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Abstract

Corruption in the healthcare sector is a widespread problem in many
countries. Empirical research has shown that petty corruption is espe-
cially endemic in healthcare, perhaps due to the importance of health
to human beings. In this thesis I will study the transmission of in-
formal payments for health care between patients and physicians and
its effect on patient welfare, taking social norms about corruption
into account. A Monte Carlo estimation is used to estimate patient
welfare and health outcomes of an iterated two-stage game where a
new physician-patient pair meets in every stage of the game. I will
simulate three cases. A benchline case where informal payments are
non-existing and two cases where informal payments exist, one where
the social norm is not to pay an informal payment for health care and
one where the social norm is to pay an informal payment for health
care. In the model, patients can be severely ill or mildly ill and be
able to borrow for informal payments or not. The results show that
even if traditional measures of welfare go down as corruption goes up,
health outcomes improve when informal payments for health care are
introduced and increase when patients are mildly ill, physicians are
forward looking and have only one shot at offering patients a contract
(i.e. no bargaining takes place).
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1

Introduction

Despite the complexity of healthcare systems they all boil down to the interaction
of physicians and patients, more or less constrained by diverse regulations. The
meeting of physicians and patients is the root of several sources of inefficiency
that characterize the health sector. Firstly, there is an inherent uncertainty about
the “good” traded between physicians and patients, i.e. health care, since both
diagnostics of illnesses and treatment results are uncertain to a certain degree.
The occurrence of wrong diagnosis depends on which body part or organ is stud-
ied, but, for example, only 30% of diagnoses general practitioners made about
abdominal pain were correct (Morelli, 1972). Treatment uncertainty depends
heavily on the disease in question, cancer treatments, for example, often have
uncertain treatment results while bacteria caused pneumonia almost certainly is
curable with antibiotics. Secondly, the meeting of physicians and patients is a
prime example of an encounter characterized by asymmetric information since
physicians have a large informational advantage over patients when it comes to
diagnosis, available treatments and treatment results. Thirdly, due to the nature
of health care, suppliers of health care often have a considerable market power,
especially when the private health sector is small or absent.

In addition to the above mentioned sources of inefficiency, corruption, defined
as “the misuse of public power for private gains” Rose-Ackerman (1999), is also a
candidate for causing inefficiency when physicians and patients meet. Studying
micro-level corruption, the health sector turns out to be prone to corruption. For
example, empirical research on corruption in Bangladesh has shown that 42% of
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1. INTRODUCTION

respondents to a survey about corruption had encountered some type of petty
corruption1 within the health sector during the last 12 months (the survey was
executed in 2007) while 35% of respondents had encountered some type of petty
corruption within the educational sector. The difference between the sectors
becomes even larger when the occurrence of bribery is studied; 21.7% of all re-
spondents had encountered bribery within the health sector while only 6.9% of all
respondents had encountered bribery within the educational sector (Knox, 2009).
Although Knox does not define bribery or bribes in his paper, a general view on
bribes is that they are illegal side-payments made in exchange of service/good
from a public official (private-to-private corruption, including bribing, also exists,
but is less discussed). The briber can be entitled to the service/good exchanged
by law but still has to pay, or he can pay for additional or better service/good
than entitled to by law. One explanation for the high occurrence of bribery in the
health sector is that since money flow from the government into the health sector
is low in corrupt countries2, bribes from patients to physicians are needed in order
to maintain an acceptable level of health care. This explanation is also coherent
with the theory that corruption trickles down to the people when it exists in high
places of the society. Another possible explanation is the importance of health
to human beings, especially when the health service traded is a question of life
rather than death for the patient receiving it.

In the sections to come, the term bribe will not be used as is done in Knox
(2009), since its meaning implies an illegal activity. Instead, following Cohen
(2011), the term informal payment for health care (IPHC) which includes semi-
legal and legal informal payments that take place outside the official payment
channels in addition to the illegal ones (bribes), will be used.3 Also, following
Cohen (2011), social norms about corruption are taken into account when dis-
cussing IPHC. It is clear that in a society where paying extra for health care is

1Petty corruption refers to small scale corruption such as citizens bribing public officials
2Research has shown that corrupt government prefer to channel money flows to sectors where

large, special investments (which are well suited for rent seeking) are common. The military
sector is a prime example of such a sector. (See e.g. Gupta et al. (2001))

3Informal payments for health care are for example tax-deductible in Hungary (Gaal et al.,
2006) and Poland (Shahriari et al., 2001) and can thus not be seen as illegal.
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1. INTRODUCTION

the norm or even legal, the ethical cost of IPHC (i.e. bad conscience from of-
fering/accepting IPHC) is strongly linked to the socially accepted level of IPHC,
whether it is zero or not.

As sources of inefficiency in health care, asymmetric information and uncer-
tainty have been studied extensively, often from a principal-agent perspective,4

as discussed by e.g. Dranove and White (1987) and Mooney and Ryan (1993).5

The approach is designed to handle situations that include asymmetric informa-
tion and uncertainty such as the interaction of physicians and patients. However,
unlike the standard principal-agent model, the outcome of health care is non-
contractible in the sense that the health status of patients after treatment is not
directly observable,6 neither for the patient nor for the physician (Mooney and
Ryan, 1993). When applying the principal-agent model, the physician is modeled
as the agent that both decides on the patient’s (the principal’s) demand for health
care as well as supplies the demanded amount of health care to the patient.

In contrast to asymmetric information and uncertainty as sources of ineffi-
ciency in the meeting of physicians and patients, there exists little research on
the inefficiency caused by informal payments, IPHC, when physicians and pa-
tients meet. The purpose of this thesis is to make an attribute to this field of the
health economics literature. More precisely, the effect of IPHCs from patients
to physicians on patient welfare and health outcomes, taking social norms about
corruption into account will be studied. A benchline case where IPHCs do not
exist, a case where IPHCs exist but the social norm is not to pay one and the
case where the social norm is to pay a certain IPHC will be studied and mutually
compared.

4The principal agent approach is theoretic model of the encounter of an agent and a principal
where the agent has informational advantages over the principal. The principal assigns a job
to the agent where the agent can use his informational advantages to maximize his own utility
on the cost of the principal’s utility.

5The principal-agent model has also been applied to e.g. the meeting of physicians and
providers (the state) and physicians and pharmaceuticals.

6The physician could e.g. withhold information about the patient’s health status in order
to pretend that the result of the treatment is better than it really is, and the patient could e.g.
claim that he doesn’t feel better.
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1. INTRODUCTION

The model presented here is an iterated two-stage game where a new pair of
physician and patient meets in each iteration of the game (i.e. no information
is transmitted between stages of the game). Using a Monte Carlo method where
the patient’s wealth and initial health status as well as the corruptibility of both
the physician and the patient are randomly drawn from a given distribution,
aggregate patient welfare is calculated according to several welfare functions. For
all three cases, the benchline case, the case with IPHCnorm = 0 and the case with
IPHCnorm > 0, two scenes will be studied: A scene where health care is necessary
to save the patients’ life and a scene where the patients will survive, even without
a treatment. Finally, the patients’ possibility to borrow money for paying IPHC
when the demanded amount exceeds their wealth will be varied.

In chapter 2, a review of the existing literature on the subject will be given
and the modeling approach used here motivated. In chapter 3, the model is
introduced. In chapter 4, simulations and results are presented. In chapter 5, the
robustness of the results is investigated. Chapter 6 concludes with a discussion
of the results, possible modifications and extensions of the model and policy
implications.
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2

Literature review and motivation
of my approach

As already mentioned, asymmetric information and uncertainty as sources of
inefficiency in the physician-patient encounter have been widely discussed, most
often using the principal-agent approach (see e.g. Dranove and White (1987)
and Mooney and Ryan (1993)), while there exists little research on the welfare
and efficiency effects of corruption in the form of IPHC between patients and
physicians. Vaithianathan (2003) is one of the few papers discussing this topic.
There, the author studies a social planner’s objective to minimize health care
costs given physicians’ incentives to choose the appropriate treatment for each
patient type when collusion between patient and physician is allowed (compared
to a collusion-free benchline model). Vaithianathan finds that when patients are
well-informed, the cost of inducing a collusion free scheme is high. She also shows
that when physicians have all the bargaining power (monopoly) and patients have
high willingness to pay for health care, the collusion robust scheme is preferred
by the buyer.

2.1 Social planner and physician market power

In the model developed in Vaithianathan (2003), it is the social planner’s cost that
is minimized while social efficiency in the form of optimal health outcome is only
included as a constraint in the optimization problem. In other words, the social
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2. LITERATURE REVIEW AND MOTIVATION OF MY
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planner minimizes his costs under the constraint that the health outcome fulfills
an exogenously given standard (i.e. correct treatment for all patients). The social
planner does this by economically punishing physicians who give wrong treatment
to patients.1 This way of treating the social planner’s problem in health care is
related to the vast literature on paying schemes for physicians. Different schemes,
e.g. capitation payments2, supply-side or demand-side cost sharing3 etc. yield
different incentives for physicians and thus different outcomes when it comes to
the cost of health care for the social planner and health outcome as discussed in
e.g. Ellis and McGuire (1993). Another approach to the social planner’s problem
in the health sector is to let the social planner maximize patient welfare, even-
tually given some cost constraints and/or constraints due to physician behavior
and incentives.

Contrary to Vaithianathan (2003), it will be assumed here that the social
planner is inactive in the sense that he does not have the power to manipulate
the incentives of patients and/or physicians through e.g. supply- or demand side
cost sharing. The physician payment scheme as well as patient’s cost scheme and
insurances will be exogenously given. As a consequence, the focus of the model
will solely be on the effect of IPHC on the behavior of physicians and patients in
a fix setup of the health care sector.

Whichever approach is used to tackle the social planner’s problem, one must
decide on how the bargaining power is divided between the physician and the
patient. In the literature that uses the principal agent approach to explain
the physician-patient meeting, it is common to assume that the physician has
monopoly power (Dranove (1988) McGuire (1983), Gaynor (1995)). This corre-
sponds to the case when patients do not have the private health sector as an exit

1In Vaithianathan (2003), the social planner’s objective is maximized when severely ill pa-
tients get high intensity treatment and mildly ill patients get low intensity treatment. It is
however the wish of both physicians and all patients to offer/receive high intensity treatment,
irrespective of the patient’s condition since it maximizes their utility.

2Capitation payments are a fix payment per patient treated, irrespective of the treatment
used.

3Supply-side cost sharing refers to the case when physicians pay a part of the treatment
cost, together with the social planner, while demand-side cost sharing refers to the case when
patients pay a part of the treatment cost. In both cases the goal of the paying scheme is to
avoid too expensive treatments.
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option, and in addition, there is no competition between different physicians in
the public sector. The bargaining power can also be modeled as being shared
between physicians and patients. In McGuire (2000), the physician’s monopoly
is reduced by a constraint in his profit maximization that states that the patient’s
utility from meeting the physician and getting treatment must be at least as high
as the utility the patient will get visiting competing physicians. This can corre-
spond either to physicians in the public sector that compete with each other or to
the possibility for patients to turn to the private sector with their health problem.
Finally, Vaithianathan (2003) studies both the physician monopoly case as well
as the case where patients have bargaining power.

In the model presented in this thesis, a traditional approach to the subject will
be followed and focus is laid on the physician monopoly case. However, a twist
to the traditional monopoly approach will be introduced and both the case when
patients have access to financial markets and can borrow money to pay the IPHC
demanded when it exceeds their wealth, as well as the case where none of the
patients can borrow money will be studied. Also, the case when patients have zero
reservation utility and the case when patients have non-zero reservation utility
will be studied. This could correspond on the one hand to severely ill patients
who almost certainly will die if not treated and thus get the utility zero if not
treated and on the other hand to mildly ill patients who almost certainly will
survive even if not treated. The two groups of patients could e.g. be terminal
cancer patients (almost certain death) and patients with eye problems (almost
certain to survive).

2.2 Social norms and ethics

Social norms about corruption are not to be confused with the level of corruption
which is a widely discussed term in the economics literature. When talking about
the level of corruption, authors are usually referring to indexes produced by or-
gans like Transparency International where countries are given scores and ranked
according to the perceived level of corruption in each country. These indexes
are then used to do macroeconomic studies, often about the relationship between
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corruption and growth.4 The level of corruption has also been used in microeco-
nomic studies, for example by Ryvkin and Serra (2012) where the authors define
the level of corruption as the “probability that a randomly drawn pair of a citizen
and a public official engages in a corrupt transaction” Ryvkin and Serra (2012,
p. 470).

While the term “level of corruption” describes the probability (perceived or
real) of corrupt activities taking place, social norms about corruption or infor-
mal payments describe the situation where corruption/informal payments are
accepted as the normal behavior in society, that is, when the level of corruption
is so high that almost everybody in that society engages in corruption/transfers
informal payments. When this is the case, sociological theories such as Dahren-
dorf’s homo sociologicus (Dahrendorf, 1973) become relevant for explaining the
norm-following behavior of the citizens.

Social norms and IPHC have been widely discussed in the literature on health
policy, often in relation with specific countries or cultures. Cohen (2011) discusses
the situation in Israel and comes to the conclusion that IPHCs are a part of a
larger problem, a culture of corruption in society which he calls “alternative
politics”. Also, several authors have discussed the occurrence of corruption in
Eastern Europe after the fall of the Soviet Union (see e.g. Gaal et al. (2006)).

In the general economic literature, social norms and corruption have been
discussed in several contexts. Mauro (2002) claims that social norms lie behind
the persistence of corruption in corrupt countries, and Fisman and Miguel (2006)
do an empirical study on the connection between culture and corruption. In
psychological game theory where guilt is studied, an alternative view on the link
between social norms and corruption is presented. Charness and Dufwenberg
(2006) define guilt as the feeling a person gets when he “believes he hurts others
relative to what they believe they will get”, i.e. a person feels guilt when he or she
does not follow social norms when interacting with others. Balafoutas (2011) then

4There exist a few papers that do empirical studies in different countries in order to pin down
the actual level of corruption, see for example Mocan (2004), Svensson (2003) and Swamy
et al. (2001). These papers generally discuss similar topics as papers that use indexes, i.e.
macroeconomic questions such as the effect of corruption on growth.
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uses these ideas to study how guilt aversion and social norms about corruption5

affect the level of corruption in society. Ryvkin and Serra (2012) discuss the effect
on the level of corruption when corruptibility is taken to be private information
for both the briber and the bribe. They find that when this is the case, the level
of corruption in society is lower than when corruptibility is general knowledge.

Despite the richness of research on social norms and corruption and/or in-
formal payments in the health policy literature and in the general economic lit-
erature, there is little to be found on the subject within health economics. By
employing ideas and terms from the literature on health policy and the general
economics literature and applying to the health sector, this thesis is an attempt
to fill that gap. In the model, an ethical component in that relates to social
norms and guilt aversion in the spirit of Charness and Dufwenberg (2006) and
Balafoutas (2011) will be included. Inspired by Ryvkin and Serra (2012), the
functional form of the ethical component for each patient and each physician will
be made private information. The functional form decides how morally sensitive
patients and physicians are to being corrupt, that is, how much disutility they
get from paying IPHC that are higher than the socially accepted amount.

In the following sections, the term social norm about IPHC (or IPHCnorm)
will be used for the accepted amount of IPHC in a society where the level of
corruption is so high that one can say that it is the social norm to be corrupt and
pay/accept an IPHC of a certain amount.

5Balafoutas uses the term public beliefs instead of social norms, which he defines as the
bureaucrat’s belief about how the public believes he is (i.e. how corrupt he is).
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3

The model

3.1 Model setup

The effect of IPHC on patient welfare given the existence of social norms about
IPHC will be studied for three versions of IPHC structures. In the first version,
the benchline case, IPHCs are non-existing. In the second version of the model,
not paying IPHCs is the social norm. However, physicians and patients are
allowed to exchange an IPHC if they wish to do so. In the third version of
the model, the social norm is to pay a certain IPHC, larger than zero. Again,
physicians and patients can exchange an IPHC larger than the socially accepted
amount.

For the benchline case as well as for the two versions where IPHCs are allowed,
the scenario when patients have zero reservation utility as well as the scenario
when patients have non-zero reservation utility will be studied. The two scenarios
can correspond to different types of patients: Severely ill patients who will almost
certainly die if not treated for their illness, and mildly ill patients who will almost
certainly survive although not treated by a physician. Also, the patients’ ability
to borrow money for IPHC when it exceeds their wealth will be varied, such that
either all or none the patients who need to borrow money do so.

The physician-patient meetings are modeled as independent two-stage games
which, in a large set, form the grand game. The grand game thus is a repetition
of a large number of two-stage games describing physician-patient encounters.
In all of the above listed versions of the model, each two-stage game (i.e. each
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3. THE MODEL

physician-patient meeting) consists of three steps, of which the first can be seen
as external (act of nature) to the two-stage game: (i) Patient and physician are
chosen by nature. The patient’s health, wealth and corruptibility (ethical sensi-
tivity to IPHC) and the physician’s level of compassion and corruptibility are all
randomly drawn. (ii) Utility is maximized. The physician then offers the patient
a treatment contract according to the results of his maximization. (iii) The pa-
tient agrees or does not agree on the contract offered by the physician according
to whether the utility they self expect getting from the treatment exceeds their
reservation utility or, when borrowing money is impossible, whether the IPHC
demanded exceeds their wealth.

The numerical value of the patient and physician utility from the treatment
in each simulated physician-patient meeting is calculated. After a large number
of iterations of the two-stage game, all the obtained patient utilities are used
to calculate the patient welfare according to two known social welfare functions:
the utilitarian social welfare function and the Rawlsian social welfare function
(maximin). In addition, the utilitarian patient welfare is calculated for the top
and bottom 10 % of the population (in utility) and the ratio of these two measures
is studied as an indication of equity. Also, health outcome from treatment (which
is an ingredient in both patients’ and physicians’ utility functions) is studied.
Mean health of the whole sample, mean health of the top and bottom 10 %
and the top-bottom ratio is studied. For all these measures, both the group of
all patients and the group of patients who received treatment will be studied.
Finally, physicians’ effort is exited from the simulations to better illustrate the
mechanisms behind the results obtained.

A Monte Carlo method is the used to estimate patient welfare. The grand
game is iterated a large amount of times and the mean of all the results is taken to
obtain a final numerical measure of patient welfare, health and physician effort.
The values obtained this way in the versions of the model where IPHCs are
allowed will then be compared to each other and to the values obtained from the
IPHC-free benchmark version of the model.

All the values of patient welfare, health and effort studied are numerical values
which of course have no meaning if standing alone. It is only in the comparison of
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3. THE MODEL

the three versions of the model, that the numbers obtained from the simulation
make sense.

In order to summarize the sequence of actions described above, figure 3.1
describes the timing of the two-stage game while figure 3.2 describes the Monte
Carlo estimation of welfare and health measures of the grand game.

Figure 3.1: Timing in a two-stage game

Figure 3.2: The Monte Carlo simulation of the iterated two-stage game

There are four sources of asymmetric information in the model. Firstly, it is
assumed that patients do not know their initial health status. Thus, the patients’
health status is private information for the physicians. Initial health status is
drawn from a unimodal beta distribution on the interval [0, 1].1 Even if patients
do not know their health status, they can (rightly) estimate it as bad, intermediate

1A beta distribution is a very flexible distribution defined on the interval [0, 1], depending
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3. THE MODEL

or good. Patients who have initial health status on the interval [0, 1
3 ] perceive

their own health as bad (initial health status set to 1/6). Patients with initial
health on the interval ]1

3 ,
2
3 ] perceive their own health as intermediate (initial

health status set to 0.5) and patients with initial health on the interval ]2
3 , 1]

perceive their own health as good (initial health status set to 5/6). Secondly,
the patients’ wealth is private information and randomly drawn for each two-
stage game from a unimodal beta-distribution on [0, 1]. Thus, physicians do not
know their patients’ wealth, but they estimate it when they constrain their own
utility maximization with patients’ reservation utility. Further, it will be assumed
that physicians rightly estimate patients wealth as low, intermediate and high.
Thus, all patients with wealth on the interval [0, 1

3 ] are seen by physicians as
poor (wealth set to the value 1/6), all patients with wealth on the interval ]1

3 ,
2
3 ]

are estimated to be averagely rich (wealth set to the value 0.5) and all patients
with wealth on the interval ]2

3 , 1] are seen as rich (wealth set to the value 5/6).
Thirdly, the corruptibility, i.e. the ethical sensitivity to IPHCs of patients, is
private information. In the model, corruptibility is expressed by the functional
form of the ethical-social norm component. For each patient and each physician,
a parameter is randomly drawn from a strictly decreasing beta distribution on
[0, 1]. The parameter then enters the ethical component, both multiplicatively
and as an exponent. This way, patients and physicians who are very opposed
to being more corrupt than what is socially acceptable, will both have a more
concave and larger ethics function than those who are not so opposed to engaging
in activities more corrupt than what is socially acceptable. Physicians know the
distribution of patient corruptibility and assume in every meeting that the patient
as averagely corrupt. Patients do not have to estimate physicians’ corruptibility
in the model.

Finally, physicians’ effort is private information and thus unobservable for
the patients. Instead, patients estimate the effort exerted by their physician and
calculate their expected utility based on that. Since the game simulated here
is a iterated two-stage game where a new physician-patient pair meets in every
step of the game, all patients expect their physician to exert “intermediate” effort

on its parameters, it can be either strictly decreasing or increasing, uniform or u-shaped. A
unimodal distribution has a single max-value on the interior of the set it is defined on.
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which corresponds to the value 0.5 (i.e. patients do not know the distribution
of physician effort and thus make a wild guess at 0.5), while physicians in fact
can exert effort that corresponds to any value on the interval [0, 1]2. It will be
assumed in the simulations to come that physicians are rather willing to exert
effort since they get only mild disutility from doing so.

This approach to modeling effort as private information is a rather uncon-
ventional one. A more standard approach to modeling would be to assume that
patients did have a consistent belief about the effort exerted by physicians and,
perhaps, that they could draw some inferences about the effort the physician is
planning to exert from the contract offered (a signaling game). However, due to
the complexity of the model and the numerical approach used, it is convenient to
assume that patients are completely ignorant about the distribution of physicians
when it comes to exerting effort both before and after physicians offer their con-
tract. This assumption only affects the occurrence of contract failure in the game,
and not the physicians’ optimal contract. This is so since patients’ expectation
of effort only enters in the patient’s evaluation of the contract. Consequently,
when the group of treated patients is studied, the results are independent of the
discussed assumption.

Even though there is no concrete information transmitted between stages of
the game, it is assumed that physicians are forward looking. It is also assumed
that after the treatment, patients can observe the health benefits they got from
the treatment (which they could not fully foresee before the treatment since
physician effort and their health status were unknown to them), and thus evalu-
ate their post-treatment utility. Physicians assume that if, after a treatment, a
patient finds out that he got utility less than his reservation utility from undergo-
ing the treatment, the patient will spread a bad reputation about the physician
which leads to fewer patients in the future.3 Therefore, physicians will constrain

2In a repeated game where information is transmitted between stages of the game, it would
be possible to let expected effort depend on previously observed treatment outcomes for a given
physician. If there is competition and a limited amount of patients, the frequency of patient
arrival for each physician can be made dependent on the expected effort. A model in this spirit
is discussed in McGuire (2000).

3Even if there is monopoly in the health sector, as is assumed here, physicians have to match
patients’ reservation utility from not undergoing treatment in order to attract patients.
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3. THE MODEL

their utility maximization so that post-treatment utility they expect patients to
get is larger than the utility physicians expect the patients would get from not
undergoing the treatment.

Physicians have compassion for their patients that is expressed by including
the treated patient’s health function in the physicians’ utility. The health function
enters with a multiplicative constant in front of it that describes the level of
compassion of the physician in question. This parameter is randomly drawn from
a unimodal beta distribution on [0, 1].

Finally, physicians are assumed to obtain fixed payments per patient from
their employer (the state). These are always the same independent of the char-
acteristics of the physician-patient meeting. This is a simplification that keeps a
large part of the mechanisms of health care sectors outside of the model. Since
the focus of the model is on the interaction of social norms and IPHCs, assuming
a (nonrealistic) simple payment scheme for physicians is justified.

The patient and physician utility functions are inspired by Vaithianathan
(2003). The main deviations from Vaithianathan’s model are: (i) Instead of only
giving the signs of the first and second derivates, the functional form will be
specified in order to use it for simulation. (ii) Treatment intensity will be made
dependent on IPHC, not vice versa as in Vaithianathan (2003). (iii) The variables
in patients’ and physicians’ utility functions are all defined on the interval [0, 1].
This way, the different units (health, money and effort) become comparable. (iv)
The utility functions in Vaithianathan (2003) are extended to include physician
effort and an ethical-social norm component for both patients and physicians.

The patients’ utility from health care is defined as:

Upat(z, e) = H(θ, t(z), e) +W (A, z)−M(z)
=

(
θδt(z)εeζ

)α
+ |A−z|

A−z

(
|A− z

∣∣∣)β − (1− r)
(
z − znorm

)r (3.1)

Where H(·) is the patient’s health, W (·) is the patient’s wealth and M(·) is
the patient’s ethical component. All three functions are increasing and concave
in all their arguments. This implies that α, β and r ∈ [0, 1]. The same holds
for H(·), δ, ε, ζ ∈ [0, 1], as well as δ + ε + ζ < 1 since health benefits from
treatment are assumed to have decreasing returns to scale. θ is the patient’s
initial health status, z is the amount of IPHC exchanged, e is the physician’s
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3. THE MODEL

effort and r is the patient’s corruptibility. A corrupt patient has a high value
of r and thus a small multiplicative parameter and a large exponent leading to
a weakly concave, slowly increasing function M(z) while a principled patient
has a large multiplicative parameter and a small exponential which results in a
strongly concave, rapidly increasing functionM(z). The variables θ, z, r and e are
all defined on the interval [0, 1]. The treatment intensity (or quality) is given by
t(z) =

√
(1− t2norm)(z − znorm) + t2norm. The functional form of t(z) ensures that

when z = znorm, the treatment intensity equals tnorm which is exogenously given
and depends on the quality of the health sector in the society studied. When
patients do not have the possibility to borrow money for IPHCs that exceed
their wealth, z is constrained to be less than or equal to A, so that W (A, z) =
|A−z|
A−z

(
|A− z

∣∣∣)β in the patients’ utility function is always larger or equal to zero.
When patients have the possibility to borrow money, z can exceed A, resulting
in W (A, z) = |A−z|

A−z

(
|A− z

∣∣∣)β < 0, i.e. disutility from debt.
The physicians’ utility function is defined as:

Uphys(z, e) = H̃(θ, t(z), e) + V (z)−M(z)− F (e)
= q

(
θδt(z)εeζ

)α
+
(
y + z

)µ
− w(1− g)

(
z − znorm

)g
− keη (3.2)

Where H̃(·) = qH(·) is the physician’s compassion towards the patient where
q measures the level of compassion, V (·) is physician’s monetary reward from
giving treatment, M(·) is the physician’s ethical component and F (·) describes
the physician’s sensitivity to effort. H̃(·), V (·),M(·) and F (·) are all strictly
increasing and concave in all arguments. As a consequence, µ, g, α and η ∈ [0, 1].
y is the salary the physician obtains for treating a patient. It is assumed that
y is fix, i.e. independent of effort and treatment intensity and the same for
all physician-patient encounters. g and k describe the physician’s corruptibility
and his disutility from exerting effort. Finally, w is a parameter that calibrates
the model so that a sufficiently large share of physicians demand the socially
accepted amount of IPHC in their meetings with patients. In the next section
where a simulation of the game is studied, α, β, γ, δ, ε, ζ, µ, σ, η, y and k will be
given fix values for all patients and physicians while r, q, g, A, θ and g will vary
between patients and physicians.
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The physician offers the patient a treatment contract given the results of his
maximization, t∗ and z∗. Due to the fact that the physician can only guess the
patient’s post-treatment utility from this contract (since wealth and corruptibility
are private information) and since patients’ pre-treatment utility can differ from
their post-treatment utility (since information about health results is revealed
post treatment), some patients will accept the contract offered and some patients
will not. When a patient turns down a contract, no treatment takes place and
the patient’s utility equals his reservation utility. Now, the physician’s utility
maximization in each version of the game will be described.

3.2 The benchline case where IPHCs are non-
existing

In the benchline case, IPHCs are not allowed. A consequence is that the ethical
component in both the patients’ and the physicians’ utility functions is eliminated.
The optimization faced by physicians thus is:

max
e

Uphys(e) = q
(
θδtεnorme

ζ
)α

+ yµ − keη

s.t. Ephys(Upat(e)) ≥ Ephys(Ũpat)

e ∈ [0, 1]

(3.3)

where Ephys(Upat(e)) is the by the physician expected patient utility from a given
treatment (where the physician guesses the patient’s wealth and corruptibility as
discussed above) and Ũpat is the patient’s reservation utility, i.e. the utility he
would get from not getting the treatment. tnorm = t(0) is exogenously given and
depends on the quality of the health sector in the society.

In the benchline case, since IPHCs are excluded, the physician maximizes his
utility over only one variable, effort = e. The problem is not convex for all values
of q and k, hence, a heuristic algorithm4 is used for solving the optimization
problem in the following chapter.

4A heuristic algorithm is an algorithm that uses domain specific information when searching
for a solution. It is guaranteed that a heuristic algorithm finds a good solution, but it is not
guaranteed that it finds the exact analytical solution to the problem (e.g. due to discrete step
size when searching for an optimal solution).
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3.3 The social norm is IPHC = 0

Here, the social norm is not to pay any IPHCs. Still, patients and physicians
have the possibility to go against the social norm and exchange an IPHC greater
than zero. The optimization problem faced by physicians in this version of the
model thus is:

max
e,z

Uphys(e, z) = q
(
θδt(z)εeζ

)α
+
(
y + z

)µ
− w(1− g)zg − keη

s.t. Ephys(Upat(e, z)) ≥ Ephys(Ũpat)

e ∈ [0, 1](
z ∈ [0, Ephys(A)]

) (3.4)

Where, again, Ephys(Upat(e, z)) is the utility the physician expects the patient to
have from the treatment and Ũpat is the patient’s reservation utility. Since znorm =
0, t(z) =

√
(1− t2norm)z + t2norm where tnorm is exogenously given. The model will

be studied with and without the constraint presented inside parenthesis, i.e. with
and without the possibility of borrowing money.

Due to the fact that the variable z (IPHC) is now included, the optimization
problem faced by the physician is now over two variables, e and z. It can be
shown that, as in the benchline case, the optimization problem is not convex.5

Thus, again, the solution to the problem will be found using a heuristic algorithm
for non-convex problems.

3.4 The social norm is IPHC > 0

Here, the social norm is to pay a nonzero IPHC, referred to as znorm in the
model. Physicians and patients can follow the norm, or exchange an IPHC greater
than the socially accepted amount, znorm. The optimization problem faced by

5The Hessian matrices of the objective function and the constraints rewritten on standard
form are not positive definite.
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physicians in this version of the model thus is:

max
e,z

Uphys(e, z) = q
(
θδt(z)εeζ

)α
+
(
y + z

)µ
− w(1− g)

(
z − znorm

)g
− keη

s.t. Ephys(Upat(e, z)) ≥ Ephys(Ũpat)

e ∈ [0, 1](
z ∈ [znorm, Ephys(A)]

)
(3.5)

with the same variable definitions as in the previous section, except that now
t(z) =

√
(1− t2norm)(z − znorm) + t2norm. Again, the model will be studied with

and without the last constraint, and again it holds that the optimization problem
is non-convex which implies that analytical methods do not work and a heuristic
algorithm is needed to solve the problem.

3.5 Patient welfare

The patient welfare of the game will be calculated for all versions of the model
using two types of welfare functions; a utilitarian function and a Rawlsian one.
Also, the utilitarian welfare for the top and bottom 10% will be calculated and
the top-bottom ratio taken. This gives some indications about equity in the grand
game. Finally, health outcomes from treatment (average, top and bottom 10%
and top-bottom ratio) and the average physician effort are studied. In all these
cases, a Monte Carlo method will be used to estimate all the studied measures
of patient welfare and health outcomes in the grand game. Moreover, both the
group of all patients and the group of patients who have undergone treatment
will be studied. Below are definitions of the patient welfare functions used.

The utilitarian social welfare function does not take the spread of utilities into
account, only the total sum. The utilitarian patient welfare is given by:

n∑
i=1

Upat
i (3.6)

According to the Rawlsian social welfare function, also known as the maximin
welfare function, welfare is maximized when the utility of the individual with the
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lowest utility of all is maximized. The Rawlsian patient welfare is defined as:

max(min(Upat
i )), ∀i ∈ [1, n] (3.7)
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Simulations and results

4.1 Four examples of physician-patient encoun-
ters

Before simulating the grand game, the results of four physician-patient encounters

in the benchline case and the two cases where IPHCs are allowed are compared.

In the first encounter, an average physician-patient pair, i.e. with health, wealth

and corruptibility on the mean of the beta distributions that will be used in the

simulations, meets. In the second encounter, a principled physician with low

compassion meets a corrupt patient. In the third encounter, a principled physi-

cian with high compassion meets a principled patient, and finally a principled

physician with high compassion and a corrupt patient will interact. The outcome

of these three meetings in all versions of the model will then be studied. In all

four cases, the patient is characterized with initial health status θ = 0.5 (and

thus Epat(θ) = 0.5) and wealth, A = 0.5 (and thus Ephys(A) = 0.5). Other pa-

rameters are assigned the value they will have throughout the simulations that
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follow. These are:

Exponentials in health function δ = 0.25
ε = 0.25
ζ = 0.25

Exponential forH(·) α = 0.7
Exponential forW (·) β = 0.5
Exponential forV (·) µ = 0.5
Exponential for effort, e η = 0.5
Exponential for corruptibility g = 1/6
Constant for effort, e k = 0.1
Constant for corruptibility (phys. only), w = 2
Physicians’ salary y = 0.5
Normal level of treatment tnorm = 0.5
When IPHC norm non-zero znorm = 0.15

(4.1)

In the first case, the patient is characterized with corruptibility parameter r =
1/6 and the physician with corruptibility parameter g = 1/6 and compassion
parameter q = 1/6. In the second case, the patient has r = 0.8 and the physician
has g = 0.1, q = 0.1. In the third case, the patient has r = 0.8 and the physician
has g = 0.1, q = 0.5. In the fourth and the last case, the patient has r = 0.8 and
the physician has g = 0.8, q = 0.8.

If the contract offered by the physician is such that the patient’s expected
utility from it is less than zero, the patient does not accept the contract and the
utility of both parties becomes zero (i.e. patients’ reservation utility is assumed
to be zero and patients can borrow for IPHCs larger than their wealth).

Here, and in the simulations that follow, Matlab’s fmincon function with
the interior point algorithm is used to solve the physician’s utility maximization
problem. Since the problem is not convex, the interior-point algorithm can only
find local minima. To avoid ending up in a local minimum that is not a global
minimum, two starting points for the algorithm are tested and the minimum of
those is taken as the global minimum on the feasible set.1 The results of the
optimization are presented in table 7.1 in the appendix.

1−Uphys is always non-convex in IPHC. An investigation of δ(−Uphys)
δe and δ2(−Uphys)

δe2 when
IPHC = 0 shows that −Uphys is convex in e, except for small values of q and e. When −Uphys
is not convex in e, it is strictly increasing. As a result, Even though −Uphys is non-convex in
IPHC, it suffices to try two starting points, one with a high values of IPHC and one with a low
value of IPHC to be sure to end up in the global minimum in one of the minimizations. This
is so since there is only a single minimum in effort for a fixed value of IPHC
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The main conclusions to be drawn from the results are that generally, patient
utility drops when IPHC becomes a norm in society and when the norm increases,
while there seems not to be as a clear pattern for physician utility. If, however,
patients are sufficiently corrupt, they can get higher utility when the norm is to
pay an IPHC greater than zero, as is the case in the third simulated game in table
7.1. Also, if the physician is corrupt and has little compassion for his principled
patient, a contract failure will take place due to the expectation of the patient
that his utility from the treatment offered will be less than zero.

There is no guarantee in the model that physicians cannot get disutility from
giving treatment, as becomes clear in the third game in table 7.1 where the
physician gets disutility from treating the patient. This feature of the model is
justified if physicians are assumed to be obliged by their employer to offer every
patient who comes to them a treatment. An alternative would be to make the
maximal utility of a physician (U∗phys) in a given physician-patient encounter the
third source of contract failure, in which case both parties would get a zero utility
when U∗phys < 0.

The four two-stage games analyzed here are examples of how the games that
constitute the set of two-stage games which define the grand game look like.
However, in the two-stage games of the grand game, patients’ wealth A and
health status θ will vary since they are randomly drawn in each of the two-stage
games. Also, it was assumed here that the patient always had zero reservation
utility and always borrows money when the IPHC demanded exceeds his wealth,
while in the grand game, the case when patients’ reservation utility is larger than
zero as well as the case where patients cannot borrow money will also be studied.

4.2 The grand game: An iterated two-stage game

A set of 50 two-stage games which define one grand game are simulated. This
is repeated 50 times and the average result of the 50 grand games gives the fi-
nal outcome on patient welfare, health and physician effort for the group of all
patients and the group of treated patients only. The fix parameters of the simula-
tion are given in the previous section. Patients’ wealth and health are randomly
drawn from a beta(2, 2) distribution which is unimodal and symmetric on [0,1]
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around its mean, 0.5. Physicians’ compassion for patients’ health improvement
from the given treatment is randomly drawn from a beta(2, 10) distribution which
is a skew, unimodal distribution on [0, 1] with mean value 1/6. Finally, both pa-
tients’ and physicians’ corruptibility is randomly drawn from a strictly decreasing
beta(1, 5) distribution with mean value 1/6. As discussed in the previous section,
for all the versions of the model (benchline, IPHCnorm = 0 and IPHCnorm > 0),
the grand game will be simulated for two types of patients, with zero reservation
utility and non-zero reservation utility with and without the possibility to borrow
money for the IPHCs when they exceed the patient’s wealth. The results from
running all model versions are presented in tables 7.2 to 7.5.

The results show that in all four versions of the model, patient welfare de-
creases in all its measures when IPHCs are introduced to the model and when
IPHCnorm increases, both for the group of all patients and for the group of treated
patients only. The cause of this is twofold, an increased cost for the patients when
they have to pay an IPHC and an increased probability of contract failure. Worse
health outcomes from treatment do however not explain the decline in patient
welfare when IPHCs enter the model and when IPHCnorm increases. The results
show that when all patients are taken into account, patients are not better off
in the benchline case than in the other two cases when it comes to measures of
health outcome. Even if equality measures of health are better in the benchline
case when all patients are taken into account than in the other two cases,2 average
health of all patients is worse in the benchline case than in the other two cases.

When the case with IPHCnorm = 0 is compared to the case with IPHCnorm >

0, it turns out that when the group of all patients is studied, there is no obvious
answer to which case has better health outcomes. When patients have zero reser-
vation utility, the average health outcome is better in the IPHCnorm > 0 case
than when IPHCnorm = 0 and vice versa when patients have non-zero reservation
utility. This indicates that at least when patients have zero reservation utility,
health outcomes do not explain the fall in utility when IPHCnorm increases.

2This is due to the fact that in the benchline case, all patients undergo treatment. The
functional form of patients’ utility is such that even when physicians choose to exert no effort,
the utility patients get from the treatment equals their reservation utility when it is non-zero
(and exceeds it when it is zero).
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If only the group of treated patients is taken into account, the result that
utility decreases when IPHCs enter the model and IPHCnorm increases sustains.
The results on health outcomes differ however from the results when all patients
are taken into account. Health outcomes of treated patients only is, in all cases
and all measures, increasing when IPHCs are introduced and IPHCnorm increases.
The difference in health results between the group of all patients and the group of
treated patients can be explained by the increased rate of contract failure when
IPHCnorm increases.

In order to explain the increase in health outcomes of treated patients when
IPHCnorm grows larger, one needs to study the patients’ health function. From
H(·) it can be seen that IPHCs are not the direct cause of better health outcomes
since, as seen on the functional form of the health function, the normal treatment
intensity/quality is the same (= 0.5) whether IPHCnorm = 0 or IPHCnorm > 0. It
is only the deviation from the social norm that results in higher intensity and/or
better quality treatment. Rather, the results show that it is increased physician
effort that explains the increase in health outcomes. In all four versions of the
model presented in tables 7.2 to 7.5, physicians mean effort exerted both for
the group of treated patients and the group of all patients, including those who
are not treated where no effort was exerted, is higher when IPHCnorm > 0 than
when IPHCnorm = 0.

The big question then is why physicians choose to exert more effort when
IPHCnorm > 0 than when IPHCnorm = 0. The answer lies in the fact that when
IPHCnorm increases, the probability that the constraint that ensures that the
utility physicians expect patients to get from treatment exceeds the reservation
utility physicians expect patients to have, binds more often which leads to higher
optimal levels of effort for physicians. This becomes clearer when visualizing the
utility of the average physician as well as the utility of another physician with
corruptibility, g = 0.1 and compassion level, q = 0.9 when meeting a patient
with initial health status equal to 0.5 who pays an IPHC equal to 0.2 when the
social norm is to pay a bribe equal to 0.15. This is illustrated in figures 4.1 and
4.2. Note that varying the IPHC away from 0.2 will not change the shape of the
physicians’ utility functions, only the position of the maximum point in figure 4.1
and the values on the y-axis (utility).
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Figure 4.1: Utility function of the average physician when treating a patient with
initial health status, θ = 0.5 when IPHC is held fixed at 0.2 and IPHCnorm = 0.15

Figure 4.2: Utility function of a physician with g = 0.1 and q = 0.95 when
treating a patient with initial health status, θ = 0.5 when IPHC is held fixed at
0.2 and IPHCnorm = 0.15
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The figures show that the solution to the unconstrained optimization problem
is effort ≈ 0 in the former case and effort = 1 in the latter. Due to the fact that
effort ≈ 0 is likely to be outside the feasible area since expected patient utility
has to exceed expected patient reservation utility, physicians will choose an effort
level significantly larger than 0 when the patient-utility constraint binds. An
increasing level of IPHCnorm leads to increased monetary disutility for patients
from the IPHC demanded. Physicians therefore have to exert more effort in
order to compensate for the disutility patients have from IPHCs to ensure that
the patient utility equals the reservation utility the physician expects the patient
to have. The result is higher effort when IPHCnorm increases.
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Robustness

In order to study whether the results obtained in the previous chapter hold when
assumptions and model details are changed, the simulations will be repeated for
several alternative model setups. First, the multiplicative parameter in front of
effort in the physicians’ utility function will be modified, first upward to express
increased disutility from effort and then downward to express decreased disutility
from effort. Then, the distributional assumptions made about physician and
patient characteristics will be altered. It will nonetheless still be assumed that
the distribution for corruptibility is a strictly decreasing beta distribution on [0, 1]
and that the distribution for compassion is a unimodal beta distribution. Lastly,
an alternative health function will be used. When altering the functional form of
the health function, the exponentials in the function and the exponential for the
function in the patients’ utility function will be replaced.

Holding everything except the distributions the same as in the grand game
in the previous section, the multiplicative parameter in front of effort disutility
will be set to 10 and 0.01 respectively. Then, it will be assumed that physicians’
corruptibility is beta(1, 2) distributed, that patients’ corruptibility is beta(1, 20)
distributed and that the level of physician compassion is beta(2, 50) distributed
(i.e. physicians are uncompassionate and corrupt while patients are principled).
Finally, it will be assumed that the health function takes the new functional
form H(θ, t(z), e) = (θ0.4t(z)0.3e0.2)0.2 while everything else (including the beta
distributions) is the same as in the grand game in the previous section.
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For all of the above described alternative versions of the model, the results,
presented in tables 7.6 to 7.21 in the appendix, are similar to the results obtained
in the previous chapter. Measures of patient welfare generally decrease when
IPHCs are introduced and IPHCnorm increases,1 and the rate of contract failure
increases when IPHCs are introduced and IPHCnorm increases. However, contrary
to the results in the previous section, health outcomes for treated patients in the
benchline case are better than in the other two cases when the multiplicative
parameter in front of effort is low, expressing low disutility from exerting effort
for physicians. Despite this, when the multiplicative parameter in front of effort
is low, the more interesting comparison between the two cases where IPHCs are
taken into account shows results more similar to those in the previous section:
There are better health outcomes when IPHCnorm > 0 than when IPHCnorm = 0
for the group of treated patients. This always holds when patients have non-zero
reservation utility (i.e. mildly ill) in all of the model versions tried, but is less clear
and does not hold in all versions of the model when patients have zero reservation
utility. What explains this is the fact that when reservation utility is higher,
the constraint describing physicians’ forward looking behavior binds more often,
leading to higher physician effort and thus better health outcomes for treated
patients. Whether physicians’ utility maximization is sensitive to this constraint
depends on the functional form of their utility function and assumptions of the
model, which is precisely what was altered in the alternative versions of the model
studied here.

The results of the simulations when the alternative distributions of charac-
teristics are used show a very high rate of contract failures that cannot be cali-
brated away by adjusting the calibration parameter, w. This is due to the fact
the distribution of patients’ corruptibility has a larger standard deviation than

1There are a few exceptions, Rawlsian utility and the utilitarian utility of the bottom 10% are
higher when IPHCnorm=0 when the multiplicative parameter in front of effort is large (= 10),
patients have zero reservation utility and cannot borrow money for IPHCs. Also, equality
measures of patient welfare such as Rawlsian welfare, the utilitarian welfare of the bottom 10%
and the ratio of the top and bottom 10% turn out slightly better when IPHCnorm = 0 than
when IPHCnorm > 0 in some of the versions of the model where alternative characteristics
distributions are used. When this is the case, most often, the difference between the two
measures is not significant at the 0.05 level.
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the distribution used in the previous section, hence physicians (who always as-
sume that patients’ corruptibility equals the mean of the distribution) more often
over- or underestimate patients’ corruptibility which results in an offered contract
that does not fulfill the patients’ expectations, i.e. does not match the patients’
reservation utility.
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Discussion

In this thesis, a Monte Carlo simulation was used to study the welfare effects of
introducing informal payments for health care into a model of physician-patient
interaction that takes social norms about informal payments into account. The
main results are that traditional measures of patient welfare decrease when infor-
mal payments are introduced and when the socially accepted amount of informal
payments for health care increases. Health outcomes, however, turn out to be
better when it is the norm to pay an IPHC than when the socially accepted
amount of IPHC is zero.

This holds for the group of all patients when patients have zero reservation
utility, i.e. are severely ill and will almost certainly die from their illness, but also
and even more strongly for the group of treated patients, irrespective of their
reservation utility or ability to borrow money. However, robustness studies of
the result for treated patients show that under certain circumstances, the result
that health outcomes are better when IPHCnorm > 0 than when IPHCnorm = 0,
only holds for treated patients with non-zero reservation utility. This is due
to the fact that constraints that bind physicians to ensure that patients get at
least their reservation utility from treatment bind more often than when patients’
reservation utility is zero. The conclusion is that it is the patients’ disutility from
paying IPHC as well as increased probability of contract failure when IPHCs are
introduced to the model and when IPHCnorm increases that explains the drop in
patient welfare observed in the results.
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At the same time, it is increased physician effort due to the more frequently
binding of the constraint that describes physicians’ forward looking nature that
explains the increase in physician effort, which, in turn, explains better health
outcomes when IPHCs are introduced and IPHCnorm increases.

Lower social welfare in corrupt societies is a standard result in the literature
(see e.g. Gupta et al. (2002)). The results of the model presented here that
patient welfare goes down then IPHCs are introduced and increase is in line with
this. Also, cross-country studies show that corruption and poor health outcomes
go hand in hand (see e.g. Gupta et al. (2000)). The results of the simulation
presented here show that although the overall effect of IPHCs might lead to
negative health outcomes on the whole, as empirical evidence indicate, it is not
the case that poor health outcomes are necessary when IPHCs are an established
part of the health care sector. This thesis shows that when physicians are forward
looking and physicians and patients do not bargain about IPHCs (i.e. contract
failures occur), at least mildly ill patients (with non-zero reservation utility) who
undergo treatment, get better health outcomes when paying IPHCs is a social
norm than when it is not. This result is found by comparing the two more realistic
versions of the model, a society where IPHCs can occur but where the social norm
is not to pay an IPHC with a society where paying a certain level of IPHC is the
social norm.1

Despite better health outcomes when treated patients are studied, it is a fact
that the number of patients who receive no treatment increases when IPHCnorm

goes up due to the increased probability of contract failure caused by asymmetric
information about patients’ initial health status, patients’ wealth, physicians’
level of compassion and patients’ and physicians’ corruptibility. Reducing the
rate of contract failure when IPHCnorm > 0 would increase the health outcome
of all patients and possibly lead to better overall health outcomes than in the
IPHCnorm = 0 case.

Accordingly, a social planner in a society where IPHCnorm > 0 who wants to
increase the average health outcome of all patients has the choice between reduc-

1A society where IPHCs are non-existing like in the benchline case is probably very hard
to find. It is therefore much more interesting to compare the two versions of the model where
IPHCs in fact exisit.
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ing IPHCnorm and thus reducing the occurrence of contract failures while reducing
the health outcome of treated patients, and only reducing the rate of contract fail-
ure by minimizing the effect of asymmetric information in the physician-patient
meeting. Due to the fact that social norms are rigid and hard to alter, the former
option is hard to realize. Minimizing asymmetric information is a more realistic
way to go for the social planner.

Improved information about illnesses and symptoms accessible for patients
would improve their estimation of their own health status and thus decrease the
probability of contract failure. This could happen through information about
symptoms and illnesses on the internet (given that patients have access to the in-
ternet) or through an independent telephone line (similar to “sjukvårdsupplysnin-
gen” in Sweden) where patients can get information about their symptoms and
their gravity. In a very corrupt society, it could however be hard to maintain
the independence of such a telephone line and thus assure the correctness of the
information given there.

Another possibility would be to give physicians access to records about pa-
tients’ income and wealth. This is however an unrealistic option for policy makers
since it is doubtful from a personal integrity point of view. Also, especially in
less developed societies, it is not certain that such records exist.

Interesting extensions and variations of the model would for example be to
“randomize” the model even more and thus make it more general. Making the
disutility physicians get from exerting effort a randomly distributed part of their
characteristic would be an interesting extension. Letting patients’ reservation
utility randomly vary on the interval [0,

√
wealth] would also make it possible

to investigate a society where patient’s condition varies from mildly ill and non-
life threatening to severe and life threatening. If this would be done, one would
however need to make the reservation utility dependent on the initial health
status, which is not necessary when only one group of patients, severely ill or
mildly ill, is studied.

Also, it would be interesting to vary the salary physicians receive, as well
as the normal treatment intensity or quality denoted tnorm in the model. Al-
tering physicians salaries and tnorm could e.g. correspond to going from a less
developed society (with lower tnorm and physician salary) to a more developed
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one (with higher tnorm and physician salary). Higher salary for physicians lowers
their marginal utility of IPHCs and thus leads to contracts with lower demanded
IPHC while higher tnorm improves health outcomes from treatment which leads
to lower marginal utility from health outcomes for patients. The overall effect
of these changes in the model is ambiguous since, while physicians will demand
lower IPHCs, the higher treatment intensity/quality leads to lower marginal util-
ity from improved health outcomes and thus less of an incentive to exert effort
for physicians. If the physician salaries and the tnorm were set to small values
corresponding to a poorly developed society, the results would be the opposite,
physicians would demand higher IPHCs and higher marginal utility from health
leads to more incentive to exert effort.

Another possibility would be to study the effects of IPHCs in a society where
there is competition among physicians. Competition could be added to the model
by increasing patients’ reservation utility so that it matches the utility they would
get if treated by an alternative physician. Also, by adding a time dimension to
the model so that information is transmitted between stages of the game, the
number of patient arriving to a certain physician depends on the reputation of
the physician (which is worse when patients’ utility from treatment is often lower
than their reservation utility). This is in the spirit of the model presented in
McGuire (2000).

Still another interesting extension would be to add an honest/dishonest di-
mension to physicians characteristics. Corrupt dishonest physicians would then
demand IPHC larger than the norm but not increase the treatment quality or
intensity as was expected by the patient paying the IPHC. In a game with time
dimension and information transmitted between stages, this would have an addi-
tional effect on physician reputation and thus on the number of patients arriving
to physicians.

Irrespective of all possible and interesting extensions of the model presented
here, a next step in this line of research would be to simplify the model in order to
solve it analytically and obtain more concrete results. The model studied here is
to be seen as a numerical study of two corruption equilibria, IPHCnorm = 0 and
IPHCnorm = 0.15, where patients’ welfare and health outcomes are compared.
The results are therefore both a good indication of which results to expect from
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analytically solving the (simplified) model and a good guide to what to focus on
when modeling the physician-patient encounter analytically.

A first step in this direction would be to solve the model as a static Bayesian
game. This would imply that patients’ expectations about physician effort are
endogenized so that patients have a consistent belief about to what extend physi-
cians exert effort. In such a game, a Bayesian-Nash equilibrium that describes
the game could be found and patient welfare calculated accordingly.

A second step would be to model the physician-patient encounter as a dynamic
game with information transmitted between stages of the game (as in McGuire
(2000), see footnote in chapter 3. p. 16) where a Perfect Bayesian Equilibrium
describes the equilibrium of the game.

The results from solving the static Bayesian version of the model will hopefully
be similar to the results obtained here. The occurrence of contract failure is
however expected to differ from the model presented here since making patients’
belief about physician effort consistent changes the utility patients’ expect to get
from a contract offered and thus the probability that they will accept the contract
(See discussion in chapter 3.1).

When introducing dynamics to the model, the results will probably change
more substantially. In a dynamic model where e.g. physicians are long-run players
and patients are short-run players, the physicians will strive to hold up their
good reputation and, given that they know the risk of contract failure, even when
their “forward looking constraint” binds (due to asymmetric information), the
physicians might choose an interior solution with lower utility than their optimal
one in the one-shot game but where the risk of patient utility after treatment
being lower than patient reservation utility is minimal.

38



7

Appendix

7.1 Tables

Model e∗ z∗ Uphys Upat

q = 1/6, r = g = 1/6
Benchline 0.0903 - 0.7629 1.2222
znorm = 0 0.1006 0 0.7359 1.2186
znorm = 0.15 0.0989 0.1500 0.8300 1.0990

q = 0.1, r = 0.1,g = 0.9
Benchline 0.0188 - 0.7323 1.0983
znorm = 0 0 0.5 0. 0
znorm = 0.15 0 0.5 0 0

q = 0.5, r = 0.8,g = 0.1
Benchline 1 - 0.9994 1.4917
znorm = 0 0.6533 0.0343 −0.2674 1.4035
znorm = 0.15 0.9194 0.15 0.9161 1.3647

q = 0.8, r = 0.8,g = 0.8
Benchline 1 - 1.2348 1.4917
znorm = 0 1 0.5 1.3503 0.7355
znorm = 0.2 1 0.5 1.3956 0.7505

Table 7.1: Results from three different one-stage games

39



7. APPENDIX

Benchline znorm = 0 znorm = 0.15
Utilitarian 58.0740 (1.8218) 50.2113 (2.7682) 42.4739 (3.5865)
Rawlsian 0.6056 (0.1138)* -0.1160 (0.1276) -0.1586 (0.1249)
Bottom 10%Utilitarian 3.6911 (0.3401) 0.3672 (0.6104) -0.1364 (0.3444)
Utilitarian bottom

top
0.3997 (0.0392) 0.0410 (0.0682) -0.0156 (0.0393)

Utilitarian, treated 58.0740 (1.8218) 50.2113 (2.7682) 42.4739 (3.5865)
Rawlsian, treated 0.6056 (0.1138) -0.0309 (0.2345) -0.1354 (0.1626)
Bottom 10% Utilitarian, treated 0.0738 (0.0068) 0.0278 (0.0186) 0.0086 (0.0143)
Utilitarian bottom

top
, treated 0.3997 (0.0392) 0.1776 (0.1190) 0.0540 (0.0904)

Mean health 0.3621(0.0275) 0.4410(0.0270) 0.4465 (0.0297)
Bottom 10% Health 0.0517 (0.0132) 0.0454 (0.0279)* 0.0277 (0.0306)
Health bottom

top
0.1251 (0.0327)* 0.1067 (0.0657)* 0.0656 (0.0726)*

Mean health, treated 0.0826 (0.0047) 0.0743 (0.0043)* 0.0761 (0.0048)
Bottom 10% Health, treated 0.0103 (0.0237) 0.0222 (0.0048)* 0.0237 (0.0050)
Health bottom

top
, treated 0.1251 (0.0327) 0.2992 (0.0673) 0.3119 (0.0682)

Mean Phys. Effort 0.1817 (0.0364) 0.2915 (0.0471) 0.3117 (0.0471)
Mean Phys. Effort, treated 0.1817 (0.0364) 0.3064 (0.0486) 0.3372 (0.0486)
Contract failure, % 0% 4.84% 7.62%

Table 7.2: Results from the grand game when patients have zero reservation utility and can borrow
money for IPHC. Sample standard deviation in parentheses. *: Either the null hypotheses that the value
in the box differs from the value to its right (benchline being to the right of znorm = 0.15) cannot be
rejected at the 0.05 significance level according to a t-test, or a t-test cannot be performed since the data
is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 58.2420 (2.0346) 53.8229 (2.3798) 48.4697 (2.6090)
Rawlsian 0.6042 (0.0967) 0.3685 (0.1040) 0.2121 (0.1190)
Bottom 10%Utilitarian 3.6515 (0.3310) 2.6426 (0.3706) 1.8568 (0.4651)
Utilitarian bottom

top
0.3897 (0.0379) 0.2919 (0.0420) 0.2119 (0.0534)

Utilitarian, treated 58.2420 (2.0346) 48.1718 (3.6381) 41.0918 (3.6866)
Rawlsian, treated 0.6042 (0.0967) 0.4672 (0.1301) 0.2426 (0.1447)
Bottom 10% Utilitarian, treated 0.0730 (0.0066) 0.0626 (0.0113) 0.0432 (0.0130)
Utilitarian bottom

top
, treated 0.3897 (0.0379) 0.3579 (0.0682) 0.2542 (0.0785)

Mean health 0.3637 (0.0259) 0.3949 (0.0321) 0.3826 (0.0320)
Bottom 10% Health 0.0511 (0.0106)* 0.0011 (0.0044)* 0 (0)
Health bottom

top
0.1237 (0.0270)* 0.0026 (0.0102)* 0 (-)

Mean health, treated 0.3637 (0.0259) 0.4701 (0.0268) 0.4861 (0.0251)
Bottom 10% Health, treated 0.0102 (0.0021) 0.0200 (0.0053) 0.0252 (0.0064)
Health bottom

top
, treated 0.1237 (0.0270) 0.2421 (0.0656) 0.3088 (0.0835)

Mean Phys. Effort 0.1887 (0.0424) 0.2761 (0.0425)* 0.2677 (0.0419)
Mean Phys. Effort, treated 0.1887 (0.0424) 0.3286 (0.0470)* 0.3399 (0.0461)
Contract failure, % 0% 15.96% 21.28%

Table 7.3: Results from the grand game when patients have non-zero reservation utility and can
borrow money for IPHC. Sample standard deviation in parentheses. *: Either the null hypotheses that the
value in the box differs from the value to its right (benchline being to the right of znorm = 0.15) cannot
be rejected at the 0.05 significance level according to a t-test, or a t-test cannot be performed since the
data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 57.6970 (1.7373) 49.8492 (3.2058) 41.9734 (3.5791)
Rawlsian 0.6186 (0.0950)* -0.0725 (0.1120)* -0.1113 (0.1229)*
Bottom 10%Utilitarian 3.6901 (0.3082)* 0.4787 (0.7183)* -0.0972 (0.1896)
Utilitarian bottom

top
0.4018 (0.0367)* 0.0543 (0.0815)* -0.0112 (0.0219)

Utilitarian, treated 57.6970 (1.7373) 49.8492 (3.2058) 41.9734 (3.5791)
Rawlsian, treated 0.6186 (0.0950) -0.0002 (0.1880) -0.0734 (0.1710)
Bottom 10% Utilitarian, treated 0.0738 (0.0062) 0.0299 (0.0157) 0.0164 (0.0132)*
Utilitarian bottom

top
, treated 0.4018 (0.0367)* 0.1906 (0.1011) 0.0992 (0.0801)

Mean health 0.3537 (0.0248) 0.4568 (0.0214) 0.4844 (0.0237)
Bottom 10% Health 0.0486 (0.0120)* 0.0462 (0.0378)* 0.0065 (0.0152)*
Health bottom

top
0.1200 (0.0307)* 0.1100 (0.0899)* 0.0155 (0.0363)*

Mean health, treated 0.3537 (0.0248) 0.4568 (0.0214) 0.4844 (0.0237)
Bottom 10% Health, treated 0.0097 (0.0024)* 0.0223 (0.0039) 0.0256 (0.0051)*
Health bottom

top
, treated 0.1200 (0.0307)* 0.2990 (0.0550)* 0.3196 (0.0678)*

MeanPhys. Effort 0.1716 (0.0371) 0.2813 (0.0397) 0.3012 (0.0383)
Mean Phys. Effort, treated 0.1716 (0.0371) 0.2968 (0.0410) 0.3461 (0.0426)
Contract failure, % 0% 5.2% 12.88%

Table 7.4: Results from the grand game when patients have zero reservation utility and cannot borrow
money for IPHC. Sample standard deviation in parentheses. *: Either the null hypotheses that the value
in the box differs from the value to its right (benchline being to the right of znorm = 0.15) cannot be
rejected at the 0.05 significance level according to a t-test, or a t-test cannot be performed since the data
is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 58.2529 (1.7789) 53.1770 (1.8002) 48.1711 (2.3281)
Rawlsian 0.6172 (0.1012) 0.3568 (0.1372)* 0.2442 (0.0615)*
Bottom 10%Utilitarian 3.7118 (0.3467) 2.5680 (0.5011) 1.8180 (0.3267)
Utilitarian bottom

top
0.3996 (0.0394) 0.2865 (0.0563) 0.2075 (0.0378)

Utilitarian, treated 58.2529 (1.7789) 47.6902 (3.0374)* 41.2589 (3.6096)
Rawlsian, treated 0.6172 (0.1012) 0.4376 (0.1691)* 0.4219 (0.1140)
Bottom 10% Utilitarian, treated 0.0742 (0.0069) 0.0607 (0.0124) 0.0587 (0.0114)
Utilitarian bottom

top
, treated 0.3996 (0.0394) 0.3479 (0.0740) 0.3485 (0.0727)

Mean health 0.3654 (0.0285)* 0.3861 (0.0292)* 0.3626 (0.0340)*
Bottom 10% Health 0.0538 (0.0121)* 0.0023 (0.0164)* 0 (0)
Health bottom

top
0.1291 (0.0301)* 0.0055 (0.0388)* 0 (0)

Mean health, treated 0.3654 (0.0285) 0.4647 (0.0244) 0.4905 (0.0265)
Bottom 10% Health, treated 0.0108 (0.0024) 0.0205 (0.0053) 0.0259 (0.0065)
Health bottom

top
, treated 0.1291 (0.0301) 0.2493 (0.0657) 0.3217 (0.0853)

MeanPhys. Effort 0.1893 (0.0393)* 0.2614 (0.0358)* 0.2590 (0.0378)*
Mean Phys. Effort, treated 0.1893 (0.0393)* 0.3148 (0.0409) 0.3506 (0.0455)*
Contract failure, % 0% 16.84% 26.08%

Table 7.5: Results from the grand game when patients have non-zero reservation utility and cannot
borrow money for IPHC. Sample standard deviation in parentheses. *: Either the null hypotheses that the
value in the box differs from the value to its right (benchline being to the right of znorm = 0.15) cannot
be rejected at the 0.05 significance level according to a t-test, or a t-test cannot be performed since the
data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 36.4259 (1.3198) 25.0392 (2.9125) 17.5863 (2.6005)
Rawlsian 0.3082 (0.0641)* -0.5129

(0.1496)*
-0.5605
(0.1116)*

Bottom 10%Utilitarian 2.0235 (0.2710) -1.3220 (0.6900) -1.8413 (0.5527)
Utilitarian bottom

top
0.3482 (0.0473) -0.2374 (0.1242) -0.3672 (0.1109)

Mean health, treated 0.0120 (0.0007)* 0.0167 (0.0017)* 0.0191 (0.0180)*
Bottom 10% Health, treated 0.0510 (0.0031) 0.0384 (0.0034) 0.0411 (0.0024)
Health bottom

top
, treated 0.2156 (0.0253) 0.1553 (0.0594)* 0.1424 (0.0757)

Phys. Effort, treated 1.8919·10−7

(4.9550·10−8)*
3.7321·10−6

(4.6269·10−6)*
1.3348·10−5

(9.5263·10−6)*
Contract failure, % 0% 4.00% 7.76%

Table 7.6: Results from the grand game when patients have zero reservation utility and can borrow
money for IPHC with multiplicative parameter for effort = −10. Sample standard deviation in parentheses.
*: Either the null hypotheses that the value in the box differs from the value to its right (benchline being
to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according to a t-test, or a
t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 36.5980 (1.2423) 31.5929 (1.7099) 30.7597 (1.6255)
Rawlsian 0.2953 (0.0896) -0.0295

(0.1509)*
-0.0011 (0.1116)

Bottom 10%Utilitarian 2.0204 (0.2694) 0.7673 (0.4635)* 0.8401 (0.4315)
Utilitarian bottom

top
0.3473 (0.0469) 0.1350 (0.0816)* 0.1557 (0.0801)

Mean health, treated 0.0118 (0.0007) 0.0195 (0.0017)* 0.0709 (0.0071)*
Bottom 10% Health, treated 0.0005 (0.00004) 0.0007 (0.0002)* 0.0028 (0.0005)*
Health bottom

top
, treated 0.1894 (0.0212) 0.1532 (0.0588)* 0.1477 (0.0292)*

Phys. Effort, treated 1.9497·10−7

(4.5712·10−8)
4.8937·10−6

(4.3149·10−6)*
0.0013 (0.0032)*

Contract failure, % 0% 8.16% 12.40%

Table 7.7: Results from the grand game when patients have non-zero reservation utility and can
borrow money for IPHC when the multiplicative parameter in front of effort = −10. Sample standard
deviation in parentheses. *: Either the null hypotheses that the value in the box differs from the value to
its right (benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level
according to a t-test, or a t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 36.2993 (1.5058) 25.2364 (2.4386) 18.2308 (2.5421)
Rawlsian 0.3136 (0.0713)* -0.4564

(0.1562)*
-0.5082
(0.1334)*

Bottom 10%Utilitarian 2.0241 (0.2807) -1.1265 (0.5870) -1.4516 (0.5968)
Utilitarian bottom

top
0.3482 (0.0488) -0.2026 (0.1059) -0.2902 (0.1200)

Mean health, treated 0.0119 (0.0007)* 0.0164 (0.0017)* 0.0195 (0.0027)*
Bottom 10% Health, treated 0.0006 (0.00006) 0.0005 (0.0001)* 0.0008 (0.0002)*
Health bottom

top
, treated 0.2164 (0.0283)* 0.1501 (0.0573)* 0.1355 (0.0615)*

Phys. Effort, treated 1.8103 ·10−7

(5.3583·10−8)*
3.6073 ·10−6

(5.3420·10−6)*
1.4262·10−5

(1.0706·10−5)*
Contract failure, % 0% 3.80% 12.76%

Table 7.8: Results from the grand game when patients have zero reservation utility and cannot
borrow money for IPHC when the multiplicative parameter for effort = −10. Sample standard deviation
in parentheses. *: Either the null hypotheses that the value in the box differs from the value to its right
(benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according
to a t-test, or t-test cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 36.4504 (1.1092) 31.2889 (1.7775) 30.7909 (1.4444)
Rawlsian 0.3099 (0.0589) -0.0008 (0.1460) 0.1307 (0.0679)
Bottom 10%Utilitarian 2.0090 (0.2187) 0.8014 (0.4301)* 1.1945 (0.2105)
Utilitarian bottom

top
0.3470 (0.0383) 0.1423 (0.0765)* 0.2219 (0.0396)

Mean health, treated 0.0116 (0.0007) 0.0193 (0.0019)* 0.0663 (0.0077)*
Bottom 10% Health, treated 0.0005 (0.00005) 0.0007 (0.0002)* 0.0029 (0.0005)
Health bottom

top
, treated 0.1942 (0.0252) 0.1516 (0.0620) 0.1536 (0.0321)*

Phys. Effort, treated 1.7318·10−7

(4.5516·10−8)*
1.7318·10−7

(5.5492·10−6)*
8.4699·10−4

(4.0088·10−4)*
Contract failure, % 0% 8.32% 16.36%

Table 7.9: Results from the grand game when patients have non-zero reservation utility and cannot
borrow money for IPHC when the multiplicative parameter for effort = −10. Sample standard deviation
in parentheses. *: Either the null hypotheses that the value in the box differs from the value to its right
(benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according
to a t-test, or a t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 72.7694 (1.4167) 54.5021 (3.0582) 47.3322 (3.1121)
Rawlsian 0.9901 (0.0910)* 0.0117 (0.0989)* -0.0109 (0.0261)*
Bottom 10%Utilitarian 5.5188 (0.3126)* 0.7504 (0.7549)* 0.3101 (0.3729)*
Utilitarian bottom

top
0.5335 (0.0311)* 0.0787 (0.0792)* 0.0341 (0.0410)*

Mean health, treated 0.6924 (0.0121) 0.5922 (0.0195) 0.6061 (0.0180)
Bottom 10% Health, treated 0.0510 (0.0031)* 0.0384 (0.0034) 0.0411 (0.0042)*
Health bottom

top
, treated 0.5267 (0.0325)* 0.4719 (0.0476)* 0.4918 (0.0575)*

Phys. Effort, treated 1.0000 (0.0003)* 0.6109 (0.0500) 0.6547 (0.0467) *
Contract failure, % 0% 5.88% 7.60%

Table 7.10: Results from the grand game when patients have zero reservation utility and can borrow
money for IPHC when the multiplicative parameter for effort = −0.001. Sample standard deviation in
parentheses. *: Either the null hypotheses that the value in the box differs from the value to its right
(benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according
to a t-test, or a t-test cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 72.6837 (1.2377) 58.1691 (2.5180) 52.9662 (2.6277)
Rawlsian 0.9889 (0.0892)* 0.4417 (0.1165) 0.3257 (0.1138)*
Bottom 10%Utilitarian 5.5311 (0.2865) 2.9031 (0.3652) 2.3573 (0.5081)
Utilitarian bottom

top
0.5366 (0.0289) 0.3029 (0.0388)* 0.2585 (0.0561)*

Mean health, treated 0.6908 (0.0148) 0.6145 (0.0205)* 0.6185 (0.0203)
Bottom 10% Health, treated 0.0491 (0.0049) 0.0374 (0.0058) 0.0392 (0.0059)
Health bottom

top
, treated 0.5058 (0.0503) 0.4205 (0.0721) 0.4399 (0.0756)

Phys. Effort, treated 0.9996 (0.0017)* 0.6919 (0.0458)* 0.6956 (0.0472)*
Contract failure, % 0% 19.00% 20.68%

Table 7.11: Results from the grand game when patients have non-zero reservation utility and cannot
borrow money for IPHC when the multiplicative parameter for effort = −0.001. Sample standard deviation
in parentheses. *: Either the null hypotheses that the value in the box differs from the value to its right
(benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according
to a t-test, or a t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 72.5620 (1.3494) 54.2528 (2.7690) 45.4683 (3.2305)
Rawlsian 0.9766 (0.0844)* 0.0156 (0.0581)* -0.0009 (0.0063)*
Bottom 10%Utilitarian 5.4755 (0.2886) 0.8245 (0.7089)* 0.0261 (0.0894)*
Utilitarian bottom

top
0.5280 (0.0291) 0.0872 (0.0750) 0.0029 (0.0099)

Mean health, treated 0.6877 (0.0139) 0.5751 (0.0174) 0.5947 (0.0175)
Bottom 10% Health, treated 0.0496 (0.0039) 0.0372 (0.0039) 0.0447 (0.0051)
Health bottom

top
, treated 0.5133 (0.0410)* 0.4592 (0.0559) 0.5068 (0.0655)

Phys. Effort, treated 0.9994 (0.0044)* 0.5664 (0.0407) 0.6152 (0.0330)*
Contract failure, % 0% 5.76% 14.56%

Table 7.12: Results from the grand game when patients have zero reservation utility and cannot
borrow money for IPHC when the multiplicative parameter for effort = −0.001. Sample standard deviation
in parentheses. *: Either the null hypotheses that the value in the box differs from the value to its right
(benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according
to a t-test, or a t-test cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 72.8982 (1.2262) 58.0814 (1.9323) 52.7369 (2.0571)
Rawlsian 1.0058 (0.0837) 0.4202 (0.1189) 0.2776 (0.0908)
Bottom 10%Utilitarian 5.5710 (0.2595) 2.8597 (0.3969) 2.1118 (0.4822)
Utilitarian bottom

top
0.5379 (0.0263) 0.2968 (0.0420) 0.2295 (0.0527)

Mean health, treated 0.6885 (0.0134) 0.6104 (0.0185) 0.6156 (0.0201)
Bottom 10% Health, treated 0.0500 (0.0041) 0.0377 (0.0047) 0.0422 (0.0066)
Health bottom

top
, treated 0.5170 (0.0427)* 0.4200 (0.0603) 0.4759 (0.0833)

Phys. Effort, treated 0.9992 (0.0034)* 0.6861 (0.0412)* 0.6931 (0.0507)
Contract failure, % 0% 19.52% 24.88%

Table 7.13: Results from the grand game when patients have non-zero reservation utility and cannot
borrow money for IPHC when the multiplicative parameter for effort = −0.001. Sample standard deviation
in parentheses. *: Either the null hypotheses that the value in the box differs from the value to its right
(benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according
to a t-test, or a t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 45.1768 (1.3193) 23.4189 (3.3430) 15.3552 (3.3245)
Rawlsian 0.4661 (0.0892)* -0.4747 (0.0782)* -0.4699 (0.0927)*
Bottom 10%Utilitarian 2.8233 (0.0406) -1.6303 (0.5077)* -1.6260 (0.4677)
Utilitarian bottom

top
0.3964 (0.0439) -0.2169 (0.0685) -0.2404 (0.0731)

Mean health, treated 0.1175 (0.0083) 0.3261 (0.0340)* 0.3189 (0.0320)
Bottom 10% Health, treated 0.0032 (0.0007) 0.0067 (0.0020) 0.0081 (0.0021)
Health bottom

top
, treated 0.1098 (0.0272)* 0.0882 (0.0275) 0.1063 (0.0291)*

Phys. Effort, treated 0.0028 (0.0009)* 0.1727 (0.0455)* 0.1759 (0.0470)*
Contract failure, % 0% 19.68% 29.40%

Table 7.14: Results from the grand game when patients have zero reservation utility and can borrow
money for IPHC with alternative beta distributions for physician and patient characteristics. Sample
standard deviation in parentheses. *: Either the null hypotheses that the value in the box differs from the
value to its right (benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance
level according to a t-test, or a t-test cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 45.0793 (1.2835) 37.9829 (2.1039) 36.3358 (1.8955)
Rawlsian 0.4496 (0.0878) 0.1032 (0.1454) 0.1695 (0.1086)
Bottom 10%Utilitarian 2.7998 (0.2881) 1.3073 (0.4117) 1.4494 (0.3159)
Utilitarian bottom

top
0.3926 (0.0426) 0.1731 (0.0553) 0.2077 (0.0478)

Mean health, treated 0.1165 (0.0100)* 0.3356 (0.0424)* 0.3665 (0.0517)
Bottom 10% Health, treated 0.0031 (0.0006)* 0.0054 (0.0024)* 0.0137 (0.0068)*
Health bottom

top
, treated 0.1062 (0.0240)* 0.0688 (0.0324)* 0.1552 (0.0816)*

Phys. Effort, treated 0.0029 (0.0013)* 0.2060 (0.0602) 0.2375 (0.0702)*
Contract failure, % 0% 46.08% 58.28%

Table 7.15: Results from the grand game when patients have non-zero reservation utility and can bor-
row money for IPHC with alternative beta distributions for physician and patient characteristics. Sample
standard deviation in parentheses. *: Either the null hypotheses that the value in the box differs from the
value to its right (benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance
level according to a t-test, or a t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 45.0605 (1.4044) 23.7358 (3.4855) 15.1723 (3.0355)
Rawlsian 0.4440 (0.0774) -0.4780 (0.0673)* -0.4976 (0.0813)
Bottom 10%Utilitarian 2.7325 (0.2251) -1.7294 (0.4002)* -1.8232 (0.4068)
Utilitarian bottom

top
0.3835 (0.0343) -0.2301 (0.0548) -0.2715 (0.0652)

Mean health, treated 0.1185 (0.0110) 0.3204 (0.0269) 0.3086 (0.0302)
Bottom 10% Health, treated 0.0031 (0.0006)* 0.0061 (0.0020)* 0.0072 (0.0020)*
Health bottom

top
, treated 0.1017 (0.0250) 0.0812 (0.0283) 0.0932 (0.0283)

Phys. Effort, treated 0.0031 (0.0014)* 0.1604 (0.0323) 0.1639 (0.0416)*
Contract failure, % 0% 17.68% 30.52%

Table 7.16: Results from the grand game when patients have zero reservation utility and cannot bor-
row money for IPHC with alternative beta distributions for physician and patient characteristics. Sample
standard deviation in parentheses. *: Either the null hypotheses that the value in the box differs from the
value to its right (benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance
level according to a t-test, or a t-test cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 45.2966 (1.2349) 38.1228 (1.8650) 36.4899 (1.4703)
Rawlsian 0.4440 (0.0793) 0.0433 (0.1666) 0.2146 (0.0724)
Bottom 10%Utilitarian 2.8140 (0.2716) 1.3260 (0.4950) 1.5602 (0.2875)
Utilitarian bottom

top
0.3957 (0.0661) 0.2257 (0.0454) 0.0403 (0.3957)

Mean health, treated 0.1184 (0.0076) 0.3386 (0.0408) 0.3705 (0.0435)
Bottom 10% Health, treated 0.0034 (0.0006) 0.0054 (0.0020) 0.0124 (0.0067)
Health bottom

top
, treated 0.1150 (0.0231) 0.0654 (0.0257)* 0.1391 (0.0789)

Phys. Effort, treated 0.0028 (0.0009)* 0.2126 (0.0463)* 0.2460 (0.0692)*
Contract failure, % 0% 47.72% 59.64%

Table 7.17: Results from the grand game when patients have non-zero reservation utility and can-
not borrow money for IPHC with alternative beta distributions for physician and patient characteristics.
Sample standard deviation in parentheses. *: Either the null hypotheses that the value in the box differs
from the value to its right (benchline being to the right of znorm = 0.15) cannot be rejected at the 0.05
significance level according to a t-test, or t-test cannot be performed since the data is not approximately
normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 70.8511 (52.8419)* 61.6390 (3.4303)* 52.8419 (3.4148)*
Rawlsian 0.9633 (0.0805)* 0.01860 (0.1405)* -0.0443 (0.0678)*
Bottom 10%Utilitarian 5.3664 (0.2771) 1.2797 (0.9868) 1.2797 (0.5159)
Utilitarian bottom

top
0.5342 (0.0291)* 0.1262 (0.0974)* 0.0380 (0.0527)*

Mean health, treated 0.2251 (0.0120) 0.3749 (0.0207) 0.3880 (0.0220)
Bottom 10% Health, treated 0.0093 (0.0016)* 0.0169 (0.0025) 0.0166 (0.0029)
Health bottom

top
, treated 0.2062 (0.0376)* 0.2577 (0.0468) 0.2517 (0.0484)

Phys. Effort, treated 0.0150 (0.0027) 0.1943 (0.0357) 0.2212 (0.0331)
Contract failure, % 0% 2.96% 5.20%

Table 7.18: Results from the grand game when patients have zero reservation utility and can borrow
money for IPHC with an alternative health function. Sample standard deviation in parentheses. *: Either
the null hypotheses that the value in the box differs from the value to its right (benchline being to the
right of znorm = 0.15) cannot be rejected at the 0.05 significance level according to a t-test, or a t-test
cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 71.2032 (1.1384) 64.0091 (2.5685) 57.4867 (2.3434)
Rawlsian 0.9729 (0.0839) 0.4364 (0.1341) 0.3458 (0.1141)
Bottom 10%Utilitarian 5.4027 (0.2446) 3.0677 (0.4867) 2.5503 (0.3590)
Utilitarian bottom

top
0.5364 (0.0258) 0.3015 (0.0481) 0.2608 (0.0371)

Mean health, treated 0.2276 (0.0108) 0.3832 (0.0245) 0.4120 (0.0232)
Bottom 10% Health, treated 0.0101 (0.0015) 0.0176 (0.0034) 0.0221 (0.0040)
Health bottom

top
, treated 0.2232 (0.0352) 0.2527 (0.0352) 0.3037 (0.0608)

Phys. Effort, treated 0.0157 (0.0026) 0.2064 (0.0394) 0.2546 (0.0342)
Contract failure, % 0% 10.08% 16.64%

Table 7.19: Results from the grand game when patients have non-zero reservation utility and can
borrow money for IPHC with an alternative health function. Sample standard deviation in parentheses.
*: Either the null hypotheses that the value in the box differs from the value to its right (benchline being
to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according to a t-test, or, a
t-test cannot be performed since the data is not approximately normal.
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Benchline znorm = 0 znorm = 0.15
Utilitarian 71.2759 (1.5739) 62.0941 (3.1447) 52.1762 (4.1320)
Rawlsian 1.0032 (0.0890)* 0.0230 (0.0932)* -0.0082 (0.0234)
Bottom 10%Utilitarian 5.4950 (0.3349) 1.3604 (0.8935) 0.1327 (0.2724)
Utilitarian bottom

top
0.5458 (0.0347) 0.1344 (0.0883) 0.0136 (0.0279)

Mean health, treated 0.2290 (0.0111)* 0.3775 (0.0161)* 0.4034 (0.0242)
Bottom 10% Health, treated 0.0097 (0.0014) 0.0173 (0.0030)* 0.0198 (0.0041)*
Health bottom

top
, treated 0.2150 (0.0341)* 0.2666 (0.0521)* 0.2840 (0.0614)*

Phys. Effort, treated 0.0152 (0.0031)* 0.1931 (0.0329)* 0.2404 (0.0453)*
Contract failure, % 0% 3.20% 11.44%

Table 7.20: Results from the grand game when patients have zero reservation utility and cannot
borrow money for IPHC with an alternative health function. Sample standard deviation in parentheses.
*: Either the null hypotheses that the value in the box differs from the value to its right (benchline being
to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according to a t-test, or a
t-test cannot be performed since the data is not approximately normal.

Benchline znorm = 0 znorm = 0.15
Utilitarian 71.0217 (1.1961) 64.1738 (2.5368) 56.7839 (2.7767)
Rawlsian 0.9841 (0.0946) 0.4532 (0.1164)* 0.2792 (0.0903)*
Bottom 10%Utilitarian 5.3971 (0.2716)* 3.0981 (0.4950)* 2.1098 (0.2875)
Utilitarian bottom

top
0.3957 (0.2968)* 0.2257 (0.5100)* 0.0403 (0.5395)

Mean health, treated 0.2281 (0.0116)* 0.3889 (0.0194) 0.4205 (0.0233)*
Bottom 10% Health, treated 0.0098 (0.0015) 0.0172 (0.0030) 0.0244 (0.0050)
Health bottom

top
, treated 0.2209 (0.0372) 0.2434 (0.0476) 0.3390 (0.0759)

Phys. Effort, treated 0.0150 (0.0031)* 0.2170 (0.0394) 0.2636 (0.0366)*
Contract failure, % 0% 9.72% 21.12%

Table 7.21: Results from the grand game when patients have non-zero reservation utility and cannot
borrow money for IPHC with with an alternative health function. Sample standard deviation in parenthe-
ses. *: Either the null hypotheses that the value in the box differs from the value to its right (benchline
being to the right of znorm = 0.15) cannot be rejected at the 0.05 significance level according to a t-test,
or a t-test cannot be performed since the data is not approximately normal.
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7.2 Programming codes
\ begin { verbatim }

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% GRAND MAIN. %
% This i s the main program that performs the Monte Carlo e s t i m a t i o n s o f %
% s o c i a l w e l f a r e , h e a l t h and phys . e f f o r t . %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

c l e a r a l l
t i c
g l o b a l h tnorm y r g a q h t i l d e a t i l d e znorm c o n s t r r e s u t i l i t y borrow h1 h2 r1 r2 g1 g2 a1 a2

q1 q2 w
c o n s t r =1; %s e t s model v e r s i o n
r e s u t i l i t y =0;
borrow =0;
n=50; %numer o f i t e r a t i o n s
k=50;

w=4; %C a l i b r a t i o n parameter
%D i s t r i b u t i o n parameters
h1=2;
h2=2;
r1 =1;
r2 =5;
g1 =1;
g2 =5;
a1 =2;
a2 =2;
q1 =2;
q2 =10;

c o u n t f a i l u r e U 1=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e Z 1=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e U 2=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e Z 2=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e U 3=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e Z 3=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e U Z 2=z e r o s ( n , 1 ) ;
c o u n t f a i l u r e U Z 3=z e r o s ( n , 1 ) ;

S o W e l U t i l i t a r i a n B e n c h l i n e=z e r o s ( n , 1 ) ;
SoWelUti l i tar ianIPHCzero=z e r o s ( n , 1 ) ;
SoWelUtilitarianIPHCzeroTwo=z e r o s ( n , 1 ) ;

S o W e l U t i l i t a r i a n B e n c h l i n e T r e a t e d=z e r o s ( n , 1 ) ;
SoWelUti l i tar ianIPHCzeroTreated=z e r o s ( n , 1 ) ;
SoWelUtil itarianIPHCzeroTwoTreated=z e r o s ( n , 1 ) ;

SoWelRawlsianBenchlineTreated=z e r o s ( n , 1 ) ;
SoWelRawlsianIPHCzeroTreated=z e r o s ( n , 1 ) ;
SoWelRawlsianIPHCzeroTwoTreated=z e r o s ( n , 1 ) ;
SoWelBNBenchlineTreated=z e r o s ( n , 1 ) ;
SoWelBNIPHCzeroTreated=z e r o s ( n , 1 ) ;
SoWelBNIPHCzeroTwoTreated=z e r o s ( n , 1 ) ;

SoWelRawlsianTREATEDBenchline=z e r o s ( n , 1 ) ;
SoWelRawlsianTREATEDIPHCzero=z e r o s ( n , 1 ) ;
SoWelRawlsianTREATEDIPHCzeroTwo=z e r o s ( n , 1 ) ;

SoWelRawlsianBenchline=z e r o s ( n , 1 ) ;
SoWelRawlsianIPHCzero=z e r o s ( n , 1 ) ;
SoWelRawlsianIPHCzeroTwo=z e r o s ( n , 1 ) ;
SoWelBNBenchline=z e r o s ( n , 1 ) ;
SoWelBNIPHCzero=z e r o s ( n , 1 ) ;
SoWelBNIPHCzeroTwo=z e r o s ( n , 1 ) ;
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B o t t o m U t i l i t a r i a n B e n c h l i n e=z e r o s ( n , 1 ) ;
BottomUti l i tar ianIPHCzero=z e r o s ( n , 1 ) ;
BottomUtilitarianIPHCzeroTwo=z e r o s ( n , 1 ) ;

B o t t o m U t i l i t a r i a n B e n c h l i n e T r e a t e d=z e r o s ( n , 1 ) ;
BottomUti l i tar ianIPHCzeroTreated=z e r o s ( n , 1 ) ;
BottomUtilitarianIPHCzeroTwoTreated=z e r o s ( n , 1 ) ;

T o p U t i l i t a r i a n B e n c h l i n e=z e r o s ( n , 1 ) ;
TopUti l i tar ianIPHCzero=z e r o s ( n , 1 ) ;
TopUtilitarianIPHCzeroTwo=z e r o s ( n , 1 ) ;

T o p U t i l i t a r i a n B e n c h l i n e T r e a t e d=z e r o s ( n , 1 ) ;
TopUti l i tar ianIPHCzeroTreated=z e r o s ( n , 1 ) ;
TopUtil itarianIPHCzeroTwoTreated=z e r o s ( n , 1 ) ;

T r e a t e d U t i l i t a r i a n B e n c h l i n e=z e r o s ( n , 1 ) ;
T r e a t e d U t i l i t a r i a n I P H C z e r o=z e r o s ( n , 1 ) ;
TreatedUti l itarianIPHCzeroTwo=z e r o s ( n , 1 ) ;

U t i l i t a r i a n T r B o t t B e n c h l i n e = z e r o s ( n , 1 ) ;
U t i l i t a r i a n T r B o t t I P H C z e r o = z e r o s ( n , 1 ) ;
Uti l itarianTrBottIPHCzeroTwo = z e r o s ( n , 1 ) ;

U t i l i t a r i a n T r T o p B e n c h l i n e = z e r o s ( n , 1 ) ;
Uti l itar ianTrTopIPHCzero = z e r o s ( n , 1 ) ;
UtilitarianTrTopIPHCzeroTwo = z e r o s ( n , 1 ) ;

MeanEffortBenchl ine=z e r o s ( n , 1 ) ;
MeanEffortIPHCzero=z e r o s ( n , 1 ) ;
MeanEffortIPHCzeroTwo=z e r o s ( n , 1 ) ;

Me anEf fo rtBe nch l in eAl l=z e r o s ( n , 1 ) ;
MeanEffortIPHCzeroAll=z e r o s ( n , 1 ) ;
MeanEffortIPHCzeroTwoAll=z e r o s ( n , 1 ) ;

MeanHealthBenchline=z e r o s ( n , 1 ) ;
MeanHealthIPHCzero=z e r o s ( n , 1 ) ;
MeanHealthIPHCzeroTwo=z e r o s ( n , 1 ) ;

MeanHealthBenchlineAll=z e r o s ( n , 1 ) ;
MeanHealthIPHCzeroAll=z e r o s ( n , 1 ) ;
MeanHealthIPHCzeroTwoAll=z e r o s ( n , 1 ) ;

BottomHealthBenchline=z e r o s ( n , 1 ) ;
BottomHealthIPHCzero=z e r o s ( n , 1 ) ;
BottomHealthIPHCzeroTwo=z e r o s ( n , 1 ) ;

BottomHealthBenchlineAll=z e r o s ( n , 1 ) ;
BottomHealthIPHCzeroAll=z e r o s ( n , 1 ) ;
BottomHealthIPHCzeroTwoAll=z e r o s ( n , 1 ) ;

TopHealthBenchline=z e r o s ( n , 1 ) ;
TopHealthIPHCzero=z e r o s ( n , 1 ) ;
TopHealthIPHCzeroTwo=z e r o s ( n , 1 ) ;

TopHealthBenchl ineAll=z e r o s ( n , 1 ) ;
TopHealthIPHCzeroAll=z e r o s ( n , 1 ) ;
TopHealthIPHCzeroTwoAll=z e r o s ( n , 1 ) ;

soWelBNBenchline =1;
soWelBNIPHCzero=1;
soWelBNIPHCzeroTwo=1;

sumz1=z e r o s ( n , 1 ) ;
sumz2=z e r o s ( n , 1 ) ;

%Monte Carlo e s t i m a t i o n o f s o c i a l w e l f a r e / h e a l t h
f o r j =1:n
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tnorm =0.5;
znorm =0.15;
y =0.5;
e B e n c h l i n e=z e r o s ( k , 1 ) ;
UphysBenchline=z e r o s ( k , 1 ) ;
UpatBenchline=z e r o s ( k , 1 ) ;
UpatRealBenchline=z e r o s ( k , 1 ) ;
HealthBenchl ine=z e r o s ( k , 1 ) ;
UpatTreatedBenchline=z e r o s ( k , 1 ) ;

eIPHCzero=z e r o s ( k , 1 ) ;
zIPHCzero=z e r o s ( k , 1 ) ;
UphysIPHCzero=z e r o s ( k , 1 ) ;
UpatIPHCzero=z e r o s ( k , 1 ) ;
UpatRealIPHCzero=z e r o s ( k , 1 ) ;
HealthIPHCzero=z e r o s ( k , 1 ) ;
UpatTreatedIPHCzero=z e r o s ( k , 1 ) ;

eIPHCzeroTwo=z e r o s ( k , 1 ) ;
zIPHCzeroTwo=z e r o s ( k , 1 ) ;
UphysIPHCzeroTwo=z e r o s ( k , 1 ) ;
UpatIPHCzeroTwo=z e r o s ( k , 1 ) ;
UpatRealIPHCzeroTwo=z e r o s ( k , 1 ) ;
HealthIPHCzeroTwo=z e r o s ( k , 1 ) ;
UpatTreatedIPHCzeroTwo=z e r o s ( k , 1 ) ;

zas1=z e r o s ( k , 1 ) ;
zas2=z e r o s ( k , 1 ) ;

countU1=z e r o s ( k , 1 ) ;
countZ1=z e r o s ( k , 1 ) ;
countU2=z e r o s ( k , 1 ) ;
countZ2=z e r o s ( k , 1 ) ;
countU3=z e r o s ( k , 1 ) ;
countZ3=z e r o s ( k , 1 ) ;
countUZ2=z e r o s ( k , 1 ) ;
countUZ3=z e r o s ( k , 1 ) ;

% i grand games
f o r i =1:k

%Random draw o f c h a r a c t e r i s t i c s
h = betarnd ( h1 , h2 ) ; %symmetric beta , mean=0.5
r = betarnd ( r1 , r2 ) ; %asymmetric beta , mean=1/6
g = betarnd ( r1 , r2 ) ;
a = betarnd ( a1 , a2 ) ;
q = betarnd ( q1 , q2 ) ;

%s e t s E( c h a r a c t e r i s t i c s )
i f a <=1/3

a t i l d e =1/6;
e l s e i f a <=2/3

a t i l d e = 0 . 5 ;
e l s e i f a > 2/3

a t i l d e = 0 . 8 3 3 3 ;
end

end
end

i f h <=1/3
h t i l d e =1/6;

e l s e i f h <=2/3
h t i l d e = 0 . 5 ;

e l s e i f h > 2/3
h t i l d e = 0 . 8 3 3 3 ;

end
end

end

%This runs i f r e s e r v a t i o n u t i l i t y i s z e r o
i f r e s u t i l i t y ==0
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[ e b e n c h l i n e , Uphysbenchline , Upatbenchline , UpatRealbenchline , H e a l t h b e n c h l i n e ]=
b e n c h l i n e ( ) ;

QBenchline=UpatRealbenchl ine
i f Upatbenchl ine < 0

’ exceed ’
e b e n c h l i n e =0;
Uphysbenchline =0;
Upatbenchl ine =0;
UpatRealbenchl ine =0;
QBenchline =0;
H e a l t h b e n c h l i n e =0;
countU1 ( i ) =1;
a

end

[ xIPHCzero , uphysIPHCzero , upatIPHCzero , upatRealIPHCzero , healthIPHCzero ]=
IPHCzero ( ) ;

QIPHCzero=upatRealIPHCzero
i f upatIPHCzero < 0

’ exceed ’
xIPHCzero ( 1 ) =0;
uphysIPHCzero =0;
upatIPHCzero =0;
upatRealIPHCzero =0;
healthIPHCzero =0;
QIPHCzero=0;
countU2 ( i ) =1;
countUZ2 ( i ) =1;
a

end

%This runs i f p a t i e n t s cannot borrow
i f borrow==0

i f xIPHCzero ( 2 ) > a
’ exceeded ’
xIPHCzero ( 1 ) =0;
uphysIPHCzero =0;
upatIPHCzero=0 ;
upatRealIPHCzero =0;
healthIPHCzero =0;
QIPHCzero=0;
countZ2 ( i ) =1;
countUZ2 ( i ) =1;
a

end
end

i f xIPHCzero ( 2 ) <0.00001 && xIPHCzero ( 2 ) >−0.00001
zas1 ( i ) =1;

end

[ xIPHCzeroTwo , uphysIPHCzeroTwo , upatIPHCzeroTwo , upatRealIPHCzeroTwo ,
healthIPHCzeroTwo ]=IPHCzerotwo ( ) ;

QIPHCzeroTwo=upatRealIPHCzeroTwo
i f upatIPHCzeroTwo < 0

’ exceed ’
xIPHCzeroTwo ( 1 ) =0;
uphysIPHCzeroTwo=0;
upatIPHCzeroTwo=0;
upatRealIPHCzeroTwo =0;
healthIPHCzeroTwo =0;
QIPHCzeroTwo=0;
countU3 ( i ) =1;
countUZ3 ( i ) =1;
a

end
i f borrow == 0

i f xIPHCzeroTwo ( 2 ) > a
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’ exceeded ’
xIPHCzeroTwo ( 1 ) =0;
uphysIPHCzeroTwo=0;
upatIPHCzeroTwo=0;
upatRealIPHCzeroTwo =0;
healthIPHCzeroTwo =0;
QIPHCzeroTwo=0;
countZ3 ( i ) =1;
countUZ3 ( i ) =1;

end
end
i f xIPHCzeroTwo ( 2 )<znorm +0.00001 && xIPHCzeroTwo ( 2 )>znorm −0.00001

zas2 ( i ) =1;
end

end

%This runs i f p a t i e n t s ’ r e s e r v a t i o n u t i l i t y i s non−z e r o
i f r e s u t i l i t y ==1

[ e b e n c h l i n e , Uphysbenchline , Upatbenchline , UpatRealbenchline , H e a l t h b e n c h l i n e ]=
b e n c h l i n e ( ) ;

QBenchline=UpatRealbenchl ine ;
i f Upatbenchl ine < a ^ 0 . 5

’ exceed ’
e b e n c h l i n e =0;
Uphysbenchline =0;
Upatbenchl ine=a ^ 0 . 5 ;
UpatRealbenchl ine=a ^ 0 . 5 ;
H e a l t h b e n c h l i n e =0;
QBenchline =0;
countU1 ( i ) =1;
a

end

[ xIPHCzero , uphysIPHCzero , upatIPHCzero , upatRealIPHCzero , healthIPHCzero ]=
IPHCzero ( ) ;

QIPHCzero=upatRealIPHCzero ;
i f upatIPHCzero < a ^ 0 . 5

’ exceed ’
xIPHCzero ( 1 ) =0;
uphysIPHCzero =0;
upatIPHCzero=a ^ 0 . 5 ;
upatRealIPHCzero=a ^ 0 . 5 ;
healthIPHCzero =0;
QIPHCzero=0;
countU2 ( i ) =1;
countUZ2 ( i ) =1;
a

end
i f borrow == 0

i f xIPHCzero ( 2 ) > a
’ exceeded ’
xIPHCzero ( 1 ) =0;
uphysIPHCzero =0;
upatIPHCzero=a ^ 0 . 5 ;
upatRealIPHCzero=a ^ 0 . 5 ;
healthIPHCzero =0;
QIPHCzero=0;
countZ2 ( i ) =1;
countUZ2 ( i ) =1;
a

end
end

i f xIPHCzero ( 2 ) <0.00001 && xIPHCzero ( 2 ) >−0.00001
zas1 ( i ) =1;

end

[ xIPHCzeroTwo , uphysIPHCzeroTwo , upatIPHCzeroTwo , upatRealIPHCzeroTwo ,
healthIPHCzeroTwo ]=IPHCzerotwo ( ) ;
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QIPHCzeroTwo=upatRealIPHCzeroTwo ;
i f upatIPHCzeroTwo < a ^ 0 . 5

’ exceeded ’
xIPHCzeroTwo ( 1 ) =0;
uphysIPHCzeroTwo=0;
upatIPHCzeroTwo=a ^ 0 . 5 ;
upatRealIPHCzeroTwo=a ^ 0 . 5 ;
healthIPHCzeroTwo =0;
QIPHCzeroTwo=0;
countU3 ( i ) =1;
countUZ3 ( i ) =1;
a

end
i f borrow == 0

i f xIPHCzeroTwo ( 2 ) > a
’ exceeded ’
xIPHCzeroTwo ( 1 ) =0;
uphysIPHCzeroTwo=0;
upatIPHCzeroTwo=a ^ 0 . 5 ;
upatRealIPHCzeroTwo=a ^ 0 . 5 ;
healthIPHCzeroTwo =0;
QIPHCzeroTwo=0;
countZ3 ( i ) =1;
countUZ3 ( i ) =1;
a

end
end
i f xIPHCzeroTwo ( 2 )<znorm +0.00001 && xIPHCzeroTwo ( 2 )>znorm −0.00001

zas2 ( i ) =1;
end

end

%s a v e s the r e s u l t s o f each phys−pat . encounter i n a v e c t o r
e B e n c h l i n e ( i , 1 )=e b e n c h l i n e ;
UphysBenchline ( i , 1 )=Uphysbenchline ∗( −1) ;
UpatBenchline ( i , 1 )=Upatbenchl ine ;
UpatRealBenchline ( i , 1 )=UpatRealbenchl ine ;
HealthBenchl ine ( i , 1 )=H e a l t h b e n c h l i n e ;
UpatTreatedBenchline ( i , 1 )=QBenchline ;

eIPHCzero ( i , 1 )=xIPHCzero ( 1 ) ;
zIPHCzero ( i , 1 )=xIPHCzero ( 2 ) ;
UphysIPHCzero ( i , 1 )=uphysIPHCzero ∗( −1) ;
UpatIPHCzero ( i , 1 )=upatIPHCzero ;
UpatRealIPHCzero ( i , 1 )=upatRealIPHCzero ;
HealthIPHCzero ( i , 1 )=healthIPHCzero ;
UpatTreatedIPHCzero ( i , 1 )=QIPHCzero ;

eIPHCzeroTwo ( i , 1 )=xIPHCzeroTwo ( 1 ) ;
zIPHCzeroTwo ( i , 1 )=xIPHCzeroTwo ( 2 ) ;
UphysIPHCzeroTwo ( i , 1 )=uphysIPHCzeroTwo∗( −1) ;
UpatIPHCzeroTwo ( i , 1 )=upatIPHCzeroTwo ;
UpatRealIPHCzeroTwo ( i , 1 )=upatRealIPHCzeroTwo ;
HealthIPHCzeroTwo ( i , 1 )=healthIPHCzeroTwo ;
UpatTreatedIPHCzeroTwo ( i , 1 )=QIPHCzeroTwo ;

end

%SUMMARY OF EACH GRAND GAME:

sumz1 ( j )=sum( zas1 ) ;
sumz2 ( j )=sum( zas2 ) ;

c o u n t f a i l u r e U 1 ( j )=sum( countU1 ) ;
c o u n t f a i l u r e U 2 ( j )=sum( countU2 ) ;
c o u n t f a i l u r e U 3 ( j )=sum( countU3 ) ;
c o u n t f a i l u r e Z 1 ( j )=sum( countZ1 ) ;
c o u n t f a i l u r e Z 2 ( j )=sum( countZ2 ) ;
c o u n t f a i l u r e Z 3 ( j )=sum( countZ3 ) ;
c o u n t f a i l u r e U Z 2 ( j )=sum( countUZ2 ) ;
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c o u n t f a i l u r e U Z 3 ( j )=sum( countUZ3 ) ;

e Be n ch l in e 1=s o r t ( e B e n c h l i n e ) ;
eIPHCzero1=s o r t ( eIPHCzero ) ;
eIPHCzeroTwo1=s o r t ( eIPHCzeroTwo ) ;
e Be n ch l in e 1 ( e Be n ch l in e 1==0) = [ ] ;
eIPHCzero1 ( eIPHCzero1==0) = [ ] ;
eIPHCzeroTwo1 ( eIPHCzeroTwo1==0) = [ ] ;

%MEAN EFFORT
Me anE ffo rtBe nch l in eAl l ( j ) =(1/k ) ∗sum( e B e n c h l i n e ) ; %a l l p h y s i c i a n s , a l s o non treatment
MeanEffortIPHCzeroAll ( j ) =(1/k ) ∗sum( eIPHCzero ) ;
MeanEffortIPHCzeroTwoAll ( j ) =(1/k ) ∗sum( eIPHCzeroTwo ) ;

MeanEffortBenchl ine ( j ) =(1/ l e n g t h ( e Be n ch l in e 1 ) ) ∗sum( eB e nc h l i n e1 ) ; %only treatment
MeanEffortIPHCzero ( j ) =(1/ l e n g t h ( eIPHCzero1 ) ) ∗sum( eIPHCzero1 ) ;
MeanEffortIPHCzeroTwo ( j ) =(1/ l e n g t h ( eIPHCzeroTwo1 ) ) ∗sum( eIPHCzeroTwo1 ) ;

s o r t e d h e a l t h B e n c h l i n e=s o r t ( HealthBenchl ine ) ;
sortedhealthIPHCzero=s o r t ( HealthIPHCzero ) ;
sortedhealthIPHCzeroTwo=s o r t ( HealthIPHCzeroTwo ) ;
s o r t e d h e a l t h B e n c h l i n e 1=s o r t ( HealthBenchl ine ) ;
sortedhealthIPHCzero1=s o r t ( HealthIPHCzero ) ;
sortedhealthIPHCzeroTwo1=s o r t ( HealthIPHCzeroTwo ) ;
s o r t e d h e a l t h B e n c h l i n e 1 ( s o r t e d h e a l t h B e n c h l i n e 1 ==0) = [ ] ; % only t r e a t e d p a t i e n t s
sortedhealthIPHCzero1 ( sortedhealthIPHCzero1==0) = [ ] ;
sortedhealthIPHCzeroTwo1 ( sortedhealthIPHCzeroTwo1==0) = [ ] ;

%MEAN HEALTH IMPROVEMENT FROM TREATMENT
MeanHealthBenchlineAll ( j ) =(1/k ) ∗sum( HealthBenchl ine ) ; %a l l p a t i e n t s
MeanHealthIPHCzeroAll ( j ) =(1/k ) ∗sum( HealthIPHCzero ) ;
MeanHealthIPHCzeroTwoAll ( j ) =(1/k ) ∗sum( HealthIPHCzeroTwo ) ;

MeanHealthBenchline ( j ) =(1/ l e n g t h ( s o r t e d h e a l t h B e n c h l i n e 1 ) ) ∗sum( s o r t e d h e a l t h B e n c h l i n e 1 ) ; %
only t r e a t e d p a t i e n t s

MeanHealthIPHCzero ( j ) =(1/ l e n g t h ( sortedhealthIPHCzero1 ) ) ∗sum( sortedhealthIPHCzero1 ) ;
MeanHealthIPHCzeroTwo ( j ) =(1/ l e n g t h ( sortedhealthIPHCzeroTwo1 ) ) ∗sum(

sortedhealthIPHCzeroTwo1 ) ;

%Health o f bottom 10%
BottomHealthBenchline ( j )=1/round ( l e n g t h ( s o r t e d h e a l t h B e n c h l i n e 1 ) ) ∗sum(

s o r t e d h e a l t h B e n c h l i n e 1 ( 1 : round ( l e n g t h ( s o r t e d h e a l t h B e n c h l i n e 1 ) /10) ) ) ;% only t r e a t e d
p a t i e n t s

BottomHealthIPHCzero ( j )=1/round ( l e n g t h ( sortedhealthIPHCzero1 ) ) ∗sum( sortedhealthIPHCzero1
( 1 : round ( l e n g t h ( sortedhealthIPHCzero1 ) /10) ) ) ;

BottomHealthIPHCzeroTwo ( j )=1/round ( l e n g t h ( sortedhealthIPHCzeroTwo1 ) ) ∗sum(
sortedhealthIPHCzeroTwo1 ( 1 : round ( l e n g t h ( sortedhealthIPHCzero1 ) /10) ) ) ;

BottomHealthBenchlineAll ( j ) =1/10∗sum( s o r t e d h e a l t h B e n c h l i n e ( 1 : ( k /10) ) ) ;% a l l p a t i e n t s
BottomHealthIPHCzeroAll ( j ) =1/10∗sum( sortedhealthIPHCzero ( 1 : ( k /10) ) ) ;
BottomHealthIPHCzeroTwoAll ( j ) =1/10∗sum( sortedhealthIPHCzeroTwo ( 1 : ( k /10) ) ) ;

%Health o f top 10%
TopHealthBenchl ineAll ( j ) =1/10∗sum( s o r t e d h e a l t h B e n c h l i n e ( ( 9 ∗ k ) / 1 0 : k ) ) ;% a l l p a t i e n t s
TopHealthIPHCzeroAll ( j ) =1/10∗sum( sortedhealthIPHCzero ( ( 9 ∗ k ) / 1 0 : k ) ) ;
TopHealthIPHCzeroTwoAll ( j ) =1/10∗sum( sortedhealthIPHCzeroTwo ( ( 9 ∗ k ) / 1 0 : k ) ) ;

i f l e n g t h ( s o r t e d h e a l t h B e n c h l i n e 1 ) ~=0
TopHealthBenchline ( j )=1/round ( l e n g t h ( s o r t e d h e a l t h B e n c h l i n e 1 ) ) ∗sum(

s o r t e d h e a l t h B e n c h l i n e 1 ( ( 9 ∗ round ( l e n g t h ( s o r t e d h e a l t h B e n c h l i n e 1 ) ) ) / 1 0 : round ( l e n g t h (
s o r t e d h e a l t h B e n c h l i n e 1 ) ) ) ) ;

e l s e
TopHealthBenchline ( j ) =0;

end
i f l e n g t h ( sortedhealthIPHCzero1 ) ~=0

TopHealthIPHCzero ( j )=1/round ( l e n g t h ( sortedhealthIPHCzero1 ) ) ∗sum( sortedhealthIPHCzero1
( ( 9 ∗ round ( l e n g t h ( sortedhealthIPHCzero1 ) ) ) / 1 0 : round ( l e n g t h ( sortedhealthIPHCzero1 ) )
) ) ;

e l s e
TopHealthIPHCzero ( j ) =0;
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end
i f l e n g t h ( sortedhealthIPHCzeroTwo1 ) ~=0

TopHealthIPHCzeroTwo ( j )=1/round ( l e n g t h ( sortedhealthIPHCzeroTwo1 ) ) ∗sum(
sortedhealthIPHCzeroTwo1 ( ( 9 ∗ round ( l e n g t h ( sortedhealthIPHCzeroTwo1 ) ) ) / 1 0 : round (
l e n g t h ( sortedhealthIPHCzeroTwo1 ) ) ) ) ;

e l s e
TopHealthIPHCzeroTwo ( j ) =0;

end

%SOCIAL WELFARE
%u t i l i t a r i a n :
S o W e l U t i l i t a r i a n B e n c h l i n e ( j )= sum( UpatRealBenchline ) ;
SoWelUti l i tar ianIPHCzero ( j )=sum( UpatRealIPHCzero ) ;
SoWelUtilitarianIPHCzeroTwo ( j )=sum( UpatRealIPHCzeroTwo ) ;

%u t i l i t a r i a n bottom 10%
s o r t e d U t i l i t a r i a n B e n c h l i n e=s o r t ( UpatRealBenchline ) ;
s o r t e d U t i l i t a r i a n I P H C z e r o=s o r t ( UpatRealIPHCzero ) ;
sortedUti l i tar ianIPHCzeroTwo=s o r t ( UpatRealIPHCzeroTwo ) ;
B o t t o m U t i l i t a r i a n B e n c h l i n e ( j )=sum( s o r t e d U t i l i t a r i a n B e n c h l i n e ( 1 : ( k /10) ) ) ;
BottomUti l i tar ianIPHCzero ( j )=sum( s o r t e d U t i l i t a r i a n I P H C z e r o ( 1 : ( k /10) ) ) ;
BottomUtilitarianIPHCzeroTwo ( j )=sum( sortedUti l i tar ianIPHCzeroTwo ( 1 : ( k /10) ) ) ;

%u t i l i t a r i a n top 10%
T o p U t i l i t a r i a n B e n c h l i n e ( j )=sum( s o r t e d U t i l i t a r i a n B e n c h l i n e ( ( 9 ∗ k ) / 1 0 : k ) ) ;
TopUti l i tar ianIPHCzero ( j )=sum( s o r t e d U t i l i t a r i a n I P H C z e r o ( ( 9 ∗ k ) / 1 0 : k ) ) ;
TopUtilitarianIPHCzeroTwo ( j )=sum( sortedUti l i tar ianIPHCzeroTwo ( ( 9 ∗ k ) / 1 0 : k ) ) ;

%u t i l i t a r i a n , t r e a t e d only
sort edUtTre atedBen chl ine=s o r t ( UpatTreatedBenchline ) ;
sortedUtTreatedIPHCzero=s o r t ( UpatTreatedIPHCzero ) ;
sortedUtTreatedIPHCzeroTwo=s o r t ( UpatTreatedIPHCzeroTwo ) ;
sort edUtTre atedBen chl ine ( s ortedUt Treate dBenchl ine==0) = [ ] ;
sortedUtTreatedIPHCzero ( sortedUtTreatedIPHCzero==0) = [ ] ;
sortedUtTreatedIPHCzeroTwo ( sortedUtTreatedIPHCzeroTwo==0) = [ ] ;
T r e a t e d U t i l i t a r i a n B e n c h l i n e ( j )=sum( sort edUtTre atedBen chl ine ) ;
T r e a t e d U t i l i t a r i a n I P H C z e r o ( j )=sum( sortedUtTreatedIPHCzero ) ;
TreatedUti l itarianIPHCzeroTwo ( j )=sum( sortedUtTreatedIPHCzeroTwo ) ;

%u t i l i t a r i a n bottom 10% t r e a t e d only
U t i l i t a r i a n T r B o t t B e n c h l i n e ( j )=1/round ( l e n g t h ( sortedU tTreate dBench l ine ) ) ∗sum(

sort edUtTre atedBen chl ine ( 1 : round ( l e n g t h ( sorted UtTreat edBench l ine ) /10) ) ) ;
U t i l i t a r i a n T r B o t t I P H C z e r o ( j )=1/round ( l e n g t h ( sortedUtTreatedIPHCzero ) ) ∗sum(

sortedUtTreatedIPHCzero ( 1 : round ( l e n g t h ( sortedUtTreatedIPHCzero ) /10) ) ) ;
Uti l itarianTrBottIPHCzeroTwo ( j )=1/round ( l e n g t h ( sortedUtTreatedIPHCzeroTwo ) ) ∗sum(

sortedUtTreatedIPHCzeroTwo ( 1 : round ( l e n g t h ( sortedUtTreatedIPHCzeroTwo ) /10) ) ) ;

%u t i l i t a r i a n top 10% t r e a t e d only
U t i l i t a r i a n T r T o p B e n c h l i n e ( j )=1/round ( l e n g t h ( sortedUt Treate dBenchl ine ) ) ∗sum(

sort edUtTre atedBen chl ine ( ( 9 ∗ round ( l e n g t h ( sortedU tTreate dBenchl ine ) ) ) / 1 0 : round ( l e n g t h (
sort edUtTre atedBen chl ine ) ) ) ) ;

Uti l itar ianTrTopIPHCzero ( j )=1/round ( l e n g t h ( sortedUtTreatedIPHCzero ) ) ∗sum(
sortedUtTreatedIPHCzero ( ( 9 ∗ round ( l e n g t h ( sortedUtTreatedIPHCzero ) ) ) / 1 0 : round ( l e n g t h (
sortedUtTreatedIPHCzero ) ) ) ) ;

UtilitarianTrTopIPHCzeroTwo ( j )=1/round ( l e n g t h ( sortedUtTreatedIPHCzeroTwo ) ) ∗sum(
sortedUtTreatedIPHCzeroTwo ( ( 9 ∗ round ( l e n g t h ( sortedUtTreatedIPHCzeroTwo ) ) ) / 1 0 : round (
l e n g t h ( sortedUtTreatedIPHCzeroTwo ) ) ) ) ;

%Rawlsian
SoWelRawlsianBenchline ( j )= min ( UpatRealBenchline ) ;
SoWelRawlsianIPHCzero ( j )=min ( UpatRealIPHCzero ) ;
SoWelRawlsianIPHCzeroTwo ( j )=min ( UpatRealIPHCzeroTwo ) ;

%Rawlsian t r e a t e d only
SoWelRawlsianTREATEDBenchline ( j )=min ( s ortedUt Treate dBenchl ine ) ;
SoWelRawlsianTREATEDIPHCzero ( j )=min ( sortedUtTreatedIPHCzero ) ;
SoWelRawlsianTREATEDIPHCzeroTwo ( j )=min ( sortedUtTreatedIPHCzeroTwo ) ;
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%B e r n o u l l i Nash

f o r i =1:k
soWelBNBenchline=soWelBNBenchline∗ UpatRealBenchline ( i ) ;

end
SoWelBNBenchline ( j )=soWelBNBenchline ;

f o r i =1:k
soWelBNIPHCzero=soWelBNIPHCzero∗UpatRealIPHCzero ( i ) ;

end
SoWelBNIPHCzero ( j )=soWelBNIPHCzero ;

f o r i =1:k
soWelBNIPHCzeroTwo=soWelBNIPHCzeroTwo∗UpatRealIPHCzeroTwo ( i ) ;

end
SoWelBNIPHCzeroTwo ( j )=soWelBNIPHCzeroTwo ;

end

%RESUTLS OF MONTE CARLO ESTIMATIONS
SoWelUti l i tar ianBenchl ineMean = mean ( S o W e l U t i l i t a r i a n B e n c h l i n e )
SoWelUtil itarianIPHCzeroMean = mean ( SoWelUti l i tar ianIPHCzero )
SoWelUtilitarianIPHCzeroTwoMean = mean ( SoWelUtilitarianIPHCzeroTwo )
E r r o r U t i l i t a r i a n B e n c h l i n e= s q r t ( 1 / ( l e n g t h ( S o W e l U t i l i t a r i a n B e n c h l i n e ) −1)∗sum ( (

S o W e l U t i l i t a r i a n B e n c h l i n e −SoWelUti l i tar ianBenchl ineMean ) . ^ 2 ) )
E r r o r U t i l i t a r i a n I P H C z e r o= s q r t ( 1 / ( l e n g t h ( SoWelUti l i tar ianIPHCzero ) −1)∗sum ( (

SoWelUti l itarianIPHCzero −SoWelUtil itarianIPHCzeroMean ) . ^ 2 ) )
ErrorUti l i tar ianIPHCzeroTwo= s q r t ( 1 / ( l e n g t h ( SoWelUtilitarianIPHCzeroTwo ) −1)∗sum ( (

SoWelUtilitarianIPHCzeroTwo−SoWelUtilitarianIPHCzeroTwoMean ) . ^ 2 ) )

S W T r e a t e d U t i l i t a r i a n B e n c h l i n e = mean ( T r e a t e d U t i l i t a r i a n B e n c h l i n e )
SWTreatedUtil itarianIPHCzero = mean ( T r e a t e d U t i l i t a r i a n I P H C z e r o )
SWTreatedUtilitarianIPHCzeroTwo = mean ( TreatedUti l itarianIPHCzeroTwo )
E r r o r T r e a t e d U t i l i t a r i a n B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( T r e a t e d U t i l i t a r i a n B e n c h l i n e ) −1)∗sum ( (

T r e a t e d U t i l i t a r i a n B e n c h l i n e −S W T r e a t e d U t i l i t a r i a n B e n c h l i n e ) . ^ 2 ) )
E r r o r T r e a t e d U t i l i t a r i a n I P H C z e r o=s q r t ( 1 / ( l e n g t h ( T r e a t e d U t i l i t a r i a n I P H C z e r o ) −1)∗sum ( (

T r e a t e d U t i l i t a r i a n I P H C z e r o −SWTreatedUtil itarianIPHCzero ) . ^ 2 ) )
ErrorTreatedUti l i tar ianIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( TreatedUti l itarianIPHCzeroTwo ) −1)∗sum ( (

TreatedUtil itarianIPHCzeroTwo−SWTreatedUtilitarianIPHCzeroTwo ) . ^ 2 ) )

SoWelUtilitarianBenchlineMeanBOTTOM = mean ( B o t t o m U t i l i t a r i a n B e n c h l i n e )
SoWelUtilitarianIPHCzeroMeanBOTTOM = mean ( BottomUti l i tar ianIPHCzero )
SoWelUtilitarianIPHCzeroTwoMeanBOTTOM = mean ( BottomUtilitarianIPHCzeroTwo )
E r r o r B o t t o m U t i l i t a r i a n B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( B o t t o m U t i l i t a r i a n B e n c h l i n e ) −1)∗sum ( (

B o t t o m U t i l i t a r i a n B e n c h l i n e −SoWelUtilitarianBenchlineMeanBOTTOM ) . ^ 2 ) )
ErrorBottomUti l i tar ianIPHCzero=s q r t ( 1 / ( l e n g t h ( BottomUti l i tar ianIPHCzero ) −1)∗sum ( (

BottomUtil itarianIPHCzero−SoWelUtilitarianIPHCzeroMeanBOTTOM ) . ^ 2 ) )
ErrorBottomUtil itarianIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( BottomUtilitarianIPHCzeroTwo ) −1)∗sum ( (

BottomUtilitarianIPHCzeroTwo−SoWelUtilitarianIPHCzeroTwoMeanBOTTOM ) . ^ 2 ) )

SWTreatedUti l itar ianBottomBenchl ine = mean ( U t i l i t a r i a n T r B o t t B e n c h l i n e )
SWTreatedUtilitarianBottomIPHCzero = mean ( U t i l i t a r i a n T r B o t t I P H C z e r o )
SWTreatedUtilitarianBottomIPHCzeroTwo = mean ( Util itarianTrBottIPHCzeroTwo )
E r r o r T r B o t t o m U t i l i t a r i a n B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( U t i l i t a r i a n T r B o t t B e n c h l i n e ) −1)∗sum ( (

U t i l i t a r i a n T r B o t t B e n c h l i n e −SWTreatedUti l itar ianBottomBenchl ine ) . ^ 2 ) )
ErrorTrBottomUti l i tar ianIPHCzero=s q r t ( 1 / ( l e n g t h ( U t i l i t a r i a n T r B o t t I P H C z e r o ) −1)∗sum ( (

Uti l i tar ianTrBottIPHCzero −SWTreatedUtilitarianBottomIPHCzero ) . ^ 2 ) )
ErrorTrBottomUtilitarianIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( Util itarianTrBottIPHCzeroTwo ) −1)∗sum ( (

Util itarianTrBottIPHCzeroTwo−SWTreatedUtilitarianBottomIPHCzeroTwo ) . ^ 2 ) )

SoWelUti l itarianBenchlineMeanTop = mean ( T o p U t i l i t a r i a n B e n c h l i n e )
SoWelUtilitarianIPHCzeroMeanTop = mean ( TopUti l i tar ianIPHCzero )
SoWelUtilitarianIPHCzeroTwoMeanTop = mean ( TopUtilitarianIPHCzeroTwo )
E r r o r T o p U t i l i t a r i a n B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( T o p U t i l i t a r i a n B e n c h l i n e ) −1)∗sum ( (

T o p U t i l i t a r i a n B e n c h l i n e −SoWelUti l itarianBenchlineMeanTop ) . ^ 2 ) )
ErrorTopUti l i tar ianIPHCzero=s q r t ( 1 / ( l e n g t h ( TopUti l i tar ianIPHCzero ) −1)∗sum ( (

TopUti l itar ianIPHCzero −SoWelUtilitarianIPHCzeroMeanTop ) . ^ 2 ) )
ErrorTopUtil itarianIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( TopUtilitarianIPHCzeroTwo ) −1)∗sum ( (

TopUtilitarianIPHCzeroTwo−SoWelUtilitarianIPHCzeroTwoMeanTop ) . ^ 2 ) )
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SWTreatedUti l i tar ianTopBenchl ine = mean ( U t i l i t a r i a n T r T o p B e n c h l i n e )
SWTreatedUtilitarianTopIPHCzero = mean ( Uti l itar ianTrTopIPHCzero )
SWTreatedUtilitarianTopIPHCzeroTwo = mean ( UtilitarianTrTopIPHCzeroTwo )
E r r o r T r T o p U t i l i t a r i a n B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( U t i l i t a r i a n T r T o p B e n c h l i n e ) −1)∗sum ( (

U t i l i t a r i a n T r T o p B e n c h l i n e −SWTreatedUti l i tar ianTopBenchl ine ) . ^ 2 ) )
ErrorTrTopUti l i tar ianIPHCzero=s q r t ( 1 / ( l e n g t h ( Uti l itar ianTrTopIPHCzero ) −1)∗sum ( (

Util itarianTrTopIPHCzero−SWTreatedUtilitarianTopIPHCzero ) . ^ 2 ) )
ErrorTrTopUtil itarianIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( UtilitarianTrTopIPHCzeroTwo ) −1)∗sum ( (

UtilitarianTrTopIPHCzeroTwo−SWTreatedUtilitarianTopIPHCzeroTwo ) . ^ 2 ) )

S o W e l U t i l i t a r i a n B e n c h l i n e R a t i o=SoWelUtilitarianBenchlineMeanBOTTOM /
SoWelUti l itarianBenchlineMeanTop

SoWelUti l i tar ianIPHCzeroRatio=SoWelUtilitarianIPHCzeroMeanBOTTOM/
SoWelUtilitarianIPHCzeroMeanTop

SoWelUtil itarianIPHCzeroTwoRatio=SoWelUtilitarianIPHCzeroTwoMeanBOTTOM/
SoWelUtilitarianIPHCzeroTwoMeanTop

E r r o r R a t i o U t i l i t a r i a n B e n c h l i n e=s q r t ( ( E r r o r B o t t o m U t i l i t a r i a n B e n c h l i n e /
SoWelUtilitarianBenchlineMeanBOTTOM ) ^2+( E r r o r T o p U t i l i t a r i a n B e n c h l i n e /
SoWelUti l itarianBenchlineMeanTop ) ^2) ∗ S o W e l U t i l i t a r i a n B e n c h l i n e R a t i o

E r r o r R a t i o U t i l i t a r i a n I P H C z e r o=s q r t ( ( ErrorBottomUti l i tar ianIPHCzero /
SoWelUtilitarianIPHCzeroMeanBOTTOM ) ^2+( ErrorTopUti l i tar ianIPHCzero /
SoWelUtilitarianIPHCzeroMeanTop ) ^2) ∗ SoWelUti l i tar ianIPHCzeroRatio

ErrorRatioUti l i tar ianIPHCzeroTwo=s q r t ( ( ErrorBottomUtil itarianIPHCzeroTwo /
SoWelUtilitarianIPHCzeroTwoMeanBOTTOM ) ^2+( ErrorTopUtil itarianIPHCzeroTwo /
SoWelUtilitarianIPHCzeroTwoMeanTop ) ^2) ∗ SoWelUtil itarianIPHCzeroTwoRatio

S W T r e a t e d U t i l i t a r i a n B e n c h l i n e R a t i o=SWTreatedUti l itar ianBottomBenchl ine /
SWTreatedUti l i tar ianTopBenchl ine

SWTreatedUti l itarianIPHCzeroRatio=SWTreatedUtilitarianBottomIPHCzero /
SWTreatedUtilitarianTopIPHCzero

SWTreatedUtilitarianIPHCzeroTwoRatio=SWTreatedUtilitarianBottomIPHCzeroTwo /
SWTreatedUtilitarianTopIPHCzeroTwo

E r r o r R a t i o U t i l i t a r i a n T R B e n c h l i n e=s q r t ( ( E r r o r T r B o t t o m U t i l i t a r i a n B e n c h l i n e /
SWTreatedUti l itar ianBottomBenchl ine ) ^2+( E r r o r T r T o p U t i l i t a r i a n B e n c h l i n e /
SWTreatedUti l i tar ianTopBenchl ine ) ^2) ∗ S W T r e a t e d U t i l i t a r i a n B e n c h l i n e R a t i o

ErrorRatioUti l i tar ianTRIPHCzero=s q r t ( ( ErrorTrBottomUti l i tar ianIPHCzero /
SWTreatedUtilitarianBottomIPHCzero ) ^2+( ErrorTrTopUti l i tar ianIPHCzero /
SWTreatedUtilitarianTopIPHCzero ) ^2) ∗ SWTreatedUti l itarianIPHCzeroRatio

ErrorRatioUtil itarianTRIPHCzeroTwo=s q r t ( ( ErrorTrBottomUtilitarianIPHCzeroTwo /
SWTreatedUtilitarianBottomIPHCzeroTwo ) ^2+( ErrorTrTopUtil itarianIPHCzeroTwo /
SWTreatedUtilitarianTopIPHCzeroTwo ) ^2) ∗ SWTreatedUtilitarianIPHCzeroTwoRatio

SoWelRawlsianBenchlineMean = mean ( SoWelRawlsianBenchline )
SoWelRawlsianIPHCzeroMean = mean ( SoWelRawlsianIPHCzero )
SoWelRawlsianIPHCzeroTwoMean = mean ( SoWelRawlsianIPHCzeroTwo )
ErrorSoWelRawlsianBenchline = s q r t ( 1 / ( l e n g t h ( SoWelRawlsianBenchline ) −1)∗sum ( (

SoWelRawlsianBenchline−SoWelRawlsianBenchlineMean ) . ^ 2 ) )
ErrorSoWelRawlsianIPHCzero = s q r t ( 1 / ( l e n g t h ( SoWelRawlsianIPHCzero ) −1)∗sum ( (

SoWelRawlsianIPHCzero−SoWelRawlsianIPHCzeroMean ) . ^ 2 ) )
ErrorSoWelRawlsianIPHCzeroTwo = s q r t ( 1 / ( l e n g t h ( SoWelRawlsianIPHCzeroTwo ) −1)∗sum ( (

SoWelRawlsianIPHCzeroTwo−SoWelRawlsianIPHCzeroTwoMean ) . ^ 2 ) )

SoWelBNBenchlineMean = mean ( SoWelBNBenchline )
SoWelBNIPHCzeroMean = mean ( SoWelBNIPHCzero )
SoWelBNIPHCzeroTwoMean = mean ( SoWelBNIPHCzeroTwo )
ErrorSoWelBNBenchline = s q r t ( 1 / ( l e n g t h ( SoWelBNBenchline ) −1)∗sum ( ( SoWelBNBenchline−

SoWelBNBenchlineMean ) . ^ 2 ) )
ErrorSoWelBNIPHCzero = s q r t ( 1 / ( l e n g t h ( SoWelBNIPHCzero ) −1)∗sum ( ( SoWelBNIPHCzero−

SoWelBNIPHCzeroMean ) . ^ 2 ) )
ErrorSoWelBNIPHCzeroTwo = s q r t ( 1 / ( l e n g t h ( SoWelBNIPHCzeroTwo ) −1)∗sum ( ( SoWelBNIPHCzeroTwo−

SoWelBNIPHCzeroTwoMean ) . ^ 2 ) )

SWTreatedRawlsianBenchline=mean ( SoWelRawlsianTREATEDBenchline )
SWTreatedRawlsianIPHCzero=mean ( SoWelRawlsianTREATEDIPHCzero )
SWTreatedRawlsianIPHCzeroTwo=mean ( SoWelRawlsianTREATEDIPHCzeroTwo )
ErrorSWTreatedRawlsianBenchline = s q r t ( 1 / ( l e n g t h ( SoWelRawlsianTREATEDBenchline ) −1)∗sum ( (

SoWelRawlsianTREATEDBenchline−SWTreatedRawlsianBenchline ) . ^ 2 ) )
ErrorSWTreatedRawlsianIPHCzero = s q r t ( 1 / ( l e n g t h ( SoWelRawlsianTREATEDIPHCzero ) −1)∗sum ( (

SoWelRawlsianTREATEDIPHCzero−SWTreatedRawlsianIPHCzero ) . ^ 2 ) )
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ErrorSWTreatedRawlsianIPHCzeroTwo = s q r t ( 1 / ( l e n g t h ( SoWelRawlsianTREATEDIPHCzeroTwo ) −1)∗sum ( (
SoWelRawlsianTREATEDIPHCzeroTwo−SWTreatedRawlsianIPHCzeroTwo ) . ^ 2 ) )

HealthBenchlineMEANAll = mean ( MeanHealthBenchlineAll )
HealthIPHCzeroMEANAll = mean ( MeanHealthIPHCzeroAll )
HealthIPHCzeroTwoMEANAll = mean ( MeanHealthIPHCzeroTwoAll )
E r r o r H e a l t h B e n c h l i n e A l l=s q r t ( 1 / ( l e n g t h ( MeanHealthBenchlineAll ) −1)∗sum ( ( MeanHealthBenchlineAll

−HealthBenchlineMEANAll ) . ^ 2 ) )
ErrorHealthIPHCzeroAll=s q r t ( 1 / ( l e n g t h ( MeanHealthIPHCzeroAll ) −1)∗sum ( ( MeanHealthIPHCzeroAll−

HealthIPHCzeroMEANAll ) . ^ 2 ) )
ErrorHealthIPHCzeroTwoAll=s q r t ( 1 / ( l e n g t h ( MeanHealthIPHCzeroTwoAll ) −1)∗sum ( (

MeanHealthIPHCzeroTwoAll−HealthIPHCzeroTwoMEANAll ) . ^ 2 ) )

HealthBenchlineMEAN = mean ( MeanHealthBenchline )
HealthIPHCzeroMEAN = mean ( MeanHealthIPHCzero )
HealthIPHCzeroTwoMEAN = mean ( MeanHealthIPHCzeroTwo )
E r r o r H e a l t h B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( MeanHealthBenchline ) −1)∗sum ( ( MeanHealthBenchline−

HealthBenchlineMEAN ) . ^ 2 ) )
ErrorHealthIPHCzero=s q r t ( 1 / ( l e n g t h ( MeanHealthIPHCzero ) −1)∗sum ( ( MeanHealthIPHCzero−

HealthIPHCzeroMEAN ) . ^ 2 ) )
ErrorHealthIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( MeanHealthIPHCzeroTwo ) −1)∗sum ( ( MeanHealthIPHCzeroTwo−

HealthIPHCzeroTwoMEAN ) . ^ 2 ) )

HealthBenchlineBOTTOM = mean ( BottomHealthBenchline )
HealthIPHCzeroBOTTOM = mean ( BottomHealthIPHCzero )
HealthIPHCzeroTwoBOTTOM = mean ( BottomHealthIPHCzeroTwo )
ErrorHealthBenchlineBOTTOM=s q r t ( 1 / ( l e n g t h ( BottomHealthBenchline ) −1)∗sum ( (

BottomHealthBenchline−HealthBenchlineBOTTOM ) . ^ 2 ) )
ErrorHealthIPHCzeroBOTTOM=s q r t ( 1 / ( l e n g t h ( BottomHealthIPHCzero ) −1)∗sum ( ( BottomHealthIPHCzero−

HealthIPHCzeroBOTTOM ) . ^ 2 ) )
ErrorHealthIPHCzeroTwoBOTTOM=s q r t ( 1 / ( l e n g t h ( BottomHealthIPHCzeroTwo ) −1)∗sum ( (

BottomHealthIPHCzeroTwo−HealthIPHCzeroTwoBOTTOM) . ^ 2 ) )

HealthBenchlineBOTTOMAll = mean ( BottomHealthBenchlineAll )
HealthIPHCzeroBOTTOMAll = mean ( BottomHealthIPHCzeroAll )
HealthIPHCzeroTwoBOTTOMAll = mean ( BottomHealthIPHCzeroTwoAll )
ErrorHealthBenchlineBOTTOMAll=s q r t ( 1 / ( l e n g t h ( BottomHealthBenchlineAll ) −1)∗sum ( (

BottomHealthBenchlineAll−HealthBenchlineBOTTOMAll ) . ^ 2 ) )
ErrorHealthIPHCzeroBOTTOMAll=s q r t ( 1 / ( l e n g t h ( BottomHealthIPHCzeroAll ) −1)∗sum ( (

BottomHealthIPHCzeroAll−HealthIPHCzeroBOTTOMAll ) . ^ 2 ) )
ErrorHealthIPHCzeroTwoBOTTOMAll=s q r t ( 1 / ( l e n g t h ( BottomHealthIPHCzeroTwoAll ) −1)∗sum ( (

BottomHealthIPHCzeroTwoAll−HealthIPHCzeroTwoBOTTOMAll ) . ^ 2 ) )

HealthBenchlineTop = mean ( TopHealthBenchline )
HealthIPHCzeroTop = mean ( TopHealthIPHCzero )
HealthIPHCzeroTwoTop = mean ( TopHealthIPHCzeroTwo )
ErrorHealthBenchl ineTop=s q r t ( 1 / ( l e n g t h ( TopHealthBenchline ) −1)∗sum ( ( TopHealthBenchline−

HealthBenchlineTop ) . ^ 2 ) )
ErrorHealthIPHCzeroTop=s q r t ( 1 / ( l e n g t h ( TopHealthIPHCzero ) −1)∗sum ( ( TopHealthIPHCzero−

HealthIPHCzeroTop ) . ^ 2 ) )
ErrorHealthIPHCzeroTwoTop=s q r t ( 1 / ( l e n g t h ( TopHealthIPHCzeroTwo ) −1)∗sum ( ( TopHealthIPHCzeroTwo−

HealthIPHCzeroTwoTop ) . ^ 2 ) )

HealthBenchl ineTopAll = mean ( TopHealthBenchl ineAll )
HealthIPHCzeroTopAll = mean ( TopHealthIPHCzeroAll )
HealthIPHCzeroTwoTopAll = mean ( TopHealthIPHCzeroTwoAll )
ErrorHealthBenchl ineTopAll=s q r t ( 1 / ( l e n g t h ( TopHealthBenchl ineAll ) −1)∗sum ( (

TopHealthBenchlineAll−HealthBenchl ineTopAll ) . ^ 2 ) )
ErrorHealthIPHCzeroTopAll=s q r t ( 1 / ( l e n g t h ( TopHealthIPHCzeroAll ) −1)∗sum ( ( TopHealthIPHCzeroAll−

HealthIPHCzeroTopAll ) . ^ 2 ) )
ErrorHealthIPHCzeroTwoTopAll=s q r t ( 1 / ( l e n g t h ( TopHealthIPHCzeroTwoAll ) −1)∗sum ( (

TopHealthIPHCzeroTwoAll−HealthIPHCzeroTwoTopAll ) . ^ 2 ) )

Heal thBen chl ine Rat io=HealthBenchlineBOTTOM/ HealthBenchlineTop
HealthIPHCzeroRatio=HealthIPHCzeroBOTTOM/ HealthIPHCzeroTop
HealthIPHCzeroTwoRatio=HealthIPHCzeroTwoBOTTOM/HealthIPHCzeroTwoTop
E r r o r R a t i o B e n c h l i n e=s q r t ( ( ErrorHealthBenchlineBOTTOM/HealthBenchlineBOTTOM ) ^2+(

ErrorHealthBenchl ineTop / HealthBenchlineTop ) ^2) ∗ Heal thBen chl ine Rat io
ErrorRatioIPHCzero=s q r t ( ( ErrorHealthIPHCzeroBOTTOM/HealthIPHCzeroBOTTOM ) ^2+(

ErrorHealthIPHCzeroTop / HealthIPHCzeroTop ) ^2) ∗ HealthIPHCzeroRatio
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ErrorRatioIPHCzeroTwo=s q r t ( ( ErrorHealthIPHCzeroTwoBOTTOM/HealthIPHCzeroTwoBOTTOM) ^2+(
ErrorHealthIPHCzeroTwoTop /HealthIPHCzeroTwoTop ) ^2) ∗HealthIPHCzeroTwoRatio

H e a l t h B e n c h l i n e R a t i o A l l=HealthBenchlineBOTTOMAll/ HealthBenchl ineTopAll
HealthIPHCzeroRatioAll=HealthIPHCzeroBOTTOMAll/ HealthIPHCzeroTopAll
HealthIPHCzeroTwoRatioAll=HealthIPHCzeroTwoBOTTOMAll/ HealthIPHCzeroTwoTopAll
E r r o r R a t i o B e n c h l i n e A l l=s q r t ( ( ErrorHealthBenchlineBOTTOMAll /HealthBenchlineBOTTOMAll ) ^2+(

ErrorHealthBenchl ineTopAll / HealthBenchl ineTopAll ) ^2) ∗ H e a l t h B e n c h l i n e R a t i o A l l
ErrorRatioIPHCzeroAll=s q r t ( ( ErrorHealthIPHCzeroBOTTOMAll/HealthIPHCzeroBOTTOMAll ) ^2+(

ErrorHealthIPHCzeroTopAll / HealthIPHCzeroTopAll ) ^2) ∗ HealthIPHCzeroRatioAll
ErrorRatioIPHCzeroTwoAll=s q r t ( ( ErrorHealthIPHCzeroTwoBOTTOMAll/HealthIPHCzeroTwoBOTTOMAll )

^2+( ErrorHealthIPHCzeroTwoTopAll / HealthIPHCzeroTwoTopAll ) ^2) ∗ HealthIPHCzeroTwoRatioAll

EffortBenchlineMEANAll =mean ( M ean Eff ortB enc hl i neA l l )
EffortIPHCzeroMEANAll = mean ( MeanEffortIPHCzeroAll )
EffortIPHCzeroTwoMEANAll = mean ( MeanEffortIPHCzeroTwoAll )
E r r o r B e n c h l i n e A l l=s q r t ( 1 / ( l e n g t h ( Me anE ffo rtB ench l in eAl l ) −1)∗sum ( ( MeanEffortBenchl ineAl l −

EffortBenchlineMEANAll ) . ^ 2 ) )
ErrorIPHCzeroAll=s q r t ( 1 / ( l e n g t h ( MeanEffortIPHCzeroTwoAll ) −1)∗sum ( ( MeanEffortIPHCzeroAll−

EffortIPHCzeroMEANAll ) . ^ 2 ) )
ErrorIPHCzeroTwoAll=s q r t ( 1 / ( l e n g t h ( MeanEffortIPHCzeroTwoAll ) −1)∗sum ( ( MeanEffortIPHCzeroTwoAll

−EffortIPHCzeroTwoMEANAll ) . ^ 2 ) )

EffortBenchlineMEAN =mean ( MeanEffortBenchl ine )
EffortIPHCzeroMEAN = mean ( MeanEffortIPHCzero )
EffortIPHCzeroTwoMEAN = mean ( MeanEffortIPHCzeroTwo )
E r r o r B e n c h l i n e=s q r t ( 1 / ( l e n g t h ( MeanEffortBenchl ine ) −1)∗sum ( ( MeanEffortBenchline−

EffortBenchlineMEAN ) . ^ 2 ) )
ErrorIPHCzero=s q r t ( 1 / ( l e n g t h ( MeanEffortIPHCzero ) −1)∗sum ( ( MeanEffortIPHCzero−

EffortIPHCzeroMEAN ) . ^ 2 ) )
ErrorIPHCzeroTwo=s q r t ( 1 / ( l e n g t h ( MeanEffortIPHCzeroTwo ) −1)∗sum ( ( MeanEffortIPHCzeroTwo−

EffortIPHCzeroTwoMEAN ) . ^ 2 ) )

%Counts c o n t r a c t f a i l u r e s
totalzIPHCzero=sum( sumz1 ) /( k∗n )
totalzIPHCzeroTwo=sum( sumz2 ) /( k∗n )
totalcountU1=sum( c o u n t f a i l u r e U 1 ) /( k∗n )
totalcountU2=sum( c o u n t f a i l u r e U 2 ) /( k∗n )
totalcountU3=sum( c o u n t f a i l u r e U 3 ) /( k∗n )
t o t a l c o u n t Z 1=sum( c o u n t f a i l u r e Z 1 ) /( k∗n )
t o t a l c o u n t Z 2=sum( c o u n t f a i l u r e Z 2 ) /( k∗n )
t o t a l c o u n t Z 3=sum( c o u n t f a i l u r e Z 3 ) /( k∗n )
t o t a l f a i l u r e U Z 2=sum( c o u n t f a i l u r e U Z 2 ) /( k∗n )
t o t a l f a i l u r e U Z 3=sum( c o u n t f a i l u r e U Z 3 ) /( k∗n )
toc

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Optimizat ion u s i n g fmincon , %
% Benchl ine %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ e , f v a l , Upat , UpatReal , Health ] = b e n c h l i n e ( )
g l o b a l h t i l d e tnorm a h c o n s t r

%s t a r t i n g p o i n t 1
x0 = 0 . 5 ; % S t a r t i n g g u e s s at the s o l u t i o n
l b = 0 ;
ub = 1 ;
A= [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;

o p t i o n s=optimset ( ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
i f c o n s t r==1
[ e1 , f v a l 1 ] = fmincon ( @object ive , x0 ,A, b , Aeq , beq , lb , ub , @mycon , o p t i o n s ) ;
end
i f c o n s t r==0
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[ e1 , f v a l 1 ] = fmincon ( @object ive , x0 ,A, b , Aeq , beq , lb , ub , ’ ’ , o p t i o n s ) ;
end

%s t a r t i n g p o i n t 2
x0 = 0 . 9 ; % S t a r t i n g g u e s s at the s o l u t i o n
l b = 0 ;
ub = 1 ;
A= [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;

o p t i o n s=optimset ( ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
i f c o n s t r==1
[ e2 , f v a l 2 ] = fmincon ( @object ive , x0 ,A, b , Aeq , beq , lb , ub , @mycon , o p t i o n s ) ;
end
i f c o n s t r==0
[ e2 , f v a l 2 ] = fmincon ( @object ive , x0 ,A, b , Aeq , beq , lb , ub , ’ ’ , o p t i o n s ) ;
end

%Chooses the min o f 1 and 2
i f f v a l 1 <f v a l 2

e=e1 ;
f v a l=f v a l 1 ;

e l s e
e=e2 ;
f v a l=f v a l 2 ;

end

% Upat= ( h t i l d e ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗ 0 . 5 ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) +(a ) ^ ( 0 . 5 ) ;
% UpatReal=(h ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗ e ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) +(a ) ^ ( 0 . 5 ) ;
% Health=h ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗ e ^ ( 0 . 2 5 ) ;

%a l t e r n a t i v e h e a l t h f u n c t i o n
Upat= ( h t i l d e ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗ 0 . 5 ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) +(a ) ^ ( 0 . 5 ) ;
UpatReal=(h ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗ e ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) +(a ) ^ ( 0 . 5 ) ;
Health=h ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗ e ^ ( 0 . 2 ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Optimizat ion u s i n g fmincon , %
% IPHC = 0 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ x , f v a l , Upat2 , UpatReal , Health ] = IPHCzero ( )
g l o b a l r h h t i l d e tnorm a a t i l d e c o n s t r ;

%S t a r t i n g p o i n t 1
x0 = [ 0 . 1 , 0 . 1 ] ; % S t a r t i n g g u e s s at the s o l u t i o n
l b = [ 0 , 0 ] ;
ub = [ 1 , a t i l d e ] ;%OBS a t i l d e a ad vera ,
A= [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;
o p t i o n s=optimset ( ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
i f c o n s t r==1

[ x1 , f v a l 1 ] = fmincon ( @object ive2 , x0 ,A, b , Aeq , beq , lb , ub , @mycon2 , o p t i o n s ) ;
end
i f c o n s t r==0
[ x1 , f v a l 1 ] = fmincon ( @object ive2 , x0 ,A, b , Aeq , beq , lb , ub , ’ ’ , o p t i o n s ) ;
end

%S t a r t i n g p o i n t 2
x0 = [ 0 . 8 , 0 . 8 ] ; % S t a r t i n g g u e s s at the s o l u t i o n
l b = [ 0 , 0 ] ;
ub = [ 1 , a t i l d e ] ;%OBS a t i l d e a ad vera ,
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A= [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;

o p t i o n s=optimset ( ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
i f c o n s t r==1

[ x2 , f v a l 2 ] = fmincon ( @object ive2 , x0 ,A, b , Aeq , beq , lb , ub , @mycon2 , o p t i o n s ) ;
end
i f c o n s t r==0
[ x2 , f v a l 2 ] = fmincon ( @object ive2 , x0 ,A, b , Aeq , beq , lb , ub , ’ ’ , o p t i o n s ) ;
end

%Chooses the s m a l l e r value
i f f v a l 1 <f v a l 2

x=x1 ;
f v a l=f v a l 1 ;

e l s e
x=x2 ;
f v a l=f v a l 2 ;

end

%s e t s d i s u t i l i t y i f IPHC e x c e e d s wealth
i f a−x ( 2 ) >= 0

ERS=s q r t ( a−x ( 2 ) ) ;
e l s e

ERS=−s q r t ( x ( 2 )−a ) ;
end

% Upat2 =( h t i l d e ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗ 0 . 5 ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 )+ERS−(1−
r ) ∗( x ( 2 ) −0) ^ ( r ) ;

% UpatReal=(h ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 )+ERS−(1−r )
∗( x ( 2 ) −0) ^ ( r ) ;

% Health=h ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ;

%a l t e r n a t i v e h e a l t h f u n c t i o n
Upat2 =( h t i l d e ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 3 ) ∗ 0 . 5 ^ ( 0 . 2 ) ) ^ ( 0 . 2 )+ERS−(1−r ) ∗( x

( 2 ) −0) ^ ( r ) ;
UpatReal=(h ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . 2 )+ERS−(1−r ) ∗( x

( 2 ) −0) ^ ( r ) ;
Health=h ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% Optimizat ion u s i n g fmincon , %
% IPHC > 0 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ x , f v a l , Upat3 , UpatReal , Health ] = IPHCzerotwo ( )
g l o b a l r znorm h a a t i l d e h t i l d e tnorm c o n s t r ;

%C a l c u l a t e s optimal value with s t a r t i n g p o i n t 1
x0 = [ 0 . 1 , 0 . 1 ] ; % S t a r t i n g g u e s s at the s o l u t i o n
l b = [ 0 , znorm ] ;
ub = [ 1 , a t i l d e ] ;% obs a t i l d e a ad vera
A= [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;

o p t i o n s=optimset ( ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
i f c o n s t r==1
[ x1 , f v a l 1 ] = fmincon ( @object ive3 , x0 ,A, b , Aeq , beq , lb , ub , @mycon3 , o p t i o n s ) ;
end
i f c o n s t r==0
[ x1 , f v a l 1 ] = fmincon ( @object ive3 , x0 ,A, b , Aeq , beq , lb , ub , ’ ’ , o p t i o n s ) ;
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end

%C a l c u l a t e s optimal value with s t a r t i n g p o i n t 2
x0 = [ 0 . 9 , 0 . 9 ] ; % S t a r t i n g g u e s s at the s o l u t i o n
l b = [ 0 , znorm ] ;
ub = [ 1 , a t i l d e ] ;% obs a t i l d e a ad vera
A= [ ] ;
b = [ ] ;
Aeq = [ ] ;
beq = [ ] ;

o p t i o n s=optimset ( ’ Algorithm ’ , ’ i n t e r i o r −point ’ ) ;
i f c o n s t r==1
[ x2 , f v a l 2 ] = fmincon ( @object ive3 , x0 ,A, b , Aeq , beq , lb , ub , @mycon3 , o p t i o n s ) ;

end
i f c o n s t r==0
[ x2 , f v a l 2 ] = fmincon ( @object ive3 , x0 ,A, b , Aeq , beq , lb , ub , ’ ’ , o p t i o n s ) ;

end

%Chooses the min o f o p t i m i z a t i o n with s t a r t i n g p o i n t s 1 and 2
i f f v a l 1 <f v a l 2

x=x1 ;
f v a l=f v a l 1 ;

e l s e
x=x2 ;
f v a l=f v a l 2 ;

end

%S e t s d i s u t i l t y i f IPHC e x c e e d s wealth
i f a−x ( 2 ) >= 0

ERS=s q r t ( a−x ( 2 ) ) ;
e l s e

ERS=(−1)∗ s q r t ( x ( 2 )−a ) ;
end

%
% Upat3 =( h t i l d e ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗ 0 . 5 ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 )+ERS

−(1−r ) ∗( x ( 2 )−znorm ) ^ ( r ) ;
% UpatReal=(h ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 )+ERS

−(1−r ) ∗( x ( 2 )−znorm ) ^ ( r ) ;
% Health=h ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ;

% %a l t e r n a t i v e h e a l t h f u n c t i o n
Upat3 =( h t i l d e ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 3 ) ∗ 0 . 5 ^ ( 0 . 2 ) ) ^ ( 0 . 2 )+ERS−(1−r

) ∗( x ( 2 )−znorm ) ^ ( r ) ;
UpatReal=(h ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . 2 )+ERS−(1−r )

∗( x ( 2 )−znorm ) ^ ( r ) ;
Health=h ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% OBJECTIVE FUNCTION, b e n c h l i n e %
% This i s the o b j e c t i v e f u n c t i o n o f the p h y s i c i a n o p t i m i z a t i o n i n the %
% b e n c h l i n e v e r s i o n o f the model . %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n f = o b j e c t i v e ( e )
g l o b a l q
g l o b a l h
g l o b a l tnorm
g l o b a l y

%f = −q ∗( h . ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗ e ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −(y ) ^ ( 0 . 5 ) +0.1∗ e . ^ ( 0 . 5 ) ;

%a l t e r n a t i v e Health f u n c t i o n
f = −q ∗( h . ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗ e ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −(y ) ^ ( 0 . 5 ) +0.1∗ e . ^ ( 0 . 5 ) ;
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end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% OBJECTIVE FUNCTION, IPHC = 0 . %
% This i s the o b j e c t i v e f u n c t i o n o f the p h y s i c i a n o p t i m i z a t i o n when IPHC.%
% e q u a l s z e r o . %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n f = o b j e c t i v e 2 ( x )
g l o b a l g q h y tnorm w;

%f = −q ∗( h . ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −(y+x ( 2 ) )
^ ( 0 . 5 )+w∗(1−g ) ∗( x ( 2 ) −0) ^ ( g ) +0.1∗x ( 1 ) ^ ( 0 . 5 ) ;

%a l t e r n a t i v e h e a l t h f u n c t i o n
f = −q ∗( h . ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −(y+x ( 2 ) ) ^ ( 0 . 5 )+

w∗(1−g ) ∗( x ( 2 ) −0) ^ ( g ) +0.1∗x ( 1 ) ^ ( 0 . 5 ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% OBJECTIVE FUNCTION, IPHC > 0 . %
% This i s the o b j e c t i v e f u n c t i o n o f the p h y s i c i a n o p t i m i z a t i o n when IPHC.%
% i s l a r g e r than z e r o . %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n f = o b j e c t i v e 3 ( x )
g l o b a l g q h y tnorm znorm w;

%f = −q ∗( h . ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −(y+x ( 2 )
) ^ ( 0 . 5 )+w∗(1−g ) ∗( x ( 2 )−znorm ) ^ ( g ) +0.1∗x ( 1 ) ^ ( 0 . 5 ) ;

%a l t e r n a t i v e Health f u n c t i o n
f = −q ∗( h . ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −(y+x ( 2 ) )

^ ( 0 . 5 )+w∗(1−g ) ∗( x ( 2 )−znorm ) ^ ( g ) +0.1∗x ( 1 ) ^ ( 0 . 5 ) ;

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% CONSTRAINT: E_phys ( U_pat )>E( r e s . u t i l i t y ) %
% Benchl ine %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ c1 , ceq ] = mycon ( e )
g l o b a l h a t i l d e tnorm r e s u t i l i t y ;

% i f r e s u t i l i t y ==1
% %Nonzero r e s e r v a t i o n u t i l i t y :
% c1 = −(h ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗ e ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −( a t i l d e ) ^ ( 0 . 5 ) +( a t i l d e ) ^ 0 . 5 ;
% end
%
% i f r e s u t i l i t y ==0
% %Zero r e s e r v a t i o n u t i l i t y :
% c1 = −(h ^ ( 0 . 2 5 ) ∗tnorm ^ ( 0 . 2 5 ) ∗ e ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −( a t i l d e ) ^ ( 0 . 5 ) ;
% end

%a l t e r n a t i v e h e a l t h functon
i f r e s u t i l i t y ==1

%Nonzero r e s e r v a t i o n u t i l i t y :
c1 = −(h ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗ e ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −( a t i l d e ) ^ ( 0 . 5 ) +( a t i l d e ) ^ 0 . 5 ;
end

i f r e s u t i l i t y ==0
%Zero r e s e r v a t i o n u t i l i t y :
c1 = −(h ^ ( 0 . 4 ) ∗tnorm ^ ( 0 . 3 ) ∗ e ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −( a t i l d e ) ^ ( 0 . 5 ) ;
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end

ceq = [ ] ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% CONSTRAINT: E_phys ( U_pat )>E( r e s . u t i l i t y ) %
% IPHC = 0 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ c , ceq ] = mycon2 ( x )
g l o b a l r a t i l d e h tnorm r e s u t i l i t y r1 r2 ;

% i f r e s u t i l i t y == 1
% % nonzero r e s e r v a t i o n u t l i t y :
% c = −(h ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −( a t i l d e −x ( 2 ) )

^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 ) −0) ^ ( 0 . 5 ) +( a t i l d e ) ^ 0 . 5 ;
% end
%
% i f r e s u t i l i t y ==0
% % z e r o r e s e r v a t i o n u t i l i t y :
% c = −(h ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −( a t i l d e −x ( 2 ) )

^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 ) −0) ^ ( 0 . 5 ) ;
% end

% a l t e r n a t i v e h e a l t h f u n c t i o n
i f r e s u t i l i t y == 1

%nonzero r e s e r v a t i o n u t l i t y :
c = −(h ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −( a t i l d e −x ( 2 ) )

^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 ) −0) ^ ( 0 . 5 ) +( a t i l d e ) ^ 0 . 5 ;
end

i f r e s u t i l i t y ==0
%z e r o r e s e r v a t i o n u t i l i t y :
c = −(h ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 ) −0)+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 2 ) −( a t i l d e −x ( 2 ) )

^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 ) −0) ^ ( 0 . 5 ) ;
end
ceq = [ ] ;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %
% CONSTRAINT: E_phys ( U_pat )>E( r e s . u t i l i t y ) %
% IPHC > 0 %
% %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

f u n c t i o n [ c , ceq ] = mycon3 ( x )
g l o b a l h tnorm a t i l d e znorm r e s u t i l i t y r1 r2

% i f r e s u t i l i t y == 1
% %nonzero r e s e r v a t i o n u t l i t y :
% c = −(h ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −( a t i l d e −x

( 2 ) ) ^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 )−znorm ) ^ ( 0 . 5 ) +( a t i l d e ) ^ 0 . 5 ;
% end
%
% i f r e s u t i l i t y ==0
% %z e r o r e s e r v a t i o n u t i l i t y :
% c = −(h ^ ( 0 . 2 5 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 2 5 ) ∗x ( 1 ) ^ ( 0 . 2 5 ) ) ^ ( 0 . 7 ) −( a t i l d e −x

( 2 ) ) ^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 )−znorm ) ^ ( 0 . 5 ) ;
% end

%a l t e r n a t i v e h e a l t h f u n c t i o n
i f r e s u t i l i t y == 1

%nonzero r e s e r v a t i o n u t l i t y :
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c = −(h ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . ) −( a t i l d e −x ( 2 ) )
^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 )−znorm ) ^ ( 0 . 5 ) +( a t i l d e ) ^ 0 . 5 ;

end

i f r e s u t i l i t y ==0
%z e r o r e s e r v a t i o n u t i l i t y :
c = −(h ^ ( 0 . 4 ) ∗( s q r t ((1−tnorm ^2) ∗( x ( 2 )−znorm )+tnorm ^2) ) ^ ( 0 . 3 ) ∗x ( 1 ) ^ ( 0 . 2 ) ) ^ ( 0 . 2 ) −( a t i l d e −x ( 2 ) )

^ ( 0 . 5 ) +( r1 /( r1+r2 ) ) ∗( x ( 2 )−znorm ) ^ ( 0 . 5 ) ;
end

ceq = [ ] ;
end

\end{ verbatim }
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