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Abstract

In this thesis we study the log-normal mixture option pricing model proposed
by Brigo and Mercurio [1]. This model is of particular interest since it is
an analytically tractable generalization of the Black-Scholes option pricing
model, but essentially of the same degree of complexity when it comes to
computing option prices and hedging.

Therefore, if the Brigo-Mercurio model proved to be better in terms of
hedging it would be preferable to the Black-Scholes model from a market
practitioner's point of view.

In the latter part of this thesis we will investigate various methods of
hedging and present the results.
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Chapter 1

Introduction

In this thesis we will investigate the Brigo-Mercurio log-normal mixture
model [1], which is a generalization of the the famous Black-Scholes op-
tion pricing model. We begin by highlighting some of the drawbacks in
the Black-Scholes model and explain intuitively the idea behind the Brigo-
Mercurio model and why it could eventually be more suitable to model the
market.

The Black-Scholes model is based on several underlying assumptions
about the market. The main assumption is that the underlying price pro-
cess S = (S(t))t≥0 is governed by a geometric Brownian motion (GBM).
This means by de�nition that the log-price process (lnS(t))t≥0 is a Brown-
ian motion with drift or equivalently that

S(t) = S(0)e(µ−σ
2

2
)t+σW (t), t ≥ 0 (1.1)

where (W (t))t≥0 as a standard Brownian motion, µ ∈ R, and σ > 0 are
�xed parameters and S(0) > 0. In particular the log-returns are normally
distributed, since for u ≤ t we get

ln

(
S(t)

S(u)

)
= (µ− σ2

2
)(t− u) + σ(W (t)−W (u))

which implies that

ln

(
S(t)

S(u)

)
∈ N

(
(µ− σ2

2
)(t− u), σ2(t− u)

)
.

Also, as a direct consequence of the de�nition of Brownian motion it follows
that the log-returns on non-overlapping time periods are independent i.e.

ln

(
S(t2)

S(t1)

)
and ln

(
S(t4)

S(t3)

)
are independent if 0 ≤ t1 ≤ t2 ≤ t3 ≤ t4. When working with real market
data it becomes apparent that these two properties do not describe the real
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market perfectly. This will be demonstrated in this introduction by using
market data.

Throughout this thesis the price process S consists of daily closing prices
from the Euro Stoxx 50 Index [2] and whenever we refer to the real stock
price we mean this index. The Index consists of 50 stocks from 12 di�er-
ent Eurozone countries and is described in more detail in Section 6.1. In
Figure 1.1 we plot the Euro Stoxx 50 index over a 2 month period.
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Figure 1.1: A plot of the Euro Stoxx 50 Index over the 2 month period
2011-08-22 to 2011-10-21.

Moreover, we will consider European call options on S. Here recall that
a European call option on S with strike price K and time of maturity T pays
the amount

max(0, S(T )−K)

to its owner at time of maturity T. In the sequel, whenever we speak of a
call option we mean a European call option.

For a bank or institution it is often desirable to be able to sell a call option
(or other options) without taking too high risk � to hedge the call option.
In the Black-Scholes model it is possible to perfectly hedge a call option
by trading only in the underlying asset S and the bond (a money market
account). This however, requires the hedging portfolio to be rebalanced
continuously in time. In practice, of course, it is impossible to trade in
continuous time and this gives rise to what we call hedging error.

The parameters µ and σ in (1.1) are called drift and volatility, respec-
tively. If µ ≥ σ2/2 it means that the price process has a tendency to increase
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and vice versa if µ < σ2/2. By statistical means the drift parameter µ is im-
possible to estimate with a small enough variance and is ultimately a matter
of the investors' prospects of the future. One of the greatest results in the
Black-Scholes option pricing theory is that the option prices are independent
of µ. Moreover, it is possible to change to an equivalent measure under which
the parameter µ is replaced by the risk-free rate r. This measure is called
the risk-neutral measure.

1.1 The Gaussian Assumption

As we already noted, the Black-Scholes model implies that the log-returns
of the price process are normally distributed. In this section we will see that
this assumption does not re�ect the market very well. We will also see how
a mixture of normal densities might eventually be a better way to model the
log-returns.

Using the real stock index prices we can construct an empirical proba-
bility density histogram of daily log-return over a 12-month period. With
daily log-returns we mean

Xn = ln

(
Sn
Sn−1

)
, n = 1, ..., N.

where Sn denotes the real stock price at the end of the n:th business day.
Figure 1.2 is such a histogram together with normal probability density plot
that has been �tted to empirical log-returns. The parameters of the normal
density were estimated using Matlab's function normfit. We can clearly
see that the normal assumption is not perfect. Note, for example, that the
empirical density has a greater peak around the mean and a bit heavier tails
than the normal density.

However, as we will see, the normal assumption tends to be more suitable
if we consider shorter time periods. In Figure 1.3 we have an empirical prob-
ability density histogram of daily log-returns over a 2 month period together
with a �tted normal density plot. It is closer to being normal compared with
the 12-month period case in Figure 1.2. One possible explanation for this
may be that it is more likely that there will occur extreme events over a
longer than over a shorter period of time.

The main purpose of this thesis is to investigate a generalization by
Brigo and Mercurio [1] of the Black-Scholes model. In the Brigo-Mercurio
model the density of the price process, at a �xed time point, relative to the
risk-neutral measure will be a mixture of log-normal densities i.e. a con-
vex combination of log-normal densities. In Chapter 2 we will demonstrate
and see the bene�ts of a mixture of log-normal densities which is of central
importance in this thesis.
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Figure 1.2: A probability density histogram of daily log-returns using index
data for the 12 month period 2010-10-18 to 2011-11-18. Here displayed
together with a �tted normal distribution.

Figure 1.3: A probability density histogram of daily log-returns using in-
dex data for the 2 month period 2010-10-18 to 2010-12-18. Here displayed
together with a �tted normal distribution.
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As a demonstration of how we can bene�t from mixture densities we
will mix normal densities and see that we get a better �t to the empirical
distribution in Figure 1.2 compared to only one normal density.

Recall that the density function of the normal distribution with mean µ
and variance σ2 is

ϕ(x;µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2 .

A mixture of two normal densities has the following form

{
λ1ϕ(x;µ1, σ1) + λ2ϕ(x;µ2, σ2),

λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0.

By mixing two normal densities we can achieve a density which has got higher
peaks around the mean and heavier tails. This is illustrated in Figure 1.4
where we have a normal density and a mixture of two normal densities.
They have both been �tted to the empirical data over the same 12-month
period data used in Figure 1.2. The mixture density was �tted using Matlab's
function gmdistribution.fit. The normal density has mean 0 and standard
deviation 0.0167 and the mixture density is a mixture of a normal density
with mean 0 and standard deviation 0.0103 and normal density with mean
0 and standard deviation 0.0233 where the weights are 0.61 on the �rst one
and 0.39 on the second one. This is summarized in Table 1.1.

Normal Mixture

µ 0 0 0
σ 0.0167 0.0103 0.0233
λ 1 0.61 0.39

Table 1.1: The densities used in Figure 1.4 and 1.5.

In Figure 1.5 we can see the densities from Figure 1.4 together with the
empirical density. Clearly a mixture of two normal densities �ts the empirical
data much better and such a mixture of densities could eventually be more
suitable to model the market compared to just one normal density. One can
mix any number of normal densities and if we would use three we would get
an even slightly better �t as can be seen in Figure 1.6. Using more than
three normal densities the improvement is not very signi�cant (and it will
be increasingly di�cult to �t it to data). Later, when we mix log-normal
densities, a mixture of two or three normal densities will be enough for our
applications.
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Figure 1.4: Comparison between a �tted normal distribution (solid line) and
a �tted mixture of two normal densities (dashed line).

Figure 1.5: A probability density histogram of daily log-returns using index
data for the 12 month period 2010-10-18 to 2011-11-18. The density his-
togram is displayed together with a �tted normal distribution (solid line)
and a �tted mixture of two normal densities (dashed line).
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Figure 1.6: A probability density histogram of daily log-returns using in-
dex data for the 12 month period 2010-10-18 to 2011-11-18. The density
histogram is displayed together with two mixtures of normal densities.

1.2 Independence

As mentioned above the real stock price process consists of daily quotes so
we consider a time discretization t0 < t1 < ... < tN where each time point
represents one day i.e. ti − ti−1 = 1, i = 1, ..., N . Moreover, we introduce
the following log-returns

Xn = ln

(
S(tn)

S(tn−1)

)
, n = 1, ..., N.

According to the geometric Brownian motion (GBM) assumption the log-
returns (Xn)N1 are independent and normally distributed with mean µ−σ2/2
and variance σ2. We will now test if it is likely that the observed market
log-returns also stems from an i.i.d process.

We proceed in the fashion of Brockwell and Davis [3] and assume that
(Yn)Nn=1 is an i.i.d. process with mean 0 and variance σ2 and estimate the
autocorrelation function (with time lag 1) by

ρ̂ =

∑N−1
n=1

(
Yn − Ȳ

)(
Yn+1 − Ȳ

)∑N
n=1

(
Yn − Ȳ

)2
where

Ȳ =
1

n

N∑
n=1

Yn.
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If we further assume some technical assumptions such as the existence of
higher order moments of Yn, n = 1, ..., N . Then according to Example 7.2.1
in [3] the sample autocorrelation function ρ̂ is, for large N , asymptotically
normally distributed with mean 0 and variance 1/N . This implies that ap-
proximately 95% of the sample autocorrelations should lie in the con�dence
interval [−1.96/

√
N, 1.96/

√
N ]. This can be used as a check to see if ob-

served market log-returns are truely i.i.d.

We calculate the sample autocorrelation using our market daily stock
prices over the period 2010-10-19 � 2011-11-18 i.e. N = 238. The sample
autocorrelation is then −0.03 and a 95% con�dence interval is [−0.05, 0.05].
Therefore we have no grounds for rejecting the hypothesis that (Xn) is an
i.i.d. process at the 95% con�dence level.

However, if we instead consider the process of squared log-returns

X2
n =

(
ln

(
S(tn)

S(tn−1)

))2

, n = 1, ..., N

the GBM model implies that (X2
n)N1 are still independent. But if we pro-

ceed as above and calculate the sample autocorrelation corresponding to
the squared log-returns we get 0.20 which is signi�cantly larger than zero
and well outside the 95% con�dence interval [−0.05, 0.05]. We can therefore
reject the hypothesis that the squared log-returns is an i.i.d process.

1.3 Implied Volatility

The term volatility is often used in connection with assets as a measure of
the amount of �uctuation and uncertainty there is in the future movements
of the asset.

One major assumption in the Black-Scholes model is that the volatility
of the underlying price process is constant. In this section we argue why
constant volatility is not desirable in a market model and present a natural
extension. If we think of the Black-Scholes call option price as a function of
the volatility, then there exists a unique volatility so that the Black-Scholes
price corresponds exactly to the market price of the call option. This speci�c
volatility is widely known as the implied volatility and denoted by σimp.

If the Black-Scholes model was a perfect model for real stock prices, then
the implied volatility would be constant for all �xed strikes and times to
maturity. However, it does not take much investigation to realize that the
implied volatility is in fact not constant. As an example to demonstrate this
see Figure 1.7 where we have plotted the daily implied volatility of a 2-month
European call option on the Euro Stoxx 50 Index. It is clear that the implied
volatility is not constant and thus using a constant volatility model might
lead to a signi�cant hedging error.
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Figure 1.7: This �gure displays the daily implied volatility of a 2-month
European call option on the Euro Stoxx 50 Index during the period 2010-
10-18 to 2010-12-17.

A model with volatility σ(t, S(t)), where σ(t, S(t)) is a deterministic func-
tion of t and S(t), is commonly referred to as a local volatility model. The
Brigo-Mercurio log-normal mixture model that will be presented in this the-
sis is a local volatility model.

An important special case of local volatility is when σ(t) is a deterministic
function of t ∈ [0, T ]. This case is thoroughly discussed in Section 3.1.

1.4 Volatility Smile

Clearly, for real market data we only have a �nite number of implied volatil-
ities (corresponding to a equally many strike prices). But if we interpolate
the implied volatility at a �xed time we get smooth curves K 7→ σimp(K).
These curves typically has skewed or smiley shapes meaning that the implied
volatility is high for low strikes and low for high strikes or that it has a min-
imum around the underlying forward price. In connection with options on
stocks the smiley phenomenon is commonly identi�ed and it is widely known
and recognized as the volatility smile or smiles in the volatility structure.

In Figure 1.8 we can see the implied volatility interpolated from 9 di�er-
ent strikes and corresponding implied volatilities.
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Figure 1.8: An illustration of the volatility smile using market data on 2010-
11-05 with 10 days left to maturity.

Often it is interesting to see how this smile evolves with di�erent times
to maturity i.e. term structure. We then get a surface which is commonly
known as the implied volatility surface. In Figure 1.9 we see the implied
volatility surface over a 2-month period.

Figure 1.9: This �gure displays the implied volatility surface during the
period 2010-10-18 to 2010-12-17.
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It is clearly a good point if a model can capture the volatility smile
property of the market. The Brigo-Mercurio generalization of the Black-
Scholes model that will be presented in this thesis leads to smiles in the
volatility structure which we illustrate at the end of Section 5.2. Then in
Section 5.3 it is proved that the implied volatility has a local minimum at
the underlying forward price.
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Chapter 2

Implied risk-neutral

distribution

In this section we present a way to obtain the risk-neutral marginal distri-
bution of the asset price process S = (S(t))0≤t≤T from the market price of
European call options. We will compare the implied density of S(T ) with
the density of S(T ) in the Black-Scholes model i.e. a log-normal density.
Finally, we will see that a mixture of log-normals gives a better �t to the
implied density compared with only one log-normal density.

The price at time zero of a European call with strike K on S is

c(0, x, T,K) = E
[
e−rT (S(T )−K)+

]
,

where x = S(0) and E denotes the expectation with respect to the risk-
neutral measure. Let p = p(0, x, T, y) be the risk-neutral marginal density
of S(T ) i.e. p is de�ned by

P (S(T ) ∈ A) =

∫
A
p(0, x, T, y)dy, ∀A ∈ B(R),

where B(R) denotes the Borel σ-algebra on R. We can then write

c(0, x, T,K) = e−rT
∫ ∞

0
(y −K)+p(0, x, T, y)dy

= e−rT
∫ ∞
K

(y −K)p(0, x, T, y)dy.

Now, if we di�erentiate twice with respect to K we get

p(0, x, T,K) = erT
∂2c

∂K2
(0, x, T,K). (2.1)

Equation (2.1) is often called the Breeden-Litzenberger formula and it pro-
vides a way to calculate the risk-neutral distribution of S(T ) from European
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call option prices. The problem when using this in practice is that it only
exists at most a �nite number of call prices corresponding to equally many
strike prices. The market data used in this thesis has 9 di�erent call prices
corresponding to 9 di�erent strike prices. So the numerical di�erentiation
will most likely be a bit rough.

First it is a good idea to create new prices for calls corresponding to
new strikes by interpolating over the 9 prices we do have. Then, after in-
terpolation, we must perform numerical di�erentiation. However, numerical
di�erentiation is an ill-posed problem and it is a balance between stability
and precision. Since we are going to di�erentiate twice it seems as a good
idea to interpolate a piecewise cubic curve to the 9 data points. Then the
second derivatives will be piecewise a�ne, but this is more desirable than to
interpolate a higher order curve since the estimates of the derivative will then
not be as precise compared with the piecewise cubic case. In other words, if
we would want to have a smoother second derivative curve we would loose
precision.

The result from using equation (2.1) on a 1-month option during Period
2 (described in Section 6.1) can be seen in Figure 2.1.

2300 2400 2500 2600 2700 2800 2900 3000 3100 3200 3300
0

0.5

1

1.5

2

2.5

3
x 10

−3

x

D
en

si
ty

Figure 2.1: This �gure displays the implied density of S(T ) from equa-
tion (2.1) during Period 2.

In Figure 2.2 we compare the implied density of S(T ) from Figure 2.1
with the density of S(T ) in the Black-Scholes model. Here, remember that
that in the Black-Scholes model S(T ) is a log-normal random variable. Recall
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that the log-normal density function with parameters µ and σ equals

f(x;µ, σ) =
1

xσ
√

2π
e−

(ln x−µ)2

2σ2 , x > 0.

Here, we �t the log-normal density function by manually choosing the pa-
rameters µ and σ.
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Figure 2.2: Comparison between the implied density of S(T ) from equa-
tion (2.1) and the density of of S(T ) in the Black-Scholes model during
Period 2.

The comparison shows that although the log-normal density of S(T )
seems to �t the implied density pretty well it is obvious that the log-normal
density has a too heavy right tail and a not heavy enough left tail.

A mixture of log-normal densities is simply a convex combination of log-
normal densities. The following equation yields a mixture of two log-normal
densities: {

λ1f(x;µ1, σ1) + λ2f(x;µ2, σ2),

λ1 + λ2 = 1, λ1 ≥ 0, λ2 ≥ 0.

By mixing two log-normal densities we can achieve a better �t to the implied
density of S(T ) in the sense that we can get a heavier left tail and a slightly
less heavy right tail. The parameters in Table 2.1 are used to demonstrate
this in Figure 2.3 where, again, the parameters are manually chosen to get
a good �t.
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Black-Scholes Mixture

µ 8.0187 7.9487 8.0187
σ 0.0477 0.0583 0.0397
λ 1 0.21 0.79

Table 2.1: The parameters used in Figure 2.3
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Figure 2.3: Comparison between the implied density of S(T ) from equa-
tion (2.1), the density of of S(T ) in the Black-Scholes model, and a mixture
of two log-normal densities during Period 2.
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Chapter 3

Delta-Hedging in a local

volatility model

In option pricing with local volatility we start with a representation of the
stock price process S = (S(t))0≤t≤T such that

dS(t) = S(t)(rdt+ σ(t, S(t))dW (t))

where σ : [0, T ]×R+ → R+, r ∈ R+, and W is a standard Brownian motion
under the risk-neutral probability measure P . Throughout this thesis the
set R+ denotes the set of positive real numbers. Moreover let the bond price
process B = (B(t))0≤t≤T be given by

dB(t) = rB(t)dt.

Under appropriate regularity conditions on σ(t, y) it follows that S/B is a
martingale under P and therefore P is also called a martingale measure.

Consider a simple European styled derivative paying the amount f(S(T ))
at time T . Assume v(t, S(t)) is the price of this derivative at time t and that
v is smooth. Our aim in this section is to prove the existence of a portfolio
strategy h = (hS , hB) that is self-�nancing, that is{

v(t, S(t)) = hS(t)S(t) + hB(t)B(t)

dv(t, S(t)) = hS(t)dS(t) + hB(t)dB(t).

Consider a portfolio which at time t is long one derivative and short ∆ shares
of the stock. The value of the portfolio at time t is then

Π(t) = v(t, S(t))−∆S(t).

Next, we de�ne the in�nitesimal portfolio return dΠ(t) (not to be confused
with the stochastic di�erential) by

dΠ(t) = dv(t, S(t))−∆dS(t)
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and we want to choose ∆ = ∆(t) such that the noisy part of dΠ(t) disap-
pears. By Itô's lemma we get

dΠ(t) =
∂v

∂t
(t, S(t))dt+

∂v

∂s
(t, S(t))dS(t) +

1

2

∂2v

∂s2
(t, S(t))(dS(t))2 −∆dS(t)

=
∂v

∂t
(t, S(t))dt+

∂v

∂s
(t, S(t))dS(t) +

σ2(t, S(t))

2
S2(t)

∂2v

∂s2
(t, S(t))dt−∆dS(t).

If we set

∆ =
∂v

∂s
(t, S(t))

the noisy part of the portfolio disappears and we get

dΠ(t) =
∂v

∂t
(t, S(t))dt+

σ2(t, S(t))

2
S2(t)

∂2v

∂s2
(t, S(t))dt.

Now the portfolio is risk-free and the in�nitesimal price increment must be

dΠ(t) = rΠ(t)dt = Π(t)
dB(t)

B(t)

and, hence,

∂v

∂t
(t, S(t))dt+

σ2(t, S(t))

2
S2(t)

∂2v

∂s2
(t, S(t))dt

−r
(
v(t, S(t))− S(t)

∂v

∂s
(t, S(t))

)
dt = 0.

This equation is satis�ed if
∂v

∂t
(t, s)dt+ s2σ

2(t, s)

2

∂2v

∂s2
(t, s)dt− r

(
v(t, s)− s∂v

∂s
(t, s)

)
dt = 0,

v(T, s) = f(s), 0 ≤ t < T, s > 0,

and the Feynman-Kac connection gives us that

v(t, S(t)) = e−r(T−t)E [f(S(T ))|S(t) = s] .

Now if we de�ne

hS(t) =
∂v

∂s
(t, S(t))

and

hB(t) =
v(t, S(t))− hS(t)S(t)

B(t)

it follows that {
v(t, S(t)) = hS(t)S(t) + hB(t)B(t)

dv(t, S(t)) = hS(t)dS(t) + hB(t)dB(t).

In other words, the portfolio strategy h is self-�nancing and replicates the
derivative.
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3.1 An important special case

We now consider the special case when σ(t), 0 ≤ t ≤ T , is a deterministic
positive function and the stock price process S = (S(t))0≤t≤T is governed by
the equation

dS(t) = S(t)(rdt+ σ(t)dW (t)). (3.1)

This kind of di�usion process is important since it is of the kind we will use
to create a mixture dynamics in Chapter 5. This model leads us us to explicit
formulas for the marginal density of S as well as the price of a call (or put)
option. The marginal density of S is de�ned by p(t, y)dy = P (S(t) ∈ dy) or
equivalently

P (S(t) ∈ A) =

∫
A
p(t, y)dy, ∀A ∈ B(R), t ∈ [0, T ].

By using Itô's lemma to compute d(lnS(t)) we �nd

d(lnS(t)) =
1

S(t)
dS(t)− 1

2S2(t)
(dS(t))2

=

(
r − σ2(t)

2

)
dt+ σ(t)dW (t)

and accordingly from this

S(t) = S(0) exp

(∫ t

0

(
r − σ2(u)

2

)
du+

∫ t

0
σ(u)dW (u)

)
.

To simplify notation we introduce

V (t) =

√∫ t

0
σ2(u)du

so that ∫ t

0
σ(u)dW (u) = V (t)G (3.2)

where G ∈ N(0, 1). We then �nd that

P (S(t) ≤ y) = P

(
G ≤ 1

V (t)

(
ln

y

S(0)
− rt+

V 2(t)

2

))
= Φ

(
1

V (t)

(
ln

y

S(0)
− rt+

V 2(t)

2

))
,

where

Φ(x) =

∫ x

−∞
ϕ(y)dy

18



and

ϕ(x) =
e−

x2

2

√
2π
, x ∈ R.

Di�erentiating with respect to y yields

p(t, y) =
1

yV (t)
ϕ

(
1

V (t)

[
ln

y

S(0)
− rt+

V 2(t)

2

])
=

1

yV (t)
√

2π
exp

(
− 1

2V 2(t)

[
ln

y

S(0)
− rt+

V 2(t)

2

]2
)
.

If (3.1) holds and r is the interest rate, then it is also straightforward to
derive an explicit price formula for the call option with strike K and time of
maturity T . The call price at time 0 is

c(0, S(0),K, T ) = e−rTE
[
(S(T )−K)+

]
= e−rTE

[(
se
∫ T
0

(
r−σ

2(u)
2

)
du+

∫ T
0 σ(u)dW (u) −K

)+]∣∣∣
s = S(0)

.

Again, to simplify notation we introduce

a =

∫ T

0

(
r − σ2(u)

2

)
du

and recall (3.2). We then get

E
[(
se
∫ T
0

(
r−σ

2(u)
2

)
du+

∫ T
0 σ(u)dW (u) −K

)+]
= E

[(
sea−V (T )G −K

)+]
=

∫ ∞
−∞

(
sea−xV (T ) −K

)+
e−

x2

2
dx√
2π

=

∫ 1
V (T )

(ln s
K

+a)

−∞

(
sea−xV (T ) −K

)
e−

x2

2
dx√
2π

= sea+
V (T )2

2 Φ
( 1

V (T )
(ln

s

K
+ a+ V (T )2)

)
−KΦ

( 1

V (T )
(ln

s

K
+ a)

)
.

Thus

c(0, s,K, T ) = sΦ(d1)−Ke−rTΦ(d2)

where

d1 =
ln s

K +
(
r + V 2(T )

2T

)
T

V (T )
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and

d2 =
ln s

K +
(
r − V 2(T )

2T

)
T

V (T )
.

To emphasize the dependence on V we will sometimes write

c(0, s,K, T ) = c
(

0, s,K, T ;
V (T )√
T

)
.
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Chapter 4

Numerical solution of a PDE

To compute call option prices in the local volatility model that will be pre-
sented in Chapter 5 we are led to a parabolic di�erential equation of the
following type

∂u

∂t
+ rx

∂u

∂x
+

1

2
x2σ2(t, x)

∂2u

∂x2
− ru = 0, (t, x) ∈ [0, T [ × R+,

u(T, x) = (x−K)+, x ∈ R+,

(4.1)

where σ(t, x) is a local volatility function such that 0 < σm < σ(t, x) <
σM <∞.

In order to solve this equation we will use the implicit (i.e. forward)
Euler �nite di�erence method. First we must bound the domain of x into
a compact interval [a, b] and impose suitable boundary conditions at x = a
and x = b. We simply choose the Black-Scholes call prices as boundary
conditions. More precisely, if cBS(t, x,K, T ;σ) denotes the Black-Scholes
call price, at time t, of a call option with strike K, time of maturity T , and
volatility σ we set{

u(t, a) = cBS(t, a,K, T ;σ(t, a)), t ∈ [0, T ],

u(t, b) = cBS(t, b,K, T ;σ(t, b)), t ∈ [0, T ].

Next we introduce a grid of mesh points (t, x) = (tn, xj) where xj = a+ jh
and tn = nk, j ∈ {0, 1, ..., J} and n ∈ {0, 1, ..., N}. Here h is the mesh-width
in x, k is the time step, xJ = b and tN = T .

Then introduce the forward and backward di�erence quotients with re-
spect to x

∂xU
n
j =

Unj+1 − Unj
h

∂̄xU
n
j =

Unj − Unj−1

h
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and the forward di�erence quotients with respect to t

∂tU
n
j =

Un+1
j − Unj

k

In order to approximate the �rst derivative of u with respect to x we use a
central di�erence quotient

∂xU
n
j + ∂̄xU

n
j

2h
=
Unj+1 − Unj−1

2h

and the second order derivative of u with respect to x is approximated by

∂x∂̄xU
n
j = ∂x

Unj − Unj−1

h
=
Unj−1 − 2Unj + Unj+1

h2
.

The discretizised partial di�erential equation now becomes

Un+1
j − Unj

k
+ rxj

Unj+1 − Unj−1

2h
+

1

2
x2
jσ

2
n,j

Unj−1 − 2Unj + Unj+1

h2
− rUnj = 0

for j = 1, ..., J − 1 and n = 1, ..., N − 1 where σn,j = σ(tn, xj). We can
rewrite these equations as

Un+1
j = an,jU

n
j−1 + bn,jU

n
j + cn,jU

n
j+1

for j = 1, ..., J − 1 and n = 1, ..., N − 1, where

an,j = −

(
kx2

jσ
2
n,j

2h2
− krxj

2h

)
,

bn,j = 1 + rk +
kx2

jσ
2
n,j

h2
,

cn,j = −

(
kx2

jσ
2
n,j

2h2
+
krxj
2h

)
.

Noting that Un0 and UnJ are given boundary conditions we get
bn,1 cn,1 0 . . . 0
an,2 bn,2 cn,2 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . cn,J−2

0 . . . 0 an,J−1 bn,J−1




Un1
Un2
...
...

UnJ−1

 =


Un+1

1

Un+1
2
...
...

Un+1
J−1

−

an,1U

n
0

0
...
0

cn,J−1U
n
J


(4.2)
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for n = N − 1, ..., 1, 0. To solve these equations we use the very e�cient
tridiagonal matrix algorithm [4] also known as Thomas algorithm1. We
demonstrate the algorithm with a less heavy notation

b1 c1 0 . . . 0
a2 b2 c2 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . cJ−2

0 . . . 0 aJ−1 bJ−1




x1

x2
...
...

xJ−1

 =


d1

d2
...
...

dJ−1

 (4.3)

or equivalently, the equations
b1x1 + c1x2 = d1 if i = 1,

aixi−1 + bixi + cixi+1 = di if i = 2, 3, ..., J − 1,

aJ−1xJ−2 + bJ−1xJ−1 = dJ−1 if i = J − 1.

First we assume that the algorithm is possible to carry out and present the
steps of the algorithm. Afterwards we present su�cient conditions for the
algorithm to be able to be carried out.

The algorithm consists of two steps. We begin by performing simple
Gauss elimination to get an upper triangular matrix and after that we do
back substitution. First multiply the �rst equation by a2/b1 and subtract it
from the second equation (i = 2). The second equation then becomes(

b2 −
c1

b1
a2

)
x2 + c2x3 = d2 −

d1

b1
a2.

We de�ne c′1 = c1/b1 and d
′
1 = d1/b1 so that we get the new second equation(

b2 − c′1a2

)
x2 + c2x3 = d2 − d′1a2.

Note that we have eliminated x1 from the second equation. Next we eliminate
x2 from the third equation (i = 3) by multiplying the new second equation
by a3/(b2 − c′1a2) and subtracting it from the third equation. The third
equation then becomes(

b3 −
c2

b2 − c′1a2
a3

)
x3 + c3x4 = d3 −

d2 − d′1a2

b2 − c′1a2
a3.

Now we de�ne c′2 = c2/(b2 − c′1a2) and d′2 = (d2 − d′1a2)/(b2 − c′1a2) and we
get the new third equation(

b3 − c′2a3

)
x3 + c3x4 = d3 − d′2a3.

1Named after the British physicist and applied mathematician Llewellyn Thomas. The
name 'Thomas algorithm' was given by the American mathematician and computer sci-
entist David Young. See NA Digest Monday, March 4, 1996 Volume 96 : Issue 09
http://www.netlib.org/na-digest-html/96/v96n09.html
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We can continue in this way and in the last step we eliminate xJ−2 from
the last row. But the coe�cients will get increasingly complicated with each
new elimination. We can however, inspired by the above, write a recursive
scheme for the new coe�cients

c′1 =
c1

b1
, c′i =

ci
bi − c′i−1ai

, i = 2, ..., J − 2,

d′1 =
d1

b1
, d′i =

di − d′i−1ai

bi − c′i−1ai
, i = 2, ..., J − 1.

With these coe�cients we get an upper triangular matrix and can solve the
system by performing back substitution{

xJ−1 = d′J−1,

xi = d′i − c′ixi+1, i = J − 2, ..., 1.

However, one must be careful when applying this algorithm. For example, it
is important that bi − c′i−1ai 6= 0, i = 2, ..., J − 1, and b1 6= 0. Young proves
in [4] that the following conditions are su�cient to to be able to perform this
algorithm, namely

bi > 0, i = 1, ..., J − 1, (4.4)

b1 > |c1|, (4.5)

bi ≥ |ci|+ |ai| and ai 6= 0, ci 6= 0, i = 1, ..., J − 2, (4.6)

bJ−1 ≥ |aJ−1|. (4.7)

Indeed, it is su�cient to show that bi − c′i−1ai > 0, i = 2, ..., J − 1, under
the conditions (4.4)�(4.7). First we prove that |c′i| < 1, i = 1, ..., J − 2. It's
readily seen using (4.5) that |c′1| < 1. Next, assume that |c′i| < 1 for some
i = 2, ..., J − 3. If it is possible to prove |c′i+1| < 1 then by induction we
have proven that |c′i| < 1, i = 1, ..., J − 2. In order to prove |c′i+1| < 1 it is
su�cient to prove |bi+1−c′iai+1| > |ci+1|. By using the induction assumption
and (4.6) we see that

|bi+1 − c′iai+1| ≥ bi+1 − c′iai+1 ≥ bi+1 − |c′iai+1| > bi+1 − |ai+1| ≥ |ci+1|.

This concludes the proof that |c′i| < 1, i = 1, ..., J − 2. From (4.6) it follows
that bi > |ai|, i = 2, ..., J − 2, and hence,

bi − c′i−1ai ≥ bi − |c′i−1ai| > bi − |ai| > 0 i = 2, ..., J − 2.

Lastly, from (4.4) we get that

bJ−1 − c′J−2aJ−1 > 0 if aJ−1 = 0

24



and otherwise, using (4.7),

bJ−1 − c′J−2aJ−1 ≥ bJ−1 − |c′J−2aJ−1| > bJ−1 − |aJ−1| ≥ 0 if aJ−1 6= 0.

This concludes the proof that (4.4)�(4.7) are su�cient conditions for being
able to carry out the algorithm.

Now we know how to solve a tridiagonal matrix equation in an e�cient
way and we denote by (dn,1, ..., dn,J−1), n = 1, ..., N − 1 the right hand side
of the equations in (4.2). The process for solving our original equations (4.2)
then becomes

c′n,1 =
cn,1
bn,1

, c′n,i =
cn,i

bn,i − c′n,i−1an,i
, i = 2, ..., J − 2,

d′n,1 =
dn,1
bn,1

, d′n,i =
dn,i − d′n,i−1an,i

bn,i − c′n,i−1an,i
, i = 2, ..., J − 1,

UnJ−1 = d′n,J−1, Uni = d′n,i − c′n,iUni+1, i = J − 2, ..., 1,

for each n = N − 1, ..., 1, 0. When implementing this algorithm in Matlab
we check the su�cient conditions (4.4)�(4.7) and terminate the algorithm if
the conditions are not satis�ed. It is also important to make sure that the
quantities bn,i − c′n,i−1an,i are not too small since then a serious source of
round-o� errors may arise.

It is interesting to see how much more e�cient the Tridiagonal matrix
algorithm (TDMA) is compared to using Matlab's function mldivide (\)
or LU-decomposition on the equations in (4.2). The time consumption is
heavily a�ected by how �ne the grid of mesh points is.

For this demonstration we compute the price of a European call option
from equation (4.1) using the local volatility function σ(t, x) from equa-
tion (5.8) in Chapter 5.2 with S(0) = 2500,K = 2500, N = 3, ε = 1/252, δ =
2/252, σ̄ = 0.3, (σ̄1, σ̄2, σ̄3) = (0.2, 0.3, 0.4), (λ1, λ2, λ3) = (1/3, 1/3, 1/3).
Moreover, γi, i = 1, 2, 3 are the a�ne functions

γi(t) = σ̄ + (t− ε) σ̄i − σ̄
δ − ε

, t ∈ [ε, δ], i = 1, 2, 3.

We choose the grid of mesh points:xj = 1000 + j, j = 0, ..., 1999,

tn =
n

5 · 252
, n = 0, ..., 220.

i.e. h = 1 and k = 1/(5·252). These parameters will be used throughout this
Chapter if not stated otherwise. Considering (4.2), we must now solve 220
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TDMA \ LU

Time 0.09s 12.12s 21.04s

Table 4.1: Time consumption for solving (4.2) for n = 219, 218, ..., 0.

matrix equations of the dimension 1999×1999. The time consumption, based
on solving (4.1) once with the above parameters, is presented in Table 4.1

Even more interesting is to see how accurate this PDE solution is by
comparing it with the solution obtained by Monte Carlo simulation. For
the Monte Carlo simulation we use the Euler-Maruyama method with 106

simulations. For the �rst comparison we let K = 2500 and S(0) = 2500 and
the result can be seen in the following table:

Time PDE MC

t20 90.79 90.97
t30 68.74 68.78

If K = 2200 and S(0) = 2500 we get the following result:

Time PDE MC

t20 310.47 310.46
t30 28.59 28.76

With these results we are now more con�dent that the PDE solution is
accurate enough.

An alternative approach to solving (4.1) is to �rst simplify the equation
by making the substitutions {

x = ey

v(t, y) = u(t, x)

so that the PDE (4.1) transforms into
∂v

∂t
+
(
r − 1

2
σ2(t, ey)

)∂v
∂y

+
1

2
σ2(t, ey)

∂2v

∂y2
− rv = 0, (t, y) ∈ [0, T [×R

v(T, y) = (ey −K)+, y ∈ R.
(4.8)

This should give increased stability when solving it numerically. If 0 <
σm < σ(t, ey) < σM < ∞ we solve this equation using the implicit Euler
�nite di�erence method in exactly the same fashion as above. We get the
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coe�cients:

an,j = −

(
kσ2

n,j

2h2
−
kr − k

2σ
2
n,j

2h

)
,

bn,j = 1 + rk +
kσ2

n,j

h2
,

cn,j = −

(
kσ2

n,j

2h2
+
kr − k

2σ
2
n,j

2h

)
,

for j = 1, ..., J − 1 and n = 1, ..., N − 1.

We denote by PDE 1 and PDE 2 the solutions from the previous and
the new transformed equations respectively. It is interesting to see if there
is any di�erence in the accuracy of the two solutions. To this end we use the
same data and parameters as above with K = S(0) = 2500 and we get the
following result:

Time PDE 1 PDE 2 MC

t20 90.79 90.79 90.97
t30 68.74 68.74 68.78

If K = 2200 and S(0) = 2500 we get:

Time PDE 1 PDE 2 MC

t20 310.47 310.47 310.46
t30 303.52 303.52 303.41

These results indicates that there is no signi�cant di�erence in accuracy
between the two PDE solutions. Furthermore, the two solutions are both
extremely fast when using the TDMA-algorithm. The times in Table 4.2 are
based on solving the two PDEs once for each of the method three methods.

In order to test whether one of the two PDEs is faster to solve than the
other, with the parameters de�ned as above, we will solve the each PDE
1000 times and calculate the average times. We do this only for the TDMA-
algorithm and the results are presented in Table 4.2. We can conclude that
with the parameters de�ned as above there is hardly no di�erence in com-
putational speed between the two PDEs.

TDMA \ LU

Time (PDE 1) 0.09s 12.12s 21.04s
Time (PDE 2) 0.07s 12.01s 22.04s

Table 4.2: Time consumption for solving (4.2) for n = 219, 218, ..., 0.
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TDMA

Time (PDE 1) 0.0875s
Time (PDE 2) 0.0873s

Table 4.3: Average time consumption for solving (4.2) for n = 219, 218, ..., 0.

Finally we examine the rate of convergence when making the grid of
mesh points increasingly �ne. Using the same parameters as previously in
this chapter with K = S(0) = 2500 we decrease the step size h, starting at
h = 100. In this particular case they seem to converge equally fast, which
can be seen in Figure 4.1.

There seems to be no obvious advantages using the transformed equa-
tion (4.8) over (4.1) when applying the Implicit Euler method.
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Figure 4.1: Rate of convergence for the two PDE-solutions, in a particular
case, as h decreases.
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Chapter 5

A mixture dynamics model

5.1 Background

In discrete time, mixture models in connection to option pricing have been
studied early on by Ritchey [5] and subsequently by Melick and Thomas [6],
and Guo [7].

Possibly inspired by these papers, Brigo and Mercurio [1] developed a
continuous time di�usion model in option pricing. In particular, they proved,
under the risk-neutral measure, that if the local volatility function is chosen
in a particular way the density of the asset price process at any �xed time
will be a convex combination of densities from known given distributions. A
special case of this is the mixture of log-normal densities that we investigate
in this thesis.

This approach leads to a model that is complete and has smiles in the
volatility structure.

5.2 Mixture of log-normals

In this section we brie�y present the mathematical theory behind the mixture
dynamics model by Brigo and Mercurio in a special case. We begin by
de�ning N di�usion processes Si = (Si(t))t≥0, i = 1, ..., N , which we will
always think of as given. Then we use these N di�usion processes in order
to de�ne the dynamics of the asset price process S = (S(t))t≥0.

Under a certain probability measure P we consider the di�usion processes

{
dSi(t) = rSi(t)dt+ σi(t)Si(t)dW (t), i = 1, ..., N, 0 < t ≤ T
Si(0) = S0,

(5.1)
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where r ≥ 0 and

σi(t) =


σ̄, t ∈ [0, ε]

γi(t), t ∈ (ε, δ]

σ̄i, t ∈ (δ, T ]

(5.2)

where σ̄, σ̄i ∈ R+ and γi : (ε, δ] −→ R+ is any smooth function such that σi(t)
is continuous, i = 1, ..., N . The reason why we assume all σi(t), i = 1, ..., N
to be equal for every t ∈ [0, ε] will be explained later when we have an explicit
expression for σ(t, y). In Figure 5.1 we can see an example of how σi(t) looks
like if ε = 1, δ = 2, T = 5, σ̄ = 0.25, σ̄i = 0.20 and γi is an a�ne function.
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0.1

0.15

0.2

0.25

0.3

0.35

Time

V
ol

at
ili

ty

σ̄

γ
i
(t)

σ̄i

Figure 5.1: An example of how σi(t) can look like if ε = 1, δ = 2, T = 5,
σ0 = 0.25, σi = 0.20 and γi is an a�ne function.

For �xed i ∈ {1, ..., N} let pi(t, ·) be the density of Si(t), de�ned by

P (Si(t) ∈ A) =

∫
A
pi(t, y)dy.

In Chapter 3.1 we derived an explicit expression for pi(t, y), viz.

pi(t, y) =
1

yVi(t)
√

2π
exp

(
− 1

2V 2
i (t)

[
ln

y

S0
− rt+

V 2
i (t)

2

]2
)

(5.3)

where

Vi(t) =

√∫ t

0
σ2
i (s)ds.
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Now we try to de�ne the dynamics of the asset price process S = (S(t))t≥0

by {
dS(t) = rS(t)dt+ σ(t, S(t))S(t)dW (t)

S(0) = S0
(5.4)

where σ : [0, T ]× R+ → R+ is a continuous function such that

p(t, y) =
N∑
i=1

λipi(t, y) (5.5)

and where λi ∈ [0, 1], i = 1, ..., N , λ1 + ...+λN = 1, and p(t, ·) is the density
of S(t) for each 0 < t ≤ T .

Note that since

P [S0 ≤ x] =

{
1, x ≥ S0

0, x < S0

we have have p(0, ·) = pi(0, ·) = δS0(·) where δa is the Dirac delta probability
measure centered at a.

Next we will utilize the Kolmogorov forward equation in order to retrieve
the di�usion equation (5.4) from the density p and in that way determine
what σ(t, y) must be. The following theorem holds under some technical
assumptions (see [8] for details).

Theorem 1. (Kolmogorov Forward Equation)
Let s < t and de�ne the transition probability density

p(s, x; t, y)dy = dP (S(t) ∈ dy|S(s) = x).

Then p satis�es the partial di�erential equation
∂

∂t
p(s, x; t, y)− 1

2

∂2

∂y2
(σ2(t, y)y2p(s, x; t, y)) +

∂

∂y
(ryp(s, x; t, y)) = 0,

lim
t→s

p(s, x; t, y)dy = δx(dy).

We can use Theorem 1 with s = 0 and x = S0 to �nd σ(t, y). We do that
by solving the forward Kolmogorov equation

∂

∂t
p(t, y)− 1

2

∂2

∂y2
(σ2(t, y)y2p(t, y)) +

∂

∂y
(ryp(t, y)) = 0 (5.6)

given that each pi satis�es the forward Kolmogorov equation

∂

∂t
pi(t, y)− 1

2

∂2

∂y2
(y2σ2

i (t)pi(t, y)) +
∂

∂y
(rypi(t, y)) = 0. (5.7)
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Using (5.5) and the fact that the derivative operator is linear we can rewrite (5.6)
in the following way

N∑
i=1

λi
∂

∂t
pi(t, y)−

N∑
i=1

λi
1

2

∂2

∂y2
(σ2(t, y)y2pi(t, y)) +

N∑
i=1

λi
∂

∂y
(rypi(t, y)) = 0.

Then if we use (5.7) and substitute we get

N∑
i=1

λi
1

2

∂2

∂y2
(y2σ2

i (t)pi(t, y)) =
N∑
i=1

λi
1

2

∂2

∂y2
(σ2(t, y)y2pi(t, y)).

And again, if we use the linearity of the derivative operator

∂2

∂y2

[
N∑
i=1

λiy
2σ2
i (t)pi(t, y)

]
=

∂2

∂y2

[
σ2(t, y)

N∑
i=1

λiy
2pi(t, y)

]
Integrating both sides twice with respect to y, we get

σ2(t, y)
N∑
i=1

λiy
2pi(t, y) =

N∑
i=1

λiy
2σ2
i (t)pi(t, y) + yA(t) +B(t)

Now we note that the left hand side of this equation must tend to 0 as y →∞
since

lim
y→∞

y2pi(t, y) = 0

and σ(t, y) is uniformly bounded for large y. But if the left hand side of the
equation tends to zero as y →∞ then the right hand side must also tend to
zero as y →∞. This can only happen if A = B = 0.

This means that when (t, y) > (0, 0) we have the following expression for
σ(t, y), namely

σ(t, y) =

√∑N
i=1 λiσ

2
i (t)pi(t, y)∑N

i=1 λipi(t, y)

or, more explicitly

σ(t, y) =

√√√√√√√
∑N

i=1 λiσ
2
i (t)

1
Vi(t)

exp

{
− 1

2V 2
i (t)

[
ln y

S0
− rt+ 1

2V
2
i (t)

]2
}

∑N
i=1 λi

1
Vi(t)

exp

{
− 1

2V 2
i (t)

[
ln y

S0
− rt+ 1

2V
2
i (t)

]2
} (5.8)

where

Vi(t) =

√∫ t

0
σ2
i (s)ds, i = 1, ..., N.
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There are possible problems for a regular behaviour of σ(t, y) and as in [1]
we let σi(t) = σ̄ for every t ∈ [0, ε], i = 1, ..., N so that

σ(t, ·)∣∣∣
[0, ε]

= σ̄.

This motivates the choice of σi(t), i = 1, ..., N in (5.2).
In Figure 5.2 we have plotted a realization of σ(t, S(t)). The stock prices

was simulated by using the Euler-Maruyama method on the SDE (5.4) and
we let S0 = 2500, N = 3, ε = 1/252, δ = 2/252, σ̄ = 0.3, (σ̄1, σ̄2, σ̄3) =
(0.2, 0.3, 0.4), (λ1, λ2, λ3) = (1/3, 1/3, 1/3). Moreover, γi, i = 1, 2, 3 are the
a�ne functions

γi(t) = σ̄ + (t− ε) σ̄i − σ̄
δ − ε

, t ∈ [ε, δ], i = 1, 2, 3.
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Figure 5.2: A realization of σ(t, S(t)).

If we set

Λi(t, y) =
λipi(t, y)∑N
i=1 λipi(t, y)

, i = 1, ..., N (5.9)

we get

σ2(t, y) =

N∑
i=1

Λi(t, y)σ2
i (t) (5.10)

where Λi ∈ [0, 1], i = 1, ..., N are such that Λ1 + ...+ΛN = 1. In other words,
the squared volatility function is a convex combination of the squared given
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volatility functions. From (5.10) we get that σ(t, y) is bounded away from
zero by a constant σm and bounded from above by a constant σM where

σm = inf
t≥0

min
i=1,...,N

σi(t)

σM = inf
t≥0

max
i=1,...,N

σi(t).

With σ(t, y) de�ned by (5.8) it is readily seen that the SDE (5.4) has a
solution. In fact, if

S(t) = S0e
Z(t)

we get

dZ(t) =

(
r − 1

2
σ(t, eZ(t))

)
dt+ σ(t, eZ(t))dW (t)

which has a solution and therefore the SDE (5.4) has a solution (for details,
see [1]).

We convince ourselves, by numerical investigations, that the basic equa-
tion (5.5) actually holds. In other words, we want to numerically check that
the relation

P (S(T ) ∈ A) =

N∑
i=1

λi

∫
A
pi(T, y)dy (5.11)

holds for some di�erent values of T. In order to estimate the left hand side
we utilize the Feynman-Kac connection and solve the partial di�erential
equation

∂u

∂t
+ rx

∂u

∂x
+

1

2
x2σ2(t, x)

∂2u

∂x2
− ru = 0, (t, x) ∈ [0, T [×R+,

u(T, x) = 1A(x), x ∈ R+,

numerically. This procedure is carefully explained in Chapter 4. Remember-
ing that we have an explicit expression (5.3) for pi(T, y) we can compute the
right hand side of (5.11) by using numerical integration. To be more precise,
we use the quad-function in Matlab which is an adaptive Simpson's rule.

In order to check the relation (5.11) we let A be an interval, S0 = 2600,
K = 2500, and Tk = k/252, k = 0, ..., 25, N = 3, ε = 1/252, δ = 2/252, σ̄ =
0.3, (σ̄1, σ̄2, σ̄3) = (0.2, 0.3, 0.4), (λ1, λ2, λ3) = (1/4, 1/2, 1/4). Moreover, γi,
i = 1, 2, 3 are the a�ne functions

γi(t) = σ̄ + (t− ε) σ̄i − σ̄
δ − ε

, t ∈ [ε, δ], i = 1, 2, 3.

The results are displayed in Table 5.1 where the left and right hand side of
the relation (5.11) are denoted LHS and RHS respectively and the di�erence
is the absolute di�erence. The di�erences are readily seen to be very small.
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Time LHS RHS Di�erence

T0 1 1 0
T1 0.9975 0.9996 0.0021
T2 0.9853 0.9924 0.0071
T3 0.9690 0.9759 0.0069
T4 0.9499 0.9544 0.0045
T5 0.9293 0.9310 0.0017
T6 0.9081 0.9072 0.0009
T7 0.8869 0.8840 0.0029
T8 0.8661 0.8616 0.0045
T9 0.8460 0.8404 0.0056
T10 0.8267 0.8203 0.0064
T11 0.8082 0.8013 0.0070
T12 0.7907 0.7833 0.0073
T13 0.7740 0.7664 0.0076
T14 0.7581 0.7504 0.0077
T15 0.7431 0.7352 0.0078
T16 0.7288 0.7209 0.0079
T17 0.7153 0.7073 0.0079
T18 0.7024 0.6945 0.0079
T19 0.6901 0.6822 0.0079
T20 0.6785 0.6706 0.0079
T21 0.6674 0.6595 0.0079
T22 0.6569 0.6489 0.0080
T23 0.6468 0.6388 0.0080
T24 0.6372 0.6291 0.0081
T25 0.6280 0.6199 0.0081

(a) A = [2400, 2700]

Time LHS RHS Di�erence

T0 0 0 0
T1 0.0014 0.0002 0.0011
T2 0.0072 0.0044 0.0028
T3 0.0142 0.0126 0.0015
T4 0.0216 0.0219 0.0002
T5 0.0291 0.0308 0.0017
T6 0.0361 0.0387 0.0026
T7 0.0425 0.0457 0.0031
T8 0.0482 0.0516 0.0033
T9 0.0533 0.0567 0.0033
T10 0.0578 0.0610 0.0031
T11 0.0618 0.0647 0.0029
T12 0.0652 0.0679 0.0026
T13 0.0682 0.0706 0.0023
T14 0.0709 0.0729 0.0020
T15 0.0732 0.0748 0.0016
T16 0.0752 0.0765 0.0013
T17 0.0769 0.0779 0.0009
T18 0.0785 0.0791 0.0006
T19 0.0798 0.0801 0.0002
T20 0.0810 0.0809 0.0001
T21 0.0821 0.0816 0.0004
T22 0.0831 0.0822 0.0008
T23 0.0839 0.0827 0.0012
T24 0.0847 0.0830 0.0017
T25 0.0855 0.0833 0.0021

(b) A = [2700, 2800]

Table 5.1: Two di�erent tests of the relation (5.11).

In the the Brigo-Mercurio log-normal mixture model, the time zero price
of a call option is immediate and is simply equal to a convex combination
of Black-Scholes call option prices. If we denote by cBM the call option
price in the Brigo-Mercurio model and by cBS the call option price in the
Black-Scholes model, then
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cBM (0, S0,K, T ) = e−rTE[(S(T )−K)+] = e−rT
∫ ∞

0
(y −K)+p(T, y)dy

= e−rT
∫ ∞

0
(y −K)+

N∑
i=1

λipi(T, y)dy

=
N∑
i=1

λie
−rT

∫ ∞
0

(y −K)+pi(T, y)dy

=

N∑
i=1

λie
−rTE[(Si(T )−K)+]

=
N∑
i=1

λicBS(0, S0,K, T ; ηi), (5.12)

where

ηi :=
Vi(T )√
T
, i = 1, ..., N.

If cBM is as in (5.12) we sometimes write

cBM (0, S0,K, T ) = cBM (0, S0,K, T ; η1, ..., ηN ).

Recall from Chapter 3.1 that for �xed i ∈ {1, ..., N},

cBS(0, S0,K, T, ηi) = S0Φ (d1)−Ke−rTΦ (d2)

where

d1 =
ln s

K +
(
r + 1

2η
2
i

)
T

ηi
√
T

and

d2 =
ln s

K +
(
r − 1

2η
2
i

)
T

ηi
√
T

.

Consequently we get the following expression for the time zero call option
price in the Brigo-Mercurio model

cBM (0, S0,K, T ) =
N∑
i=1

[
S0Φ

(
ln S0

K +
(
r + 1

2η
2
i

)
T

ηi
√
T

)

−Ke−rTΦ

(
ln S0

K +
(
r − 1

2η
2
i

)
T

ηi
√
T

)]
. (5.13)
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The option price (5.13) leads to smiles in the implied volatility structure.
An example of the smiley shape is illustrated in Figure 5.3.
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Figure 5.3: The volatility implied by equation (5.13). We have set S0 = 2500,
r = 0.01, T = 44/252, N = 3, (η1, η2, η3) = (0.5, 0.1, 0.2) and (λ1, λ2, λ3) =
(0.2, 0.3, 0.5)

5.3 Smiles in the implied volatility structure

In this section we prove that the volatility implied by the option price (5.12)
has a local minimum at the underlying forward price K̄ = S0e

rT . There is a
unique so called implied volatility, σimp, implicitly de�ned by the equation

cBS(0, S0,K, T, σimp) =
N∑
i=1

λicBS(0, S0,K, T, ηi). (5.14)

If N = 1 the result is well known and reduces to the classical case, so in the
following we assume that N ≥ 2 and that λ1, ..., λN > 0 where λ1+...+λN =
1.

To prove that σimp(K) has a local minimum at K = K̄ it is enough to
prove that

dσimp
dK

(S0e
rT ) = 0

and

d2σimp
dK2

(S0e
rT ) > 0.
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From now on we write σ(K) instead of σimp(K). Di�erentiating both sides
of (5.14) with respect to K we get

∂cBS
∂K

(0, S0,K, T, σ(K)) +
∂cBS
∂σ

(0, S0,K, T, σ(K))
dσ

dK
(K)

=

N∑
i=1

λi
∂cBS
∂K

(0, S0,K, T, ηi). (5.15)

In the Black-Scholes model we know that

∂cBS
∂K

(0, S0,K, T, σ) = −e−rTΦ

 ln S0
K +

(
r − σ2

2

)
T

σ
√
T



and

∂cBS
∂σ

(0, S0,K, T, σ) = S0

√
Tϕ

 ln S0
K +

(
r + σ2

2

)
T

σ
√
T

 .

Especially noting that ∂cBS
∂σ > 0 we can rewrite equation (5.15) in the fol-

lowing way

dσ

dK
(K) =

∑N
i=1 λi

∂cBS
∂K (0, S0,K, T, ηi)− ∂cBS

∂K (0, S0,K, T, σ(K))
∂cBS
∂σ (0, S0,K, T, σ(K))

= −e−rT

∑N
i=1 λiΦ

 ln
S0
K

+

(
r− η

2
i
2

)
T

ηi
√
T

− Φ

 ln
S0
K

+

(
r−σ

2(K)
2

)
T

σ(K)
√
T


S0

√
Tϕ

(
ln
S0
K

+
(
r+

σ2(K)
2

)
T

σ(K)
√
T

) .

Now if K = K̄ we get

dσ

dK
(K̄) = −e−rT

∑N
i=1 λiΦ

(
−ηi

2

√
T
)
− Φ

(
−σ(K̄)

2

√
T
)

S0

√
Tϕ
(
σ(K̄)

2

√
T
) = 0

since the equation (5.14) yields

0 =
N∑
i=1

λicBS(0, S0, K̄, T, ηi)− cBS(0, S0, K̄, T, σ(K̄))

=
N∑
i=1

λiΦ
(
−ηi

2

√
T
)
− Φ

(
−σ(K̄)

2

√
T

)
. (5.16)
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This proves that dσ
dK (K̄) = 0. If we di�erentiate the relation (5.15) with

respect to K again we get

d2σ

dK2
(K̄) =

∑N
i=1 λi

∂2cBS
∂K2 (0, S0, K̄, T, ηi)− ∂2cBS

∂K2 (0, S0, K̄, T, σ(K̄))
∂cBS
∂σ (0, S0, K̄, T, σ(K̄))

= e−rT

∑N
i=1

λi
K̄σi
√
T
ϕ
(
−ηi

2

√
T
)
− 1

K̄σ(K̄)
√
T
ϕ
(
−σ(K̄)

2

√
T
)

S0

√
Tϕ
(
σ(K̄)

2

√
T
) .

Now we see that d2σ
dK2 (K̄) > 0 if and only if

N∑
i=1

λi
ϕ
(
−ηi

2

√
T
)

K̄ηi
√
T

>
ϕ
(
−σ(K̄)

2

√
T
)

K̄σ(K̄)
√
T

(5.17)

and introducing 
xi = −ηi

2

√
T , i = 1, ..., N,

x̄ = −σ(K̄)

2

√
T ,

the inequality (5.17) becomes

ϕ (x̄)

x̄
>

N∑
i=1

λi
ϕ (xi)

xi
.

In order to prove this inequality it su�ces to prove the existence of a real
constant ρ such that

ρ (Φ(x̄)− Φ(xi)) ≤
ϕ (x̄)

x̄
− ϕ (xi)

xi
, i = 1, ..., N. (5.18)

Since if such a ρ exist we can multiply both sides of the equation by λi and
sum over i = 1, ..., N to get

ρ

(
Φ(x̄)−

N∑
i=1

λiΦ(xi)

)
≤ ϕ (x̄)

x̄
−

N∑
i=1

λi
ϕ (xi)

xi

Remembering equation (5.16) we have

Φ(x̄)−
N∑
i=1

λiΦ(xi) = 0 (5.19)

and thus

ϕ (x̄)

x̄
≥

N∑
i=1

λi
ϕ (xi)

xi
(5.20)
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where we shall prove that the inequality must be strict. It is no restriction
to assume that x1 < x2 < ... < xs ≤ x̄ ≤ xs+1 < ... < xN < 0. Indeed, if
x̄ < x1 or x̄ > xN the equation (5.19) would not hold since Φ is a strictly
increasing function. If equality occurs i.e. x̄ = xs or x̄ = xs+1 then the
equation (5.18) is trivially satis�ed. Therefore we assume that strict in-
equality holds. Further, since Φ is a strictly increasing function we can write
equation (5.18) as 

ρ ≤
ϕ(x̄)
x̄ −

ϕ(xi)
xi

Φ(x̄)− Φ(xi)
, i = 1, ..., s

ρ ≥
ϕ(x̄)
x̄ −

ϕ(xi)
xi

Φ(x̄)− Φ(xi)
, i = s+ 1, ..., N.

This system has a solution ρ if and only if

min
i=1,...,s

ϕ(x̄)
x̄ −

ϕ(xi)
xi

Φ(x̄)− Φ(xi)
≥ max

i=s+1,...,N

ϕ(x̄)
x̄ −

ϕ(xi)
xi

Φ(x̄)− Φ(xi)
.

This inequality must hold since the map

(−∞, 0)\{x̄} 3 z 7−→
ϕ(x̄)
x̄ −

ϕ(z)
z

Φ(x̄)− Φ(z)
(5.21)

is strictly decreasing. To see why it is strictly decreasing we note that

d

dz

ϕ(x̄)
x̄ −

ϕ(z)
z

Φ(x̄)− Φ(z)

=

[(
Φ(x̄)− Φ(z)

)(
1 +

1

z2

)
+
(ϕ(x̄)

x̄
− ϕ(z)

z

)] ϕ(z)(
Φ(x̄)− Φ(z)

)2
is negative if and only if

g(x̄) :=
(
Φ(x̄)− Φ(z)

)(
1 +

1

z2

)
+
(ϕ(x̄)

x̄
− ϕ(z)

z

)
< 0.

This is readily seen to hold true since

g′(x̄) = ϕ(x̄)
(

1 +
1

z2

)
+
ϕ′(x̄)x̄− ϕ(x̄)

x̄2

= ϕ(x̄)
( x̄2 − z2

x̄2z2

)
=
ϕ(x̄)

x̄2z2
(x̄+ z)(x̄− z)
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and

g(z) = 0.

Finally we prove that the inequality in (5.20) must be strict. Assume
that equality holds, then we would also have equality in the equations (5.18)
which implies that

ρ =

ϕ(x̄)
x̄ −

ϕ(x1)
x1

Φ(x̄)− Φ(x1)
=

ϕ(x̄)
x̄ −

ϕ(xN )
xN

Φ(x̄)− Φ(xN )

which cannot be true since x1 < xN < 0 and the map (5.21) is strictly

decreasing in (−∞, 0). This completes the proof that d2σ
dK2 (K̄) > 0.
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Chapter 6

Method & Results

The aim of this Chapter is to �rst describe in detail how the implementation
of the model was done, how it was calibrated and how the hedging was
performed. Then we will present the results from the hedging and compare
it with the Black-Scholes model. We begin by presenting the market data
that will be used.

6.1 Data description

The underlying price process consists of daily closing prices of a European
stock index called the Euro Stoxx 50 [2] or SX5E for short. The index consists
of 50 stocks from 12 Eurozone countries: Austria, Belgium, Finland, France,
Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal,
and Spain. The index also ranges over a variety of di�erent sectors like
banks, oil & gas, chemicals, insurance, telecommunications etc. The currency
is Euro.

The interest rate is the 1-month Euro Interbank O�ered Rate [9] or EU-
RIBOR for short. The rate is set by a representative collection of European
banks in the way that each bank presents its estimate of what a prime bank
would quote another prime bank for interbank term deposits (e.g. bonds)
within the euro-zone. The rates are quoted in a actual/360 day-count con-
vention meaning that a year has 360 days but each month is treated normally.
So the rate during January would be 31/360 amount of rate.

The option is the Euro Stoxx 50 Index option traded on Eurex Deutsch-
land. Eurex Deutschland is a large electronic trading platform which issues
many di�erent kinds of derivatives. The contract length considered is 1 and
2 months and the contracts mature on the third Friday in the respective
month of maturity. See [10] for more contract speci�cations.

The option prices are quoted in terms of implied volatility together with
a level of moneyness. Moneyness is a measure of how the stock price relates
to a strike price on a particular day. We must emphasize that it is not a strike
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price in the way we usually think of it but rather a new strike price every day.
For example, a moneyness of 110% on a given day means that S/K = 1.1
where S is the spot price on the day in question. We have 9 di�erent levels
of moneyness every day which equivalently means that we have 9 di�erent
strikes every day, namely aS, a = 0.8, 0.9, 0.95, 0.975, 1, 1.025, 1.05, 1.1, 1.2.

We convert the implied volatilities into call option prices using the Black-
Scholes formula. This means that for each day we will have 9 di�erent call
option prices corresponding to 9 di�erent strike prices. When considering
a call option contract we need to have a �xed strike price over the whole
contract time. At the �rst day of a call option contract we have 9 di�erent
strikes which we hold �xed over the whole length of the contract by inter-
polating over each day's strike prices. An example of this is illustrated in
Figure 6.1 where we construct a call option contract that start at the money,
i.e. K = S(0). We will always use spline interpolation for this procedure.

Note that if the stock price �uctuates too much the interpolation in
contracts that starts deep in the money, e.g. K = 1.2S(0), or deep out of
the money, e.g. K = 0.8S(0), might not be very precise.
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Figure 6.1: Illustration of the construction of an at the money call option
contract by interpolation.

For the 1-month options we have 12 di�erent contract periods, which are
presented in Table 6.2. The start date of the option is the date when the
option is issued and the settlement date is the maturity date of the option.
Note also that there is one month missing. This is because that particular
period was very extreme in the sense that the index dropped almost 20%.
This in turn generates too big errors in the interpolation and therefore we
drop this extreme period.
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Period Start Date Settlement Date

1 18-Oct-2010 19-Nov-2010
2 22-Nov-2010 17-Dec-2010
3 20-Dec-2010 21-Jan-2011
4 24-Jan-2011 18-Feb-2011
5 21-Feb-2011 18-Mar-2011
6 21-Mar-2011 15-Apr-2011
7 18-Apr-2011 20-May-2011
8 23-May-2011 17-Jun-2011
9 20-Jun-2011 15-Jul-2011
10 22-Aug-2011 16-Sep-2011
11 19-Sep-2011 21-Oct-2011
12 24-Oct-2011 18-Nov-2011

Table 6.1: The di�erent contract periods for the 1-month call options.

For the 2-month options we have 5 di�erent contract periods. Again,
since the index dropped around 20% during the period July�August in 2011
the corresponding contract period will be dropped. We are left with the
following 5 periods.

Period Start Date Settlement Date

1 18-Oct-2010 17-Dec-2010
2 20-Dec-2010 18-Feb-2011
3 21-Feb-2011 15-Apr-2011
4 18-Apr-2011 17-Jun-2011
5 22-Aug-2011 21-Oct-2011

Table 6.2: The di�erent contract periods for the 2-month call options.

6.2 Hedging & Hedging Error

In Section 5 we concluded that, if we want to compute a call price in the
log-normal mixture model at time zero it is simply a convex combination of
Black-Scholes call prices at time zero. If we want to compute a call price at
any other point in time we can use Monte Carlo methods or alternatively
the Feynman-Kac connection and solve a partial di�erential equation using
standard numerical methods. The latter approach is the one we use in this
thesis. Remember that the we have the following dynamics for the price
process: {

dS(t) = rS(t)dt+ σ(t, S(t))S(t)dW (t)

S(0) = S0
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with

σ(t, y) =

√√√√√√√
∑N

i=1 λiσ(t)2
i

1
Vi(t)

exp

{
− 1

2V 2
i (t)

[
ln y

S0
− rt+ 1

2V
2
i (t)

]2
}

∑N
i=1 λi

1
Vi(t)

exp

{
− 1

2V 2
i (t)

[
ln y

S0
− rt+ 1

2V
2
i (t)

]2
} ,

and

Vi(t) = V (t, σi) =

√∫ t

0
σ2
i (s)ds, i = 1, ..., N.

The time t price of a European style call option paying (S(T )−K)+ at time
of maturity is V (t) = v(t, S(t)) where

v(t, x) = E
[
e−r(T−t)(S(T )−K)+|S(t) = x

]
Thus by the Feynman-Kac connection v must satisfy the following partial
di�erential equation

∂v

∂t
+ rx

∂v

∂x
+

1

2
x2σ2(t, x)

∂2v

∂x2
− rv = 0, (t, x) ∈ [0, T [×R+,

v(T, x) = (x−K)+, x ∈ R+,

(6.1)

We described in detail how to solve equation (6.1) numerically in Chapter 4.
The aim is to see how well the Brigo-Mercurio model hedges compared

to the Black-Scholes model. To this end we will use a so called delta hedging
strategy. In Chapter 3 we proved the existence of such a strategy for a local
volatility model. If we rebalance the hedging portfolio continuously it is
possible to hedge perfectly i.e. the value of the hedging portfolio and the
value of the call option will always be equal. However, in practice it is only
possible to rebalance the hedging portfolio in discrete time. This leads to a
so called call hedging error.

Suppose we have a equidistant time grid 0 = t0 < t1 < ... < tn = T with
t1 − t0 = k. Let ĉ = ĉ(t, S(t), T,K) denote the real market price at time t
of the call option with strike K and maturity T and let ∆(t) = v′x(t, S(t)).
Then we proceed in the following steps1:

1. De�ne cash(t0) by ĉ(t0, S(t0), T,K) = ∆(t0)S(t0) + cash(t0).

2. Set Π(t0) = ∆(t0)S(t0) + cash(t0).

3. De�ne Π(t1) = ∆(t0)S(t1) + cash(t0)e
rk.

4. De�ne cash(t1) by Π(t1) = ∆(t1)S(t1) + cash(t1).

1We want to point out that we assume no transaction costs when rebalancing the
hedging portfolio Π.
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5. De�ne Π(t2) = ∆(t1)S(t2) + cash(t1)e
rk.

We continue in this way until we reach time T and then the hedging error
is de�ned as the absolute di�erence, at time T , between the value of the
hedging portfolio Π and the value of the call option, viz.

|Π(T )− (S(T )−K)+|.

Remember that for each contract period we have 9 di�erent options corre-
sponding to 9 di�erent strike prices. Therefore, the error we are going to
examine is the mean of the hedging errors for the 9 di�erent options i.e.

1

9

9∑
i=1

|Πi(T )− (S(T )−Ki)
+|.

This quantity is interesting because it says something about how good the
model hedges a variety of di�erent options i.e. options that are in the money
as well as out of the money.

Note that in the above presented delta hedging scheme we choose σ(t, y)
at time t0 and then we keep it �xed. Choosing σ(t, y) is equivalent to choos-
ing σ̄, γ1, ..., γN , σ̄1, ..., σ̄N and λ1, ..., λN . In the next section we describe
ways of choosing these parameters in a good way. The above hedging scheme
will be called hedging scheme A for short.

Now consider a slightly di�erent way of hedging. It is similar to the
hedging scheme A presented above but each day when we choose a new
delta we also choose a new σ(t, y) by choosing the parameters σ̄, γ1, ..., γN ,
σ̄1, ..., σ̄N and λ1, ..., λN in some optimal way. This way of hedging seems
more natural from an investor's point of view since it is sensible that you
would want to update σ when computing the delta every day. We will call
this hedging scheme B.

6.3 Calibration

Before we can apply the hedging schemes we must choose a way to determine
the parameters in the Black-Scholes model and in the Brigo-Mercurio model.
In the Black-Scholes model we have only one parameter σ but in the Brigo-
Mercurio model we have the parameters σ̄, σ̄1, ..., σ̄N and λ1, ..., λN−1 since
λ1 + ...+ λN = 1. One could also consider γ1, ..., γN , ε and δ as parameters,
but in the following, if not stated otherwise, ε = 1/252, δ = 2/252 and for
each i ∈ {1, ..., N}, γi is the line segment between σ̄ and σ̄i, that is:

γi(t) = σ̄ + (t− ε) σ̄i − σ̄
δ − ε

, t ∈ [ε, δ].

In Section 6.4.3 we investigate the dependence of ε and δ.
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In the Black-Scholes model we calibrate the parameter σ by minimizing
the absolute di�erence between the Black-Scholes call price and the market
call price, viz.

min
σ∈R+

1

9

9∑
i=1

|cBS(t, S(t),Ki, T ;σ)− ĉ(t, S(t),Ki, T )|. (6.2)

The optimization problem (6.2) is solved using Matlab's function fmincon.

The parameter σ̄ in the Brigo-Mercurio model will always be chosen as
the optimal parameter in (6.2). We will describe two methods for how to
calibrate the remaining parameters, σ̄1, ..., σ̄N and λ1, ..., λN−1, in the Brigo-
Mercurio model. The �rst method is to minimize the sum of the absolute
di�erences between the Brigo-Mercurio call option price cBM and the market
call option price ĉ, viz.

min
λ1,...,λN∈[0,1]
λ1+...+λN=1
σ̄1,...,σ̄N∈R+

1

9

9∑
i=1

|cBM (0, S(0),Ki, T ; η1(σ̄1), ..., ηN (σ̄N ))− ĉ(0, S(0),Ki, T )|.

(6.3)

The optimization problem (6.3) is also solved using Matlab's function fmincon.
We choose σ̄1, ..., σ̄N and λ1, ..., λN−1 as the optimal parameters in (6.3) and
in the sequel, if not stated otherwise, N = 3.

Given the optimal parameters in the Brigo-Mercurio model, the next step
is to calculate ∆(ti), i = 0, ..., n. For the hedging scheme A, if t = t0, we
simply use the optimal parameters and then di�erentiate the relation (5.12)
with respect to S0 to obtain ∆(t0) in the Brigo-Mercurio model. If t ≥ t1 we
can use our PDE-solution and numerical di�erentiation to calculate ∆(ti)
with the optimal parameters for i = 1, ..., n.

Note that for the hedging scheme B above we must perform the calibra-
tions (6.2) and (6.3) at every time point ti, i = 0, ..., n. However, calculating
∆(ti), i = 1, ..., n, in the Brigo-Mercurio model is simple because in each
time step it is as if we stand at the starting point, i.e. in each time step we
can calculate ∆(ti), i = 1, ..., n, by di�erentiating the relation (5.12) with
respect to S0.

Above we have calibrated the model to market data by minimizing the
di�erence between model and market prices. It is not self-evident that this
is a good method when we are interested in hedging errors. We will propose
another method of calibration, namely to minimize the di�erence between
the price of a hedging portfolio and the market call price.

Assume we want to calibrate the Brigo-Mercurio model in time tm i.e. we
want to �nd optimal parameters at time tm. We then let i ∈ {1, ..., 9} and
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set up a delta hedging portfolio at time tm−1 by �rst de�ning cashi(tm−1)
by

ĉi(tm−1, S(tm−1),Ki, T ) = ∆i(tm−1)S(tm−1) + cashi(tm−1).

We de�ne the hedging portfolio at tm−1 by

Πi(tm−1) = ∆i(tm−1)S(tm−1) + cashi(tm−1)

and setting Πi(tm) = ∆i(tm−1)S(tm) + cashi(tm−1)erk we are interested in
the minimum of the mean of the absolute errors

min
λ1,...,λN∈[0,1]
λ1+...+λN=1
σ̄1,...,σ̄N∈R+

1

9

9∑
i=1

|Πi(tm)− ĉ(tm, S(tm),Ki, T )| (6.4)

where ĉ denotes the market price of the call option.

6.4 Results

We begin by examining the hedging error from using the hedging scheme A
for both 1-month and 2-month call option.

6.4.1 Hedging Scheme A

In Table 6.3 we present the absolute hedging errors when hedging the 1-
month options with the hedging scheme A.

Period Black-Scholes Brigo-Mercurio

1 81.30 77.12
2 47.84 43.72
3 30.34 34.34
4 97.32 94.14
5 57.74 64.28
6 128.07 125.16
7 51.32 60.57
8 77.61 91.81
9 72.64 57.02
10 76.92 52.80
11 43.30 47.82
12 139.59 132.00

Table 6.3: The absolute hedging errors for each 1-month contract period
when using hedging scheme A.
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If we examine the relative di�erences i.e. the hedging error in the Brigo-
Mercurio model minus the hedging error in the Black-Scholes model divided
by the hedging error in the Black-Scholes model we get the results in Ta-
ble 6.4. A negative percentage means that we gained that much in compar-
ison with the Black-Scholes model.

Period Relvative di�erence

1 -5%
2 -9%
3 +13%
4 -3%
5 +11%
6 -2%
7 +18%
8 +19%
9 -22%
10 -31%
11 +10%
12 -5%

Table 6.4: The absolute hedging errors for each 1-month contract period
when using hedging scheme A.

We can conclude that if one would have used the Brigo-Mercurio model
during the whole year the error would have been reduced by about 3% com-
pared to the Black-Scholes model. Figure 6.2 displays a 1 month delta hedg-
ing strategy for the Brigo-Mercurio and the Black-Scholes model. The option
that has been hedged is an at-the-money option meaning that at time zero
the strike is equal to the stock price.
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Figure 6.2: This �gure displays two delta hedging portfolios together with
the market call price. One has been hedged with the aid of the Black-Scholes
delta and the other with the aid of the Brigo-Mercurio delta.

In Figure 6.3 we can see how the ∆(t) changed over time during Period
7 in both the Black-Scholes model and in the Brigo-Mercurio model.
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Figure 6.3: This �gure displays ∆(t) in both the Black-Scholes model and
the Brigo-Mercurio model during Period 7.
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The next step is to perform the same analysis of the hedging error for
the 2-month options. The absolute hedging errors are presented in Table 6.5
and in Table 6.6 we present the relative di�erences.

Period Black-Scholes Brigo-Mercurio

1 159.36 155.60
2 129.03 130.51
3 133.60 130.03
4 81.21 78.81
5 64.15 78.05

Table 6.5: The absolute hedging errors for each 2-month contract period
when using hedging scheme A.

Period Relvative di�erence

1 -2%
2 +1%
3 -3%
4 -3%
5 +22%

Table 6.6: The relative hedging errors for each 2-month contract period when
using hedging scheme A.

We can conclude that if one would have used the Brigo-Mercurio model
during the whole year one would have increased the error about 1% compared
with Black-Scholes model. Figure 6.4 displays a 2 month delta hedging
strategy for Brigo-Mercurio and Black-Scholes model. The option that has
been hedged is an at-the-money option.
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Figure 6.4: This �gure displays two delta hedging portfolios together with
the market call price. One has been hedged with the aid of the Black-Scholes
delta and the other with the aid of the Brigo-Mercurio delta.

6.4.2 Hedging Scheme B

Next we apply the hedging scheme B, which means that we update the
parameter σ in the Black-Scholes model and the parameters σ̄1, σ̄2, σ̄3 and
λ1, λ2, λ3 in the Brigo-Mercurio model every day. In Table 6.7 below we
present the absolute hedging errors and in Figure 6.8 we present the relative
hedging errors from hedging scheme B.

Period Black-Scholes Brigo-Mercurio

1 84.90 86.33
2 57.20 57.26
3 21.77 34.24
4 97.91 95.93
5 39.46 38.46
6 127.13 128.34
7 50.60 60.19
8 76.25 78.99
9 58.30 78.71
10 76.30 44.28
11 56.17 75.12
12 115.96 120.74

Table 6.7: The absolute hedging errors for each 1-month contract period
when using hedging scheme B.
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Period Relative di�erence

1 +2%
2 0%
3 +57%
4 -2%
5 -3%
6 +1%
7 +19%
8 +4%
9 +35%
10 -42%
11 +34%
12 +4%

Table 6.8: The relative hedging errors for each 1-month contract period when
using hedging scheme B.

We can conclude that the Brigo-Mercurio model is outperformed over the
whole year by the Black-Scholes model. If one had used the Brigo-Mercurio
model during the whole year the error would have increased by about 4%
compared to Black-Scholes model.

However, we notice that from an investors point of view the hedging
scheme B outperforms hedging scheme A in the Black-Scholes model. In
fact, over the whole year the hedging error is reduced by 9% if one updates
the parameter σ every day in the Black-Scholes model compared to keeping
it constant over the whole contract period. In the Brigo-Mercurio model
we can see that updating the parameters σ̄1, σ̄2, σ̄3 and λ1, λ2, λ3 every day
increased the error by 1% compared to keeping them �xed over the whole
contract period.

Figure 6.5 displays the hedging portfolios using hedging scheme B in both
the Black-Scholes model and the Brigo-Mercurio model during period 7. The
call option that has been hedged has moneyness 102.5% at time zero i.e. at
time zero the stock price is 2.5% above the strike price.
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Figure 6.5: This �gure displays two delta hedging portfolios together with
the market call price during period 7. One has been hedged with the aid
of the Black-Scholes delta and the other with the aid of the Brigo-Mercurio
delta.

We conduct the same analysis on the 2-month options. The absolute
hedging errors are presented in Table 6.9 below and in Table 6.10 we present
the relative hedging errors for each period.

Period Black-Scholes Brigo-Mercurio

1 161.32 162.19
2 131.87 132.69
3 136.23 136.19
4 80.58 95.93
5 54.31 74.00

Table 6.9: The absolute hedging errors for each 2-month contract period
when using hedging scheme B.
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Period Relative di�erence

1 +1%
2 +1%
3 0%
4 +19%
5 +36%

Table 6.10: The relative hedging errors for each 2-month contract period
when using hedging scheme B.

Over the whole year the Black-Scholes model outperformed the Brigo-
Mercurio model with hedging scheme B by approximately 7% for 2-month
options.

Finally we test the hedging scheme B together with the alternative way
of calibration (6.4). The absolute hedging errors for the 1-month contract
periods is presented in Table 6.11 and the absolute hedging errors for the
2-month contract periods are presented in Table 6.12.

Period Black-Scholes Brigo-Mercurio

1 75.57 76.49
2 84.18 91.31
3 96.82 102.72
4 176.90 178.59
5 83.18 80.95
6 138.95 168.74
7 103.64 138.89
8 75.87 83.82
9 68.85 74.51
10 318.95 334.29
11 133.55 142.79
12 179.75 188.15

Table 6.11: The absolute hedging errors for each 1-month contract period
when using hedging scheme B with the calibration (6.4).

Period Black-Scholes Brigo-Mercurio

1 163.02 189.96
2 107.55 112.83
3 121.13 108.34
4 193.81 223.90
5 236.08 324.16

Table 6.12: The absolute hedging errors for each 2-month contract period
when using hedging scheme B with the calibration (6.4).
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We can conclude that the hedging scheme B together with the calibra-
tion (6.4) is greatly outperformed by the other methods.

6.4.3 Varying ε and δ

Here we will investigate the e�ect of ε and δ on the hedging error using the
Brigo-Mercurio model and hedging scheme A. As above we have N = 3 and
σ̄ is chosen as the optimal Black-Scholes parameter. We let δ = ε + 2/252
and γi is the line segment between σ̄ and σ̄i, i = 1, 2, 3, that is

γi(t) = σ̄ + (t− ε) σ̄i − σ̄
δ − ε

, t ∈ [ε, δ], i = 1, 2, 3.

Naturally, the largest ε we can have is T −2 where T is the time of maturity.
In Table 6.13 we can see the result.

ε Hedging error

1/252 77.05
2/252 77.14
3/252 77.21
4/252 77.28
5/252 77.35
6/252 77.41
7/252 77.48
8/252 77.54
9/252 77.60
10/252 77.66
11/252 77.72
12/252 77.77
13/252 77.82
14/252 77.86
15/252 77.90
16/252 77.93
17/252 77.96
18/252 77.98
19/252 77.99
20/252 78.00
21/252 78.01
22/252 78.01

(a) Period 1

ε Hedging error

1/252 34.86
2/252 34.85
3/252 34.83
4/252 34.82
5/252 34.81
6/252 34.79
7/252 34.77
8/252 34.76
9/252 34.75
10/252 34.74
11/252 34.73
12/252 34.73
13/252 34.72
14/252 34.73
15/252 34.75
16/252 34.81
17/252 34.87
18/252 34.89
19/252 34.91
20/252 34.94
21/252 34.91
22/252 34.89

(b) Period 3

Table 6.13: The e�ect on the Hedging error when changing ε and δ.

From these two periods there seem to be no signi�cant e�ect on the
hedging error when varying ε and δ.
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6.4.4 The sliding S0 approach

In Section 6.4.2 we concluded that when recalibrating the parameters every
day the Black-Scholes model outperformed the Brigo-Mercurio model over
the whole year for both 1-month contracts and 2-month contracts. We argued
that we could calculate delta each day by di�erentiating the relation (5.12).
However, by doing this we loose the dynamics of the Brigo-Mercurio model.
Next we will try using the solution to the PDE (6.1) to calculate delta each
day. By doing so we can utilize the local volatility function (5.8) which keeps
the dependence on S0 during the whole time to maturity, where S0 denotes
the stock price at the time we choose to have as the starting point in time.

We will still calibrate the parameters σ̄1, σ̄2, σ̄3 and λ1, λ2, λ3 every day
using (6.3) but we calculate the Brigo-Mercurio delta each day by numerically
di�erentiating the PDE-solution. To be more precise, when we solve the
PDE (6.1) we must discretize the time and in particular choose a starting
time. Suppose we have the same time grid as previously in this chapter,
0 = t0 < t1 < ... < tn = T , where each time point represent one day of an
option contract that matures at time T . If m ∈ {0, ..., n} is �xed and we
currently are at some time ti, 0 ≤ i ≤ n, we solve the PDE by discretizing the
time from time t0, if i ≤ m, and from ti−m, if i ≥ m + 1. Correspondingly,
we let S0 = S(0), if i ≤ m, and S0 = S(ti−m), if i ≥ m+ 1.

This method of hedging by sliding S0 m days behind the present time
will in the sequel be denoted by sliding(m). Note that the case sliding(T )
is equivalent to keeping S0 �xed during the whole contract period and this
hedging strategy is the �rst we will investigate.

In Table 6.14 we present the absolute hedging errors from the sliding(T )
hedging scheme for the 1-month call options and in Table 6.15 we present the
corresponding errors for the 2-month call options. The hedging errors are
compared with the hedging errors in the Black-Scholes model from hedging
scheme B. We can conclude that over the whole year the Brigo-Mercurio
model outperforms the Black-Scholes model by 4% on 1-month options.
However, on 2-month options the Black-Scholes model outperformes the
Brigo-Mercurio model by 8%. It is mainly Period 5 that contributes to
this large error.
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Period Black-Scholes Brigo-Mercurio

1 84.88 75.66
2 57.22 53.88
3 21.77 31.84
4 97.97 98.55
5 39.42 46.96
6 127.10 120.30
7 50.46 49.69
8 76.26 90.48
9 58.32 41.41
10 76.29 60.56
11 56.17 46.47
12 115.77 114.32

Table 6.14: The absolute hedging errors for each 1-month contract. The
hedging errors in the Brigo-Mercurio model with the sliding(T ) hedging
scheme is compared with the hedging errors in the Black-Scholes model from
hedging scheme B.

Period Black-Scholes Brigo-Mercurio

1 161.32 164.95
2 131.87 145.56
3 136.23 131.56
4 80.58 81.32
5 54.31 91.74

Table 6.15: The absolute hedging errors for each 2-month contract. The
hedging errors in the Brigo-Mercurio model with the sliding(T ) hedging
scheme is compared with the hedging errors in the Black-Scholes model from
hedging scheme B.

We can ask the question whether or not it is sensible to keep S0 �xed
during the whole time to maturity. Maybe it is more sensible to only look
back 5 or 10 days in time i.e. to use the sliding(5) or the sliding(10) hedging
scheme de�ned above. This is what we will investigate next and we begin
by testing the sliding(5) scheme.

The results from the sliding(5) hedging scheme is presented in Tables 6.16
and 6.17 together with the Black-Scholes hedging error from hedging scheme
B. This strategy seems to work well on some periods but extremely bad on
others and over the whole year the Black-Scholes model outperformed the
Brigo-Mercurio model by 8% on 1-month options. For the 2-month options
we can conclude that the strategy works well on Period 1-3 but extremely
bad on Period 4 and 5 and over the whole year the Black-Scholes model
would have outperformed the Brigo-Mercurio model by 15%.
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Period Black-Scholes Brigo-Mercurio

1 84.88 68.99
2 57.22 57.34
3 21.77 39.03
4 97.97 99.00
5 39.42 48.83
6 127.10 123.99
7 50.46 61.34
8 76.26 87.54
9 58.32 63.35
10 76.29 86.46
11 56.17 52.38
12 115.77 150.51

Table 6.16: The absolute hedging errors for each 1-month contract. The
hedging errors in the Brigo-Mercurio model with the sliding(5) hedging
scheme is compared with the hedging errors in the Black-Scholes model from
hedging scheme B.

Period Black-Scholes Brigo-Mercurio

1 161.32 163.38
2 131.87 139.60
3 136.23 131.37
4 80.58 115.05
5 54.31 114.18

Table 6.17: The absolute hedging errors for each 2-month contract. The
hedging errors in the Brigo-Mercurio model with the sliding(5) hedging
scheme is compared with the hedging errors in the Black-Scholes model from
hedging scheme B.

Even though the above strategy seems fruitless we are interested in seeing
what happens if we slide S0 10 days behind present time instead of 5 days.
The results are presented in Tables 6.18 and 6.19 and again compared with
the hedging errors in the Black-Scholes model from hedging scheme B. There
is not much di�erence compared to when looking back 5 days. The Black-
Scholes model still outperformed the Brigo-Mercurio model by about 8% for
1-month call options and by about 15% for 2-month call options.
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Period Black-Scholes Brigo-Mercurio

1 84.88 67.36
2 57.22 59.40
3 21.77 32.83
4 97.97 97.01
5 39.42 48.99
6 127.10 127.37
7 50.46 65.27
8 76.26 88.60
9 58.32 70.14
10 76.29 89.62
11 56.17 49.05
12 115.77 140.44

Table 6.18: The absolute hedging errors for each 1-month contract. The
hedging errors in the Brigo-Mercurio model with the sliding(10) hedging
scheme is compared with the hedging errors in the Black-Scholes model from
hedging scheme B.

Period Black-Scholes Brigo-Mercurio

1 161.32 158.89
2 131.87 134.99
3 136.23 131.05
4 80.58 120.42
5 54.31 102.51

Table 6.19: The absolute hedging errors for each 2-month contract. The
hedging errors in the Brigo-Mercurio model with the sliding(10) hedging
scheme is compared with the hedging errors in the Black-Scholes model from
hedging scheme B.

From these investigations it seems as the best strategy is sliding(T ) i.e.
to keep S0 �xed and not to change it over time. With this strategy the
Brigo-Mercurio model outperformed the Black-Scholes model by about 4%
for 1-month options. However on 2-month options the Black-Scholes model
with hedging scheme B outperformed the Brigo-Mercurio model.

Now consider buying a 2-month call option when there is only one month
left to maturity. This could be seen as entering into a 1-month call option
with the same strike price as the 2-month call option. Let t∗ denote the
point in time when there is only one month left to maturity on a 2-month
call option. We then hedge in the same fashion as above, with S0 = S(t∗)
kept �xed. The results are presented in Table 6.20 and we compare with the
hedging error in the Black-Scholes model from hedging scheme B.
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Period Black-Scholes Brigo-Mercurio

1 61.81 69.47
2 90.94 89.96
3 118.93 113.77
4 44.99 48.37
5 60.46 86.01

Table 6.20: The absolute hedging errors for each 2-month contract compared
with the error in the Black-Scholes model from hedging scheme B.

Over the whole year, this hedging strategy resulted in the Black-Scholes
model outperforming the Brigo-Mercurio model by about 7%.

Note that two call options issued at the same moneyness, but at dif-
ferent points in time will most likely be di�erent contracts due to possible
di�erences in strike prices. For example, a 2-month call option issued at the
money will at time t∗ not necessarily be the same contract as a 1-month call
option issued at the money at time t∗.

What if it was possible to enter into a 2-month call option, at time t∗,
with a strike price such that the call option is at the money at time t∗. In
theory, this contract is equivalent to a 1-month call option issued at the
money at time t∗. However, in practice it might not be possible to buy such
a contract, but it is possible by interpolation to construct one from market
prices. It is interesting to investigate whether or not that kind of contract
resembles the 1-month call issued at the money at time t∗.

In Figure 6.6 we compare the prices of a 2-month call option entered at
the money at time t∗ in Period 1 and a 1-month call option issued at the
money in Period 2. We can clearly see that they are quite similar.

It is also interesting to investigate the hedging errors for the 2-month
call options entered at time t∗ with the same strike prices as for the 1-month
call options issued at t∗. The corresponding hedging errors for the 1-month
contracts issued at t∗ are presented above in Table 6.14 (period 2,4,6,8 and
11). The results from hedging the 2-month call options from t∗ to maturity
using the same hedging strategy as above, with S0 = S(t∗) kept �xed, is
presented in Table 6.21.
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Figure 6.6: This �gure compares the prices of a 2-month call option bought
at the money at time t∗ in Period 1 and a 1-month call option issued at the
money in Period 2.

Period Black-Scholes Brigo-Mercurio

1 50.75 45.65
2 117.16 118.92
3 106.92 108.55
4 65.20 73.01
5 47.88 47.75

Table 6.21: The absolute hedging errors for each interpolated 2-month con-
tract between t∗ and maturity. The error in the Black-Scholes model are
from hedging scheme B.

We must conclude that even though the call prices, at least in Figure 6.6,
were similar there are signi�cant di�erences in the hedging errors between
hedging the 2-month call options from t∗ to maturity compared with hedging
the 1-month call options issued at t∗. In fact, over the whole year, in the
Black-Scholes model the di�erence is about 7% and in the Brigo-Mercurio
model the di�erence is about 6%.

Furthermore, when entering the 2-month contracts at time t∗ we can
conclude from Table 6.21 that the Black-Scholes model outperforms the
Brigo-Mercurio model by about 2%. That is not very surprising since the
Black-Scholes model outperforms the Brigo-Mercurio model over the partic-
ular periods 2,4,6,8 and 11 (recall Table 6.14), although the Brigo-Mercurio
model outperformed the Black-Scholes model over the whole year.
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Chapter 7

Conclusions

The aim of this thesis was to investigate the Brigo-Mercurio log-normal mix-
ture option pricing model and to conclude whether or not it had any e�ect
in reducing the hedging error compared with the Black-Scholes model.

In Section 6.4.1 we found that under the hedging scheme A the Brigo-
Mercurio model outperformed the Black-Scholes model over the whole year
with approximately 3% on 1-month call options whilst on 2-month call op-
tions the Black-Scholes model outperformed the Brigo-Mercurio model by
approximately 1%.

Under the hedging scheme B in Section 6.4.2 we found that the Brigo-
Mercurio model was outperformed by the Black-Scholes model by approxi-
mately 4% for 1-month call options. However for 2-month call options we
concluded that the Brigo-Mercurio model outperformed the Black-Scholes
model by approximately 1% over the whole year. We concluded that using
hedging scheme B was preferable to hedging scheme A in the Black-Scholes
model for both 1-month and 2-month call options. However in the Brigo-
Mercurio model hedging A was preferable to hedging scheme B for both
1-month and 2-month call options.

Further, we tested an alternative way of calibrating the parameters,
namely by minimizing the absolute distance between the hedging portfo-
lio and the market price of the call. This approach proved to be more or
less useless with the exception of one or two periods. We also concluded, in
Section 6.4.3, that the hedging error under hedging scheme A was not very
sensitive to changes in ε and δ.

However, we found in Section 6.4.4 that it might be a good idea to use the
PDE-solution to calculate delta every day with recalibrated parameters and
S0 �xed. This utilizes the dynamics from the Brigo-Mercurio model and ul-
timately, for 1-month call options, it proved to outperform the Black-Scholes
model under hedging scheme B by around 4% over the whole year. Unfortu-
nately, for 2-month call options the Black-Scholes model outperformed this
strategy by around 8%.
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We also considered the method of sliding the starting point S0 a few days
behind the present time instead of always using the starting point at time
zero. We considered both 5 and 10 days behind but both of these produced
larger hedging errors than considering the starting point at time zero �xed
over the whole period.

All in all, after extensive investigation of the hedging error of various
hedging strategies, we can not conclude that any strategy is better than
the Black-Scholes model under hedging scheme B. We can only outperform
this strategy on 1-month options and not on 2-month options. We cannot
�nd any pattern for when a strategy is better than the Black-Scholes model
under hedging scheme B. However, we feel that further investigation should
be conducted with more and di�erent market prices and especially options
with longer running time.
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