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Abstract 

Reinertsen, a Swedish consulting engineering firm, is dissatisfied with the accuracy of its qualitative 

forecast of chargeable hours. This thesis investigates whether classical decomposition, Holt-Winters, or 

ARIMA can perform more accurate forecasts of chargeable hours than the qualitative method currently 

used at Reinertsen. This thesis also attempts to explain why or why not these forecasting methods 

improve the forecasting accuracy at Reinertsen. The purpose of this thesis is twofold: (1) to identify a 

suitable manpower forecasting method for Reinertsen; and (2) to contribute to previous literature on 

forecasting by further assessing the performance and the applicability of the chosen forecasting methods.  

The data applied was monthly numbers of chargeable hours which covered the period between 2007 

and 2011. The first 48 monthly observations were used to generate the forecasts while the remaining 12 

monthly observations were used to evaluate the forecasts. The data contains trend and strong monthly 

fluctuations.  

The results indicate that ARIMA and classical decomposition are inappropriate forecasting methods to 

forecast chargeable hours at Reinertsen. The relatively poor performance of classical decomposition and 

ARIMA is believed to be attributable to these methods inability to forecast varying fluctuations. The 

results also show that Holt-Winters yield the most accurate forecasts amongst the evaluated forecasting 

methods. The forecasted time series fluctuates much and the Holt-Winters method, which focuses on 

recent observations, might be better suited to capture these fluctuations. Consequently, the Holt-Winters 

method has the potential to improve the forecasting of chargeable hours at Reinertsen.  
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1. Introduction 

Rational decision making is a fundamental term in every organization. Berridge (2003) suggests that a 

rational decision is a decision that maximizes utility, and Simon (1979) states that the task of rational 

decision making is to select efficient options that are directed towards organizational goals. However, 

much research has revealed irrational tendencies in how people take decisions. Ito, Pynadath and Marsella 

(2010) concluded that human beliefs influence and thereby bias decisions, and Makridakis (1981) 

proposes that humans have difficulties to process all available information necessary for making rational 

decisions. 

  For many organizations, including firms, agencies and governments, forecasting is a tool that support 

the decision making process. Forecasting includes predicting the future, and the outcome affects decision 

making on economic policies, investment strategies, manpower planning and several other issues 

organizations deal with on daily, weekly, monthly and yearly basis (Pollack-Johnson, 1995). Yet, dealing 

with the future involves much uncertainty, and forecasting does not yield perfect prediction of the future. 

However, the purpose of forecasting is not to eliminate uncertainty but to reduce it, thus enable decision 

makers to take more rational decisions (Makridakis, 1981).  

The literature on managerial forecasting is extensive and many models are available. Empirical 

studies have shown that the performance of different forecasting models varies with the characteristics of 

the data available (Meade, 2000; Hyndman and Kostenko, 2007), the time horizon to be forecasted 

(Bechet and Maki, 2002; Gooijer and Hyndman, 2006), and the area of application (Clarke and 

Wheelwright, 1976; Mahmoud, 1984). Consequently, the choice of forecasting model is crucial to 

generate accurate forecasts that reduce uncertainty and enable managers to take informed decisions. 

A forecasting method could be qualitative or quantitative. Qualitative refers to human involvements 

while quantitative refers to systematic procedures. Quantitative methods include time series methods, 

which capture historical data to predict the future, and explanatory methods, which involve identifying 

independent variables to predict future movements in dependent variables (Makridakis and Wheelwright, 

1980). Time series forecasting is a common forecasting practice when empirical data is available. 

However, Gooijer and Hyndman (2006), state that there is no consensus among researcher which method 

to use. Each situation is unique and the choice of forecasting method depends much on the characteristics 

of data available (Meade, 2000). Thus, an interesting area of research is to investigate the applicability of 

time series forecasting in a situation where the method is not currently used.  
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1.1 Problem discussion 

The managers of Reinertsen, a Swedish consulting engineering firm, are dissatisfied with the accuracy of 

their manpower forecasts, leading to a utilization rate
1
 that is considered too low. Indeed, good manpower 

forecasting can lead to a profitable advantage of every business (Bassett, 1973) and it is a key activity to 

be successful in today´s business environment (Bechet and Maki, 2002). According to Bassett (1973), 

good manpower planning begins with a sales forecast, and proceeds directly to estimation of manpower 

needed to produce in accordance with the forecast. Reinertsen sells consultant hours, and more accurate 

forecasting of sold hours, or chargeable hours, could enable Reinertsen to improve its manpower 

planning. This in turn can lead to an improvement of utilization rate. 

Reinertsen is divided into three different business units: Infrastructure; Energy and Industry; and Oil 

and Gas. Each business unit is then divided into more specialized departments, which in turn, consist of 

small specialized engineering groups. Reinertsen has been structured similarly since January 2008. 

Currently, a forecast for each month, based on qualitative estimations, is made on a yearly basis. The 

qualitative estimations, which are made for each business area separately, are reviewed to ensure that they 

are realistic. The forecast of each business area is then combined at company level to reach an overall 

forecast for each month the next coming year.  

 Makridakis and Wheelwright (1980) argue that a qualitative forecasting method depends much on the 

skills and experience of the people involved in the decision procedure. Makridakis (1981) also suggests 

that a major drawback of qualitative methods is the inconsistency associated with human involvement. 

This irrationality accounts for a large proportion of human forecasting error. The inconsistency that is due 

to human involvements can, however, be reduced by implementing a quantitative forecasting method.  

Consequently, it is interesting to see whether time series forecasting can produce more accurate forecasts 

of chargeable hours than the qualitative forecasting currently employed at Reinertsen.  

According to Gooijer and Hyndman (2006), three commonly used times series forecasting methods 

are classical decomposition
2
, Holt-Winters

3
 and ARIMA

4
. These methods vary in complexity where the 

former is considered the simplest method and the latter the most complex method. Each of these methods 

will be applied to the historical data of chargeable hours provided by Reinertsen to investigate whether 

they can minimize the firm´s forecasting error. The result will reveal the appropriateness of each method 

to forecast chargeable hours at Reinertsen as well as provide explanations to why or why not these 

methods are applicable to forecast time series that is similar to that of chargeable hours at Reinertsen.  

 

                                                             
1
 Utilization rate is defined as the ratio of chargeable hours to the total number of manpower hours 

2
 An approach that breaks down time series into several factors including trend factor and seasonal factor  

3
 An exponential smoothing method designed to handle trend and seasonality 

4 A statistic approach that predicts the future by examining the characteristics of the data.  
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1.2 Research questions 

This thesis will target the following research questions: 

 Can classical decomposition, Holt-Winters, or ARIMA perform more accurate forecasts of 

chargeable hours than the current forecasting method used at Reinertsen? 

 Why or why not are these methods appropriate to forecast time series that is similar to that of 

chargeable hours at Reinertsen? 

1.3 Purpose 

The purpose of this thesis is twofold: (1) to identify a suitable manpower forecasting method for 

Reinertsen; and (2) to contribute to previous literature on forecasting by further assessing the performance 

and the applicability of three commonly used time series forecasting methods. 

1.4 Limitations 

This thesis will focus on three different time series forecasting methods; classical decomposition, Holt-

Winters, and ARIMA. These methods are selected because they are widely used among forecasters when 

historical data contains both trend and seasonality. Each method can, however, represent more than one 

model; both classical decomposition and Holt-Winters can represent an additive and a multiplicative 

model, respectively, and ARIMA can be modeled into several different models depending on the 

characteristics of the data available. Each method will be fitted to one time series and evaluated and 

compared to one qualitative method. The time series and the qualitative method are provided by 

Reinertsen. The accuracy of each forecast will be assessed with three different accuracy measures; mean 

error, mean square error, and mean absolute percentage error. These accuracy measures are chosen 

because they are frequently used among researchers and because they are good complement to each other.  

2. Theory and literature review 

Forecasting has been used to predict future outcomes since ancient Egypt but it was not until the 

Keynesian revolution that more systematic models were developed. Scandinavian countries began 

reporting official macroeconomic forecasts soon after the second world war and this was followed by 

other developed countries in the 1950’s and in the 1960´s (Hawkins, 2005). Business forecasting was 

long considered an easy practice. The stable growth after the second world war made forecasting 

straightforward and future outcomes were assumed to follow established trends. However, several 

macroeconomic crises in the 1970´s highlighted the need for more sophisticated models (Makridakis, 

1981). Also, global economy, international competition, and the changing business environment during 
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the past decades have impelled continuous improvements in the area of forecasting. The International 

Institute of Forecaster was established in 1982 and forecasting has since then been studied extensively, 

and, as a result, numerous of methods have been developed. Still, there are areas of forecasting where 

research has been limited (Gooijer and Hyndman, 2006). 

Forecasting methods are divided into two main categories: qualitative methods and quantitative 

methods. Qualitative methods include judgmental predictions of sales forces, executives, experts or 

panels. Also surveys and iterative processes are included in this category (Pollack-Johnson, 1995). As 

mention earlier, Makridakis (1981) states that a major drawback of qualitative methods is the 

inconsistency associated with human decision-making. This irrationality accounts for a large proportion 

of human forecasting error. However, Armstrong (2006) argues that qualitative methods can be improved 

by more standardized procedures; an example is the Delphi-method where experts independently adjust 

each other´ forecasts iteratively until a satisfactory forecast is obtained. Also, Bunn (1989), Pollack-

Johnson (1995), and Armstrong (2006) suggest that qualitative forecasting methods can yield better 

forecasts if combined with quantitative forecasting methods. In general, qualitative methods are useful 

when empirical data is difficult to obtain and when independent shocks impose permanent structural 

changes (Pollack-Johnson, 1995). Quantitative methods include time series methods and explanatory 

methods. Time series methods capture historical data to predict the future while explanatory methods 

identify independent variables to predict future movements in dependent variables (Clarke and 

Wheelwright, 1976). Both time series methods and explanatory methods are considered objective, 

although, Pollack-Johnson (1995) concludes that also these methods involve human decision-making as 

to the choice of model. Also, according to Armstrong (2006), a problem with quantitative business 

forecasting methods is to obtain a sufficient number of observations that can statistically qualify the 

methods. 

Although several empirical studies have attempted to examine the relative performance of quantitative 

forecasting and qualitative forecasting no consensus has been reached among researchers. Mahmoud 

(1984) concludes that many studies have indicated that forecasts based on qualitative methods have 

provided less accurate forecasts than quantitative methods. However, Makridakis and Wheelwright 

(1980) states that is difficult to compare the relative performance of qualitative forecasting because these 

methods are not standardized and depend much on the skills and experience of the forecasters. However, 

other studies indicate that qualitative, or at least partly qualitative methods, produce comparable or even 

better forecasts than quantitative methods do. For instance, Pollack-Johnson (1995) argues that qualitative 

forecasting in many situations outperforms quantitative forecasting and that a combination of the two 

methods is efficient. Meade (2000) argues, instead, that there appears to be no single model that yields the 

most accurate forecast in every situation; the performance varies across studies and depends on the 

characteristics of the data available. 

Time series forecasting is a common forecasting practice when historical data is available. The 

practice is based on a sequence of evenly spaced data points which are extrapolated to predict future 

outcomes (Pollack-Johnson, 1995). Time series can be either stationary or non-stationary in nature. 
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Stationarity refers to a constant trend; that is, the time series has a constant mean and variance. Non-

stationarity refers to longer upward, or downward, movements in the data; that is, the time series is 

trending. Whether the data contain a trend or not is an important factor to consider when selecting time 

series forecasting model (Box, Jenkins and Reinsel, 2011). A quick way to get an overview of the trend is 

to plot the data against time (Kalekar, 2004). Another method is the augmented Dickey-Fuller (ADF) test, 

which is a test that statistically examines whether the time series is stationarity or non-stationary (Wong, 

Chan and Chiang, 2011). Time series can follow a discernible pattern or a random pattern. A random 

pattern is due to independent shocks that impose unpredictable variation in the data, and much 

randomness can skew time series forecasts. However, some methods capture randomness in data better 

than others (Hyndman and Kostenko, 2007). Consequently, random variance must be identified to enable 

an appropriate selection of forecasting method. A statistical test to check the amount of random variation 

in the data, suggested by Babbage (2004), is the Runs tests for binary randomness. Time series data can 

also contain seasonality, which refers to annual, recurrent, fluctuations in the data. Identification of 

seasonality facilitates selection of a suitable forecasting method, and a common method to detect 

seasonality includes computation of seasonal indices (Kalekar, 2004).  

According to Gooijer and Hyndman (2006), the oldest methods to manage seasonality in the data is 

classical decomposition, which is an approach that breaks down the time series into several factors 

including trend factor and seasonal factor. Makridakis and Wheelwright (1980) describe how classical 

decomposition could be performed either as a multiplicative or an additive model. The multiplicative 

model yields more accurate forecasts if the seasonal fluctuations follow the trend; that is, the magnitude 

of the fluctuation is proportional to the underlying trend. On the contrary, the additive model yields more 

accurate forecasts if the seasonal fluctuations are independent of the trend; that is, the magnitude of the 

fluctuations is constant (Kalekar, 2004). In the classical decomposition method, each historical 

observation is equally important; that is, each observation is equally weighted when generating the 

forecast. Some researchers argue that this leads to an underlying inertia of the method, thus making is 

inappropriate for most time series. Other researchers argue that classical decomposition is a tool for data 

analysis rather than a forecasting method (Makridakis et al, 1998).  

A method designed to handle both trend and seasonality is Holt-Winters triple exponential smoothing 

method (Gooijer and Hyndman, 2006). Exponential smoothing is a method that repeatedly revises a 

forecast, where recent observations get more weights and older observations less weights (Kalekar, 2004). 

Chen (1997), Gooijer and Hyndman (2006), and Gelper, Fried and Croux (2008) claim that Holt-Winters 

is a useful method when the data shows both trend and seasonality, and Chatfield and Yar (1998), suggest 

that Holt-Winters is a relatively simple forecasting method that yields good forecasts. However, Chatfield 

and Yar (1998) also state that a common drawback associated with Holt-Winters is the absence of helpful 

literature when it comes to some practical issues. For instance, there is no standardized method to 

generate starting values at the beginning of the time series. Partly as a result, widely different approaches 

can produce substantially different forecasts for what is apparently the same method (Chatfield and Yar, 

1998). Also Holt-Winters can be divided into a multiplicative model and an additive model, and similar 
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to the classical decomposition method, the relative performance of the multiplicative and the additive 

Holt-Winters depends on the characteristics of the seasonal fluctuations (Kalekar, 2004).  

Another, widely used, method to handle trend and seasonality is the autoregressive-integrated-moving 

average (ARIMA) method. ARIMA can be modeled by adjusting to specific characteristics of a time 

series, thus make it applicable to different types of data (Box et al, 2011). The method is considered 

objective because its forecasts are based only on historical data which is extrapolated into the future. 

However, the method can be subjected to model selection problems, especially when the characteristics of 

the data are difficult to interpret (Hyndman, 2001). Gooijer and Hyndman (2006) suggest that ARIMA is 

a robust method to handle trend and seasonality and Wong et al (2011) state that the method is useful 

when data follows a discernible pattern. However, Clarke and Wheelwright (1976) argue that the method 

is very complex and difficult to understand. Armstrong (2006) states that ARIMA has been immensely 

studied but that there is little evidence that the method improves forecast accuracy. Pollack-Johnson 

(1995) concludes that ARIMA, despite its complexity, often gives poorly forecasts compared to less 

complex methods. Also Hyndman (2001) argues that ARIMA many times perform moderate forecasts 

because of the difficulty to identify the most appropriate ARIMA-model.  

The accuracy of forecasting methods is evaluated by accuracy measures. An accuracy measure is the 

difference between forecasted value and actual value and a low accuracy measure indicates that a suitable 

forecasting model is used (Mahmoud, 1984). According to Gooijer and Hyndman (2006), a confusing 

array of accuracy measure techniques are available. Also Mahmoud (1984) states that the main problem 

with accuracy measures is the absence of a universally accepted measure for evaluating forecast errors, 

which in turn, makes it hard for the user to select a suitable accuracy measure. However, Gooijer and 

Hyndman (2006) argue that the variety of accuracy measures is due to different characteristics of the 

forecast to be evaluated; different accuracy measures are suitable for different types of forecasts. Also, 

due to the different characteristics of the accuracy measures, Makridakis, Wheelwright and Hyndman 

(1998) propose that a fair comparison between different forecasting methods should involve more than 

one accuracy measures. A literature review conducted by Mahmoud (1984), revealed that up to ten 

different accuracy measures are commonly employed among researchers. Three of the more frequently 

used measures are the mean error, the absolute measure, mean squared error (MSE), and relative measure, 

mean absolute percentage error (MAPE). Mean error is easy to calculate and gives a good indication of 

whether the forecasting method evaluated under-forecast or over-forecast. MSE, which squares the errors, 

highlight large errors. Consequently, MSE is a good accuracy measures when the user prefer many small 

errors rather than a few large. However, due to large numbers, the measures can be difficult to interpret. 

MAPE give equal weight to all errors, and because the measure is easy to interpret, it is the most applied 

accuracy measure (Makridakis et al, 1998).  
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3. Method and data 

3.1 Research process 

The first step of this thesis involved a discussion with managers of Reinertsen. The discussion included a 

brief presentation of the firm and its current forecasting method as well as a general discussion about the 

problem. Also empirical data was obtained at this time. The second step involved an extensive literature 

study. Some meta-studies were reviewed to get an overview of previous research in the area of 

forecasting before focus was directed towards time series forecasting methods and their underlying 

theories. The literature study, together with the discussion, formed the research question for this study. 

Next, the data was analyzed to enable selection of suitable forecasting methods. To detect the 

characteristics of the data, the data analysis included describing the data and graphing the data against 

time. Also the choice of STATA
5
 and Excel as analysis software was made in this step. The fourth step 

involved selection of forecasting methods. The problem discussion and the characteristics of the data 

available were evaluated against previous literature. Once selected, the forecasting methods´ 

mathematical equations were reviewed, the analysis software were chosen, and eventually, the forecasts 

were generated. The last step involved identification of reliable accuracy measures. Again, previous 

literature was consulted to support the choice. As soon as the measures were decided, the accuracy of 

each time series forecast as well as Reinertsen’s current forecast were computed and compared.  

3.2 Research design 

This thesis examines whether any of the three mentioned time series forecasting methods can provide 

more accurate forecasts of chargeable hours at Reinertsen than the qualitative forecasting method 

currently used. The time series forecasts were extrapolated from historical data obtained from Reinertsen. 

The data was monthly numbers of chargeable hours which covered the period between 2007 and 2011. 

The first 48 monthly observations were used to generate the forecasts while the remaining 12 monthly 

observations were used to evaluate the forecasts. Next, the error of each forecast was assessed by three 

commonly used accuracy measures. The accuracy measures of each forecast were appraised and then 

compared to the accuracy measures of Reinertsen’s current forecast, thus enabling an analysis of the 

performance of each forecasting method.   

 The research design is similar to that used by Koehler (1985), Greer and Liao (1986), and Wong et al 

(2011). These studies compare the relative performance of different quantitative forecasting methods in 

the food processing industry, the aerospace industry, and the construction industry, respectively. This 

thesis focuses, however, on the applicability of time series forecasting in the consulting engineering 

industry. Further, the focus is on whether the selected times series forecasting methods can provide more 

                                                             
5
 STATA is a statistics software for data analysis, data management, and graphics. STATA commands are presented in Appendix 2.  
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accurate forecasts at a single firm in the consulting engineering industry rather than for the industry as a 

whole.   

3.3 Reliability and validity of research 

To ensure the reliability of the research only literature by reputed researchers has been used. Most 

literature originates from business journals. Also a few books and working papers have been consulted. 

The selected forecasting methods are widely employed (e.g Koehler, 1985; Greer and Liao 1986; Heuts 

and Brockners, 1998; Chatfield and Yar, 1998; Kalekar, 2004; Theodosiou, 2011; Wong et al, 2011) and 

evaluated (e.g. Pollack-Johnson 1995; Armstrong 2006; Gooijer and Hyndman, 2006). Also, 

appropriateness of the chosen accuracy measures have been appraised in several studies (e.g. Mahmoud, 

1984; Gooijer and Hyndman, 2006). The forecasts are modeled from actual values covering the period 

January 2007 to December 2010 and validated against actual values covering the period January 2011 to 

December 2011. Similar research design is used by Koehler (1985), Greer and Liao (1986), and Wong et 

al (2011). The data used in this thesis is provided by Reinertsen. It originates from operational documents 

so there is no reason to believe that the provided data is incorrect or skewed.  

 A limitation of this thesis is that the selected methods are only a few of all available methods. Several 

other methods, including explanatory methods and qualitative methods, could be used to forecast 

chargeable hours at Reinertsen. The choice of other methods would probably lead to different results, and 

consequently different conclusions. A further limitation is that the result of the forecasts is only reliable 

for this particular moment; the accuracy of each time series forecast deteriorates over time and need 

continuous revisions and evaluations. Yet another limitation is the absences of a completely reliable 

procedure to estimate the ARIMA parameters; although a common estimation procedure is used there is 

no guarantee that the chosen ARIMA model is optimal. Similarly, there is no standardized approach to 

generate starting values for the Holt-Winters method. As a result, different approaches can produce 

substantially different forecasts, although the same Holt-Winters model is used.  

3.4 Data 

The data used in this thesis was provided by Reinertsen. An Excel document, with financial statements, 

key indicators and current forecast, was obtained, and after a discussion with managers of Reinertsen, 

where the problem of this thesis was identified, the data observations associated with chargeable hours 

were sorted out. The sorted data included monthly observations of chargeable hours, dating back to 

January 2007. However, a re-organization of Reinertsen in January 2008, where two business units 

became three, skewed the data. Thus, data before January 2008 was inappropriate to use, resulting in only 

48 observations for each business unit. Yet, the total number of chargeable hours was correct. 

Consequently, the data for each business area was merged, resulting in 60 monthly observations of total 

chargeable hours for the period January 2007 to December 2011. The first 48 monthly observations were 

used to generate the forecasts, while the remaining 12 monthly observations were used to test the 
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forecasted values to the actual values. Consequently, the total sample, the model sample, and the 

validation sample contain 60 observations, 48 observations, and 12 observations, respectively.  

3.4.1 Data analysis 

To obtain an overview of the data, descriptive statistics, including mean, median, standard deviation, 

minimum value and maximum value, was computed for the total sample, the model sample and the 

validation sample, respectively. Also, two line diagrams were plotted; one to identify the relationship 

between chargeable hours and time and one to identify the seasonal fluctuations. To control the data for 

seasonality, a seasonal index (St) for each month was computed using equation (1): 

 

    
  

  
   

 

                                                           (1)                                                             

where Xt is the actual value in month t; and Xm is the average value of all months. If the seasonal index is 

below 1 it indicates a value below average, and if the seasonal index is above 1, it indicates a value above 

average (Kalekar, 2004). 

To test the data for randomness the Runs test for binary randomness was used. First, the mean value 

( ) of the sample was calculated. Second, all observations (n) were modified to binary numbers. If the 

trend and seasonally adjusted observation is less than the mean value ( ) it is assigned with the binary 

number 0. On the contrary, if the trend and seasonally adjusted observation is larger than the mean value 

( ) it is assigned with the binary number 1. The sum of binary number 0 (  ) and the sum of binary 

number 1 (    were then calculated, respectively. Third, the number of runs in the sample was computed. 

A run is defined as a series of increasing, or decreasing, values. The number of changes, from increasing 

values to decreasing values, or vice versa, is then equal to the number of runs    . Fourth, the test 

statistics     was calculated, using the following series of equations: 
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(3)                                                             

 

  
    
  

 

 

                                                           (4)                                                             

where    is the expected value of  ; and    is the standard deviation. The null hypothesis, that the data 

contains randomness, could then be rejected if the absolute test statistics exceeded the critical value, that 

is | | >   1-α/2 (Babbage, 2004). 
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3.5 Forecasting methods 

3.5.1 Classical decomposition 

Classical decomposition is a simple forecasting method designed to handle both trend and seasonality. It 

is a three step procedure including (1) calculation of seasonal indices; (2) developing of trend line 

equation; and (3) generating of forecast (Makridakis and Wheelwright, 1980). Both a multiplicative 

decomposition forecast and an additive decomposition forecast were computed.   

First, to solve for monthly fluctuations, seasonal indices were computed. In the multiplicative 

decomposition model, a seasonal index, for each month, is computed by averaging all ratios for that 

month, where the ratio is computed by dividing that month´s actual value by its centered moving average 

value
6
. In the additive decomposition model, a seasonal index, for each month, is calculated by averaging 

all differences for that month, where the difference is computed by subtracting that month´s centered 

moving average value from its actual value. A centered moving average value is calculated according to 

equation (5):  

 

     
 

  

[      
  

 ⁄
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  (5)                                            

 

where xt,c is the centered moving average in month   ; and ns is the number of months (Makridakis and 

Wheelwright, 1980).  

Second, in order to develop a trend line, monthly unseasonalized values were computed. In the 

multiplicative decomposition model unseasonalized value, for each month, is calculated by dividing its 

actual value by its seasonal index. In the additive decomposition model unseasonalized value, for each 

month, is computed by subtracting actual value with monthly index. Next, simple regression was used to 

derive a trend line equation for each model. The simple regression involves minimizing the least squares 

differences between the line and the unseasonalized values. That process can be modeled as: 

 

    ∑       
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(6)                                                             

where     is the sum of squared errors;   is the number of observations (unseasonalized values);    the 

observed y-value; and    is the forecasted average value of the dependent variable;   is the constant;   is 

the slope; and   is the value of the independent variable (time);    is the average value of the dependent 

variable. The constant ( ) and the trend ( ) are calculated using equation (7) and equation (8), 

respectively: 

                                                             
6
 Centered moving average is preferable when the number of seasons is even. On the contrary, if the number of seasons is odd a so 

called running moving average is preferable (Makridakis et al, 1998). 
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Third, the trend line equations were used to compute an unseasonalized forecast. For the multiplicative 

method the unseasonalized forecast was then multiplied with each month’s seasonal index to generate a 

forecast. For the additive model, each month´s seasonal index was then added to the unseasonalized 

forecast to generate a forecast (Makridakis and Wheelwright, 1980). 

3.5.2 Holt-Winters 

Holt-Winters is a triple exponential smoothing forecast method constructed to handle trend and 

seasonality. It is a six step procedure including (1) calculation of seasonal indices; (2) overall smoothing 

of trend level; (3) smoothing of trend factor; (4) smoothing of seasonal indices; (5) generating of forecast; 

and (6) optimization of smoothing constants. Both multiplicative Holt-Winters and additive Holt-Winters 

were computed.  

First, equation (1) was used to compute seasonal indices for 2007. Second, an overall smoothing of 

level (Lt) was performed to deseasonalize the data. The overall smoothing value for multiplicative Holt-

Winters is computed in accordance with equation (9): 

 

       
  

    
                   

 (9)                                                                                                           

 

where      is the trend level at time   in the multiplicative Holt-Winters model ; St is the seasonal factor 

at time  ; Dt is the actual value at time  ; Tt is the trend factor at time  ; Lt is the level of trend at time  ; 

and α (0<α<1 ) is the first smoothing constant. Same equation for the additive Holt-Winters is: 

 

                                   

 

 (10)                                                                                                           

where Lt,a is the trend level at time   in the additive Holt-Winters model; St is the seasonal factor at time  ; 

Dt is the actual value at time  ; Tt is the trend factor at time  ; Lt is the level of trend at time  ; and α 

(0<α<1 ) is the first smoothing constant. At this stage, α can be arbitrarily set to any number between 0 

and 1. The average value (  ) is the average value of actual values for 2007.  

Third, the trend factor was smoothed. Same equation for both the models was used. The trend factor is 

computed using equation (11):  
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 (11)                                                                                                           

where ß (0<ß<1) is the second smoothing constant. At this stage, ß can be arbitrarily set to any number 

between 0 and 1. The derivative of the trend line equation for 2007 is used as the initial value of the trend 

factor (  ). 

Fourth, each seasonal index was smoothed. In the multiplicative model equation (12) is used:  

       (
  

  
)             

 

 (12)                                                                                                           

where St,m is the smoothed seasonal index at time  ; and   (0<   <1) is the third smoothing constant. In 

the additive model equation (13) is used: 

 

                          

 

 (13)                                                                                                           

where St,a is the smoothed seasonal index at time  ; and   (0<   <1) is the third smoothing constant. At 

this stage,   can be arbitrarily set to any number between 0 and 1.  

Next, a forecast for each model was generated. The forecast for the multiplicative model is computed 

using equation (14):  

 

                      

 

 (14)                                                                                                           

where Ft,m is the forecast at time  . The forecast for the additive model is computed using equation (15):  

 

                    

 

 (15)  

where Ft,a is the forecast at time   (Kalekar, 2004). 

Last, each smoothing constant were optimized using Excel Solver. The optimization procedure 

includes iteration of each smoothing constant until a particular variable is minimized (Hyndman, Kohler, 

Snyder and Grose, 2002). The variable chosen to minimize was MAPE
7
. Consequently, both Holt-

Winters models´ forecast for 2011 were generated with the aim to minimize MAPE.   

3.5.3 ARIMA 

Auto Regressive Integrated Moving Average (ARIMA) is a complex, but widely used, approach to 

analyze time series data. The method is a four-step iterative process including the following activities: (1) 

                                                             
7
 The choice was founded on indications that the managers of Reinertsen preferred to minimize their percentage forecasting error. 
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identification of the model; (2) estimation of the model; (3) checking the appropriateness of the model; 

and (4) forecasting of future values (Wong et al, 2011). 

ARIMA(p,d,q) involves three parameters, and the first step, the model identification step, involves 

estimation of these parameters. The ARIMA model is constructed only for stationary data. Thus, the 

differencing parameter (d) is related to the trend of the time series (Box et al, 2011). If the data is 

stationary in nature d is set to zero; that is d(0). However, if the data is non-stationary in nature it has to 

be corrected before implemented in the model. This is done by differencing the data in accordance with 

equation (16): 

 

            

 

                                                         (16)                                                             

where    is the present value and      is its previous value one period ago. If the data is stationary after 

the first differencing d is set to one; that is d(1) (Kalekar, 2004). 

To check the data for stationarity an Augmented Dickey-Fuller (ADF) test was performed using 

STATA. The ADF test is modeled in accordance with equation (17): 

 

            ∑  

 

   

         

 

 (17)  

where     is   -    ;   is the constant;   is the trend; and   is the parameter to be estimated. The null 

hypothesis ( =0), that the data is trending over time, is tested with a one tail test of significance (  8. 

Thus, if test statics exceeds the critical value (     , the null hypothesis is not rejected; the data is non-

stationary in nature. On the contrary, if the critical value exceeds test statistics (     , the null 

hypothesis is rejected; the data is stationary in nature (Wong et al, 2011).  

The autoregressive term (AR) is related to autocorrelation. That is, the variable to be estimated 

depends on past values (lags). Thus, if the variable only depends on one lag it is an AR(1) process. The 

autoregressive process, AR(p), is calculated using equation (18): 

 

                                      

 

 (18)  

where   is the present value of the variable;   is the constant;   is the AR coefficient;      is the past 

value   periods ago; and    is the present random error term (Box et al, 2011). The first order 

differencing autoregressive model, ARIMA(1,1,0) can then be expressed in accordance with equation 

(19): 

 

                                                             
8
 Tau statistic ( ) is used instead of t-statistic because a non-stationary time series has a variance that increase as the sample size 

increase.  
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 (19)  

The moving average term (MA) refers to the error term of the variable to be estimated. If the variable to 

be estimated depends on past error terms there is a moving average process. Thus, MA(1) refers to a 

variable that only depends on an error term one period ago. The moving average process, MA(q), is 

calculated using equation (20): 

 

                                      

 

 (20)  

where   is the present value of the variable;   is the constant;    is the present random error term;   is 

the MA coefficient; and      the past random error term   periods ago (Box et al, 2011). The first order 

differencing moving average model, ARIMA(0,1,1) can then be expressed in accordance with equation 

(21): 

 

                 

 

 (21)  

To estimate AR(p) and MA(q) the autocorrelation coefficient (AC) and the partial autocorrelation 

coefficient (PAC) were derived in STATA. AC shows the strength of the correlation between present and 

previous values, and PAC shows the strength of the correlation between present value and a previous 

value, without considering the values between them. The behavior of AC and PAC indicates the values of 

p and q respectively
9
 (Wong et al, 2011). The statistical significance of each value is tested with the Box-

Pierce Q statistic test for autocorrelation, which is calculated using equation (22):  

   ∑   
 

 

   

 

 

 (22)  

where   is the test statistics value;   is the number of observations;   is the maximum number of lags 

allowed; and rm is the number of lags. The null hypothesis is that the data contain no autocorrelations. 

Thus, if the null hypothesis is not rejected there are no correlations between present value and previous 

values. On the contrary, if the null hypothesis is rejected there are correlations between present value and 

previous values (Box and Pierce, 1970). 

The second step, after the parameters were assessed, involved estimation of the model. The tentative 

ARIMA was fitted to the historical data and a regression was run. The third step involved controlling the 

appropriateness of the model. Thus, the residuals were collected and tested for autocorrelation. Again, the 

                                                             
9 This identification procedure involves much trial and error. Other, more information-based procedures are Akaike’s information 

criterion (AIC), Akaike’s final prediction error (FPE), and the Bayes information criterion (BIC) (Gooijer and Hyndman, 2006). 
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Box-Pierce Q statistic test for autocorrelation was conducted. Eventually, when a proper model was 

identified, a forecast for 2011was generated (Wong et al, 2011). 

3.6 Accuracy measures 

Three common accuracy measures were chosen to evaluate the performance of each forecast. The mean 

error (  ) shows whether the forecasting errors are positive or negative compared to the actual values. It 

is defined as follows: 
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 (23)  

where    is the actual value at time  ;    is the predicted value at time  ; and   is the number of 

observations (Makridakis et al, 1998). The mean square error, MSE, which square the error terms to 

highlight large deviation, yields an absolute error term. The measure is calculated as follows: 
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 (24)  

The mean absolute percentage error, MAPE, yields the percentage error of the forecast. The measure is 

defined as follows: 
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 (25)  

 

where |     | is the absolute error (Kaastra and Boyd, 1995).  

4. Empirical results 

4.1 Characteristics of data 

Table 1 presents the descriptive statistics, including number of observations, mean, median, standard 

deviation, minimum value and maximum value for for total sample, model sample and validation sample, 

respectively. 
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Table 1: Descriptive Statistics 

The total sample contains 60 observations and covers the period January 2007 to December 2011. The model 
sample contains 48 observations and covers the period January 2007 to December 2010. The validation sample 
contains 12 observations and covers the period January 2011 to December 2011. Each year contains 12 
observations. The observations are monthly numbers of chargeable hours (CH) provided by Reinertsen. 

Variable N Mean Median Std. Dev. Min Max 

Total sample (CH) 60 20505 19758 6480 9243 37320 

Model sample (CH) 48 18784 18652 5582 9243 34977 

Validation sample (CH) 12 27386 27601 5246 19878 37320 

2007 12 14433 13863 3375 9783 20786 

2008 12 17333 17827 3585 9243 24865 

2009 12 19783 19348 5002 9666 28623 

2010 12 23587 22659 5260 13749 34977 

2011 12 27386 27601 5246 19878 37320 

 

The total sample contains 60 observations and covers the period January 2007 to December 2011.The 

model sample contains 48 observations and covers the period January 2007 to December 2011. The 

validation sample contains 12 observations and covers the period January 2011 to December 2011. The 

minimum value in the time series is 9243 hours and the maximum value in the time series is 37320 hours. 

Mean value, median value and standard deviation for the total sample is 20505 hours, 19750 hours and 

6480 hours, respectively. Corresponding numbers for the model sample is 18784, 18652 and 5582, and 

for the validation sample 27386, 27601 and 5246. Both mean and median increase each year for the 

period 2007 to 2011, thus indicating an upward trend.  

The relationship between chargeable hours and time is plotted in figure 1a. The monthly fluctuation of 

chargeable hours per year is plotted in figure 1b.  

 

 

Figure 1a: Chargeable hours over time 
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Figure 1b: Monthly fluctuation of chargeable hours 

Figure 1a shows an increase in chargeable hours between January 2007 and December 2011, indicating 

an upward trend. Figure 1b reveals that chargeable hours fluctuate similarly each year, suggesting 

seasonality.  

 Table 2 presents seasonal index for each month between 2007 and 2011 as well as the average index 

value for each month for these years. Table 2 also shows the standard deviation of the seasonal 

fluctuations each month. 

 

Table 2: Seasonal indices 

The table shows the seasonal index value for each month for the total sample (2007-2011). Also, the average index 
value for each month for the total sample is displayed. If the seasonal index is below 1 it indicates a value below 
average, and if the seasonal index is above 1, it indicates a value above average. The standard deviation of the 
monthly fluctuations for each month, which also is presented in table 2, is for the model sample (2007-2010). 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2007 0.71 0.79 0.92 1.13 0.94 0.98 0.68 0.78 1.44 1.31 1.14 1.20 

2008 0.83 1.04 1.11 1.06 0.91 1.16 0.53 0.86 1.08 0.98 1.43 1.01 

2009 0.65 0.95 1.28 0.88 1.22 0.94 0.49 0.91 1.14 1.08 1.45 1.00 

2010 0.84 0.88 0.98 0.89 1.21 0.94 0.58 0.81 1.10 1.48 1.14 1.14 

2011 0.88 0.97 1.05 0.91 1.24 0.82 0.73 0.77 1.08 1.36 1.07 1.13 

Average 0.78 0.93 1.07 0.97 1.10 0.97 0.60 0.82 1.17 1.24 1.25 1.10 

Std. dev. (%) 8.00 9.50 13.80 10.40 14.70 9.10 7.00 4.80 14.70 19.50 14.90 8.30 

 

Consistent with earlier observation, Table 2 displays that the data contain seasonality. The index values 

fluctuate below and above average several times a year. Table 2 shows that many fluctuations occur on 

monthly basis, thus indicating that the seasonality, more or less, is monthly in nature. Chargeable hours in 

January, February, April, June, June, and August are, on average, below average. On the contrary, 

chargeable hours in March, May, September, October, November and December are, on average, above 

average. Table 2 also shows that July is the lower outlier and that October is the upper outlier. The 
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standard deviation of the monthly fluctuations is particularly high in May, October and November. The 

high standard deviation in monthly fluctuations for these months might lead to forecasting difficulties. 

Table 2 does not give a clear indication whether the seasonality is multiplicative or additive in nature.  

Table 3 present the result of the Runs test for binary randomness. The test includes all 60 monthly 

observation obtained. 

 

Table 3: Runs test for binary randomness 

CHt denotes chargeable hours for the total sample. The test statistics is the absolute value of the calculated test 
value. The critical values at 10%, 5% and 1% significance level are obtained in a standard normal distribution table. 
The null hypothesis is tested with a two tail test of significance. Thus, each critical value, obtained in the standard 
normal distribution table, has been divided by 2 before presented in table 3. The null hypothesis is true if | | <   1-

α/2 and rejected if | | >   1-α/2 

Variable Test statistics | | Critical values (1%) Critical values (5%) Critical values (10%) 

CHt 5.446  2.57 1.96 1.65 

 

Table 3 shows that test statistics exceeds critical values at 10%, 5%, and 1% significance level, thus 

enable rejection of the null hypothesis. The result shows that the monthly fluctuation is systematic with 

non-random variation. Thus, it is possible to conclude that chargeable hours have followed a discernible 

pattern between 2007 and 2011.  

The data analysis indicates that the historical observations of chargeable hours contain trend and 

strong monthly fluctuations. Thus, the chosen forecasting methods are designed to handle trend and 

recurrent fluctuations. The analysis does not reveal whether the trend is additive or multiplicative in 

nature. As a result, both an additive and multiplicative models are used for classical decomposition and 

Holt-Winters. July and November are the lower and the upper outlier respectively. The standard deviation 

in monthly fluctuations is particular high in May, October, and November. These months together with 

July might cause the largest forecasting errors. Although, strong monthly fluctuations, the historical data 

does not contains much randomness. 

4.2 ARIMA parameters 

Table 4 presents the result of the Augmented Dickey-Fuller test for chargeable hours. The ADF test, 

designed for constant and trend, is used because of the characteristics of the data obtained. Also, because 

of monthly observation, the data is assumed to correlate with its previous 12 observations. Thus, 12 lags 

are used in the ADF test.  

 

Table 4: Augmented Dickey-Fuller test of chargeable hours 

CH denotes chargeable hours for the model sample C, T, and 12 represent constant, trend and number of lags, 
respectively. Test statistics (   is the derived value which is compared with the critical values       at 10%, 5% and 
1% significance level. The null hypothesis is true if      and rejected if       

Variable Test statistics Critical values (1%) Critical values (5%) Critical values (10%) 

CH -0.866 (C,T,12) -4.288 -3.560 -3.216 
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Table 4 shows that test statistics exceeds critical values at 10%, 5% and 1% significance level. 

Accordingly, the null hypothesis cannot be rejected at any significance level. The data is non-stationary in 

nature. Consequently, the data has to be corrected for stationarity by using the first order differencing 

equation. The characteristics of first order differencing of chargeable hours is shown in Figure 2. 

 

 

Figure 2: First order differencing of chargeable hours over time 

Figure 2 suggests that first order differencing of chargeable hours has a constant trend and variation 

between January 2007 and December 2010. Figure 2 also shows that the first order differencing of 

chargeable hours is mean reverting, indicating that the variable is stationary. Table 5 presents the result of 

the Augmented Dickey-Fuller (ADF) test for first order differencing of chargeable hours. Due to the 

characteristic of first order differencing of chargeable hours, an ADF test without trend parameter is 

chosen. 

 

Table 5: Augmented Dickey-Fuller test (ADF) of first order differencing of chargeable hours 

CHD1 denotes first order differencing of chargeable hours for model sample. C and 12 represent constant and 
number of lags, respectively. Test statistics (   is the derived value which is compared with the critical values       
at 10%, 5% and 1% significance level The null hypothesis is true if      and rejected if       

Variable Test statistics Critical values (1%) Critical values (5%) Critical values (10%) 

CHD1 -3.933 (C,12) -3.689 -2.975 -2.619 

 

Table 5 shows that critical values, at 10%, 5% and 1% significance level, exceed test statistics. 

Consequently, the null hypothesis can be rejected at any significance level. The first order differencing of 

chargeable hours is stationary, indicating that the d in ARIMA(p,d,q) should be set to one. 

Table 6 shows the autocorrelation coefficient (AC) and the partial autocorrelation coefficient (PAC) 

of first-order differencing of chargeable hours for 12 lags. Also the result of the Box-Piece statistic test 

(Prob>Q) is shown in the table. 
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Table 6: AC, PAC and Q of first order differencing of chargeable hours 

AC shows the correlation between the present value of first order differencing of chargeable hours and the previous 
value of the first order differencing of chargeable hours. PAC shows the correlation between first order differencing 
of chargeable hours and a previous value of the first order differencing of chargeable hours without the effect of 
the lags between them. Q refers to Box-Piece statistic tests. Prop>Q refers to the null hypothesis that all correlation 
up to lag m (m=1,2,3,…,m) are equal to 0. If Prop>Q is less than 0.05 the null hypothesis can be rejected at 5% 
significance level. On the contrary, if Prop>Q is more than 0.05 the null hypothesis cannot be rejected at 5% 
significance level. Lag refers to previous month m (m=1,2,3,…,12). 

Lag 1 2 3 4 5 6 7 8 9 10 11 12 

AC -0.2768 -0.2484 0.0624 -0.2483 0.0358 0.4146 -0.1264 -0.1504 0.1680 -0.4182 0.1185 0.4126 

PAC -0.2769 -0.3739 -0.1613 -0.5148 -0.6315 -0.0789 0.0941 -0.2211 0.1747 -0.5075 -0.6243 -0.3023 

Prob>Q 0.0501 0.0303 0.0658 0.0328 0.0606 0.0025 0.0036 0.0041 0.0040 0.0001 0.0002 0.0000 

 

A positive value for both coefficient indicates an AR(p) process while a negative value for both 

coefficient indicates and a MA(q) process. Table 6 shows that the coefficients have more negative values, 

thus indicating a MA(q) process. This is clearly demonstrated in Figure 3, which graphically shows the 

values of AC and PAC.  

 

                                                                    

Figure 3: AC and PAC of first order differencing of chargeable hours 

 

Figure 3 shows that most spikes, for both AC and PAC, are negative. This is an indication of a MA(q) 

process. Table 6 also shows that most of the autocorrelation between present value of first order 

differencing of chargeable hours and previous values is statistically significant at 5% level (Prop>Q is 

less than 0,05). The low values of prop>Q for lag 10, 11, and 12, however, indicate that the first order 

differencing of chargeable hours have stronger correlation to lag 10, 11 and 12. This indicates that the 

first order differencing of chargeable hours depends much on the previous 10th, 11th, and 12th month, 

respectively
10

. Consequently MA(10), MA(11) and MA(12) are chosen, leading to three tentative 

ARIMA models; ARIMA(0,1,10), ARIMA(0,1,11), and ARIMA(0,1,12). 

                                                             
10

 Although lag 2,4, 6, 7, 8, and 9 show autocorrelation that are statistically significant at 5% level, the residuals of  tentative 

ARIMA(0,1,2), ARIMA(0,1,4), ARIMA(0,1,6), ARIMA(0,1,7), ARIMA(0,1,8) and ARIMA(0,1,9) give low  p-values. This 

indicates autocorrelation among residuals, which in turn, make these models unsuitable to forecast chargeable hours at Reinertsen. 
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A regression of each tentative ARIMA model is run and the residuals are collected and tested for 

autocorrelation. Table 7 shows the AC and PAC for residuals of ARIMA(0,1,10), ARIMA (0,1,11) and 

ARIMA(0,1,12). The result of Box- Pierce statistic test (Prob>Q) is also shown in Table 7.   

 

Table 7: AC, PAC and Q for residuals of ARIMA(0,1,10), ARIMA(0,1,11) and ARIMA(0,1,12) 

AC shows the correlation between the present value of first order differencing of chargeable hours and the previous 
value of the first order differencing of chargeable hours. PAC shows the correlation between first order differencing 
of chargeable hours and a previous value of the first order differencing of chargeable hours without the effect of 
the lags between them. Q refers to Box-Piece statistic tests. Prop>Q refers to the null hypothesis that all correlation 
up to lag m (m=1,2,3,…,n) are equal to 0. If Prop>Q is less than 0.05 the null hypothesis can be rejected at 5% 
significance level. On the contrary, if Prop>Q is higher than 0.05 the null hypothesis cannot be rejected at 5% 
significance level. Lag refers to previous month m where m is equal to 10,11 and 12. 

 
ARIMA(0,1,10) ARIMA(0,1,11) ARIMA(0,1,12) 

Lag AC PAC  Prop>Q AC PAC  Prop>Q AC PAC  Prop>Q 

10 -0.1858 -0.2473 0.8536 -0.1454 -0.2231 0.9055 -0.1544 -0.2315 0.8299 

11 0.1810 .03080 0.7469 0.0431 0.1052 0.9361 0.0532 0.0509 0.8731 

12 0.2891 0.5675 0.3605 0.2365 0.2690 0.7386 0.2210 0.2251 0.6843 

 

Table 7 indicates that there is no autocorrelation among residuals in any of the tentative models (Prop>Q 

is higher than 0.05). However, of these tentative ARIMA models, ARIMA(0,1,11) has the highest 

Prop>Q for each lag tested for autocorrelation (lag 10 (0.9055), lag 11 (0.9361) and lag 12 (0.7386)), 

indicating that this model is the most suitable selection for this time series. Thus, an ARIMA(0,1,11) 

model is chosen for forecasting chargeable hours for 2011.  Figure 4 graphically shows AC and PAC for 

ARIMA(0,1,11). The few and small spikes prove that there is no autocorrelation among residuals in 

ARIMA(0,1,11). 

 

 

Figure 4: AC and PAC for residuals of ARIMA(0,1,11) 

4.3 Forecasting performance  

Figure 5a, 5b, 5c, 5d, 5e and 5f demonstrate the relative performance of the current forecasting method, 

multiplicative decomposition, additive decomposition, additive Holt-Winters, multiplicative Holt-Winters 

and ARIMA to the actual values of 2011, respectively. The diagrams are based on the forecasted values 

shown in appendix 1.  
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Figure 5a: Current forecasting method             Figure 5b: Multiplicative decomposition 

 

 Figure 5c: Additive decomposition Figure 5d: Multiplicative Holt-Winters 

 

  Figure 5e: Additive Holt-Winters Figure 5f: ARIMA 

Figure 5a shows that the current method used at Reinertsen captures the fluctuations in the data fairly 

well. However, figure 5a also shows a large underestimation in the beginning of the second half of 2011 

as well as in the end of the year. Figure 5b indicates that multiplicative decomposition has problem to 

estimate the actual values in 2011, particularly during the first half of the year. The figure also indicates 

that the method tends to be one period ahead in the end of the year. Figure 5c shows that additive 
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decomposition forecast the lower outlier fairly well but that the method has problem to capture upper 

outliers. Figure 5d indicates that multiplicative Holt-Winters forecast most of the actual values well. 

However, the method clearly under-forecast the lower outlier. Figure 5e shows that additive Holt-Winters 

smooth the actual values well. Also this method has a tendency to under-forecast the lower outlier. Figure 

5f shows that ARIMA has large problems to capture all outliers in the data. 

Table 8 presents each forecasting methods MAPE. The average MAPE as well as the MAPE for each 

month 2011 is displayed.  

 

Table 8: MAPE 

The mean absolute percentage error, MAPE, shows the forecast error in percent. Table 8 shows MAPE for each 
method, each month, for 2011. Also the average MAPE for each method is displayed. All error is in relation to actual 
values for 2011. All figures represent the percentage error. 

% Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 

Qualitative 8.10 8.38 8.82 7.50 3.47 4.07 8.81 21.76 8.01 5.47 11.09 19.29 9.57 

Add. decompos. 10.15 4.12 0.86 1.28 14.53 18.19 5.77 13.43 0.50 24.20 11.20 11.55 9.65 

Mul. deccompos. 29.17 19.68 12.70 15.96 27.97 1.21 17.60 15.92 16.62 14.95 29.62 3.56 17.08 

Mul. Holt-Winter 0.00 3.75 0.38 3.40 11.35 11.05 17.23 0.00 4.38 8.42 7.97 0.00 5,66 

Add. Holt-Winter 2.23 6.87 5.14 8.2 4.13 17.24 10.05 9.07 0 3.97 6.47 0 5.50 

ARIMA 6.64 10.86 5.08 8.16 32.33 26.55 17.50 2.30 6.29 21.32 25.64 9.57 14.36 

 

Table 8 shows that the currently used qualitative forecasting method at Reinertsen has a somewhat low 

MAPE (9.57%) in comparison to most of the quantitative forecasting methods. Only additive Holt-

Winters and multiplicative Holt-Winters yield a lower MAPE (5.50%, 5.66%). Additive decomposition 

has a comparable MAPE (9.65%). The remaining methods, ARIMA and multiplicative decomposition, 

yield a MAPE (14.36%, 17.08%) that is significantly larger than of the qualitative method. 

 Table 9 shows MSE of each forecast generated by the different forecasting methods. The average 

MSE as well as the MSE for each month for 2011 is displayed. 

 

Table 9: MSE 

The mean square error, MSE, shows a squared absolute error term. Table 9 shows MSE for each method, each 
month, for 2011. Also the average MSE for each month is shown. All errors are in relation to the actual values for 
2011. All figures represent a value that should be multiplied by 10

6
. 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Average 

Qualitative 3.85 4.96 6.38 3.49 1.39 0.82 3.07 20.9 5.66 4.17 10.5 35.5 8.40 

Add. decompos. 6.05 1.12 0.06 0.10 24.27 16.51 1.32 7.98 0.02 81.54 10.70 12.72 13.54 

Mul. deccompos. 49.97 27.32 13.23 15.82 89.96 0.07 12.24 11.21 24.37 31.13 74.91 1.21 29.29 

Mul. Holt-Winter 2.55 1.19 0.29 0.26 31.47 16.71 11.70 8.38 0.05 80.28 5.42 12.23 4.30  

Add. Holt-Winter 0.29 3.33 2.16 0.04 1.96 14.83 3.99 3.64 0 2.20 3.58 0 3.00 

ARIMA 2.59 8.33 2.11 4.14 120 35.19 12.10 0.23 3.49 63.30 56.12 8.74 26.38 
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Table 9 shows that the currently used qualitative forecasting method at Reinertsen has a fairly low MSE 

(8.40) compared to most of the quantitative forecasting methods. Only, additive Holt-Winters and 

multiplicative Holt-Winters yield a lower MSE (3.00, 4.30). Multiplicative decomposition and ARIMA 

have significantly larger MSE (29.29, 26.38). These results are consistent with the results shown in table. 

Table 9 also shows that additive decomposition has a MSE (13.54) that is much larger than that of the 

currently used forecasting method. This result is a deviation from the result shown in table 8. 

 Table 10 demonstrates the actual error of each forecast generated by the different forecasting methods. 

The error for each month as well the mean error for 2011 is displayed. 

 

Table 10: Mean error 

Table 10 shows the mean error (ME) for each method, 2011. Also all actual error for each method, each month are 
displayed. All errors are in relation to actual values. All values are presented in hours (h). 

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec ME 

Qualitative 1963 2227 2526 1868 -1177 -909 -1752 4576 -2380 -2041 -3241 -5959 -358 

Add. decompos. 2460 1094 -246 -319 4926 -4063 1147 -2825 -149 9030 -3271 3567 946 

Mul. deccompos. 7069 5227 3638 3977 9485 270 3498 -3348 -4936 5580 -8655 1101 1909 

Mul. Holt-Winter 1 996 -108 -848 3848 -2468 3425 0 13 3144 -2327 -1 473 

Add. Holt-Winter 539 1825 1471 -204 1400 -3852 1997 -1908 0 -1482 -1892 0 -176 

ARIMA -1609 -2886 -1453 -2035 10963 -5932 -3479 -485 -1869 7956 -7492 2956 -447 

 

Table 10 shows that ME for the currently used forecasting method at Reinertsen is -358 hours. This 

indicates a tendency of underestimation. Also additive Holt-Winters and ARIMA has a negative ME (-

176h, -447h). Consequently, these methods tend to under-forecast actual values. On the contrary, 

remaining methods, additive decomposition, multiplicative decomposition, and multiplicative Holt-

Winters have a positive ME (946h, 1909h, 473h). These findings indicate that these methods have a 

tendency to over-forecast.  

5. Analysis 

Mahmoud (1984) suggests that plus or minus 10% is a generally acceptable accuracy limit. The 

evaluation of the qualitative method currently used at Reinertsen gives forecasts within this range. This is 

an indication of an elaborate qualitative forecasting method.  However, Reinertsen is not satisfied with 

current forecasting and wants it more accurate. 

The result obtained clearly shows that both Holt-Winters models yield the most accurate forecasts 

amongst the evaluated forecasting methods. This indicates that there is no correlation between forecasting 

accuracy and the complexly of the method used, which is also suggested of Pollack-Johnson (1995). The 

result also shows that both Holt-Winters models can provide more accurate forecasts of chargeable hours 

than the qualitative method currently used at Reinertsen. This suggests that time series forecasting has the 
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potential to improve the forecasting of chargeable hours at Reinertsen. That time series forecasting 

methods can provide better forecasts than these provided by qualitative forecasting methods is a result 

similar to that obtained by others, including Makridakis (1981) and Mahmund (1984).  

Basset (1973) suggests that improved forecasting has the potential to increase the profitability of a 

firm. In this case, the improved forecasting accuracy of chargeable hours will enable Reinertsen to make 

more rational manpower planning decisions. For instance, with improved forecasting of chargeable hours, 

Reinertsen can schedule holidays better and time hiring more exactly. This will lead to a more efficient 

use of available consultant hours, which in turn improves the utilization rate. As a result, the better 

forecasting of chargeable hours has the potential to make Reinertsen to a more efficient and profitable 

firm. 

 Table 8 and 9 shows that both Holt-Winters methods can provide more accurate forecasts than the 

qualitative method currently used at Reinertsen. The relative success of Holt-Winters to forecast 

chargeable hours at Reinertsen might be attributable to the methods flexibility. Kalekar (2004) suggests 

that Holt-Winters is a flexible method because it adds more weights to recent observation, and according 

to Gelper et al (2008), the flexibility of Holt-Winters makes it a robust method to handle seasonality with 

outliers. As shown in table 2, the historical data of chargeable hours contain much monthly fluctuations 

with some outliers.  Table 8 and 9 and Figure 5d and 5e clearly show that both Holt Winters models 

capture these outliers better than the other methods.  

 Additive decomposition provides a forecast that is comparable to that of the qualitative method 

currently used at Reinertsen, only when MAPE is taken into account. When also MSE is taken into 

account, these methods are no longer comparable. The higher MSE for additive decomposition is most 

likely due to the large forecasting error in October. Consequently, Reinertsen should not consider this 

model if they prefer many small errors rather than a few large errors. One reason that the additive 

decomposition did not perform better might be attributable to the methods underlying inertia; all 

historical values in the time series are equally weighted, regardless of occurrence in time. This makes 

additive decomposition less applicable when standard deviation in monthly fluctuations is high. Table 2, 

suggests that May (14.70%), October (19.50%), and November (14.90%) have the highest standard 

deviation amongst all months in the time series. Table 8 and figure 5c show that these are months when 

additive decomposition has large forecasting errors, especially October where its forecasting error is as 

high as 24.20%. That the classical decomposition methods have difficulties to forecast when the seasonal 

fluctuations are not stable is also suggested by Makridakis et al (1998). They argue, instead, that classical 

decomposition is a more suitable forecasting method when standard deviations in seasonal fluctuations 

are low. 

 The poor performance of ARIMA indicates that the method is not suitable to forecast chargeable 

hours at Reinertsen. Hyndman (2001) suggest that the major problem with ARIMA is to estimate its 

parameters, especially when data is difficult to interpret. The estimation procedure used in this thesis 

shows that this is the case; although the estimation procedure is commonly used it did not give a clear 

indication of which model to choose. Another problem with ARIMA, suggested by Wong et al (2011) is 
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the methods inability to forecast strongly fluctuating time series. Table 8 shows that ARIMA has problem 

to yield accurate forecasts for May, October and November; that are the months with the largest standard 

deviation in monthly fluctuations. Also, figure 5e indicates problem to capture the outliers in the data.  

Consequently, the poor performance of ARIMA can be attributable to the methods inability to capture 

outliers and to handle deviation in the monthly fluctuations. 

 The reason to the poor performance of multiplicative decomposition is probably attributable to the 

same underlying inertia that additive decomposition exhibit. A further reason to the poor performance of 

multiplicative decomposition could be that the historical data is additive in nature. According to Kalekar 

(2004), the additive model should be used when the magnitudes of the seasonal fluctuations are constant 

to the trend. On the contrary, the multiplicative model should be used when the magnitudes of the 

seasonal fluctuations are proportional to the trend. The relative performance of additive and multiplicative 

decomposition, where the additive model outperform the multiplicative model, suggests that the data of 

chargeable hours exhibit additive characteristics rather than multiplicative.   

 It is clear that both Holt-Winter models have the potential to improve the forecasting accuracy of 

chargeable hours at Reinertsen. However, whether to choose the additive or multiplicative model is not 

equally clear and a deeper analysis of the relative performance between the Holt-Winters models should 

be made.  

 According to Makridakis et al (1998), the result of classical decomposition could be used as a tool to 

identify whether the seasonal fluctuations is additive or multiplicative in nature. As discussed above, the 

relative performance between the decomposition models indicates that this time series is additive in 

nature.  Accordingly, from this point of view, it is suggested that Reinertsen should choose additive Holt-

Winters in front of multiplicative Holt-Winters.   

Another important issue to consider when selecting between the two Holt-Winters models is their 

relative tendency to forecast either above or below the actual value of chargeable hours.  Table 10 shows 

that additive Holt-Winters has many negative errors. This is an indication that the model tend to under-

forecast. On the contrary, multiplicative Holt-Winters has many positive errors, thus suggesting that the 

model has a tendency to over-forecast. Under-forecast of chargeable hours can lead to improved 

utilization rate. On the other hand, under-forecast of chargeable hours can also lead to manpower 

shortage.  

Many studies, including Bunn (1989), Pollack-Johnson (1995) and Armstrong (2006), suggest a 

combination of qualitative and quantitative forecasting. Thus, a further issue that is interesting to examine 

is how the Holt-Winters models compliment the quantitative method currently used at Reinertsen. The 

current forecast yields large errors in August and December. The multiplicative model forecasts these 

months perfectly while the additive model yields a somewhat high error in August and no error in 

December. The multiplicative model has a large error in July and the additive model has large error in 

June. The currently used forecasting method used at Reinertsen yields fairly low error for both of these 

months. Seemingly there is a good match both between additive Holt-Winters and the current forecasting 
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method and multiplicative Holt-Winters and the current forecast. Yet, the latter seems to be a better 

compliment.  

Regardless of which Holt-Winters methods to select, Reinertsen should evaluate their preferences 

considering a few large errors in opposition to many small errors. As mentioned earlier, the smoothing 

constants have been optimized with respect to MAPE, which do not value large errors to the same extent 

as MSE. If Reinertsen value many small errors in front of a few large errors it would be preferable to 

optimize the smoothing constants with respect to MSE. It will lead to a higher MAPE but a more even 

forecast.  

6. Conclusion 

This thesis targets the forecasting of chargeable hour at Reinertsen. The research question refers to the 

performance of classical decomposition, Holt-Winters and ARIMA in relation to the qualitative 

forecasting method currently used at Reinertsen. The performance of each method is evaluated and 

compared to see whether an improvement of current forecast of chargeable hours is possible. 

 The results obtained clearly indicate that both multiplicative and additive Holt-Winters have the 

potential to provide more accurate forecasts of chargeable hours at Reinertsen than the qualitative method 

currently used at Reinertsen. The findings from this thesis also show that additive decomposition can 

provide a comparable forecast to the method currently used when only MAPE is taken into consideration. 

However, larger MSE for additive decomposition suggests that the method should be avoided. Moreover, 

the results also indicate that ARIMA and multiplicative decomposition are inappropriate forecasting 

methods to forecast chargeable hours at Reinertsen.  

 This thesis also attempts to explain why or why not each forecasting method could improve the 

forecasting accuracy at Reinertsen. The success of the Holt-Winters method is believed to be attributable 

to the method´s flexibility. The forecasted time series fluctuates much and the Holt-Winters method, 

which focuses on recent observations, might be better suited to capture these fluctuations. On the 

contrary, the relatively poor performance of classical decomposition and ARIMA is believed to be 

attributable to these methods inability to forecast varying fluctuations.  

 This thesis forecasts chargeable hours at Reinertsen because a more accurate forecast of chargeable 

hours is assumed to enable better manpower planning. As a result, Reinertsen can use its available 

consultant hours more efficiently, which in turn, can lead to an improvement of the utilization rate. 

Eventually, improved forecasting accuracy of chargeable hours is assumed to enhance the profitability of 

the firm. 

 This thesis contributes to the literature on forecasting by further assessing the applicability of the 

selected forecasting methods in a real situation. Although only one time series is used to generate the 

forecasts, the results give an indication of the applicability of the evaluated forecasting methods when 

data contains trend and strong monthly fluctuations. This thesis also provides possible reasons to the 
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methods performance. A finding of this thesis is that simple methods can provide forecasts that are more 

accurate than those derived from more complex methods. Another finding is that time series forecasting 

method has the potential to provide better forecast than those provided by qualitative forecasting 

methods, even when the data contain strong monthly fluctuations.  

 A major limitation of this thesis is that the evaluated methods are only a few of all available methods. 

Several other methods, including explanatory methods and qualitative methods, could be used to forecast 

chargeable hours at Reinertsen. The choice of other methods would probably lead to different results, and 

consequently different conclusions. For instance, the results obtained gave an indication that Holt-Winters 

and the currently used forecasting method could complement each other. Thus, an interesting direction of 

further research is to investigate whether Holt-Winters can be efficiently combined with qualitative 

forecasting.  
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Appendix 1: Forecasted values of chargeable hours 
 

Table 11: Forecasted values 

Table 11 shows the forecasting values generated by each forecasting model for each month, 2011. Also, the total 
value for each model is displayed.  

 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total 

Actual 24230 26567 28635 24918 33910 22340 19878 21032 29697 37320 29217 30890 328634 

Qualitative 22267 24340 26109 23050 35087 23249 21630 16456 32077 39361 32458 36849 332933 

Add.decompos. 21770 25473 28881 25237 28984 26403 18731 23857 29846 28290 32488 27323 317283 

Mul.deccompos. 17161 21340 24997 20941 24425 22070 16380 24380 34633 31740 37872 29789 305728 

Mul. Holt-Winter 24229 25571 28743 25766 30062 24808 16453 21032 28397 34176 31544 30891 321672 

Add. Holt-Winter 23691 24742 27164 25122 32510 26192 17881 22940 29697 38802 31109 30890 330738 

ARIMA 25839 29453 30089 26953 22947 28272 23357 21517 31566 29364 36709 27934 334000 
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Appendix 2: STATA commands 
 

Table 12: STATA commands 

STATA commands used to generate the ARIMA forecast. 

Description STATA command 

Augmented Dickey-Fuller test, trend and constant dfuller  CH, trend lags(12) 

First-order differencing of chargeable hours generate CHD1=D1.CH 

Line diagram tsline CHD1 

Augmented Dickey-Fuller, constant dfuller CHD1, lags(12) 

AC, PAC and Q of first order differencing of chargeable hours corrgram CHD1, lags(12) 

Collect residuals predict ema11, resid 

AC, PAC and Q of residuals corrgram ema11, lags(12) 

ARIMA forecasting arima CH, armia(0,1,11) 

 


