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Abstract

This thesis considers the performance of variance forecasting in bull and bear markets.
Three asset indices, the DAX, the Standard & Poor’s 500 and the CurrencyShares Euro
Trust, are split into bull and bear periods whereby variance forecasting is evaluated in the
two states. I employ a simple moving average, an EWMA, implied volatilities from official
volatility indices and three GARCH specifications; a GARCH (1,1) and EGARCH(1,1)
with Student’s t errors and a GARCH (1,1) with Hansen’s skewed t errors. I compute 30
days ahead variance forecasts using daily data and the true latent variance is approximated
by the intra-month realized variance. Performance is measured by the R2 from regressing
the realized variance on the estimated variance, the QLIKE statistic and the MSE. I find
that implied volatilities forecast best in bull markets and that the GARCH and EGARCH
forecast best in bear markets. In general, the predictions’ R2 and QLIKE statistics suffer
30 % - 50 % in bear markets and the MSE is as much as 15 times higher compared to
bull markets.
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1 Introduction

Much of economics is concerned with what may happen in the future and such future expec-
tations are relevant in everything from microeconomics to asset pricing to corporate finance.
In order to cope with the uncertainty of the future one can rely on a number of different
techniques. Guessing what will happen tomorrow by using information of today of course lies
at the core of this concept and is also practiced in a wide range of sciences outside economics.
This type of forecasting could be applied to most anything observable over time, such as in-
terest rates, the number of bacteria in a certain substance, default risks or even the number
of customers in a store etc. One of the most studied phenomena in finance is the variability of
some asset’s returns, its volatility. Although an asset’s volatility is interesting in itself it also
prices derivatives connected to that asset and it has important implications for, among other
things, risk management in general and hedging in particular. The importance of volatility
through derivatives is underlined by the huge size of today’s derivative markets. For example,
in the fourth quarter of 2011 U.S Commercial banks alone held derivatives with a notational
amount of $2481 trillion, to be compared with the US 2011 GDP of around $15 trillion. By the
big part volatility plays in financial derivatives it is apparent that the behavior of tomorrow’s
volatility is of great interest today, and accordingly a vast literature on volatility forecasting
already exists.

The most influential models are the Autoregressive Conditional Heteroscedasticity (ARCH)
model due to Engle (1982) and the Generalized ARCH (GARCH) due to Bollerslev (1986)
which both deal with how to model time varying conditional variance. There exist many
papers devoted to the application of these models and their extensions, e.g. Andersen et al.
(2005) and Figlewski (1997) both offer practical advice on how to apply available volatility
forecasting theory in different settings. Much of the existing literature is concerned with theo-
retical or empirical comparisons of different forecasting models (see Poon and Granger (2003)
for an overview) in a certain isolated setting or market. Poon and Granger (2003) suggest that
more work is needed to understand how models behave under different market conditions but I
have only found two papers considering this issue in terms of bull and bear markets; Brownlees
et al. (2011) in “A Practical Guide to Volatility Forecasting Through Calm and Storm” exam-
ine the effect of the 2008 financial crisis on forecasting performance and Chiang and Huang
(2011) conduct a brief comparison of bull and bear market results when using GARCH models
to forecast implied volatility. Although touching upon the issue of bull and bear markets,
these papers focus more on other aspects and I have not found any paper dedicated to how
these different market states affect the predictions. Bull and bear markets are common terms

1US Department of the Treasury, http://www.occ.gov
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and have previously been examined scientifically, although rarely in relation to volatility fore-
casting. Lunde and Timmermann (2004) as well as Pagan and Sossounov (2003) offer ways of
modeling bull and bear states. I apply a variant of the Pagan and Sossounov methodology in
this thesis when attempting to answer the question ’How is volatility forecasting affected by
bull and bear markets?’. This main question is approached by focusing on two sub-questions
and then consolidating the findings:

1. How is the relative performance among forecasting techniques affected by the market
state?

2. How is the absolute performance of volatility forecasting affected by the market state?

The answers to these questions will help decide which techniques should be employed in dif-
ferent scenarios and how to best correct for changes in the market conditions. To find the
answers I apply seven volatility forecasting techniques in three different markets and measure
the performance by three different measures, or loss functions. The relative performance is
assessed by comparing the models’ respective loss functions with the test proposed by Diebold
and Mariano (1995). The forecast horizon is 30 days and I proxy the true latent variance
with the intra-month realized variance, argued to be the most appropriate proxy for latent
variance by Andersen et al. (2004) among others. Note here that I compare variance forecasts,
not standard deviation forecasts which is common in the literature. I compare the predictions
from three differently weighted moving average models, a GARCH(1,1), an EGARCH(1,1)
due to Nelson (1991) and implied volatilities from official volatility indices. Both GARCH
models are employed with Student’s t errors and the regular GARCH is in addition employed
with Hansen’s t errors as described in Hansen (1994), allowing for skewness. I carry out the
comparison in the German DAX index, Standard & Poor’s 500 (S&P 500) and CurrencyShares
Euro Trust ($US/Euro), tracking the $US/Euro exchange rate, after splitting each index into
bull and bear periods.

I find that the implied volatility forecasts are superior in bull markets where the level
of volatility as well as volatility of volatility is lower and the market more informationally
efficient. The GARCH specifications give the best forecasts in bear periods although the
implied volatilities are good (second best) also in this setting. All predictions’ R2 suffer
approximately 30 % - 50 % , QLIKE 30 % - 40 % and the MSE is often around 15 times
higher in bear markets than in bull markets, confirming the findings of Chiang and Huang
(2011). In line with Figlewski and Wang (2000) I find leverage effects in the stock markets
that could (and maybe should) be interpreted as “market down effects” and this benefits the
EGARCH vis-à-vis the other models in scenarios where there are significant leverage effects.
The EGARCH is the only model that sometimes performs better in bear markets than in bull
markets and therefore handles the shift between states best in relative terms. I also find that
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deviations from Gaussian white noise in the return processes, such as fat tails, skewness and
volatility clustering, are more apparent in stock returns than in the returns of the $US/Euro
and this causes all models to be outperformed by a simple moving average. It is also found that
empirical distributions changing over time punish forecasts based on more flexible theoretical
distributions and thus makes it hard to improve predictions by accounting for skewness and
excess kurtosis. An interesting finding not directly related to the main research question is
that, according to the Kuiper statistic (Kuiper, 1962), allowing for skewness and excess kurtosis
through Hansen’s t distribution is not enough to approximate the stock returns’ distributions
with statistical significance.

The main caveat to the ranking of models through my results is that the ranking is not
consistent over loss functions. A forecaster has to take heed when choosing which model to
use, so as to match his own preferences rather than just looking at the overall performance.
My ranking only serves as an overview of the performance and does not take the forecaster’s
preferences into account. Moreover, the differences in prediction errors are sometimes so small
that the loss functions cannot differ between models at the 95 % confidence level. This leads
me to conclude that, depending on the loss function of interest, one does not always have
much to gain by using a more advanced model compared to a simple weighted moving average.
A major problem in finding a superior technique is that market behavior changes over time,
causing the shape of the error distribution to change significantly over time.
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2 Theoretical Framework

This section covers the basic theory needed to understand the models employed and analyzed
in this thesis. The word volatility is a bit vague and can refer to different things but it is
closely related to the variability of a stochastic process. This thesis focuses on the variability
in returns of different financial assets and indices tracking the development of such assets.
Thus, I henceforth use volatility interchangeably with variability of returns. The literature is
not uniform on whether volatility refers to standard deviation or variance, although the former
is more common. Therefore, most techniques and methods are named in terms of volatility,
whether they pertain to standard deviation or variance. The reader should bear in mind that
this thesis considers variance forecasting and not standard deviation forecasting, although the
results are generalizable to either case.

2.1 Volatility Proxy

I define the volatility measures by considering a standard setting in financial economics where
the analyzed asset’s (log-) price development over time is assumed to be governed by the
following differential equation

dPt = µtdt+ σtdWt

where Pt = ln(Pricet), t is a time index, µ the drift of the process and Wt is a standard
Brownian Motion, representing the stochastic part of asset prices, and thus Wt ∼ N(0, 1).
Here and throughout, lower case letters are reserved for observed values while capital and
Greek letters are used for random variables.

With the given setting the price of an asset at time t is given by:

Pt =
ˆ t

0
µsds+

ˆ t

0
σsdWs.

With this definition σ scales the standard deviation of the process and σ is therefore one, and
arguably the most common, measure of volatility. As such it is also one among many measures
of uncertainty and risk. Furthermore, we recall that prices, Pt, are expressed in logarithmic
form and thus the log-returns Rt = ln (Pricet/Pricet−1) = ln (Pricet)− ln (Pricet−1)2 are given
by

Rt = Pt − Pt−1 =
ˆ t

t−1
µsds+

ˆ t

t−1
σsdWs,

from which, under the assumptions that there are no jumps in the process and that σt
2ln (Pricet/Pricet−1) ≈ (Pricet − Pricet−1) /Pricet−1 = ∆Pricet/Pricet−1 for small ∆Pricet so that the log

returns are approximately equal to the discrete returns
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and Wt are independent, we can deduce

Rt ∼ N
(ˆ t

t−1
µsds,

ˆ t

t−1
σ2
sds

)
Now, since volatility is related to the variability of returns it is natural to look at the variance
of this distribution and label it for an arbitrary time period of length h such that

IV t+ht =
ˆ t+h

t

σ2
sds

which accordingly is called the ’integrated variance’ or sometimes also the ’integrated
volatility’. This is the technical definition on which I base the analysis in this thesis.

All price processes are discrete in reality, or at least discretely observed, and the instanta-
neous returns as well as the parameter σ cannot be directly observed (σ is often called the
latent volatility), so they have to be approximated. One unbiased and consistent estimate of
σ2
t is the square returns of the series in period t. However, this proxy is very noisy in that it

itself often exhibits high volatility and Andersen et al. (2003), among others, argue that the so
called Realized Volatility/Variance (RV) is a better proxy for evaluating volatility forecasts.
This measure approximates the integrated variance by a sum of observed values of intra-period
squared returns. Specifically, the integrated variance for one period, here measured in months,
can be approximated as

IV 1
0 =

ˆ 1

0
σ2
sds ≈

30∑
i=1

R2
i

where i is an index for the days in the examined month and Ri is the centralized daily
return of day i. Notably, the approximation in theory3 becomes better as the sample frequency
of intra-period returns increases and we have that (Poon and Granger, 2003)4

(
m−1∑
i=0

R2
m−i

)
p→
(ˆ 1

0
σ2
sds

)
⇔ P

[∣∣∣∣∣
(
m−1∑
i=0

R2
m−i

)
−
(ˆ 1

0
σ2
sds

)∣∣∣∣∣ > ε

]
→ 0, as m→∞

where ε is an arbitrarily small real number, m is the number of intra-period observations
and 1/m thus the time between observations, measured in the period-unit. This approximation
of integrated variance is henceforth used as a proxy for the true integrated variance to evaluate
the accuracy of the computed variance forecasts. The computed variance forecasts/predictions
are all different ways of finding the expected variance over next thirty day’s by using present

3Andersen et al. (2011) points out that if too frequent observations are used in application, noise introduced
by the market distorts the estimates rather than improves them, but that this doesn’t occur until the frequency
is ’ultra high’.

4See e.g Wooldridge (2001) for an explanation of convergence in probability.
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information. In mathematical terms, for each day, t, of the sample the forecast/prediction is
given by the conditional expectation

E
[
IV t+29

t |Ft−1
]
,

where t is now a daily time index, so that the period from t to t+29 is (roughly) the
coming month, and where Ft is the information available at time t.

2.2 Moving Average

Moving average variance estimates future variance by its moving average value, equally weighted
for a given number of past observations and scaled by time. Notably, models scaling variance
by time implicitly assumes constant future variance and uses the property that variances are
additive for independent increments. Using the centralized squared returns the expectation of
the coming month’s variance is given by

E
[
IV t+29

t |Ft−1
]

= 30 1
T

T∑
i=1

R2
t−i

where R2
t denotes the centralized squared return in day t, and T is the number of his-

torical observations used to predict IV t+29
t .

While its simplicity makes the moving average appealing it has a number of important short-
comings; it says nothing about how variance evolves and why it takes on certain values. The
model also puts equal weight on all observations, recent as well as older. This only makes
sense if one indeed believes that the most recent observations of the process hold no more
information about its future development than older observations. This potential shortcoming
is what merits the inclusion of the Exponentially Weighted Moving Average (EWMA) model.

2.3 Exponentially Weighted Moving Average

The EWMA modifies the moving average model by putting more weight on recent observations
than on older ones. Instead of weighting by 1/T the EWMA is defined in the following way

E
[
IV t+29

t |Ft−1
]

= 30
(
λR2

t−1 + λ2R2
t−2 + λ3R2

t−3 + . . .
)

which can be re-written on a simpler form using the recursive relation

E
[
IV t+29

t |Ft−1
]

= λE
[
IV t+28

t−1 |Ft−2
]

+ 30 (1− λ)R2
t−1
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where λ is a constant parameter between zero and one set by the researcher and R2
t is

the centralized squared return at time t . The forecast is again scaled by time to predict the
coming month’s variance.

A common value of the weight parameter λ used in the financial economics literature is 0.94.
This is much due to its use in the MSCI software ’RiskMetrics’ and I follow this example.
The EWMA model is, like the moving average, unconcerned with the data generating process
of variance and makes no attempt to explain the ’why’ and ’how’ of the process. We again
assume that past observations of variance say something about the future realizations but
we have no explanation as to why this might be. The only difference compared to the simple
moving average is that we now believe more recent observations have a higher relevance for the
future than older observations. Although very old observations are still allowed to influence
they are practically negligible due to the decreasing weight.

2.4 Implied Volatility

There are several ways to infer the market’s expectation of volatility. When talking about
implied volatility one usually refers to the volatility for which the observed market prices are
“fair”, or in other words no arbitrage, equilibrium prices. A common way to find these volatil-
ities is to back them out from some model that one assumes the option prices to satisfy. The
obvious example is the Black-Scholes (B-S) (Black and Scholes, 1973) model which assumes
(for example) efficient, frictionless markets with no arbitrage possibilities as well as stock prices
following a geometric Brownian motion with constant drift and variance. It is well known that
although B-S is an elegant and easy-to-handle formula it is inconsistent with observed market
prices; the B-S implied volatility varies over both strike price and ’moneyness’, creating the so
called volatility smiles and smirks.

There is vast literature with suggestions on how to improve and adjust the B-S implied volatili-
ties but instead of doing this myself I make use of some of the official volatility indices available,
each tied to an underlying stock or currency exchange rate index. All of the indices are calcu-
lated using the method developed by the Chicago Board Options Exchange (CBOE) for their
’VIX’-indices. The indices are model-free, in the sense that they do not impose restrictive
assumptions on how options are priced in the market. The implied volatility is instead found
via applying the no-arbitrage argument to the prices of (replicated) variance swaps, which
are priced by the market and thus gives an expectation of the variance under the risk-neutral
measure. The formula used when computing VIX and when finding the predictions in this
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thesis is5

E
[
IV t+29

t |Ft−1
]

=
(
V IXt−1

100

)2
= 2
T

∑
i

∆Ki

K2
i

erTQ(Ki)−
1
T

(
F

K0
− 1
)2

where V IXt denotes the observed volatility index value at time t, Ti is the time to expi-
ration for option i (in minutes divided by the number of minutes in a year) F a forward index
level (on the underlying), K0 the first strike below the forward index level, Ki the strike of ith

out of the money option, ∆Ki the interval between strike prices given by 0.5 (Ki+1 −Ki−1), r
the risk free interest rate and Q(Ki) the midpoint of the bid-ask spread for each option with
strike Ki. Some of the parameters merit further explanation and this can be found in the
Appendix.

In short, VIX gives a measure of the volatility implied by the market in the sense that,
given the observed market prices, the volatility given by VIX ensures that there are no ar-
bitrage possibilities in option portfolios or equivalently in the variance swap rates (Carr and
Wu, 2005).

2.5 Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
Models

The GARCH model is an extension of the ARCH model of Engle (1982) and shares the same
basis. The ARCH model was proposed as a way of modeling the variance of a process in
addition to its mean. As the name indicates it allows for conditional heteroscedasticity, i.e.
conditional non-constant variance. Looking at a process, Rt, the conditional mean µt and
variance σ2

t is defined as

µt = E [Rt|Ft−1] and σ2
t = Var (Rt|Ft−1) = E

[
(Rt − µt)2 |Ft−1

]
where Ft−1 denotes the information set available at time t-1. The ARCH model is a

simultaneous explanation of the mean and variance. In order to model the variance one must
also model the mean µt so as to yield a series satisfying

Rt = µt + σtεt ⇔ Rt − µt = σtεt (1)

where εt is a sequence of independent and identically distributed (iid), mean zero and
unit variance random variables.

5For more details see CBOE’s ’VIX White Paper’ and Demeterfi et al. (1999)
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The mean µ can be modeled in a number of different ways, including exogenous parame-
ters or simply past values of the series itself, as long as any linear dependence over time is
removed. Since the linear dependence over time is to be removed and since financial return
series often exhibit weak dependence in the first moment a low order autoregressive (AR)
model is often satisfactory (Tsay, 2005). In this thesis I only model constant means (in effect
an AR(0)/ARMA(0,0) model) since this specification gives the lowest Bayesian Information
Criterion (BIC)6 value for all return series when compared to ARMA(R,M)7 models for all R
and M considered. Since the ARMA specification is never implemented I skip explaining it for
brevity.

With the mean accounted for the shock (ξt ≡ σtεt) of the return series is assumed uncor-
related but dependent (in the second moment) in the ARCH(p)-model such that

ξt = σtεt, where σ2
t = α0 + α1ξ

2
t−1 + α2ξ

2
t−2 + · · ·+ αpξ

2
t−p (2)

where α0, .., αt−p are coefficients to be estimated. Conditional independence of ξt and
ξt−p , for arbitrary p ≥ 1, can be shown by noting that

P [ξt < x, ξt−p < y|Ft−1] = P [εtσt < x, εt−pσt−p < y|Ft−1] (3)

= P
[
εt <

x

σt
, εt−p <

y

σt−p
|Ft−1

]
= P

[
εt <

x

σt
|Ft−1

]
×P
[
εt−p <

y

σt−p
|Ft−1

]
= P [ξt < x|Ft−1]× P [ξt−p < y|Ft−1] ,

where the equality in line two is due to that the values constituting σt and σt−p are known
when conditioning on Ft−1 (and can thus be treated as constants). The equality in line three,
establishing independence, is clear from that εt is assumed iid, i.e. independent for different
t.8 Now, since ξt is a function of past values this structure is able to explain the so called
volatility clustering empirically observed in asset returns; variance is allowed to vary over time
and big shocks are likely to be followed by more big shocks. In summary, the ARCH model
implies time varying conditional expected variance (conditional heteroscedasticity), constant

6All employed tests are described in the Empirical Methodology.
7ARMA(R,M): rt = α + εt+

∑R

i=1 βirt−1 +
∑M

j=1 γjεt−1, where α is a constant, εt ∼ iid(0, σ2), and βi

and γj are parameters to be estimated ∀i, j.
8To be exact, Equation (3) holds ’almost surely’, but not ’surely’, since its validity rests on expectations

conditional on the information generated up to time t-1, Ft−1. See Williams (1991) for details on conditional
expectations and thereto related properties. In essence, we cannot say that Equation 3 is always true but well
that P [Equation (3) is True] = 1
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expected unconditional variance and an unconditional mean of zero for ξt. The unconditional
mean of zero can be seen by the law of total expectations

E [ξt] = E {E [ξt|Ft−1]} = E {σtE [εt]} = 0

where the last equality is due to the fact that εt is assumed to have zero mean ∀t.

The GARCH(p,q) model proposed by Bollerslev (1986) builds on the ARCH by generalizing
it to allow inclusion of past values of σ to write the error term ξt as

ξt = σtεt, and σ2
t = α0 +

p∑
i=1

αiξ
2
t−i +

q∑
j=1

βjσ
2
t−j (4)

where the constant α0 and the parameters αi and βj are to be estimated so that the
imposed model fits the data at hand as well as possible. For the GARCH(1,1) employed in this
thesis the 30 days ahead variance prediction based on Equation (4), regardless of the assumed
distribution, is given by9:

E
[
IV t+29

t |Ft−1
]

=
29∑
i=0

σ2
t+i =

29∑
i=0

α0

[
1− (α1 + β1)i

]
1− α1 − β1

+ (α1 + β1)i
(
α0 + α1ξt−1 + β1σ

2
t−1
)
,

where i gives the 1+i step (day) ahead forecast and other notation is as before.

As an extension of the GARCH-model Nelson (1991) proposes the exponential GARCH (EGARCH).
This model allows for asymmetric effects in the return-series. More specifically, it allows for
different effects of positive and negative return on variance, something which is often observed
in financial time series, why I include the EGARCH model in this thesis. The EGARCH(m,s)
model can be written on the following form:

ln
(
σ2
t

)
= α0 +

s∑
i=1

[αi (|εt−i| − E [|εt−i|]) + γiεt−i] +
m∑
j=1

βj ln
(
σ2
t−j
)

(5)

where α0 is a constant, αi and γi parameters tied to the i:th ARCH-effect, εt = ξt/σt

as before, βi a parameter tied to the i:th GARCH-effect. Note that γi is here capturing the
so called leverage effect, or “sign effect”, while αi captures the “magnitude effect”. If negative
returns contribute more to variance than positive, γ will be negative so that a negative εt−1

increases the log-variance more than a positive εt−1, and vice versa. A significant advantage
of the EGARCH compared to the regular GARCH is that the former allows for negative pa-

9 See e.g. Tsay, 2005 p. 115 for a complete derivation
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rameters since ln
(
σ2
t

)
(in contrast to σ2

t ) can be negative and still well-defined, i.e. σ2
t will

always be positive.

Note that the EGARCH forecast, in contrast to the GARCH forecast, is depending on the dis-
tribution assumption for εt. Due to this and the fact that the model is defined in log-variance
rather than variance, it is more involved, and often impossible, to obtain an analytical expres-
sion for the forecast. For example, when using the Student’s t distribution we have (Tsay,
2005, p.124):

E [|εt−i|] = 2
√
ν − 2Γ (ν/2 + 1/2)

(ν − 1) Γ (ν/2)
√
π

,

where ν ∈]2,∞[ , λ ∈]− 1, 1[ and Γ (x) denotes the gamma function given by

Γ (x) =
ˆ ∞

0
zx−1e−zdz

With this expectation we get the one day ahead log-variance prediction E
[
ln(σ2

t )|Ft−1
]
from

Equation (5). The motivation for using the Student’s t and some characteristics of different
distributions are discussed in section 2.5.1 below.

The EGARCH(1,1) 1+i-day (i ≥ 1) ahead log-variance prediction can be written as as10

E
[
ln(σ2

t+i)|Ft−1
]

= α0

i−1∑
j=0

βj + βiE
[
ln(σ2

t )|Ft−1
]

Thus, we have an analytical expression for the daily log-variances and from this the prediction
for the coming month’s integrated variance is obtained numerically11; no general closed form
exist for this forecast using EGARCH models (Andersen et al., 2005).

2.5.1 The Distribution Assumption and Its Implications

In basic stock return models it is common, yet well known erroneous, to assume εt ∼ N(0, 1),
where εt is the error term in Equation (1). There is an abundance of literature showing that
stock returns generally have a higher peak and fatter tails, i.e. excess kurtosis, than what is
implied by the normal distribution (see for example Karlin and Taylor (1998) or Hull (2005)).
It is common to correct for this by using the Student t-distribution and Brownlees et al. (2011)
further argue that “The Student t down-weights extremes with respect to the Gaussian, thus
it can provide a more robust estimate of the long run variance” (They find, however, that

10See Ederington and Guan (2005) for details.
11I employ the MatLab function garchpred from the Econometrics Toolbox, for more info see

http://www.mathworks.se/help/toolbox/econ/garchpred.html
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using the t-distribution did not on average improve forecasts relative to using the Gaussian).
I use the t-distribution because of its theoretical advantage of being fatter tailed than the
Gaussian. In addition, I also consider the skewed t-distribution due to Hansen (1994). The
skewed t-distribution nests the regular Student’s t and merits an explanation since it is not as
commonly used as the Student’s t distribution. A random variable is Hansen’s skewed t, or
Hansen’s t for short, distributed if its density is given by

g (z|ν, λ) =


βγ

(
1 + 1

ν−2

[
βz+α
1−λ

]2
)−(ν+1)/2

βγ

(
1 + 1

ν−2

[
βz+α
1+λ

]2
)−(ν+1)/2

z < −α/β

z ≥ −α/β
,

α = 4λγ
(
ν − 2
ν − 1

)
, β2 = 1 + 3λ2 − α2, γ =

Γ
(
ν+1

2
)√

π (ν − 1)Γ (ν/2)

Hansen shows that this is indeed a density and that it reduces to the Student’s t distribution
when λ = 0. λ is then the skewness parameter of the distribution and ν the degree of freedom.
It should also be noted that this distribution is normalized to unit variance, in line with what
we want in the GARCH model. Figure 1 shows the shape of Hansen’s skewed t distribution’s
probability density function for different parameter values. When using a degree of freedom
(ν) of 300 and 0 skewness (λ) we see in the figure that the distribution is very close to a
Gaussian, in line with what is wanted since 0 skew reduces the distribution to Student’s t
and the Student’s t converges to the Gaussian when the degree of freedom is “large”. The
plotted density with degree of freedom of 13 and skew of -0.1, as we will see in the results,
approximates the return distributions of the herein analyzed stock indices.
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ν = 13, λ = −0.1

ν = 300, λ = 0.7

ν = 300, λ = 0

ν = 4, λ = −0.8 

Figure 1: Probability Density Function for Hansen’s Skewed t Distribution
Notes: The figure shows the probability density function for Hansen’s skewed t distribution for different values
of the degree of freedom (ν) and the skewness parameter (λ). A skewness of zero reduces the distribution to a
Student’s t.
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If one uses a non-normalized density the variance needs to be corrected to ensure unity. The
variance of a Student’s t distributed random variable, denote θt ∼ t(ν), is given by ν/(ν − 2)
where ν is the degree of freedom. The lower ν the fatter the tails and when ν → ∞, the
t-distribution approaches the normal distribution. Thus, in order to fit the fatter tails in
stock-returns a low ν is appropriate, usually somewhere between 2-7 (see for example Wil-
helmsson (2006) or Andersen et al. (2005)). In this thesis I use likelihood functions that
estimate ν and other parameters simultaneously. To ensure that the error term, εt in Equa-
tion (1), is still of unit variance I set εt = θt/

√
ν/(ν − 2).

For the regular GARCH, the conditional log-likelihood function to be maximized is ,due to the
iid assumption, the log of the product of all conditional densities. The conditional indepen-
dence is shown in Equation (3) and for the Student’s t distribution this product, also fitting
ν, is (Tsay, 2005)12:

`
(
ξm+1, .., ξT |~ξM , ~α, ~β, ν

)
= −

T∑
t=m+1

[
ν + 1

2 ln
(

1 + ξ2
t

(ν − 2)σ2
t

)
+ 1

2ln
(
σ2
t

)]
+

+ (T −m)
[
ln
(

Γ
(
ν + 1

2

))
− 0.5ln ((ν − 2)π)

]
where T is the horizon, ~α = {α0, .., αp} , ~β = {β0, .., βq}, ~ξM = {ξ1, .., ξm} .

Since we observe {ξt}m0 , the likelihood is maximized over the parameters ν and σt. These
estimates can then be used in Equation (4) to form expectations on future variance. If
the estimates of σt, denoted σ̂t are correct so that σ̂t≈ σt, we see from Equation (1) that
(σtεt) /σ̂t = ξt/σ̂t ≈ εt. And since the error terms εt are assumed iid we can check the validity
of the estimated mean by testing if ξt/σ̂t , called the standardized residuals, are uncorrelated
over time and check the validity of the estimated variance equation by testing if (ξt/σ̂t)2 are
uncorrelated over time Tsay (2005).

2.6 Performance Measures

I compare the accuracy of the variance forecasts by three different measures, also called loss
functions. Making use of the results of Patton (2011) and Meddahi (2001) I employ what they
term robust loss functions. Here, the robustness of a loss function only relates to if it ranks
different forecasts correctly, that is, if it ranks forecasts in the same way that they would have
been ranked if the true integrated variance was used and not a proxy. When it comes to the

12The likelihood for Hansen’s t is obtained in the same way, using the given density. Details are found in
Hansen (1994). In this thesis the likelihood estimation with Hansen’s t is based on MatLab code found in the
Oxford MFE Toolbox, http://www.kevinsheppard.com/wiki/MFE_Toolbox
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absolute performance Patton (2011) points out that the actual difference between the forecast
and the proxy can vary with the noise in the proxy. The three loss functions are:

1. The R2 from an Ordinary Least Squares (OLS) regression using the following model:

RVt = α+ βEVt + εt

where RVt denotes the realized variance in period t, α is a constant to be estimated,
β the regression coefficient to be estimated, EVt the estimated variance in period t and εt

an error term capturing the measurement error and all variation in RVt not explained by the
explanatory variable. The R2 should be interpreted as ’the variation around the mean in the
explanatory variables (here only the estimated variance) and a constant explains 100×R2 %
of the variation around the mean in the dependent variable (here the realized variance)’.

Since all models are estimated with the same number of parameters as well as on a simi-
lar dataset it is more appropriate to compare the R2 among the different models and indices
than otherwise.

2. The average QLIKE loss function defined as

QLIKE = 1
T

T∑
t=1

(QLIKEt) = 1
T

T∑
t=1

(
ln(EVt) + RVt

EVt

)
,

where T is the number of observations. The QLIKE loss function is proven by Patton
(2011) to be the only robust loss function based on the standardized forecast error RVt/EVt.
The interpretation of the QLIKE loss function is clear by noting that, if we minimize it, we
get the first order condition for an extreme point

∇QLIKE = 0⇔ d

dEVt
QLIKEt = 1

EVt
− RVt
EV 2

t

= 0, ∀t,

which is fulfilled iff the estimated variance, EVt, is equal to the realized variance, RVt.
Thus, the lower QLIKE score, the better forecast13. We also see from the first derivative with
respect to EVt that the QLIKE is characterized by punishing negative deviations from the
correct forecast harder than positive (EVt, RVt > 0).

13The solution indeed a minimum; the second order condition for a minimum is always fulfilled if EVt =
RVt 6= 0 since we then have d2QLIKEt/dEV 2

t = − (EVt)−2 + 2
(
RVt/EV 3

t

)
= 1/EV 2

t > 0
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3. The mean squared error defined as

MSE = 1
T

T∑
t=1

(RVt − EVt)2

The MSE is characterized by punishing outliers harder than loss functions based on absolute
values and is clearly minimized when EVt = RVt. Moreover, Patton(2011, p.6) states that
“...[the MSE] is the only robust loss function [...] that depends solely on the forecast error,
RVt − EVt14.

2.7 Bull and Bear Markets

My definition of bull and bear markets is inspired by Pagan and Sossounov (2003). It may
deviate from common notions in several ways since bull and bear markets are used in a collo-
quial manner and not strictly defined. A common ground is that a bull market is a state of
expected capital gains and a bear market the reverse. I define the two market states by looking
separately at the price levels of each of my analyzed price processes. Thus, my definition refers
to the state of a specific process rather than some overall global state.

Looking at a finite sequence (pt), or n-tuple, where n is the number of observations, of a
price process I define a new tuple

(ptj) = P ∪ T

P = (pt : pt−150, ..pt−1 < pt > pt+1, ..pt+150)

T = (pt : pt−150, ..pt−1 > pt < pt+1, ..pt+150)

where t here denotes a daily time index by which the tuples are ordered. I call the tuple
P peaks and the tuple T troughs.

From the tuple (ptj) I take out and order elements in the following way:

1. If pt1 ∈ P , take the first pt ∈ P fulfilling the requirement that there are no other
pt ∈ P ∪ T in the interval t − 100, .., t, .., t + 100 and take this element to a new finite
sub-sequence and define it ptj1 ∈ (ptjm). To find ptj2 take the first p ∈ T after ptj2 in the
tuple (pt) that fulfills the requirement that there are no other p ∈ P ∪ T in the interval
t− 100, .., t, .., t+ 100. The algorithm continues pick elements, switching between P and
T until all (ptj) are examined.

14Patton’s notation is σ̂2 − h.
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2. If pt1 ∈ T , start with the first pt ∈ T fulfilling the requirement that there are no other
pt ∈ P ∪ T in the interval t− 100, .., t, .., t+ 100 and continue in an analogue way to 1.

By looking at the final tuple (ptjm) as turning points of the market bull and bear market
observations are defined as the observations between the turning points in the original tuple
(pt) . If the price process had a lower value at the last turning point than at the upcoming,
all observations in between are considered bull observations. Accordingly, the time in between
these observations is called a bull market or bull state, and vice versa for bear markets. This
algorithm ensures that the market is always in a bull or bear state, that it goes from one to
the other and that the duration of a market state is at least one hundred days. Figure 2 uses
the DAX index to illustrate which points belong to the different tuples in the definition.
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Figure 2: Demonstration of bull and bear market algorithm on the DAX Index.
Notes: The red circles highlight points where the value is either higher or lower than any other observation
within 150 days, defined as the tuple (ptj) = P ∪ T , where P = (pt : pt−150, ..pt−1 < pt > pt+1, ..pt+150) are
the peaks in this definition and T = (pt : pt−150, ..pt−1 > pt < pt+1, ..pt+150) the troughs, where pt denotes
an observation in the tuple of all observations. The arrows show the bull and bear markets resulting from
making sure that every extreme point of the market is a turning point and that no turning point is inside 100
observations of another turning point. The third P is “eliminated” because it is following another P and thus
points 1,2,3,5 & 6 are market turning points, which tuple is denoted (ptjm).
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3 Empirical Methodology

For the analysis I collect data on three indices15 and their respective volatility index. The in-
dices (Underlying Index Ticker, Volatility Index Ticker) are Deutscher Aktien Index (GDAXI,
VDAX)16, consisting of the top 30 German stocks on the Frankfurt Stock Exchange, the
Standard & Poor’s 500 (GSPC, VIX)17, including 500 leading companies of the US economy
and the CurrencyShares Euro Trust(FXE, EVZ)18, designed to track the $US/Euro exchange
rate. Using three different indices gives more observations to work with and lowers the risk of
sample/index-specific results. This also facilitates generalizable inferences. Including the non-
stock index allows me to examine whether my results are applicable to volatility forecasting
in different sorts of series or if they are restricted to stock indices. The volatility indices are
calculated by (Volatility Index Ticker) Chicago Board of Options Exchange19 (VIX & EVZ)
and Deutsche Börse (VDAX). All data is available for free at the internet; VIX and EVZ are
obtained from CBOE and DAX and VDAX from Yahoo Finance20.

I collect daily data as far back as is possible, where the limit in all cases is imposed by the
(non-) availability of the respective volatility index. The indices do not cover the same period
and it is important to bear in mind when analyzing them that the purpose is not a comparison
of the indices themselves at a certain point in time. They serve to test statistical techniques in
different empirical settings, independent of each other and each others properties. In addition
to the dataset used for forecasting I collect 800 pre-sample observations for indices to facilitate
calibration of the models. To allow for analysis of the performance differences between bull
and bear market conditions I divide the dataset into two sub-sets in much of the work below
by applying the algorithm described in the theory section. Once the bull and bear market
periods are found in each index they are converted to continuous compound returns in order
to analyze the variance of these returns over time. It should also be pointed out that the bull
and bear market algorithm is only available ex-post since an extreme point can be identified at
the earliest 150 days after it occurred. As such I apply the algorithm only as a way of looking
at if forecasts would have benefited from being updated when switching market condition. The
algorithm does not offer a way of implementing such a switch in real time.

It should be noted that there are some weaknesses associated with the dataset. Since the
15This work originally included six indices but I leave three out for brevity. Results where similar over the

other three indices, indicating that the results are generalizable, while focusing on fewer indices allows a more
thorough analysis. The left out indices where STOXX Euro 50, Nikkei 225 and U.S Oil Fund.

16http://www.boerse-frankfurt.de/en/equities/dax+DE0008469008
17http://www.standardandpoors.com/indices/sp-500/en/us/?indexId=spusa-500-usduf–p-us-l–
18http://www.currencyshares.com/products/overview.rails?symbol=FXE
19http://www.cboe.com/default.aspx
20http://finance.yahoo.com/
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indices only report values on trading days there are gaps in the observations every weekend
and holiday. The biggest gap in each series, where either the underlying index or the volatility
index does not have a reported value, are between 4 days for the $US/Euro index and 7 days
for S&P 500. Moreover, I use daily observations since this is what I have access to for all in-
dices although using intra-day observations could bring the empirically observed process closer
a continuous process and improve discrete approximations of continuous phenomena, such as
the integrated variance.

I start by inspecting the pre-sample data to get a view of what types of processes it is reasonable
to believe the indices to follow and how to best fit the models to these processes. The moving
average and EWMA models are initiated on the pre-sample data directly without tweaking
since these models are employed in (almost) the same way regardless of the underlying process.
I plot the autocorrelation function for all return series and all squared return series. The plot
of the normal returns is used to see if there are indications of a dependence structure in the
mean over time, which has implications for how to model the mean in the GARCH specifi-
cations, and the squared returns autocorrelation plot to see if the variance shows any clear
dependence over time, which has implications for how to model the variance in the GARCH
specifications. I strengthen the inferences from the squared return autocorrelation plots by
computing Engle’s Lagrange Multiplier test for conditional heteroscedasticity. Engle’s test is
obtained by simply regressing past values of the squared error term on itself, i.e. considering
equation a2

t = α0 + α1a
2
t−1 + α2a

2
t−2 + · · · + αpa

2
t−p , where at is the residual obtained by

accounting for the mean in return series. T × R2 from this regression is according to Engle
(1982) is χ2- distributed with p degrees of freedom under the null hypothesis that αi = 0 for
i = 1, .., p. The autocorrelation plot together with Engle’s test gives information on with how
many parameters the GARCH should be implemented.

The GARCH parameters are estimated by maximum likelihood and thus I need to assume
a distribution for the error term. I plot histograms and compute the Jarque-Bera test Jarque
and Bera (1987) to test the data for normality. The null hypothesis is that the data has a
skewness of 0 and a kurtosis of 3, which is what a characterizes the Gaussian distribution, and
the alternative hypothesis is that the data is either skewed or of excess kurtosis. The skew-
ness (S) and kurtosis (K ) are defined as the third and fourth standardized central moment
of a distribution respectively. For a random variable X with mean µ and variance σ2 this is
S = E

[
((X − µ) /σ)3

]
and K = E

[
((X − µ) /σ)4

]
. An unbiased estimator of the skewness,

S, is given by

Ŝ = S ×
√
T 2 − T
T − 2 ,
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where the second term is the bias correcting factor so that S is the sample skewness, or
the biased skewness estimator, given by

S =
1
T

∑T
i=1
(
Xi − X̄

)3(
1
T

∑T
i=1
(
Xi − X̄

)2)3/2 .

An unbiased estimator of the kurtosis, K, is given by

K̂ = (T − 1) [(T + 1)K − 3 (T − 1)]
(T − 2) (T − 3) + 3,

where K is the sample kurtosis given by

K =
1
T

∑T
i=1
(
Xi − X̄

)4(
1
T

∑T
i=1
(
Xi − X̄

)2)2 ,

and where X̄ = (1/T )
∑T
i=1 Xi is the mean of the variable X and T is the number of

observations in both formulas.

Jarque and Bera (1987) shows that the statistic given by

J-B = T

6

[
S2 + 0.25 (K − 3)2

]
is asymptotically χ2-distributed with 2 degrees of freedom under the null hypothesis and I use
this to examine the dataset for excess kurtosis and skewness commonly found in stock returns.
Since it is known that the convergence to a χ2-distribution is slow for the J-B statistic, nu-
merically generated p-value tables specifically for this purpose are available.

The GARCH specifications are fit to the pre-sample data after inspecting the above statistics.
To arrive at the correct specification for the mean, so as to remove the linear dependence
described in relation to Equation (1), I use the Bayesian Information Criterion (BIC). This
criterion is defined as

BIC = −2ln(likelihood) + ln(T )× k

where T is the number of observations and k the number of estimated parameters, that
is, R+M in the ARMA model. The information criterion measures the fit of a model in re-
lation to its complexity. A good fit, indicated by a high likelihood, is rewarded while extra
parameters are “punished” so as to avoid overfitting and selection of as small a model as pos-
sible, still with good explanatory power. Brooks (2008) states that the BIC has an advantage
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over many other available information criteria in that it is consistent and asymptotically gives
the “correct” model. Its drawback is that it is inefficient compared to for example the Akaike
Information Criterion, but the sample is relatively large so I prefer the consistency.

To decide on how many ARCH- and GARCH-effects to include in the forecasting, that is
to decide i and j in Equations (4) & (5), I first note that the general GARCH-specification
is versatile in that it allows for influence of all previous ARCH-effects through the GARCH-
effect. Also, in almost all herein referenced papers the employed specifications are the simple
GARCH (1,1) and extensions of it. I therefore also apply the specifications with i = 1 and
j = 1. The validity of this is controlled by examining the standardized residuals of the
GARCH(1,1) specification. The standardized residuals are examined to make sure that the
conditional heteroscedasticity has been accounted for. Ideally, the standardized residual should
show no ARCH effects, again analyzed with Engle’s test. Furthermore, Kuiper’s test (Kuiper,
1962) is computed to examine the goodness of fit for the assumed distribution of the error
term in the GARCH models. The Kuiper test statistic, for discrete observations, is defined as

v = D+ +D− = max
(
i

T
− F (xi)

)
+ max

(
F (xi)−

i− 1
T

)
,

where xi are the observed values (assumed independent realizations) of a random variable
X, F (·) the theoretical cumulative distribution function we want to examine the fit of and T
is the number of observations. If observations are ordered from smaller to larger such that
x1 ≤ x2 ≤ ..xi.. ≤ xT , i/T is an unbiased estimate of the cumulative distribution function,
denote H (x) = P [X ≤ x], from which the sample was drawn. This is clear since i/T is the
fraction of observations smaller than observation xi. It follows that D+ and D− are the
maximum distances between the empirical distribution of the observed values and an assumed
theoretical distribution function, on the upside and downside respectively (See Figure 7 for
estimates of H (x) plotted versus different theoretical distributions). Kuiper shows that the
p-value of this statistic is given by

P {V > v} = 2
∞∑
j=1

(
4j2ξ2 − 1

)
exp

(
−2jξ2) ,

where ξ = v
(√

T + 0.155 + 0.24T−0.5
)
, v is the observed statistic and T the number

of observations. The statistic is a test of how “close” the assumed and empirical distribution
functions are and therefore a lower value is better. We reject the null that the empirical ob-
servations {xi}T1 are drawn from the theoretical distribution F (·) if the p-value is below the
desired significance level. In addition to using the Kuiper statistic for model selection I also
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compute it over time and use it as a diagnostic tool, so as to examine if differences in predictive
accuracy can be (in part) explained by a difference in fit of the assumed distributions over time.

All forecasting is conducted out-of-sample and the models are allowed to make use of the
most recent information when estimating the 30-day ahead variance by re-fitting the param-
eters every day as the forecast moves forward through the sample. For the moving average
model this means a rolling window of 30 or 60 squared returns, for the EWMA it means adding
a recent observation without taking out the oldest one, and for the implied volatility it has
no effect at all since these forecasts are already computed using the latest information for the
relevant period. For the GARCH models it means adding an observations to the pre-sample
period on which the parameters are estimated. For the $US/Euro index, MatLab’s numerical
maximization algorithm21 was not able to find a solution for the first period when using this
procedure. To get around this I use a rolling window of 800 observations, instead of just adding
the most recent to increase the sample.

I compare the 30-day ahead variance predictions with the realized variance approximation
of integrated variance described in Section 2. The differences between the estimated variances
and the realized variance are the prediction errors and I compute the three loss functions,
described in section 2, for all six predictions in all three return series. Relative performance of
the techniques is compared in bull and bear markets by computing the loss functions for each
model’s predictions in the two respective market conditions. This gives an overview of each
model’s performance in the two market conditions and of how the performance differs between
the market states. I compare all forecasts head to head with the test proposed by Diebold and
Mariano (1995), which is a test for statistical significance of difference in prediction accuracy.
The test statistic is obtained as follows:

Let et1 and et2 be the forecast errors from two models’ predictions for period t, that
is et1 = σ2

t − σ̂2
t1 and et2 = σ2

t − σ̂2
t2, where σ2

t is the (approximated) true value in period
t and σ̂2

ti is model i:s prediction in period t. Then take a loss function ` (eti) and denote
the loss differential dt=` (et1)-` (et2). The loss differential is assumed to have short memory
and to be covariance stationary, that is, the first and second moments of the distribution for
dt are the same for all t. The D-M statistic is given by D-M = d̄ × T 0.5 × LRV −0.5, where
d̄ = (1/T )

∑T
t=1 dt and LRV is the estimated long-run variance in

√
T d̄. Since my daily

forecasts are 30-day ahead, errors are theoretically autocorrelated for 30 lags. I estimate the
long run variance using the method of Newey and West (1987) in order to correct for this
autocorrelation (and possible heteroscedasticity). Diebold and Mariano show that under the

21I employ the MatLab Optimization Toolbox’s function ’fmincon’ with option ’active-set’. See
http://www.mathworks.se/help/toolbox/optim/ug/fmincon.html for details on this function. I also experi-
mented with other options for this function but this did not solve the problem
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null hypothesis E [dt] = 0 we have approximately D-M ∼ N(0, 1) and I use this to test the null
against the alternative that E [dt] 6= 0 . This is done for both the MSE and the QLIKE loss
function.

I contrast the bull and bear market results with general results obtained without splitting
the dataset into different market conditions. Except from the split, general results are produced
in the exact same way as the bull and bear market results.
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4 Data and Model Fitting

The development of the log-indices over time are shown in the upper graphs in Figure 3 where
the dashed lines indicate the turning points found by the bull and bear market algorithm.
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Figure 3: Log-index and log-return development over time
Notes: The left hand graphs display the development of the log of the indices over the whole observation period.
The right hand graphs show the continuous compound returns. The dashed lines mark the turning points of
bull & bear markets.
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In the development figures we see that all markets exhibit periods of positive and negative
trends. Due to the difference in data availability the observation period differs for each index;
the $US/Euro observation period is the shortest with around four years from November 2007
to January 2012 while the S&P 500 observation period is longest with its 22 years, covering
January 1990 to January 2012. The first difference of the indices are plotted in the lower
graphs of Figure 3. Because of the logarithmic form this constitutes the continuously com-
pounded returns. From the first differences it is clear that the stock market returns exhibit
volatility clustering. In the $US/Euro returns bursts in volatility occur more randomly and the
dependence structure is less clear than in the stock returns. All indices display high volatility
around years of financial turmoil, as seen around 2008 and also around 2000 for the S&P 500.
Volatility is also higher in bear markets than in bull markets for for the stock indices while the
$US/Euro shows a more unclear pattern. All of the return-series appear to have a constant
mean around zero throughout their respective observation period. Descriptive statistics are
presented in Table 1.

DAX S&P 500 C.S Euro Trust
Daily Observations 1555 5559 1060

Mean
(
10−4) 1.2 2.3 -0.8

Standard Deviation 0.016 0.012 0.0079
Max Value 0.18 0.11 0.036
Min Value -0.074 -0.095 -0.031
Skewness 0.077 -0.23 0.017

Excess Kurtosis 6.0 8.4 1.3
Vol. of Vol. 0.0007 0.0005 0.0001

Jarque-Bera p-value <0.001 <0.001 <0.001
Engle’s Test p-value <0.001 <0.001 0.0065

Table 1: Descriptive Statistics
Notes: This table shows descriptive statistics for all continuous compound return series of the analyzed indices.
Excess kurtosis is defined relative to a Gaussian distribution’s kurtosis of 3. Volatility of volatility is defined
as the estimated standard deviation of the series of realized volatility observations. The Jarque-Bera test’s
null hypothesis is that there is no skewness or excess kurtosis in the data and Engle’s test’s null hypothesis is
that there are no ARCH-effects.

From Table 1 we see that the number of observations ranges from a low 1060 for the $US/Euro
index to a high 5559 for the S&P 500 index. The mean log-returns are indeed all close to zero,
S&P 500 the highest around 0.0002 and the $US/Euro index the lowest around -0.00008. The
dispersion-related statistics indicate that the DAX returns are on average the most volatile
with the highest estimated standard deviation of 0.016 and the highest maximum absolute
return of 18 %. The exchange rate returns have the lowest standard deviation of 0.0079 and
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also the lowest maximum absolute return of 3.6 %. The distribution of the returns are plotted
as histograms in Figure 4.
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Figure 4: Histograms for the return distributions of all indices
Notes: The thick line represents a superimposed normal distribution

The histograms in Figure 4 show that the stock returns are bell-shaped and leptokurtically
distributed. There is indication of a peak also in the returns of the $US/Euro index but
it is not as “high” and this series merits further testing before normality is rejected. From
the values on excess kurtosis in Table 1 we see that all distributions have fatter tails than the
normal distribution and a Jarque-Bera test of normality rejects the null hypothesis of normally
distributed data at the 0.1% level of significance for all indices, including the $US/Euro.

Table 2 shows selected descriptive statistics for the return series when using the split
into bull and bear markets. We see that the exchange rate index has spent more time in bear
markets than in bull markets while the reverse is true for the stock indices. The difference
between the number of days spent in the different market states is biggest in the S&P 500
index, where the bull observations, 4190, are more than three times as many as the bear
observations, 1375. The standard deviation of returns is higher in bear markets for the stock
indices but not for the $US/Euro. The increased variability in bear market returns is also
reflected in the kurtosis, which is higher in bear markets, again except for the exchange rate
index. The sign of the skewness varies among market conditions and indices but there is a
clear pattern that the magnitude of the skewness increases in bear markets for all indices. It
increases with a factor from around 2 at the lowest for the $US/Euro to a factor of around 6
for the S&P 500. All scenarios reject the null hypothesis of no skewness and excess kurtosis
of the Jarque-Bera test on the 1% critical level and below.
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DAX S&P 500 $US/Euro
Bull Bear Bull Bear Bull Bear

Obs 966 589 4190 1375 490 570
Mean 0.0012 -0.0017 0.0007 -0.0013 0.0008 -0.0009

Std. Dev. 0.012 0.021 0.0094 0.017 0.0082 0.0076
Skewness -0.084 0.29 -0.025 -0.15 0.13 0.28

Vol. of Vol. 0.0003 0.0011 0.0002 0.0008 1.6 0.73
Excess Kurtosis 2.1 4.1 4.7 5.2 0.0001 0.0001

Jarque-Bera p-value <0.001 <0.001 <0.001 <0.001 <0.001 0.0034

Table 2: Descriptive Statistics Bull and Bear Markets
Notes: This table shows descriptive statistics for all continuous compound return series of the analyzed in-
dices when dividing the data into bull and bear markets. Excess kurtosis is defined relative to a Gaussian
distribution’s kurtosis of 3. Volatility of volatility is defined as the estimated standard deviation of the series
of realized volatility observations. The Jarque-Bera test’s null hypothesis is that there is no skewness or excess
kurtosis in the data.
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Figure 5: Autocorrelation Function for the Mean Daily Returns
Note: For a times series, the autocorrelation/ serial correlation is the correlation between observations and
their corresponding lags. The dotted lines mark 95% confidence bands.
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Figure 6: Autocorrelation Function for the Squared Standardized Residuals.
Notes: The standardized residuals are computed as (ξt/σ̂t)2 where ξt is an uncorrelated but conditionally
heteroscedastic error term and σ̂t the estimated conditional standard deviation in period t. If (ξt/σ̂t)2 is
uncorrelated over time the employed volatility equation has modeled the correlation in the variance over time
in a sufficient way., i.e. the ARCH or GARCH specification is satisfactory. The dotted lines mark 95%
confidence bands.

Looking at the pre-sample data I find in Figure 5a that the return series exhibit no significant
serial correlation in the mean for the first lags. There are however some significant correlations
in higher lag orders, indicating that some dependence not explained by the a constant mean
or low order ARMA specification exists. I compute the BIC for ARMA(R,M) models of orders
(0,0) to (10,10)22 and a constant mean gives the lowest value in all cases. So in order to
satisfy Equation (1), based on the pre-sample data, I let the equation for the mean return be
simply a constant in all series. Figure 5b shows that the squared returns have significant serial
correlation in the stock indices at the 95% confidence level. Again the result for the exchange
rate index is not as clear. There is close to no significant autocorrelation in the squared returns
of this series except one at the 13th lag.

DAX S&P500 $US/Euro
Jarque-Bera <0.001 <0.001 0.25
Engle’s Test <0.001 0.0040 0.68

Table 3: Test Statistics for Pre-sample Data.
Notes: This table shows statistics for tests on the pre-sample data only. The Jarque-Bera test’s null hypothesis
is that there is no skewness or excess kurtosis in the data and Engle’s test’s null hypothesis is that there are
no ARCH-effects.

Engle’s test presented in Table 3 accordingly indicates that the the $US/Euro do not exhibit
significant ARCH effects with p-value 0.68 while the other indices show significant ARCH-
effects at even the 0.1% critical level. As for the shape of the distribution, the Jarque-Bera
test reported in Table 3 rejects the null hypothesis of no skewness and no excess kurtosis

22I leave the tables with all BIC results out for space considerations and they are available upon request
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with p < 0.001 for the stock indices, but fails to reject the null for the exchange rate index
with p-value 0.25. This suggests the pre-sample returns are potentially normally distributed
in the exchange rate index. The autocorrelation plots in Figure 6 show the autocorrelation
in the standardized residuals after fitting a GARCH(1,1) model to the pre-sample data. The
plots show that the squared standardized residuals are uncorrelated over time, indicating
that the dependence structure in the volatility is explained by the employed GARCH(1,1)
model. Since the non-stock index neither exhibits significant conditional heteroscedasticity,
nor indicates non-normality in the pre-sample data, one could argue that GARCH-modeling
with assumed Student’s/Hansen’s t distributed errors is unmerited. However, since the purpose
is to compare forecast techniques in different scenarios I still apply the GARCH model with
these distributions. Moreover, the employed algorithm estimates the degree of freedom ν for
the t-distribution and we have that for large ν, the t-distribution goes to a normal. So if the
true distribution is normal, the degree of freedom will be estimated to fit this. The same is
true for Hansen’s t since it nests the Student’s t and the skewness λ can be estimated to fit a
symmetric distribution.23

23I here ignore the fact that estimating extra parameters is computationally inefficient. In a smaller sample
with fewer degrees of freedom or in cases where the speed of the computation is an issue, one could impose the
normally distributed returns for the $US/Euro index.
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5 Results and Analysis

5.1 Bull and Bear Market Results

Forecasting results are presented in 4-6 for bull and bear markets, and further down in Table
7 for the aggregate.

DAX OLS R2 QLIKE MSE
Bull Bear Bull

(×− 1)
Bear
(×− 1)

Bull(
×10−5

) Bear(
×10−3

)
MA Vol. 30 0.47 0.23 4.50

(0.028)
3.212

(0.072)
0.92
(0.063)

0.21
(0.022)

MA Vol. 60 0.45 0.10 4.55
(0.024)

3.07
(0.082)

0.87
(0.057)

0.24
(0.024)

EWMA 0.47 0.26 4.52
(0.027)

3.232,6

(0.073)
0.801

(0.058)
0.18
(0.021)

GARCH 0.47 0.33 4.581,2,3,6

(0.023)
3.311,2,3,6

(0.071)
0.621,5

(0.043)
0.15
(0.019)

GARCH
(Hansen’s t)

0.47 0.33 4.591,2,3,6

(0.023)
3.311,2,3,6

(0.070)
0.631

(0.045)
0.15
(0.019)

EGARCH 0.32 0.38 4.56
(0.026)

2.93
(0.088)

0.56
(0.034)

0.14
(0.019)

Implied Vol. 0.53 0.34 4.591,2,3,6

(0.026)
3.136

(0.086)
0.361,2,3,4,5,6

(0.030)
0.16
(0.021)

Table 4: Performance of 30-day Variance Forecasts in Bull and Bear Markets in the DAX
Index .
Notes: Standard errors are in parenthesis. GARCH models are (1,1) specifications and fitted with Student’s t
errors unless stated otherwise. Superscript, i, denotes better performance than model i according to the Diebold
Mariano test at the 95% confidence level. Models are labeled 1=MA Vol., 2=MA Vol. 60,...,7=Implied Vol.
OLS R2 is the R2 when regressing the realized variance on the estimated variance. The QLIKE and MSE
(Mean Squared Error) are defined in Section 2.

Table 4 shows that the implied volatility forecasts are the most accurate in bull markets for the
DAX index. The forecast based on the VDAX earns the highest R2 with 0.53 and also, with
statistical significance, outperforms all the other models according to the MSE and four of the
other models according to the QLIKE loss function. In the bull markets, the GARCH(1,1)
specification, EWMA and Moving Average 30 perform equivalently according to the R2 but
the GARCHs stand out with more statistically significant wins. Notably, the EGARCH is the
worst model in bull markets with an R2 of 0.32 and although it is not worst by any other
statistic, neither does it outperform any other model with statistical significance. The results
are more mixed in bear markets. The EGARCH has the highest R2 but is still unable to
outperform the other models in terms of the MSE and QLIKE loss functions. Specifically,
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it shows the highest (worst) QLIKE value of all models. Instead, the GARCH specifications
perform best on average in bear markets. They have the third highest R2, the lowest QLIKE
and second lowest MSE. While there is never a significant difference between them, the GARCH
with assumed Student’s t distribution outperforms one more model than its equivalent with
assumed Hansen’s t errors in the bull market scores. It is clear that all models except maybe
the EGARCH perform worse in bear markets than in bull markets.

S&P 500 OLS R2 QLIKE MSE
Bull Bear Bull

(−1×)
Bear
(−1×)

Bull(
×10−5

) Bear(
×10−3

)
MA Vol. 30 0.38 0.36 5.10

(0.016)
3.78
(0.038)

0.66
(0.037)

0.12
(0.012)

MA Vol. 60 0.35 0.22 5.13
(0.014)

3.74
(0.043)

0.65
(0.033)

0.15
(0.015)

EWMA 0.40 0.40 5.12
(0.015)

3.79
(0.039)

0.58
(0.032)

0.11
(0.012)

GARCH 0.40 0.42 5.14
(0.013)

3.831,2,3

(0.037)
0.481,2,3

(0.027)
0.10
(0.011)

GARCH
(Hansen’s t)

0.40 0.43 5.14
(0.013)

3.831,2,3

(0.037)
0.471,2,3,4

(0.027)
0.09
(0.011)

EGARCH 0.44 0.47 5.281,2,3,4,5,7

(0.011)
3.882,7

(0.045)
0.331,2,3,4,5

(0.021)
0.09
(0.012)

Implied Vol. 0.49 0.41 5.161,3

(0.012)
3.81
(0.043)

0.391,2

(0.018)
0.09
(0.012)

Table 5: Performance of 30-day Variance Forecasts in Bull and Bear Markets in the Standard
& Poor’s 500 Index.
Notes: Standard errors are in parenthesis. GARCH models are (1,1) specifications and fitted with Student’s t
errors unless stated otherwise. Superscript, i, denotes better performance than model i according to the Diebold
Mariano test at the 95% confidence level. Models are labeled 1=MA Vol., 2=MA Vol. 60,...,7=Implied Vol.
OLS R2 is the R2 when regressing the realized variance on the estimated variance. The QLIKE and MSE
(Mean Squared Error) are defined in Section 2.

The Standard and Poor’s 500 index results differ on some points from those of the DAX
index. Table 5 shows that the implied volatilities are still good predictions with the highest
R2 in bull markets but now the EGARCH stands out as the best performer in bull markets.
It outperforms all other models by the QLIKE measure and all but the implied volatilities
according to the MSE. In addition, it has the highest R2 in bear markets and also the lowest
QLIKE and MSE (shared with GARCH using Hansen’s t errors and the implied volatilities).
The difference in predictive accuracy between the two market states is smaller in the S&P
500 than in the DAX. This is indicated by the fact that only three out of seven models have
a lower R2 in bear markets. On the other hand, the differences in QLIKE and MSE are of
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approximately the same magnitude as in the DAX index.

$US/Euro OLS R2 QLIKE MSE
Bull Bear Bull

(×− 1)
Bear
(×− 1)

Bull
(10−5×)

Bear
(10−5×)

MA Vol. 30 0.73 0.59 5.386

(0.023)
5.35
(0.025)

0.09
(0.009)

0.07
(0.006)

MA Vol. 60 0.70 0.48 5.376

(0.023)
5.33
(0.029)

0.10
(0.008)

0.11
(0.010)

EWMA 0.68 0.58 5.386

(0.023)
5.35
(0.026)

0.08
(0.009)

0.08
(0.006)

GARCH 0.71 0.56 5.382,6

(0.023)
5.34
(0.027)

0.08
(0.007)

0.08
(0.008)

GARCH
(Hansen’s t)

0.71 0.56 5.382,6

(0.023)
5.34
(0.027)

0.084

(0.007)
0.08
(0.008)

EGARCH 0.72 0.50 5.26
(0.027)

5.28
(0.028)

0.11
(0.001)

0.09
(0.009)

Implied Vol. 0.71 0.47 5.411,2,3,4,5,6

(0.024)
5.31
(0.029)

0.043

(0.006)
0.10
(0.009)

Table 6: Performance of 30-day Variance Forecasts in Bull and Bear Markets in the Currency
Shares Euro Trust ($US/Euro)
Notes: Standard errors are in parenthesis. GARCH models are (1,1) specifications and fitted with Student’s t
errors unless stated otherwise. Superscript, i, denotes better performance than model i according to the Diebold
Mariano test at the 95% confidence level. Models are labeled 1=MA Vol., 2=MA Vol. 60,...,7=Implied Vol.
OLS R2 is the R2 when regressing the realized variance on the estimated variance. The QLIKE and MSE
(Mean Squared Error) are defined in Section 2.

Table 6 presents forecasting results in the $US/Euro exchange rate. Like for the stock indices
the implied volatilities provide good forecasts, at least in bull markets. Although the R2 only
ranks it as the third best model the QLIKE and MSE both rank implied volatilities as number
one in bull markets. In bear markets it is instead the 30 days moving average that provides
the best forecasts with highest R2, lowest QLIKE and lowest MSE. Although the results are
not statistically significant it is clear that the simple models perform relatively better in this
market compared to the stock markets. We also see that the forecasts are in general better
in absolute values compared to the stock markets. For example, the maximum R2 in any
other scenario is 0.53 (Implied volatility in DAX bull markets) but here all models deliver R2

around 0.7 in bull markets. Moreover, the difference between market states is smaller than in
the DAX and S&P 500.
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5.2 Results without bull/bear split

I contrast the bull and bear market results by computing the same statistics for the whole
dataset. Table 7 displays the error statistics over all markets and observations.

DAX Index S&P 500 $US/Euro
Model OLS R2 QLIKE

(×− 1)
MSE(
×10−4

) OLS
R2

QLIKE
(×− 1)

MSE(
×10−4

) OLS
R2

QLIKE
(×− 1)

MSE(
×10−5

)
MA Vol. 30 0.34 4.036

(0.036)
0.84
(0.084)

0.44 4.78
(0.017)

0.35
(0.031)

0.57 5.376

(0.017)
0.08
(0.005)

MA Vol. 60 0.22 4.016

(0.039)
0.92
(0.091)

0.32 4.79
(0.017)

0.40
(0.036)

0.42 5.356

(0.019)
0.10
(0.007)

EWMA 0.38 4.046

(0.036)
0.72
(0.078)

0.47 4.80
(0.017)

0.301

(0.029)
0.55 5.366

(0.018)
0.79
(0.005)

GARCH 0.43 4.121,2,3,6

(0.034)
0.60
(0.073)

0.49 4.821

(0.016)
0.271,3

(0.027)
0.51 5.366

(0.018)
0.83
(0.005)

GARCH
(Hansen’s t)

0.43 4.121,2,3,6

(0.034)
0.60
(0.072)

0.49 4.821

(0.016)
0.271,3

(0.027)
0.51 5.366

(0.018)
0.83
(0.005)

EGARCH 0.48 3.89
(0.041)

0.55
(0.073)

0.54 4.941,2,3,4,5,7

(0.016)
0.25
(0.029)

0.51 5.27
(0.020)

0.10
(0.007)

Implied Vol. 0.45 4.066

(0.040)
0.61
(0.079)

0.48 4.831,2

(0.016)
0.26
(0.030)

0.55 5.366

(0.019)
0.72
(0.006)

Table 7: Performance of 30-day Variance Forecasts.
Notes: Standard errors are in parenthesis. GARCH models are (1,1) specifications and fitted with Student’s t
errors unless stated otherwise. Superscript, i, denotes better performance than model i according to the Diebold
Mariano test at the 95% confidence level. Models are labeled 1=MA Vol., 2=MA Vol. 60,...,7=Implied Vol.
OLS R2 is the R2 when regressing the realized variance on the estimated variance. The QLIKE and MSE
(Mean Squared Error) are defined in Section 2.

From the first section in Table 7 we see that the DAX index return variance is on average
best forecast by a GARCH specification. The regular GARCH(1,1), with either of the two
employed distribution assumptions, is the best performer according to the QLIKE. However,
the EGARCH is superior in terms of R2 and MSE. The implied volatility also shows low error
statistics but the three moving average specifications trail by all measures, although in most
cases with no statistical significance.

The general S&P 500 results rank models with some difference in comparison to the DAX
index. We see from the second section in Table 7 that the EGARCH performs best by all
measures. Notably, its R2 is 0.06 above the second highest and it outperforms all models with
statistical significance by the QLIKE measure. The two other GARCH specifications and the
implied volatility offer good alternatives, with similar performance among the three. Overall,
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all loss functions indicate lower prediction errors in the S&P 500 compared to the DAX.

The aggregate $US/Euro results in the third section in Table 7 turns the S&P 500 rank-
ing of models close to upside down. The EGARCH is the worst performer by both the QLIKE
and MSE and only ranked 4th by the R2. It is instead the 30 days moving average model
that performs best by all measures. The EWMA and implied volatility offer good alternatives
with 0.02 lower R2 and 0.01 higher QLIKE. It is notable that the only statistically significant
result is that the EGARCH is outperformed by all models in the QLIKE measure. Regarding
absolute performance it is notable that overall predictions are better for $US/Euro than for
both DAX and S&P 500.

GARCH DAX S&P
500

$US/Euro EGARCH DAX S&P 500 $US/Euro

α0 ~0
(0.0002)

~0
(0.0001)

~0
(0.0001)

α0 -0.15
(0.0002)

-0.12
(0.0001)

-0.045
(0.0001)

α1 0.087
(0.011)

0.068
(0.0061)

0.040
(0.0089)

α1 0.12
(0.020)

0.12
(0.011)

0.085
(0.017)

β1 0.91
(0.012)

0.93
(0.0060)

0.96
(0.0093)

β1 0.98
(0.0030)

0.99
(0.0019)

0.99
(0.0026)

ν 9
(1.5)

6
(0.41)

17
(3.4)

ν 11
(2.4)

7
(0.46)

16
(5.5)

λ -0.11
(0.03)

-0.084
(0.02)

-0.083
(0.04)

γ -0.13
(0.014)

-0.095
(0.0079)

-0.0094
(0.011)

Table 8: Fitted GARCH Parameters.
Notes: The GARCH is estimated with assumed Hansen’s t and the EGARCH with assumed Student’s t. α0

is a constant in the variance equation, α1 the weight for the effect of last periods squared return, β the weight
of the last periods estimated variance, ν is the degree of freedom of a t-distribution fitted to the return series
in question and γ denotes the asymmetric effect on volatility as in the EGARCH model. If γ < 0, negative
returns affects volatility more than positive and vice versa. λ is the asymmetry parameter for Hansen’s t
distribution and is < 0 if the estimated distribution is negatively skewed.

I report the estimated GARCH parameters in Table 8 and note that all indices have returns
where α1 +β1 is close to one. This indicates a strong dependence structure where the monthly
variance is almost completely determined by previous values. There are negative leverage
effects in all series as indicated by the EGARCH parameter γ. They are around -0.1 in all
stock returns but only -0.01 in the exchange rate index. The estimated Hansen’s t skewness
parameter λ is also negative in all indices. The estimated degree of freedom ν for the fitted
distribution is lower in the stock indices, where the lowest degree of freedom is that of the
S&P 500, indicating fatter tails in the stock market returns. All of the estimated parameters
agree with skewed and fat tailed distributions as indicated by the descriptive statistics and
histograms in Section 4.
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−3 −2 −1 0 1 2 3
0

0.5

1

x

Gaussian:              

Kuiper statistic: 0.036

Significance:     0.58 

Student’s t            

Kuiper statistic: 0.033

Significance:     0.70 

Hansen’s t             

Kuiper statistic: 0.023

Significance:     0.90 

(c) CurrencyShares Euro Trust

Figure 7: Kuiper Statistics and Plots
Notes: The Kuiper statistic is computed for the whole forecasting sample, using the parameters obtained when
fitting the GARCH and EGARCH models (See Table 8). The statistic is the sum of the maximum distance on
the upside and downside between the observed values and the theoretical distribution, graphically illustrated by
the cdf plots. We reject the null hypothesis that the observed values are drawn from the theoretical distribution
in question if the significance value is lower than the desired critical level. Legends are the same for all figures.
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Figure 7 presents the Kuiper statistic for the employed distributions, computed on the full
sample. Note that we should always have that the Kuiper statistic is ordered as Hansen’s t
≤ Student’s t ≤ Gaussian since the more versatile distributions nest the simpler. Hansen’s t
indeed shows the lowest Kuiper statistic for all three indices, followed by Student’s t. However,
in no index do we at the 1% critical level fail to reject the null that the returns are Hansen’s t
distributed and at the same time reject that they are Student’s t distributed. Indeed, the more
versatile distributions seem to offer no significant advantage over the Gaussian since all distri-
butions are rejected in the stock indices while no distribution is rejected in the $US/Euro index.

The graphs in Figure 8 show the development of the Kuiper statistic over time for a rolling
window of 300 observations in each index. The statistic is not continuously updated but in-
stead shows how the estimated distributions, as indicated by the parameters in Table 8, fit the
data over time. The vertical dotted lines indicate the market turning points as before. What
we see is that the DAX index is relatively stable over time in the sense that the Gaussian
is worst fitting during almost all observation periods. Also, the Hansen’s t fits best during
most periods and the simpler Student’s t is a better fit only between ,roughly, June 2007 and
October 2008. Notably, the mid-sample bear market is where Hansen’s t fits worse than both
of the other distributions. The differences are smaller in the S&P 500 and we see that the
Student’s t is the best fit for many observations, especially in the beginning of the sample.
Though, again, the Gaussian is the worst fit for most of the observations. Like in the DAX
index Hansen’s t distribution shows the worst fit during bear markets, e.g. around 1999-2001
and around 2008. In the exchange rate index we have much larger variation over time in the
ranking of distributions. Hansen’s t goes from being worse by a substantial marginal in the
beginning to being the best with an equally big marginal in the end of the sample. We even
see that the Gaussian is the best fit in some periods in the beginning of the sample and that
the Student’s t fits best in the middle of the sample. The bull/bear market effect on the fit is
not evident in the $US/Euro returns.
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Figure 8: Kuiper Statistic over Time
Notes: The Kuiper statistic is the sum of the maximum distance between the observed values’ and the theoretical
distributions’ cdf plots on the upside and on the downside . The figures show this distance computed for a
rolling window of 300 observations, always using the theoretical distributions given by the parameters obtained
when fitting the GARCH and EGARCH models to the full forecasting sample (see Table 8).
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5.3 Analysis

In this section I discuss results and attempt to answer the questions posed in the introduction.
The pattern throughout the results is that the variance forecasting is more accurate in bull
markets than in bear markets. This is true for all models although some are more affected
than others, and results also vary among indices. The prediction results are similar in the two
stock indices while the exchange rate index displays notable differences.

In the stock indices my findings by and large agree with those of Chiang and Huang (2011)
who also find that predictions are on average more accurate in bull markets. The EGARCH
model is an exception and performs better in DAX bear markets (and also best of all models in
this scenario) than in DAX bull markets, in terms of R2 and MSE. Otherwise, the DAX index
is informationally efficient in bull market in the sense that the implied volatilities give the best
forecasts. The bear markets are less efficient and GARCH models outperform the market’s
implied volatility. Notable deviations from the overall pattern are that the moving average
models perform well in DAX bull markets and that the EGARCH performs much worse by
the QLIKE measure than by the MSE and R2.

The performance of the simple moving average together with the standard deviation of re-
alized variance presented in the descriptive statistics lead me to conclude that volatility is
more stable in the DAX bull markets than in bear markets and it is logical that these points
benefit the moving average relative to the more advanced models. It is harder to find a con-
vincing explanation for the EGARCH’s sub-par performance in the QLIKE measure in DAX
bear states. What differentiates the QLIKE measure from the other loss functions is that it is
based on the relative forecast error and that it punishes negative errors harder than positive.
A possible explanation for the EGARCH performance is then that the EGARCH forecasts
are downward biased, which they are often known to be24, and thus punished harder in the
QLIKE measure than in the other measures.

The overall worse performance of all models in bear markets can be explained in multiple
ways. Wilhelmsson (2006) mentions higher skewness and/or kurtosis as reasons for worsened
performance of GARCH models in general. Other possible explanations include higher volatil-
ity of volatility (Poon and Granger, 2003) and higher levels of volatility (Diebold et al., 1997).
In fact, there are signs of all these in the DAX bear market when compared to the DAX
bull market. We see this in the return plots (higher level of volatility) and the descriptive

24The downward bias of the EGARCH is mentioned by practitioners in several sources but I have found
no scientific paper examining this. An explanation is given in for example the MatLab Econometrics toolbox-
http://www.mathworks.se/help/toolbox/econ/. Andersen et al. (2005) discusses the EGARCH bias in general.
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statistics (higher kurtosis, skewness and volatility of volatility as well as level of volatility).
Furthermore, Kirchler (2009), in an experimental study, finds markets to be more informa-
tionally efficient in bull states than in bear states and this agrees with my finding that the
implied volatilities deliver, in both relative and absolute terms, better forecasts in bull markets.

Results in the Standard & Poor’s 500 are similar to those of the DAX index in that the
implied volatilities and the GARCH models outperform the simpler average models and in
that bear market predictions are worse than bull market predictions. However, some notable
differences compared to the DAX do exist. The S&P 500 is less informationally efficient in
that the EGARCH model stands out as the best performer followed by the regular GARCH,
both in bull and bear markets, rather than the implied volatilities. The R2 in bull markets
are an exception to this rule. It is also notable that the GARCH with Hansen’s t deliver one
more statistically significant “win” in this market compared to the Student’s t GARCH. When
looking for an explanation in the descriptive statistics we see that the skewness is negative in
both market states in the S&P 500 in contrast to the DAX index. This stable skewness over
time is a likely explanation for the better performance of Hansen’s t. It could also explain the
EGARCH performance through a more stable leverage effect. The difference in excess kurtosis
between bull and bear states is also smaller than in the DAX index, further facilitating the
GARCH performance through better parameter estimates.

Moreover, the EGARCH stands out in the S&P 500 by handling bear markets best, in relative
terms but also on in absolute terms according to some measures. Figlewski and Wang (2000)
offer an explanation when they argue the leverage effect to be a “market down effect”. Bear
markets are per definition going more down than up and thus models capturing the leverage
effect are relatively more viable than in bull markets. This indicates that the leverage effect
is important to account for in stock market returns but also that the regular GARCH is in
general a better choice when the effect is ’small’ , or in practice when we don’t know it to be
significant and stable over time. Arguably, when comparing EGARCH and GARCH forecasts,
the leverage effect needs to be significant, not only statistically but also in economical meaning,
in order to outweigh the EGARCH’s bias in multiple step ahead forecasts.

The inferences from the bull and bear split in the stock indices are strengthened by look-
ing at the overall results without split. The GARCH performs well in both the DAX and the
S&P 500, as do the EGARCH with the exception of the QLIKE measure in the DAX index.
The implied volatilities perform well in both stock indices although not clearly best in either
of them. Altogether, three notable observations from the results in stock indices without bull
and bear market splits are that the implied volatilities are best in neither index even though it
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emerged as the best bull market performer, the EGARCH’s performance is better in the S&P
500 and prediction errors are on lower levels overall in the S&P 500 than in the DAX. I find
possible explanations for these observations to be:

1. The assumed distributions fit the S&P 500 returns better (Figure 7),

2. Volatility of volatility as well as level of volatility is lower in the S&P 500 (Table 1),

3. Skewness is more stable over time in the S&P 500 (Table 2),

4. The last period’s realized variance is more important for the next in the S&P 500 (Table
8),

5. We have many more observations available in the S&P 500 (Table 1).

Points 1. - 3. as already mentioned help explain why GARCH performance is worsened. These
points are also valid when explaining the performance differences of bull and bear markets.
Point 2. in addition explain why simple averages perform better since they are sensitive to
volatility of volatility, again in line with what was observed in the bull and bear split. Points
3. and 4. offer an explanation as to why the EGARCH performs better in the S&P 500; the
leverage effect is likely more stable over time as indicated by the skewness and since this lever-
age effect is captured only by the latest observation in the EGARCH(1,1) specification, the
fact that this observation is given more weight (Table 8) may allow the EGARCH to capture it
better. Point 5) facilitates better predictions since a larger sample with which parameters are
estimated gives better estimations of the “true” parameters. Here it should be noted that also
this point is valid for the bull and bear split, and that it in fact serves to weaken the conclu-
sion that bull and bear markets are fundamentally different since observed forecast differences
might be attributed to a difference in sample size. The difference in performance of implied
volatilities between the two stock indices is best explained by a difference in informational
efficiency. It is well known that larger markets are in general more efficient than smaller and
this may well explain the difference in accuracy between the DAX and S&P 500.

I contrast the stock index results with those of the $US/Euro since the returns of this index
display different statistical properties. Accordingly we also see that the results are different.
The difference between market states in terms of predictive accuracy is smaller in the exchange
rate index than in the stock indices. The simple average models perform well relative to the
other models and in comparison to the other indices, while the EGARCH and GARCH models
fail to consistently outperform the simpler techniques. The implied volatilities are good in bull
markets but do not on average outperform the moving averages in bear markets. Theory tells
us that the low order of autocorrelation in the second moment (Figure 5b) of returns together
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with the stable level of variance (Table 2) benefit the moving average models relative to the
GARCH models and these two properties partly explain the results. The changing Kuiper
statistics in Figure 8 offer yet another explanation as to why the GARCH models are trailing
in the exchange rate index since they rely on good parameter estimates, in turn relying on
a stable distribution, to produce good predictions. Moreover, it is in accordance with expec-
tations that the implied volatilities still predict well since they are model-independent. And
although the GARCH models perform worse relative to the other models, all models deliver
better predictions in absolute values than in the stock indices. This fact indicates a more
predictable variance overall, which is logical seeing as the variance is more stable over time
(Figure 3).

In general it is clear from the shifting results in bull and bear markets, and also among
indices, that in order to outperform implied volatility forecasts by using GARCH variants, one
needs to tailor the GARCH to the specific case by considering the shape of the distribution,
the market state etc. This information is hardly ever available with certainty ex ante and this
makes it hard to consistently outperform the implied volatilities. Moreover, if more data were
available, potentially even better forecasts could be obtained from the implied volatilities by
correcting any bias in the volatility indices, see e.g. Poon and Granger (2003) for a method of
doing this. I experimented with this but was unable to achieve reasonable forecasts, possibly
due to too few pre-sample observations.

The inconsistency in ranking and performance among measures is the main problem with
my results. It does not invalidate the ranking of models but it implies that caution should be
practiced when selecting models. If a model has to be chosen over another based on my results
one would have to be careful to choose the model according to purpose. In other words, one
has to be aware of what the loss functions actually measure before relying on them since they
are not equivalent. No one model is superior on all accounts although the implied volatility
stands out as the most stable performer over all measures and settings, with an emphasis on
bull markets. In the overall results the EGARCH stands out and in the bear markets it also
seems wise to employ a GARCH specification. However, if the analyzed market is character-
ized by low dependence in the second moment and little volatility clustering, a simple moving
average predicts the variance better than all of the more advanced models tested in this the-
sis. The main problem with employing more advanced models is that they rely on estimated
parameters that need not be stable over time. I experimented with a rolling window for the
GARCH models, so as to allow them to better adjust to a changing distribution, but this only
served to worsen the forecasts. I find that one in many cases has nothing to gain, and maybe
even something to loose, from allowing the model more freedom, exemplified by the inclusion
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of a skew parameter. In order to make use of the apparent differences between market states
one would need a way to identify these states in close to real time.

Questions open for future research are for example if the presented results hold up with higher
frequency data, allowing for better approximations of the realized variance, and for other fore-
cast horizons. 30 periods is a relatively long horizon for variance forecasting and GARCH
type models usually perform much better at shorter horizons relative to other models. Some
of the findings presented are not directly related to this thesis’ research question but are still
interesting in a wider perspective and also offer suggestions for future research. Specifically,
the stock returns of the S&P 500 and DAX index cannot be modeled as Hansen’s t or Student’s
t, let alone Gaussian, and pass statistical tests. Moreover, the shape of the distributions of
these returns change significantly over time and I deduce that more flexible models are needed
to fully capture the dynamics of stock returns; allowing for conditional heteroscedasticity,
skewness and kurtosis based on historical observations is not enough.
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6 Conclusions

I conclude that variance forecasting is in general more accurate in bull markets than in bear
markets and that errors increase between 30 % and 50 % in terms of R2 and QLIKE in bear
markets. The MSE increases as much as with a factor of 15. This is in contrast to Brownlees
et al. (2011) who find small differences in forecast accuracy between what they term ’calm
and storm’. It is however in line with the findings of Chiang and Huang (2011) who find
that GARCH models forecasting S&P 500 implied volatilities display higher mean absolute
errors and root mean squared errors in bear markets than in bull markets. My results indicate
that the difference in prediction accuracy between the two states in my sample is due to the
following reasons:

1. The level of variance is around 1.5 to 2 times higher in bear markets for all indices where
bear market predictions are worse than bull market predictions.

2. The volatility of volatility is around 3 to 4 times higher in bear markets for all indices
where bear market predictions are worse than bull market predictions

3. The shape of the distribution of returns often changes over time and this causes param-
eters estimated on available information to be erroneous in predicting the future

4. The bear market states are shorter and thus models based on historical information
(both simple mean models but also those using previous information to estimate other
parameters) will suffer more from bull observations in the rolling window during bear
markets than from bear observations in the rolling window during bull markets

5. Markets are less informationally efficient in bear states, affecting predictions based on
the markets’ beliefs

I find that the best forecasts are given by the market implied volatilities in bull markets and by
an EGARCH(1,1) or GARCH(1,1) in bear markets, the model choice depending on whether
the index shows a stable skewness over time or not. I also find that bear states affect some
models more than others and change the ranking through this. The EGARCH is the only
model sometimes showing indications of being better in bear states than in bull states and it
is the model handling the change of state best in relative terms. The simple average models
are affected heavily by bear markets and it is in general harder to distinguish between the
performance of models in bear markets. A corollary of my findings is that the choice of model
has to be tailored for specific purposes since different loss functions give different rankings.
If the forecaster for some reason has a preference which character is given by one of the loss
functions in particular, or closely related to it, the correct model choice can differ from the
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overall best forecast model. For example, a forecaster sensitive to relative errors may want to
employ an implied volatility technique in a situation where a forecaster sensitive to absolute
errors may want to employ an EGARCH model. My general conclusions are based on the
aggregate results over all loss functions and do not account for the forecaster’s preference.
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A Appendix

A.1 VIX Methodology

I follow the example given in CBOE’s VIX white paper25. First, non-zero bid price, out of the
money calls and puts are selected and centered around the at the money price. The forward
(underlying) index level F is found by identifying the strike price for the option with the
smallest call-put spread and using this strike in the formula:

F = strike+ erT [Call Price− Put Price]

where Call Price and Put Price refers to the price of the Call and Put option associated
with the given strike price.

With F defined, K0 is found by taking the strike price of the option closest below F. And
with K0 found we start to include out of the money put options with successively lower strikes
(K−1, ..,K−n) until we reach bid prices of zero, i.e. no buyers. Then, the same is done for
out of the money calls with successively higher strikes (K1, ..,Km). Lastly, the price of the
option with strike K0 is computed as the average of the put and call price for this strike. This
procedure is done for so called near-term and next-term options, i.e. options that are to expire
on the next and second from now settlement date. With these values, σ2 is computed as the
weighted 30 days moving average and VIX is thus given by

V IX = 100×

√([
T1σ2

1

(
NT2 −N30

NT2 −NT1

)]
+
[
T2σ2

2

(
NT2 −N30

NT2 −NT1

)
+
])
× N365

N30

where the subscripts 1 and 2 (and accordingly subscripts T1 and T1) indicate near-term
and next-term respectively, NTi is the time in minutes to settlement and Nn is the number of
minutes in an n-day period.

A.2 Software

In the making of this thesis I make use of the following software and related resources:

∗ MatLab with additional code from Optimization Toolbox26, Econometric Toolbox27,
Oxford MFE Toolbox28, Eric Jondeau and Michael Rockinger29 and Andrew Patton30

25http://www.cboe.com/micro/vix/vixwhite.pdf
26http://www.mathworks.se/products/optimization/
27http://www.mathworks.se/products/econometrics/
28http://www.kevinsheppard.com/wiki/MFE_Toolbox
29http://www.hec.unil.ch/matlabcodes/index.html
30http://public.econ.duke.edu/~ap172/code.html
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∗ LYX31

∗ Zotero32

31http://www.lyx.org/
32http://www.zotero.org/

49


	Cover
	EkvallThesisNoCover
	Introduction
	Theoretical Framework
	Volatility Proxy
	Moving Average
	Exponentially Weighted Moving Average
	Implied Volatility
	Generalized Autoregressive Conditional Heteroscedasticity (GARCH) Models
	The Distribution Assumption and Its Implications

	Performance Measures
	Bull and Bear Markets

	Empirical Methodology
	Data and Model Fitting
	Results and Analysis
	Bull and Bear Market Results
	Results without bull/bear split 
	Analysis

	Conclusions
	Appendix 
	VIX Methodology
	Software



