understand the 

changes that have taken place.  

The automatic functioning minimizes the user inter-

action. The downside to automation is that it decreas-

es the reliability of the change resolutions. For this 

reason, the reliability should be kept in check by hav-

ing the user approving all automated changes. 

5.2 Revision Differences 

The differences should be categorized in terms of the 

differences types, such as change, deletion and inser-

tion. The amount of differences can be used as a ref-

erence for estimating the time required for merging. 

The difference types along with the amount of the 

differences of each type could provide a summary of 

the differences. 

Differences should be visible on the screen. The fol-

lowing user scenario was described where the user is 

able to select an item that has another version and the 

differences would become visible on the screen. This 

was expanded to being able to select between revision 

one and revision two changes, to immediately see the 

affected item switching between versions. 

The choice of indicators for marking change should 

be easily visible and distinguishable. Using lines to 

show the association of differences between two ver-

sions would be a problem with the type of changes 

such as deletion and addition. 

5.3 User Interaction 

The interface for the merge function should include a 

next button to cycle through the list of categorized 

differences. Users are more positive when there is a 

feeling of more interaction [16]. The button provides 

immediate feedback to the user, giving a sense of 

satisfaction. 

It could be troublesome to go through each property 

of a component to accept the changes. A separate diff 

tree could be used as well to more easily distinguish 

types of changes. 

When merging, the user should be able to edit chang-

es. Users participated in a noted study by Dadgari and 

Stuerzlinger [14] were reported to dislike finishing a 

merge and then continuing to edit, but instead pre-

ferred the freedom to edit during the merging process. 

The user should be able to mark resolved or unre-

solved for each difference. This should remove a dif-

ference and keep the current revision or take from the 

other revision. A context-sensitive right click menu 

has been used in other applications [17]with some 

success. A right click menu to accept or reject chang-

es would fulfill this requirement. This follows the 

idea that the interface should only provide data to the 

user as the user needs it [15] since the data can be 

hidden until a right click is activated.  

5.4 Property Window 

The property window presents detailed information 

about selected items properties. Not all properties are 

visible by viewing the items on the report paper. The 

property window solves this problem. The property 

window is important to perform the merge, since each 

difference on the property of an item should be visu-

ally indicated in order to properly view changes.  A 

floating property window is an option with regards to 

rationing screen space. 



8 

5.5 Preview Screen 

The inclusion of preview screens leads to familiar 

feelings due to the similarity with traditional merge 

tools. Small preview screens are considered to be of 

limited use as far as seeing the details of a report lay-

out.  Depending on the different complexity level of 

the report layout, magnification at a high percentage 

might be required. A magnification function can be 

applied to the preview screen to help to view the dif-

ference details. The user would be able to limit the 

working view to a small zoomed-in portion while the 

preview screens provide a view of an entire item.  

5.6 Spacing UI 

Spacing problems can occur easily because of the 

large amount of important information that needs to 

be communicated to the user. The information is 

competing for screen space. While Interview Ques-

tions, section PROTOTYPE, Diagram B has a good 

metaphor, since side-by-side is a common design for 

merging tools, but the required space cannot fit the 

space constraints. 

A unified diagram may be constructed which shows 

the common and all specific items contained in only 

one version when not enough space is available [9]. 

Selecting one layout to be used as a master layout 

carries the benefit of giving precedence to a single 

layout [14]. Using the main canvas for performing the 

merging task as well as editing the report layout can 

keep the user’s focus in one place by not having the 

user switch working areas. 

The view should be customizable to hide objects the 

user does not need to compare [17]. For the require-

ments of this design, a zoom-to-change feature for the 

main canvas would be optimum in providing the user 

the ability to focus on the change by zooming into the 

layout to a degree that may hide other data apart from 

the change. 

The merge selection on Diagram A of the paper pro-

totype is represented by radio buttons labeled A and 

B. Due to the screen space constraints and the im-

portance of the layout as a whole, the merge selection 

should stay hidden until the user selects a conflict to 

merge. 

5.7 Following Standards 

The standards of previous tools, as well as the report 

designer tool itself should be put into the design 

where possible. One aspect of this is the main report 

paper screen in the center. This works with the user’s 

current cognitive process when designing and saving 

a report layout. Interview Questions, section PRO-

TOTYPE. Diagram A was considered positively be-

cause the look and feel was keeping the original de-

sign of the report designer tool. Diagram B of the 

paper prototype was direct and familiar. This famili-

arity originated from the line-by-line merging tool 

used when merging code. 

The names of A and B for the merge selection, on 

Diagram A, C, and D, for choosing revisions caused 

some confusion and the appropriateness was suspect 

in the diagrams. Using file names was not considered 

a much better proposal due to the fact that load order 

affects how the files are worked with. The idea is that 

terminology in the line-by-line merge tool could pos-

sibly be used, and in this case the files would be 

named as revisions.  

5.8 Visualizing Change 

A. Minimizing Data Information 

The choice for displaying only one change at a time is 

the result of the fact that the screen can become clut-

tered, as some report layouts will have many differ-

ences between versions. Showing several differences 

can have the negative result of separating the atten-

tion of the user, thus decreasing the user’s effective-

ness. 

B. Using Colors 

Color can group items together [18]. Users will asso-

ciate similarly colored items together and give similar 

meanings to them. For this reason, the use of colors 

will be incorporated into the design to better reflect 

types of differences, while the difference category, as 

change, insertion, or deletion should be grouped to-

gether with the use of color. However, it is recom-

mended as a rule to use no more than between three 

and seven color codes as it becomes confusing and 

the usability decreases [18]. Selecting distinct, bright 

and saturated colors, make the colors easily discrimi-

nated [18]. 

The use of color should be matching with real-world 

convention. Since the interface colors will guide the 

behavior of the user, the choice of colors is important 

for usability [19]. The information should present in a 

way that does not require user to memorize them. The 

user’s tacit knowledge and skills should be under-

stood [20]. For example, using red color can refer to 

conflict or stop in the user’s mind. 

The users focus can be controlled by using colors [1, 

18]. In the demo paper prototypes shown during the 

interviews, the highlighted items were seen to grab 

the attention of the user. Using color coding can 

speed the search [18]. While using the merging tool, 

the user can more easily find the difference between 

related objects if the objects are highlighted.  

C. Symbols 

The methods shown on the paper prototype may be 

problematic for additions and deletions. The user 

would not be aware of where the addition was meant 

to show. This is the effect of the method relying 

completely on a red outline of an object and its op-



9 

posing, changed version to also be outlined in red for 

comparison. The change selection method shown in 

the example has a low probability of allowing the 

user to distinguish smaller changes. 

Symbols such as an X or question mark can work to 

illustrate items that are deleted. Design layouts that 

display changes in text format are not making use of 

graphical data for a user friendly design [3]. 

The icons themselves should be different from other 

designs, but keep obvious characteristics to give the 

meaning to the user [19]. The icons used should be 

recognized for its interaction. 

5.9 Concluding Design 

The conclusion of the design information collected 

points to the idea that the layouts are complex. The 

simplicity of the example layout chosen for the paper 

prototype on Interview Questions, section PROTO-

TYPE, resulted in difficulty when trying to fully un-

derstand the usability of the potential interface. As 

expected, none of the paper prototypes was consid-

ered perfect. A mix of the better received features 

was determined as a strategy for the design.  

6 IMPLEMENTATION 

This section describes the implementation created 

based on the requirements collected. The features, 

design, and algorithm included in the prototype are 

explained. The section is structured in two parts, the 

algorithm and the user interface. 

The requirements designated for implementation in 

the prototype are a subsection of the requirements 

indicated by being underlined in Appendix 2. 

6.1 Design of Algorithms 

The algorithms can be divided as two parts, differenc-

ing and merging. The differencing algorithm has the 

purpose of finding the corresponding objects between 

two layouts and analyzing the differencing types. The 

purpose of the merging algorithm is resolving the 

differences. This is achieved by selecting one version 

between the revisions to be used as a final version.  

Assumptions 

The algorithms follow the RDL implemented by the 

IFS Report Designer Tool [21]. Some assumptions 

were made based on this.  

A. There is a definite presence of certain parent 

nodes, such as Report Layout, Page Body.  

B. Layout items in one page section cannot be 

moved to another page section. For example, 

a text field in the repeating header cannot be 

moved to page body [10]. 

C. Layout items in a detail table cannot be 

moved to its master table [10]. 

D. The name of the root objects and its direct 

children are always unchanged.  

E. Each table cell can have at most one child. 

For example, a table cell may not contain 

two charts. 

F. The physical locations of layout items that 

are the direct children of each page sections 

are determined by their properties instead of 

the tree locations. 

G. Most layout items, such as text field, table, 

and chart, contain a proper data source link. 

Lines and containers do not have data 

sources. 

H. The page sections and pages do not contain 

data source link.  

6.1.1 Differencing 

STEP 1: Finding the corresponding page sections 

(direct children of the root object) in order to com-

pare them. 

According to assumption B, the matching objects will 

be found under the same page section. Since the 

names of the page sections are unchanged (assump-

tion D), finding the matched page section can be 

based on the name alone. These matches are made by 

the name and parent alone. 

 
Figure 5 Two layouts compared at their base 

For example, in Figure 5, the report layouts of revi-

sion 1 and revision 2 are compared. The image illus-

trates that a match has been by the line drawn be-

tween the layouts. The algorithm will continue by 

looking at the children of these nodes separately.   

STEP 2: Construct a list of nodes of each page sec-

tion. 

Two lists are constructed to contain all the nodes and 

their children except for the children of the tables. 

The tables are put into the list for further comparison. 

The children of the table (i.e. table content) are not 

put into the list. 

According to assumption C, the table content cannot 

be moved outside its own table. It is therefore unnec-

essary to compare the table content with the items 

outside the table. 

According to assumption F, the tree positions of the 

layout items under each page sections are irrelevant 

since the physical location of the layout items drawn 



10 

on the report paper is determined by their properties. 

Even though placing the items in a list will result in 

losing the tree position, it will not affect the physical 

location of the layout items. 

 
Figure 6 Revision lists are created 

In Figure 6, the layout items of the separate revision 

trees from Repeating Header are taken and put into 

separate lists.  

STEP 3: Compare the nodes contained in the lists 

 
Figure 7 Layout items comparison 

Two lists seen in Figure 7, which contain the layout 

items from Repeating Headers, are compared. Each 

layout item from list1 will be compared with all lay-

out items from list 2. 

 
Figure 8 The formula for calculating the final weight  

The weight is calculated based on a set of predefined 

requirements, such as having the same data type, hav-

ing the same data source, or the properties of the 

nodes being the same. The sum of each weight calcu-

lation returned is the final weight of the pairs, accord-

ing to the formula seen in Figure 8. The final weight 

is used to indicate the similarity level between a pair 

of nodes. 

The weight values are based on following constants. 

Each constant has different values based on the im-

portance of the requirement they stand for.  

a. WEIGHT_LIMIT 

b. WEIGHT_SAMETYPE 

c. WEIGHT SAMEDATASOURCE_EXIST 

d. WEIGHT_SAMEDATASOURCE_NONEXIS

T 

e. WEIGHT_PROPERTY 

1.  Weight from the data type 

Each node has a type corresponding to the structural 

parts of a report layout, such as a table, a text field, a 

chart, etc. The data types are checked to assign the 

similarity. If two components are considered as a 

match, then the data type must be the same. In Figure 

7, string COMPANY_NAME of list1 is being com-

pared with the three strings of list 2. The pairs will 

have a weight for similarity given because they share 

the same data type. This given weight is based on the 

value of the constant, WEIGHT_SAMETYPE. 

2. Weight from the data source. 

This is done by exploiting additional information, 

e.g., from the layout schema. According to Assump-

tion G and H, most of the components contain data 

information, such as text field, table and chart.  

The data source is an important reference to deter-

mine whether these two components are matched or 

not. If two components are matched, the data source 

must be the same. If the components contain the same 

data information, they are most likely matched.  

In Figure 7, the strings COMPANY_NAME from 

both lists contain the same data source, so the pair 

will have a weight for the same data source assigned, 

which is based on WEIGHT_SAMEDATA-

SOUCE_EXIST. If both of the items do not have data 

source, such as the horizontal lines in Figure 7, a val-

ue based on WEIGHT_SAMEDATASOUCE_NON-

EXIST will be given. 

3. Weight from the property similarity 

If two nodes are matched then the two nodes share 

most of the same property values. The similarity of 

the properties can be used to judge whether two items 

are matched or not.  

 
Figure 9 The formula for calculating the weight from the property 

The corresponding properties such as the font, posi-

tion and colors of two items are compared. The num-

ber of matched properties is increased when one 

property value is same. Since different components 

have different number of properties, a percentage of 

the matched properties out of the total number of 

properties is used to assign the weight, as seen in 

Figure 9. 

4. Process the total weight 



11 

 
Figure 10 Weight for each pair of nodes been compared 

As described earlier, the final weight returned is used 

to determine how similar these two layout items are. 

In Figure 10, there is a weight returned from each 

layout item of revision 2. 

A pair of layout items with the highest weight re-

turned is considered as the matched pair if this re-

turned weight is greater than the minimum (i.e. 

WEIGHT_LIMIT). 

 
Figure 11 Comparison after match 

After this comparison, the matched item from revi-

sion 2, if it exists, is removed from list 2. For exam-

ple, in Figure 11, the string COMPANY_NAME 

from list 2 is matched, therefore while the string 

CREATED from list 1 making comparisons with the 

items in list 2, the string COMPANY_NAME from 

list 2 will not be compared again, since it is already 

removed from the list. This step is repeated for each 

item in list 1. 

Every item of revision 1 and revision 2 will be placed 

in one matched pair. If there are no matches found for 

an item in revision 1 or revision 2, a null value will 

be assigned to be the other item for the matched pair. 

STEP 4: Differences Identification 

The matched pair may contain a revision 1 item and a 

revision 2 item, both items are tree nodes. This indi-

cates the nodes are ‘matched’ between revisions. 

Nodes that do not have a match are also recorded in a 

matched pair with the other node in a null value. 

 
Figure 12 An example of change 

A change is defined by a difference in properties or 

conditions between an item from revision 1 and a 

matched item from revision 2. This is seen in Figure 

12 where a chart is changed between revisions.  

 
Figure 13 Insertion and deletion perspective 

The interpretation of an insertion or deletion is based 

on the perspective from revision as shown in Figure 

13. The presence of addition or deletion is detected 

when an item has no matching counterpart in the oth-

er revision. 

If the item is on revision 1 and lacks a match on revi-

sion 2, it is a deletion. The opposing situation with 

the single item on revision 2 is an addition. In the 

example above, the chart is either inserted or deleted 

depending on which version is considered revision 1. 

This MatchedPair data structure can be used to detect 

the difference types. The two nodes from both revi-

sions are recorded in a matched pair, if node 1 is null, 

then it is an insertion, otherwise, it is a deletion. If 

both of the nodes are references to the nodes in revi-

sion 1 and revision 2, a properties check will be per-

formed to indicate whether they are a change or not. 

STEP 5: Table processing 

Upon reaching the table processing stage, all layout 

items in revision 1 have been matched with their 

counterparts of revision 2, or with a null value. The 

tables that are the direct children of each page section 

have also been processed, and each table is matched 

either with a table or with a null value. 

The next step is to match the table content and the 

table structure in terms of row and columns. The al-

gorithm first matches the table content by extracting 

the children of the each table cell and compares them. 

The table structure comparison is based on the con-

tent matches. The algorithm uses the content matches 

to indicate the matched rows and columns between 

two tables.  

1. Process the table content 

Each matched pair of tables will be analyzed again, 

and the contents will be extracted and placed into two 

separate lists. The extraction of the contents follows 

the same rules and process as STEP 2. All contents 

including their children shall be placed into the lists 

except for the content of the tables. 

The treatment of the lists follows similar methods as 

STEP 3. Each item in the first list will be compared 



12 

with all items in the second list. A final weight is 

returned as the similarity level between the pair of 

nodes being compared. The comparison uses the 

same weight constants shown in STEP 3. The differ-

ences identification of the table contents follows the 

same method in STEP 4. 

It is a recursive process to build the list of each ta-

ble’s content. After the first time comparison, new 

tables might be found and matched due to the hierar-

chy structure of the tables. These new tables will be 

analyzed again for the table contents comparison. 

This step will repeat until there are not any available 

tables left. 

 
Figure 14 Table comparison 

For example, in Figure 14, the Page Body contains 

two tables, TABLE: COMPANY and TABLE: (not 

connected). These two tables should have been 

matched before this step occurs.  

 
Figure 15 An example of lists constructed from the table contents 

Figure 15 uses TABLE: COMPANY as an example 

to illustrate the process of table content comparison. 

A list is constructed when this table is being checked. 

All items in the list will be processed and their corre-

sponding matches are found on the same hierarchy.  

TABLE: AREA_CODE and TABLE: (not connected) 

are the newly recorded tables. If there is a matched 

found for the table, the content will be put into a new 

list and the items of the list will be compared with all 

the items in the other list which is constructed from 

the corresponding table of the other revision. Accord-

ing to this, List (Table: AREA_CODE) is construct-

ed. This list will be further compared, and a new ta-

ble, TABLE: EMP_DETAIL will be found. The con-

tent from this table will be put into another new list 

and analysis will be done accordingly. 

This process repeats itself until there are not more 

tables being recorded. In Figure 15, there is no table 

among the content of Table: EMP_DETAIL, so the 

process stops after the content of this table has been 

analyzed. 

2. Process the table structure 

The rows and columns of the table are compared after 

the table contents are matched. The algorithm follows 

a bottom-up approach and finds the matches based on 

the table contents.  

The following constants are used for comparing the 

table structures. These constants have different values 

depends on the importance of the requirements they 

stand for. 

a. WEIGHT_TABLELIMIT 

b. WEIGHT_CONTENTMATCH 

c. WEIGHT_CONTENTMISSING 

d. WEIGHT_EMPTYMATCH 

e. WEIGHT_COLUMNNUMBERMATCH 

f. ROWWEIGHT_ROWNUMBERMATCH 

 Row match 

 

Figure 16 The formula for calculating the weight for the table 

structure 

Each row in revision 1 is compared with all rows in 

revision 2. A weight based on the formula in Figure 

16 will be returned and recorded into a matrix with a 

dimension of number of rows in revision 1 times 

number of rows in revision 2. 

 
Figure 17 An example of table comparison 

 Table2_row1 Table2_row2 Table2_row3 

Table1_row1    

Table1_row2    

Table1_row3    

Table1_row4    

Figure 18 Matrix table for row  



13 

For example, In Figure 17, a table with 4 rows is 

compared with a table with 3 rows; a matrix table 

such as Figure 18 can be constructed to record the 

weight values. 

A. Weight from the content match / missing 

Each child of a cell in a row of revision 1 will be 

checked whether it has a matched node or not. If 

there is a matched node found, and the matched node 

is the content in the row being compared, then the 

content is matched, a weight with the value of 

WEIGHT_CONTENTMATCH will be returned. 

If there is no match of the content found in the row 

being compared in revision 2, the content is consid-

ered as missing, a weight with the value of 

WEIGHT_CONTENTMISSING will be returned. 

In Figure 17, if the first row in table 1 compare with 

the first row in table 2 and assuming the text_field in 

both rows have already been matched, this is consid-

ered as a content match. And since the chart in the 

first row of table 1 cannot be found in the first row of 

table 2, it is a content missing. 

B. Weight from the empty matches 

Some of the cells in a row might not contain content. 

If both rows contain empty cells, it is considered as 

an empty match for this pair of empty cells. For ex-

ample, in Figure 17, if the first row in table 1 com-

pares with the first row in table 2, there is one empty 

match since there is one pair of empty cells, the value 

of WEIGHT_EMPTYMATCH will be returned. 

C. Weight from the column number match 

If the matching contents are in the same column posi-

tion, it is considered as a column match. For example, 

in Figure 17, both the text_field in the first row of the 

two tables are the child of the first cell. The cell posi-

tion in a row is related to its column position. Thus, 

the two text_fields are in the same column position, 

and a value of WEIGHT_COLUMNNUMBER-

MATCH will be returned. 

D. Weight from the row number match 

If two rows being compared are in the same row posi-

tion, it is considered as a row number match, the con-

stant WEIGHT_ROWNUMBERMATCH will be 

returned. 

 Column match 

Finding column matches follows the same approach 

as the finding the row matches described above. Each 

column in revision 1 is compared to all columns in 

revision 2. A weight is assigned to each pair of col-

umns for indication of the likelihood of match. The 

weight is a sum of content match, empty match, col-

umn number match and row number match. 

The weight is recorded into a matrix with a dimen-

sion of number of columns in revision 1 times num-

ber of columns in revision 2.  

 Matrix handling 

Two matrix tables are constructed, with one of them 

records the weights from the row comparisons, such 

as in Figure 18, and the other one contain the weights 

from the column comparisons. 

The algorithm takes the highest weight recorded in 

each row in the matrix table, if the weight is higher 

than a predefined value, i.e. WEIGHT_TABLE-

LIMIT, the corresponding pair of rows or columns 

will be assigned as a matched pair, otherwise, it indi-

cates that no match is found for this row or column in 

the revision 1. 

 Table2_row1 Table2_row2 Table2_row3 

Table1_row1 1.5 0.9 1 

Table1_row2 0.5 0.6 0 

Table1_row3 0 0 0.2 

Figure 19 An example of matrix table 

For example, in Figure 19, if the weight that is the 

result of row1 of table 1 and row 1 of table 2 compar-

ison is greater than WEIGHT_TABLELIMIT, these 

two rows are matched, since the corresponding value 

is the highest in this matrix row. However, even if the 

corresponding value from row 3 of table 1 and row 3 

of table 2 is the highest among all values in the row, 

if this value is not greater than WEIGHT_TABLE-

LIMIT, this will indicate that there is no match for 

row 3 of table 1. 

After the matrix for the row and columns being pro-

cessed, a thorough check is conducted on each row 

and column in revision 2. If no match has been as-

signed, the row or the column will be added to the 

matched pair with a null value as the other node. 

Each matched pair will be checked to determine the 

difference type as described in STEP 4.  

6.1.2 Merging 

At this point, the revision 1 and revision 2 parts have 

been matched. The algorithm takes a clone of revi-

sion1 as the current Working Version. 

The merge algorithm is based on the matched pair. 

The merge process functions by modifying the cur-

rent node from the current Working Version to the 

selection of the node1 of revision1 or revision2. 

 
Figure 20 Selection from revision 1 or revision 2 



14 

As seen in Figure 20, by replacing the selected node’s 

properties, according to layout item from revision 1 

or the layout item from revision 2, a change is 

merged. 

It is mentioned earlier in this thesis, that the algorithm 

identifies three types of differences, change, deletion 

and insertion based on the existence of node1 from 

revision 1 and node2 from revision 2. 

The merge algorithm operates based on the differ-

ences types. The following examples explain the 

merge process. myNode is a reference to the current 

node from the Working Version. myNode is a clone 

of node1 from revision 1. Since the Working Version 

is a clone of revision 1, it means revision 1 is the cur-

rent selected version. 

Choosing revision 2 will be the first action taken 

place. This action modifies myNode according to 

node2. Similarly, choosing revision 1 modifies 

myNode according to node1. The data structure ex-

planations for this are shown in Figure 21, Figure 22, 

and Figure 23. 

A. CHANGE 

 
Figure 21 The data of a change 

Choose revision 2: change all the properties values of 

myNode to the property values of node2. 

Choose revision 1: change all the properties values of 

myNode to the property values of node1. 

B. DELETION 

 
Figure 22 The data of a deletion 

Choose revision 2: Get the myNode’s tree position to 

its parent node and delete myNode from its parent 

node. 

Choose revision 1: Add back myNode to its parent 

node with the tree position recorded. 

C. INSERTION 

 
Figure 23 The data of an insertion 

Since myNode is null, its placement in the tree struc-

ture is not obvious. myNode’s placement can be 

found according to the parent of node2. This is done 

by searching through the matched pairs of the 

node2’s parent, and the corresponding node is the 

potential parent of myNode. 

Choose revision 2: Get the potential tree position of 

myNode by referencing to the tree position of node2 

according to its parent node. Assign myNode the val-

ue of node2, and add myNode to its potential parent. 

Choose revision 1: Delete myNode from its parent. 

6.1.3 Limitations  

A. Similarity weight constants 

The selection of weight values is achieved through 

manual testing including the minimum similarity val-

ue the items rely on being matched. This process in-

volved changing values during a controlled merging 

process, i.e. a merge process where the perfect 

matches is known.  

B. Minimum difference calculation and de-

pendent difference 

Consider a table has a row which has a chart in it. 

The row with the chart is contained only in revision 

2. According to the current algorithm in this thesis, 

both the row and the chart will be marked as inser-

tions. However there is no place to insert the chart if 

the row is not inserted first. This is an example of a 

dependent difference. Only making one row insertion 

will be more appropriate in this case, because the 

chart is the content of the row, and is dependent on 

the row’s existence. 

C. Limited requirements coverage of the weight 

system 

The weight system is based on a list of predefined 

requirements. If a requirement is matched, a weight 

constant will be returned and added to the final 

weight for a pair of items being compared. However, 

there are more requirements can be explored, such 

that the sibling, parent match. The less coverage of 

the requirements will result inaccuracy of the matches 

being made. 

6.2 The Merging Interface 

This section details the implemented interface and 

features for user interaction. The screenshots of the 

application features are taken from the prototype im-

plemented. 

6.2.1 Revision Differences 

There are three categories implemented to distinguish 

between differences. The three categories are known 

as insertion, deletion, and change. 

 
Figure 24 The statistics of differences 



15 

One way implemented to provide data quickly to the 

user is the comparison statistic functionality which 

provides a summary of the number and types of dif-

ferences. This displays on a status bar for the user to 

keep track of the unprocessed differences, as seen in 

Figure 24. The colors match with the highlight colors 

for the layout times on the main canvas to extend the 

color meaning. 

6.2.2 User Interaction 

 
Figure 25 Diff Panel 

Four icons make up the diff panel, as seen in Figure 

25. While normally inactive and greyed out, during 

the merge process these are controls for the user to 

manage the merge process.  

Two arrow icons allow the user to cycle through the 

diff-tree. A history button, labeled “history” provides 

a shortcut to the history function of the report design-

er tool to encourage the user to record his changes. 

The remaining icon allows the user to change merge 

processes. 

 
Figure 26 Item selection on the difference report 

The diff tree as seen in Figure 26 is located as a tab, 

and upon selecting an item located in the diff-tree, the 

user can see the selection. 

The layout tree is still accessible and editable, allow-

ing the tool to be used for normal functioning to edit, 

add, or delete items. 

The items are able to be resolved by right-clicking 

and using the resulting window to select resolved, or 

in the alternative scenario, unresolved. 

6.2.3 Property Window 

The property window is visible at all times when an 

item is selected. The property window is also part of 

the merge process by highlighting the changed prop-

erties on between the two items. 

6.2.4 Preview Screen 

 
Figure 27 A selected layout item is visible on the preview screens. 

The main work window is enhanced by the inclusion 

of two comparison windows on the side below the 

property window. These windows show the change, 

automatically zoomed in for best viewing on both 

revision 1 and revision 2. In Figure 27 the preview 

screens are showing the selected element. 

6.2.5 Spacing UI 

One layout is considered the master layout and all 

changes are done in the main working area. This re-

port layout is the final, merged copy when saved. 

When selecting an item that is a difference, the mas-

ter layout will center on the item selected. 

 
Figure 28 Revision selection 

Spacing is compact by using a merge option that is 

only visible when a difference item is selected, as 

seen in Figure 28. This panel allows the user to com-

pare the versions of item from revision 1 and revision 

2. The user may switch between them to compare, 

and to accept a change, must click the accept button, 

seen with the green checkmark. This window is only 

visible when a merge item is selected.  

6.2.6 Following Standards 

The inclusion of the preview screens combined with 

the center working area matches the standards of the 

IFS Report Designer tool. The method of working 

will be familiar to a user. The user is able to follow 

standard editing procedures during the merge process. 

The names of the files as revision 1 and revision 2 

also follow familiar working methods from traditional 

merge tools the users work with. 

6.2.7 Visualizing Change 

The indication of the difference for an element is 

immediate upon selection. Only one element is able 

to be selected at a time, limiting the need for distin-

guishing between many effects. 

Color meanings are limited to distinct shades of red, 

green, and blue. The colors group together difference 

types. 

There are three ways to highlight a difference. While 

the effect may cover some data such as background 

color, the change can be accepted or rejected to apply 

the change, and in doing so, remove the change ef-

fect. 

 
Figure 29 Insertion example 

Insertion An added item, when chosen to display, is 

illustrated with a bright green highlight and an added 

border effect. This is illustrated in Figure 29. The 

dashed border allows the user to quickly distinguish 

what change is being illustrated. The dashed border 



16 

also prevents the red and green color conflict that 

occurs for individuals with problems distinguishing 

between red and green colors. 

 
Figure 30 Deletion example 

Deletion A deleted item between revisions is indicat-

ed by the color red as well as having the X symbol 

drawn over it as in Figure 30. 

 
Figure 31 Change example 

Change An item that has been changed between revi-

sions is highlighted a different color from normal 

selection. This is seen in Figure 31. There is no sym-

bol used because the information about the change 

can vary so much that symbols would become con-

fusing.  

7 CONCLUSION 

The user interface and algorithm covered in this the-

sis have been implemented in a prototype and demon-

strate a solution to the problem of report layout merg-

ing, and at the same time expand on the challenges 

that still remain to be solved for report merging tools.  

The user interface is designed to mimic some features 

of traditional merge tools, such as side-by-side com-

parison while rationing the screen space required by 

the merge process for communicating the necessary 

data to the user. This was achieved with small, auto-

focusing preview-screens for the merging revisions.  

The interface is designed to work functionally like the 

designer tool of which it is a part. The automatic 

highlighting of items combined with the ability to 

cycle through a categorized list of differences allows 

the user to quickly work through the merge process 

by selecting which revision choice to keep and at the 

same time see information about the difference visu-

ally. 

The algorithm demonstrates the idea of how the un-

derlying structure can in some ways simplify the 

merge process. The algorithm first follows a top-

down approach to find matches for the items other 

than table contents. The table content comparison is 

done recursively by comparing the table content in 

the same hierarchy. The table structure processing 

follows a bottom-up approach by basing on the con-

tents matches. The matched are calculated using the 

weight system to measure the similarity level.  

However, accurately calculating the differences be-

tween two tables requires more calculation. The pro-

totype developed has some requirements dropped due 

to constraints with development but overall 2-diff 

meets requirements.  

8 FURTURE WORK 

This section details the next steps to take future work 

including further development of the prototype by 

implementing more identified requirements as well as 

reducing the limitations of the current implementa-

tion. Evaluation, further studies on user interface and 

introducing tool-independence are also part of the 

recommendation. 

8.1 Remaining Requirement Implementation 

As it has been noted in section 5 REQUIREMENTS, 

the implementation has been limited to a subset of the 

identified requirements. Future work can be done to 

address these limitations by covering the remaining 

requirements. Most relevant would be the require-

ments for 3-diff to allow for some automation. 

8.2 Limitation Reduction 

Various improvements can be made based on the 

identified limitations. These limitations are identified 

in Section 6.1.3. 

A. Similarity weight constants 

For better reliability, it would be recommended that 

the weight constant can be calculated by testing the 

values over several layouts with already known 

matches to observe the similarity values that give the 

highest accurate match rate. 

B. Minimum differences calculation and de-

pendent change 

Work can be done to include summaries of changes. 

These summaries would indicate the level of the 

changes impact. The summaries would also present 

the change that includes both deletion and insertion of 

an item’s versions between revisions [22, 23]. 

C. Limited requirements coverage of weight 

system 

If the tree is only traversed once, the similarity 

matching simply will not have all the information to 

make the most probable estimation. One suggestion 

to improve this would be to increase the ways that 

similarities being observed. If further work can be 

done to expand the algorithm to include similarity 

propagation through parents, children and sibling 

matches, there would be an increased probability of 

making accurate matches. 

8.3 Evaluation 



17 

It is recommended that further research should in-

volve an evaluation of the algorithm for performance 

and accuracy. The objective would be to identify are-

as of improvement for matching items especially 

without unique identifiers. 

8.4 User Interface Studies 

Further research into the user Interface is valuable. 

As Zaman and Kalra proposed, a combination of user 

interface methods can be the better choice [17]. It is 

out of the scope of this thesis to do implementation 

and analysis of several user interface methods for 

merging.  

8.5 Tool Independence 

Along with the work in the previously described limi-

tations, in order to meet all requirements dis-

cussed[3], the research should be expanded to work 

independently of the tool. Specifically, the require-

ments R3: Domain independence and R4: Tool inde-

pendence remains unfulfilled as this research focuses 

on functionality within a designer tool and with RDL 

data specific to IFS. 

9 ACKNOWLEDGEMENTS 

The authors of the thesis would like to thank the fol-

lowing: 

 Matthias Tichy, for his support in this re-

search. 

 Daniel Svantesson, Principle Software Engi-

neer at IFS, for his guidance and knowledge. 

 Eva Sedola and Edina Becirovic, for sharing 

their experience and knowledge with IFS 

Report Designer Tool. 

 IFS AB, for the opportunity to conduct this 

research and the support.  

REFERENCES 

 

1. Dadgari, D. and W. Stuerzlinger, New techniques 

for merging text versions, in Proceedings of the 

14th international conference on Human-

computer interaction: interaction techniques and 

environments - Volume Part II2011, Springer-

Verlag: Orlando, FL. p. 331-340. 

2. Munson, J.P. and P. Dewan, A flexible object 

merging framework, in Proceedings of the 1994 

ACM conference on Computer supported 

cooperative work1994, ACM: Chapel Hill, North 

Carolina, United States. p. 231-242. 

3. Förtsch, S. and B. Westfechtel, Differencing and 

Merging of Software Diagrams - State of the Art 

and Challenges, in ICSOFT2007: Barcelona, 

Spain. p. 90-99. 

4. Cobena, G., S. Abiteboul, and A. Marian. 

Detecting changes in XML documents. in Data 

Engineering, 2002. Proceedings. 18th 

International Conference on. 2002. 

5. Wang, Y., D.J. DeWitt, and J.Y. Cai. X-Diff: an 

effective change detection algorithm for XML 

documents. in Data Engineering, 2003. 

Proceedings. 19th International Conference on. 

2003. 

6. Xing, Z. and E. Stroulia, UMLDiff: an algorithm 

for object-oriented design differencing, in 

Proceedings of the 20th IEEE/ACM international 

Conference on Automated software 

engineering2005, ACM: Long Beach, CA, USA. 

p. 54-65. 

7. Microsoft, Report Definition Language 

Specification, 2008, Microsoft Corporation. p. 1-

170. 

8. Melnik, S., H. Garcia-Molina, and E. Rahm. 

Similarity flooding: a versatile graph matching 

algorithm and its application to schema 

matching. in Data Engineering, 2002. 

Proceedings. 18th International Conference on. 

2002. 

9. Kelter, U., J. Wehren, and J. Niere, A Generic 

Difference Algorithm for UML Models, in 

Software Engineering, P. Liggesmeyer, K. Pohl, 

and M. Goedicke, Editors. 2005. p. 105-116. 

10. IFS, Development Guide - IFS Report Designer, 

in Concepts2012. 

11. Per Runeson , M.H., Guidelines for conducting 

and reporting case study research in software 

engineering. Journal of Empirical Software 

Engineering, 2008. 14: p. 131–164. 

12. Ohst, D., M. Welle, and U. Kelter. Difference 

tools for analysis and design documents. in 

Software Maintenance, 2003. ICSM 2003. 

Proceedings. International Conference on. 2003. 

13. Mehra, A., J. Grundy, and J. Hosking, A generic 

approach to supporting diagram differencing and 

merging for collaborative design, in Proceedings 

of the 20th IEEE/ACM international Conference 

on Automated software engineering2005, ACM: 

Long Beach, CA, USA. p. 204-213. 

14. Dadgari, D. and W. Stuerzlinger, Novel user 

interfaces for diagram versioning and 

differencing, in Proceedings of the 24th BCS 

Interaction Specialist Group Conference2010, 

British Computer Society: Dundee, United 

Kingdom. p. 62-71. 

15. Gerhardt-Powals, J., Cognitive engineering 

principles for enhancing human-computer 

performance. Int. J. Hum.-Comput. Interact., 

1996. 8(2): p. 189-211. 

16. Cheng-Hua, W., L. Lu-Wen, and C. Yi-Ying. The 

effect of ERP software interface design and 

cognitive function on performance of user 



18 

learning. in Service Operations, Logistics, and 

Informatics (SOLI), 2011 IEEE International 

Conference on. 2011. 

17. Zaman, L., A. Kalra, and W. Stuerzlinger, The 

effect of animation, dual view, difference layers, 

and relative re-layout in hierarchical diagram 

differencing, in Proceedings of Graphics 

Interface 20112011, Canadian Human-Computer 

Communications Society: St. John's, 

Newfoundland, Canada. p. 183-190. 

18. Horton, W., Overcoming chromophobia: a guide 

to the confident and appropriate use of color. 

Professional Communication, IEEE Transactions 

on, 1991. 34(3): p. 160-171. 

19. Ping, Z. and F. Xing. Analysis of cognitive 

behavior in software interactive interface. in 

Computer-Aided Industrial Design and 

Conceptual Design, 2008. CAID/CD 2008. 9th 

International Conference on. 2008. 

20. Peschl, M.F. and C. Stary, The Role of Cognitive 

Modeling for User Interface Design 

Representations: An Epistemological Analysis of 

Knowledge Engineering in the Context of 

Human-Computer Interaction. Minds and 

Machines, 1998. 8(2): p. 203-236. 

21. IFS, IFS Report Designer, 2012. 

22. Go, et al. Visually Supporting Source Code 

Changes Integration: The Torch Dashboard. in 

Reverse Engineering (WCRE), 2010 17th 

Working Conference on. 2010. 

23. Schneider, C., A. Zndorf, and J. Niere, CoObRA - 

a small step for development tools to 

collaborative environments, in Workshop on 

Directions in Software Engineering 

Environments; 26th international conference on 

software engineering2004. 

 

APPENDIX 

1. Interview Questions 

The interview questions below were used in the inter-

viewing of three users of the designer application.  

I. BACKGROUND 

1) How often do customer’s revised versions conflict 

the company’s updated versions of the report layout? 

2) What is the current solution for solving the con-

flicted report layout? 

3) Can you show us an example of how you solve the 

conflicted report layout? 

4) Do you feel the solution is convenient, if not, what 

are the problems? 

II. REQUIREMENTS 

1) What do you consider as the most important fea-

tures of the merging system? 

2) Can you describe a merging system in your mind? 

3) Does customer always prefer all the changes of the 

newest updated report layout? 

4) Do you prefer the idea of a mostly automatic sys-

tem of merging? 

5) Is it important for you to know exactly how many 

differences between two versions? 

6) How often do you use the properties window to 

make changes to the items on the report paper?  

III. DEVELOPER ADDITION 

1) From these images how does the merge tool inter-

face impact the tool interface in what is planned for 

normal functioning? 

2) Has it ever been considered that the report designer 

tool make use of a preview screen to see an overall 

layout design? Why or why not? 

3) Are there currently future plans made for the report 

designer tool’s interface? 

4) Based on your experience, what problems could 

you foresee from the interface demos? 

IV. PROTOTYPE 

A. Diagram Double-View 

 

B. Diagram Connected Side-by-Side  

 



19 

C. Diagram Minimum Display; Single Preview 

 

D. Diagram Transparency 

 

2. Requirements 

Underlined requirements indicate inclusion in the 

prototype. 

Priority Requirements 

REQ 1. The merge functionality shall be efficient. 

REQ 2. The merge functionality shall be accurate. 

REQ 3. The merge functionality shall have a focus on 

usability.  

REQ 4. The merge tool shall be reliable. 

Diff Algorithms 

REQ 5. For 3-diff, each file shall be selectable by the 

user. 

REQ 6. Options with 2-diff and 3-diff shall be select-

ed by the user based on preferences. 

REQ 7. User Approval for changes in Automatic 

Merging. 

REQ 8. The merging shall calculate the minimum 

difference between versions. 

Revision Differences 

REQ 9. Types of differences should be automatically 

categorized. 

REQ 10. A categorized summary of the total differ-

ences shall be made available. 

REQ 11. The number of differences shall be available 

to the user. 

REQ 12. Related differences shall be detected. 

REQ 13. Related differences shall be visually repre-

sented to the user. 

User Interaction 

REQ 14. A diff tree shall be available. 

REQ 15. The diff tree shall contain the different types 

of differences. 

REQ 16. The diff tree shall associate different merge 

types with both symbol and color. 

REQ 17. User shall be able to cycle differences by 

single interaction i.e. a next button. 

REQ 18. It shall be possible to edit during the merge 

process. 

REQ 19. A right click menu shall be used for the 

merge process. 

Property Window 

REQ 20. The property window shall optionally float. 

REQ 21. The property window shall be viewable 

during merging process. 

REQ 22. Properties differences shall be visually indi-

cated in the property window. 

Preview Screen 

REQ 23. Magnification shall be available on the pre-

view window. 

REQ 24. Differences shall be visible on the preview 

screen. 

Spacing UI 

REQ 25. Spacing shall prioritize the main working 

layout (report paper). 

REQ 26. One report layout shall be viewable at a 

time. 

REQ 27. Merge choice selection shall not interfere 

with or cover other parts of the layout. 

REQ 28. The differences can be jumped to when se-

lecting the difference from the diff-tree. 

Following Standards 

REQ 29. The files selected shall be represented by 

the term ‘revisions’ or R1 and R2. 

REQ 30. The old look and feel shall be kept as much 

as possible. 



20 

Visualizing Change 

REQ 31. The merging shall allow the user to view 

one difference at a time. 

REQ 32. The merging shall optionally allow the user 

to view all changes at a time. 

REQ 33. The difference shall be clickable by the us-

er, then becoming visible. 

REQ 34. The difference clicked on the canvas shall 

be associated to the difference tree and the prop-

erty window. 

REQ 35. Symbols shall be used as the visual repre-

sentation for types of differences. 

REQ 36. The user shall be able to customize the 

symbol to represent the insertion and deletion. 

REQ 37. The user shall be able to customize the 

symbols to represent the types of changes. 


