
 

 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

Göteborg, Sweden, March 2012 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Development and Evaluation of Novel Algorithms for 

Enhanced Aircraft Routing on Ground 

Master of Science Thesis in Computer Science 
 

 

 

 

ACHILLEAS F. KATSAROS 



The Author grants to Chalmers University of Technology and University of Gothenburg 

the non-exclusive right to publish the Work electronically and in a non-commercial 

purpose make it accessible on the Internet. 
 

The Author warrants that he/she is the author to the Work, and warrants that the Work does 

not contain text, pictures or other material that violates copyright law. 

 

The Author shall, when transferring the rights of the Work to a third party (for example a 

publisher or a company), acknowledge the third party about this agreement. If the Author 

has signed a copyright agreement with a third party regarding the Work, the Author 

warrants hereby that he/she has obtained any necessary permission from this third party to 

let Chalmers University of Technology and University of Gothenburg store the Work 

electronically and make it accessible on the Internet. 
 

 

 

 

Development and Evaluation of Novel Algorithms for Enhanced Aircraft Routing on 

Ground 

 

Achilleas F. Katsaros 

 

© Achilleas F. Katsaros, March 2012. 

 

Examiner: Peter Ljunglöf 

 

Chalmers University of Technology 

University of Gothenburg 

Department of Computer Science and Engineering 

SE-412 96 Göteborg 

Sweden 

Telephone + 46 (0)31-772 1000 

 

 

Cover: The logo of the company Jeppesen, where the present work was done, combined 

with a picture of aircraft routing on the ground. 

 

 

Department of Computer Science and Engineering 

Göteborg, Sweden March 2012 



 



Abstract 

The process of Aircraft Routing on Ground corresponds to the surface movement of aircraft on an 

airport’s taxiway network, from a runway exit to a parking stand (arrivals) and from a parking stand 

to a runway entrance (departures). Given such a pair of terminal points and depending on the 

taxiway network structure, there can be one or more alternative routes that the aircraft can follow to 

its destination. From a functional perspective, this surface movement is the link between the 

airborne movement and the turnaround process for each aircraft. As the size, the operational 

complexity and the traffic of an airport increases, the sequence of “landing-taxiing-turnaround-

taxiing-taking-off” can become tight and the satisfaction of temporal constraints can become critical 

in terms of cost-effectiveness, both for the airlines and the airport operators. 

From the discussion above we can deduce that the choice of an optimal route on the taxiway 

network for each aircraft depends also on the dimension of time, since the traffic load on each 

taxiway is a dynamic parameter. The problem that this thesis is concerned with can therefore be 

called “4D Taxi Routing on Ground”. The work for this thesis was done at Jeppesen GmbH in Neu-

Isenburg, Germany. 

The main focus of this work is the definition, analysis and modeling of the problem of “4D Taxi 

Routing on Ground”. The entities that constitute the essence of the problem are described: the 

Taxiway Network as a directed, bimodal graph with weights that are functions of time; the Aircraft as 

moving agents with a finite set of states; and the Airport Operations as the environment. A set of 

objectives that determine the quality of a routing solution is also defined: minimization of taxi time, 

hold time and speed changes for each aircraft. Based on these definitions, a mathematical model is 

built. 

In order to test the soundness of the defined model and its applicability to the problem of “4D 

Taxi Routing on Ground”, an optimization algorithm is designed and implemented, based on a 

combination of Dijkstra’s SPP algorithm and a Linear Programming formulation. The evaluation of the 

algorithm is realized using simulations of a 2-day actual flight schedule and the results support the 

assumption of correctness for most of the model design choices, while they also show the 

inefficiencies of a static SPP algorithm when applied to a dynamic or “4D” routing problem, thus 

indicating directions for further research or potential areas of improvement. 
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Chapter 1 Introduction 

The cycle of an aircraft’s operation consists of a number of consecutive phases. Starting from a 

parking stand on an airport’s apron, an aircraft will be routed on the taxiway, enter the runway from 

a predefined runway exit (in this case it is a “runway entrance”), speed up and take off, climb to a 

specific altitude and follow the instructed airways and altitudes flying to its destination airport. When 

it approaches the destination, the aircraft will be commanded to descend and land to the airport’s 

runway (or a specified one in case of airports with more than one runway), use a runway exit to start 

routing on the taxiway towards the predefined stand on the destination airport where it will be 

parked. The turnaround process will follow; unloading passengers and baggage or cargo, refueling, 

cleaning, performing various checks, loading again and finally being pushed back to the taxiway to 

start routing towards its new destination [6]. According to [7], the phases of flight are the following: 

 Standing 

 Pushback / Towing 

 Taxi 

 Take-off 

 Initial climb 

 En route 

 Approach 

 Landing 

Based on the aircraft’s movement, these operations can be grouped into three categories. The first 

group consists of the operations from taking off to landing, which correspond to the airborne 

movement, the second group corresponds to the movement on the ground – from the apron to the 

runway via the taxiway and vice versa (pushback and taxi flight phases) - and the third group is the 

above mentioned turnaround process or an overnight stop, when the aircraft is not moving but 

stands parked on the apron. The operation cycle can be extended with the regular maintenance 

checks, which could be considered as part of the turnaround process but not of the same frequency; 

for example, refueling takes place between two flights, while maintenance can occur from every 500-

800 flight hours to 3-6 months, depending on the type of maintenance checks performed [32]. 

The reason for this grouping is the high degree of independence among these three 

operational categories. There is of course a time-dependence because of the sequential ordering; 

each group of operations follows the other in this cycle. However, an aircraft that has already taken 

off does not affect the situation on the taxiway anymore, as well as an aircraft routing on the taxiway 

does not affect the unloading of cargo from another aircraft already parked at the apron. 

The high degree of independence allows the Operations Research to focus on a specific 

category, as the present work is focusing on the taxiway routing, but this does not imply full 

independence. For example, traffic congestion on the taxiway can affect aircraft approaching the 

airport, if they are directed to delay their descent and fly a holding pattern around the airport 

instead. Another example is that an aircraft on the taxiway routing towards a parking area may be 

forced to hold and wait for another that just finished the turnaround process and is pushed back to 



2 

the taxiway, if these two aircraft share the same parking area. This holding is an important factor of 

taxiway delays and can propagate to other aircraft moving on the taxiway [8]. 

The purpose of this discussion is to place the operation of taxiway routing into the greater 

context of the whole operational cycle of an aircraft and point out relations and complications, 

constraints and objectives, all the participating factors that can serve as a basis for first describing 

and then defining the model of the problem of 4D Taxi Routing on Ground. 

Before proceeding, a clarification on the term “4D” is necessary. This term is used to 

emphasize that the problem cannot be defined using the 3 spatial dimensions, but the introduction 

of the dimension of time (commonly referred to as the 4th dimension) is also essential. On the other 

hand, from the 3 spatial dimensions only 2 are sufficient for describing a ground movement. 

Therefore, one could say that the term “4D” is redundant. The reasons for naming the problem “4D 

Taxi Routing on Ground” are the following: 

 An exact title like “(2+1)D Taxi Routing on Ground” introduces more ambiguity than solves 

the problem 

 The 3rd dimension (altitude) can be as well included and considered constant 

 

1.1 Airline Operations Research 
The Industrial Evolution of the 19th century and the so-called Informational Revolution of the end of 

the 20th century have changed and keep on changing our world. Scientific evolution, innovative 

ideas and research lead to technological advances, new products and services. New markets and 

professions emerge to meet our needs, while others become obsolete and are gradually phased out 

or drastically reformed in order to survive. The airline industry began in the 1920s and nowadays, 90 

years later, it is reaching maturity and will continue until air travel becomes obsolete. According to 

the author of [20]: 

“In the 1950s and 1960s the world's air traffic grew on average at around 14-15% each 

year. In the decade 1970-79 the annual growth was close to 10%. This still meant that air 

traffic, and the airlines with it, doubled in size every seven years or so. In the following 

ten years to 1989 growth declined to around 6% annually and in the decade up to 1999 

growth was down slightly at 5.2%. In absolute terms, because of the much higher base, a 

5% jump in recent years represents a much greater surge in demand than a 10% annual 

growth thirty years ago” [20]. 

However, “the financial performance of the world's airlines taken as a whole has been very 

marginal, even in the years when the industry was highly regulated and largely protected from 

internal competition” [20]. This is mainly due to the high operating (fuel, crew, maintenance, 

handling etc) and other costs (airport taxes, depreciation) airlines have to face. Therefore, there is a 

lot of operations research by the related actors (airlines and airport operators) towards optimizing 

their processes, which means minimizing costs and/or maximizing revenues. Due to the large 

economic size of the airline industry, a cost reduction of a seemingly trivial percentage – 1-2% - can 

be translated into large absolute numbers. For example, Lufthansa announced a total revenue of 

27.3 billion € for 2010 and the operating result for the same year was 876 million € [10]. 
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The evolution of computer processing power and capacity, in the greater context of the 

evolution of Computer Science mainly during the last 20 years of the previous century and until 

nowadays, has provided the industry operations research (including the aviation industry) with the 

essential tools, in order to translate the various operations into mathematical models that consist of 

constraints and objectives, solve them with the aid of computers and use the solutions towards 

optimizing the way they utilize their resources. Many problems have been well-studied and become 

prototypes of combinatorial optimization problems. Some of them, related to the airline operations, 

are the following: 

 The Timetabling problem: Given a network of operating airports, flight costs and estimations 

of passenger demands, produce an optimal (daily-weekly-monthly) time-schedule of flight 

operations [14]. This can be combined with the next problem. 

 The Fleet Assignment problem: Given a time-schedule of flight legs, assign specific aircraft 

types to each flight leg, in order to match the aircraft capacities with the passenger demands 

[15]. 

 The Aircraft Routing problem: Given an assignment of flight legs to aircraft types and timing, 

maintenance and availability restrictions, create optimal routes for each aircraft of the 

airline’s fleet [16]. 

 The Crew Scheduling problem, which can be divided into two sub-problems. First, to create 

working patterns (pairing) and then to assign these to individual crew (rostering), with 

respect to the rules limiting the hours the crew is allowed to work in a specific period of time 

[17]. 

For the above mentioned problems, the decisions are solely taken by the airlines. Other stakeholders, 

like the airport operators, do not have any direct profit from the way airlines allocate and assign their 

fleet and crew. On the other hand, there exist other optimization problems, which concern both the 

airport operator and the airlines. The decisions are the responsibility of the airport operators, but 

their results have a financial effect on the airlines, so a good solution constitutes a profit for both 

sides. These problems include: 

 The coordination of the Turnaround process, which can be defined as the set of services 

required from the time the flight arrives at its stand (AIBT – Actual In-Block Time) until the 

time it leaves it (AOBT – Actual Off-Block Time). As briefly discussed in the previous section, 

these services include passenger and baggage/cargo loading and unloading, aircraft refueling, 

cleaning, security checks etc. There are a number of different stakeholders participating in 

this process and they have to be efficiently coordinated, so that the set of services is finished 

on-time for the aircraft to depart [6], [19]. 

 The optimization of Aircraft Routing on the Ground, which is the subject of the present thesis 

work. An overview of the problem follows in the next section. 

 

1.2 Aircraft Routing on the Ground 
The routing of aircraft on the ground or taxi routing process is the generation of a route on the 

taxiway for each aircraft to follow after landing – from the runway exit to the parking stand – or 

before taking off – from the parking stand to the runway entrance. The problem of deciding on the 
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route that the aircraft will follow can be from trivial to highly complicated, depending on specific 

factors that will be presented in the next paragraphs. Arrival and departure taxi routings are not the 

only possible surface movements of an aircraft, even though they can be considered as the most 

common. An aircraft can move to a maintenance hangar, to an overnight parking position or to the 

de-icing facility as well. In the next chapters there will be further discussion about these cases. 

 

1.2.1 Characteristics and Restrictions 

First of all, the problem depends on the airport itself. Each airport has its own taxiway network 

structure. There can be intersections like the crossroads on city road networks, some wide and long 

straight taxiways, where the aircraft can develop a higher taxi speed; there can also be 90° turns into 

smaller taxiways (see Appendix I). Some of the taxiways can be one-way directed, in the sense that 

both arriving and departing aircraft must traverse them in the same defined direction. Some taxiways 

can be bidirectional, where arriving aircraft use the one direction and departing aircraft the other. 

Finally, there are some typical limits on the taxiway routing speed, dictated by safety rules. A typical 

taxi speed is 15 to 20 knots1 on a straight taxiway and 7 to 12 knots on 90° turns, while the usual 

maximum speed is 25 knots and is reached in cases when an aircraft is delayed and hurries to reach 

the parking position [8]. 

The structural characteristics and restrictions of an airport’s taxiway, as well as the speed limits, 

where applicable, do not depend on the aircraft routing on the taxiway; they are uniform. However, 

there are other restrictions that affect only certain types of aircraft. One of them is the maximum 

wingspan allowed on certain (narrower) taxiways. Another is the maximum weight, which can be met 

as a restriction on airports that include bridges in their taxiway structure. 

All the above characteristics of an airport’s taxiway network are structural, therefore more or 

less static. Apart from these, there are also operational characteristics that impose further 

restrictions on the choice of a feasible taxiway route and that are changing with time. An airport can 

have one or more runways with possibly different orientations. The choice of the runway(s) to be 

used for landings and for takeoffs depends on the weather conditions, especially the wind direction, 

so it can change during the same day. There are also environmental issues, as well as the need to 

reduce noise in case of the existence of residential areas close to the airport. Lastly, the runway 

lighting and the visibility during certain hours of the day or under certain circumstances can affect 

the choice of the runway(s). Consecutively, this choice also defines which runway exits are used at a 

certain time, which in turn affects the taxiway routing process [5], [8]. 

Other constraints are related to the business and legal aspects of an airport’s operations. 

These have an impact on the terminal / gate, thus the parking stand that an aircraft will be routed to. 

For example, in European airports there are different terminals for passengers coming from 

Schengen and non-Schengen countries. There can also be different terminals for domestic and 

international flights. Moreover, within the same terminal, it is usually the case that certain airlines or 

airline alliances have allocated a specified range of gates, depending on contracts, agreements or 

business relations between the airline and the airport operator. Some airports are hubs or bases of 

the same country’s national carrier. For example, the airports of Kastrup in Copenhagen, Arlanda in 

                                                           
1
 A knot is a unit of speed equal to one nautical mile per hour. 1 knot   1.852 km/h [38] 
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Stockholm and Gardermoen in Oslo are hubs of the Scandinavian Airlines (SAS) [33], while Lufthansa 

uses the airports of Frankfurt, Düsseldorf and Munich in Germany and Zürich in Switzerland as its 

hubs [9]. It is obvious that these airlines have their reserved gates at their hub airports. 

The description of the taxiway structural and operational constraints places the problem into 

context. As most of the already mentioned problems (fleet assignment, crew scheduling etc), the 

problem of aircraft routing on the ground falls into the category of combinatorial optimization: given 

an environment that imposes certain constraints and a finite set of resources, the problem is to 

allocate / distribute / use these resources in such a way that guarantees feasibility according to the 

constraints and optimizes an objective function, which is either a cost function to be minimized or a 

profit function to be maximized. 

The combinatorial optimization problems are considered “difficult” to solve optimally, because 

of their combinatorial nature, where the number of possible solutions grows rapidly (usually 

exponentially) with the growing of the problem size. This makes finding the optimal solution by 

enumeration practically not feasible in most cases that correspond to real-world problems. In order 

to have all the necessary information to define the problem of 4D Taxi Routing on Ground as a sound 

mathematical model, a discussion about the objectives of this problem must be made and a number 

of research questions that will be attempted to be answered in the present work must be set. 

 

1.2.2 Objectives and Research Questions 

What measures are to be optimized during the process of routing aircraft on the taxiway and why 

should an airport operator be concerned about optimizing them? 

It has been shown [6] that the airports are becoming the bottlenecks of the air transport 

network. The quality of service that an airport operator offers to the airlines using it is determined 

among others by the lack of delays while arriving to and departing from this airport. The turnaround 

process and the need of coordination of the different stakeholders has already been mentioned and 

is quite important, but what about the time that an aircraft spends on the ground taxiing to the 

parking stand or back to the runway? 

In low to normal taxiway traffic conditions, the possibility of two aircraft meeting on a taxiway 

intersection during their routings is approximately 20% and in such cases there are explicit directions 

from Air Traffic Control (ATC) on which aircraft has the highest priority. Usually the aircraft that does 

not have the high priority is informed well beforehand, so that a speed reduction is enough and the 

overhead is just a number of seconds. A speed reduction, if possible, is preferable to a full stop on 

the taxiway, because the second is more time and fuel consuming [8]. Nevertheless, it is not 

uncommon at large airports where aircraft land and take off every minute (or every few minutes) 

that a high load of traffic on the taxiway is observed similar to the traffic jams on the streets of big 

cities during peak hours. This results to more frequent meetings of aircraft on intersections, lower 

taxi speed or even aircraft holding on the ground and waiting for their route to clear in order to 

continue. 

From this discussion, it becomes evident that the sooner an aircraft reaches the parking stand 

or the runway, i.e. exits the taxiway network, the lower the traffic becomes for the rest of the aircraft 
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routing. Therefore an objective is the minimization of taxi time        for each aircraft   , so that 

the taxiway network is less combusted and delays are avoided. 

Another objective is the minimization of hold time        for each aircraft   . The frequency 

or possibility of holding on taxiway intersections increases with the taxiway traffic load. Another 

important factor that causes holdings on the taxiway is when an aircraft is about to park at a gate 

that is still occupied or cannot enter a parking area because it must wait for another aircraft to be 

pushed back from the same area [8]. These are results of ineffective gate occupancy coordination or 

even of a delayed turnaround process. 

Holding on the ground with the engines on is very costly in terms of fuel consumption. For 

example the aircraft engine CF6-80C2 (manufacturer: GE Aviation) consumes 0.206 kg of kerosene 

per second in idle power [11] and the average price of kerosene (October 2011) is $4.10 per gallon [2] 

which is approximately $1.32 per kg2, so every minute of standing idle with one engine on costs 

about $16.4 only for the fuel. If this number is multiplied with an average number of minutes that 

each aircraft holds on the ground and with the number of an airline’s fleet, the resulting fuel cost for 

an airline rises substantially. 

There are also other costs that can be added to the fuel costs, like crew overtime payment or 

even an overnight stay at an airport hotel for passengers of connecting flights missed because of a 

delayed arrival [8]. This is a worst-case scenario and definitely not a common situation. However, it 

shows how a delay caused by holding on the taxiway can have a knock-on effect with high costs for 

the airline. Last but not least, there are environmental issues with having aircraft standing on the 

ground with their engines running. 

An aircraft is a massive object, has therefore much bigger inertia than a car for example. It 

requires spending much energy in order to start routing after being on hold or in order to change 

speed while taxiing. The fuel costs are one of the main costs airlines face and try to reduce, but there 

is also the customer – passenger – satisfaction that must be taken into consideration. This is not a 

numerical metric; however it can be translated into numbers because a satisfied passenger is more 

likely to prefer the same airline in a future trip. And the assumption that a routing on the taxiway 

with a steady speed is much more comfortable than feeling the inertia of constant speed changes - 

accelerations and decelerations – gives one more reason to introduce a third objective which is the 

minimization of the number of speed changes        for each aircraft    while taxiing. 

In a trivial case where an aircraft lands on an airport and there is no other aircraft routing on 

the taxiway, the meeting of the objectives set is quite simple. A direction can be given to the aircraft 

to follow the shortest path from the runway exit to the parking area, with a steady speed. The 

calculation of the shortest path for a static graph with given weights (the lengths of the different 

paths) is a well-studied and efficiently solved problem, e.g. the algorithm of Dijkstra [21], [39] and 

the A* algorithm [40]. The combinatorial nature of the problem emerges when the load of traffic 

increases. A path that is available at a given time point, might not be available after a few seconds 

because another aircraft has just entered from the opposite direction. This is where the dimension of 

time enters the problem: the graph of the airport taxiway network is a time-dependent one. A 

                                                           
2
 1 gallon   3.785 lt and the density of kerosene is 0.82 kg/lt, so 1 gallon of kerosene weights approximately 

3.104 kg [35] 
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seemingly shortest path can turn out to be a bad choice if every aircraft follows it. The occurrence of 

a deadlock, where two aircraft wait for each other to move in order to free a path on the taxiway is 

also a possibility we cannot rule out. 

It becomes clear that the efficient routing of aircraft on the ground can be of great importance 

for an airport operator. Minimization of the taxi and the hold time is energy and time saving for the 

airlines, making the airport a preferable one. Delays and passenger complaints are avoided; safety 

and environmental restrictions are met. The less time the aircraft spend on the taxiway, the more 

time becomes available for the turnaround process and the sooner they can leave the airport, thus 

increasing the availability of parking stands and the aircraft capacity in terms of gate services, 

resulting to higher revenues for the airport operator. 

The research questions that will be attempted to be answered in terms of the present thesis 

work are the following: 

1. How can the above described problem be formulated into a mathematical model? 

2. Which algorithms (of which algorithmic classes) are more suitable to deal with this 

problem? 

3. How efficiently can the objectives be met? How much can the mean taxi time, hold time 

etc be decreased? 

4. What is the relation between the decrease of the taxi and hold time and the increase in 

the airport’s capacity / throughput? 

5. How robust can a solving algorithm be, i.e. how well can it deal with last moment 

unforeseeable changes? 

6. What is the traffic limit for a specific airport, after which the system crashes, i.e. is unable 

to recover to a normal operation? 

 

1.3 Structure of this Thesis 
This thesis is organized in six chapters and is concluded by three appendices. The present chapter is 

an introduction to the problem of 4D Taxi Routing on Ground; a first discussion on the characteristics 

and restrictions of the problem and its placement into the context of Airline Operations Research. 

The chapter concluded with a set of research questions, which determine the focus and direction of 

this thesis. An overview of the current state-of-the-art, regarding commercial products and research 

work on this and similar topics, is given in chapter 2. 

Chapter 3 presents the concept for a system that captures the essence of 4D Taxi Routing on 

Ground and supports the development of algorithms with the purpose of optimizing the objectives 

set. The chapter starts with a detailed discussion and a formal definition of the problem and results 

to a mathematical model. Chapter 4 describes the realization of the concept and gives an overview 

on the class architecture and the optimization algorithms. The environment setup for the evaluations 

and their respective results are presented in chapter 5. 

Finally, chapter 6 concludes this thesis with a discussion on how satisfactorily the research 

questions set above were answered, what improvements can be made and which further directions 

of study and research on this topic can be followed. 
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Complementary information can be found in the appendices. Appendix I contains the maps of 

the taxiway structure of Stockholm-Arlanda airport as of October 2011. Appendix II contains two 

distance matrices for each pair of “runway exit – parking stand area” terminal points for this airport. 

The first table starts from the runway exits and the second starts from the parking stand areas. 

Appendix III contains the data tables of aircraft types, airlines and destination airports which are 

currently related to this airport and were therefore used as test data in our model implementation. 
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Chapter 2 The State of the Art 

When an aircraft is landing on an airport runway, the direction on which runway exit to use is already 

communicated to the pilot by the Air Traffic Control Officer (ATCO) who is responsible for the landing 

traffic management [8]. Once the aircraft is on the ground, the control is handed over to the Aircraft 

Ground Controller (AGC), who is responsible for the taxi routing process [22]. If the aircraft has not 

received the taxi clearance, i.e. the permission to start taxiing and the route - the sequence of 

taxiways - to follow, it must stand still on the runway exit and wait. The taxi route can be fully 

communicated a priori - the most usual case in small and medium sized airports - or it can be 

communicated in parts while the aircraft moves on the taxiway. In the second case, which is usual in 

large airports (e.g. Frankfurt am Main International airport), the ground controller commands the 

aircraft to taxi up to a certain point via a specified sequence of taxiways and wait for further 

directions [8]. 

The procedure is similar when an aircraft is departing. In order to be pushed-back and start 

routing on the taxiway towards the runway for taking-off, an aircraft must have first obtained the 

permission to do so by the ATCO who is responsible for the take-off traffic management. Then the 

AGC assumes control. The purpose of this discussion is to point out the interconnection and the tight 

timing sequence of aircraft flow from the responsibility of one section of ATC to another. Moreover, 

the sequences of landing-taxiing-parking or pushing-back-taxiing-taking-off are not the only links in 

the operation chain of an airport and ATC is not the only stakeholder. Different airport partners are 

involved in different operations and their objectives and interests are sometimes conflicting with 

each other. The decisions of the management area for one operation depend on the outcome of the 

preceding operations and accordingly affect the following ones. 

In this complex environment, the taxiway routing process cannot be analyzed and presented 

without a reference to its surrounding operations. The current state-of-the-art in coordinating the 

airport operations is called Airport Collaborative Decision Making (A-CDM) and its application to the 

turnaround process is the subject of section 2.1. In section 2.2 we present products and tools related 

to the taxiway routing process and section 2.3 closes the chapter with a discussion about classes of 

algorithms that are developed for solving different types of network routing problems. 

 

2.1 A-CDM and the Turnaround Process 
“The concept of Airport CDM endeavors to bring all the main airport partners (ATC, Aircraft Operator, 

Airlines, CFMU and Ground Handlers) together and share operational data in a transparent way. 

Information sharing is essential for achieving common situational awareness. Enhancing decision 

making processes will lead to achieving maximized operational efficiency and best use of the 

available airport infrastructure and resource management” [12]. 

The above statement defines the term of Airport CDM and the rationale for its introduction. 

Airport CDM is a concept, not an implementation nor a protocol. It appeared as the answer to the 

inefficiencies of standalone information systems at the different management areas within the 

airport operations. Each management unit tries to optimize the utilization of their resources, in order 

to maximize profits or minimize costs. Their decisions are facilitated by their information systems, 
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which provide them with frequently updated data of the current situation in their area of interest or 

responsibility. The gate manager watches the current gate occupancy on the screen and decides 

which gate will be allocated for an aircraft due to arrive within the next minutes. In the same way, 

the arrival manager has a view of the situation on the runway and the ground manager has a view of 

the taxiway network and so on. 

So, the managers make their decisions based on a restricted view of the airport and this leads 

to suboptimal solutions. It is like a "short-sighted” algorithm that gets stuck in local optima because it 

fails to explore the whole landscape and find the global optimum. A-CDM addresses this problem by 

the sharing of information in a transparent and systematic way, so that the airport partners 

collaborate on making decisions which enhance the overall operational efficiency of the airport. One 

of the airport operations where many stakeholders are involved and where the application of the 

concept of A-CDM is quite important is the Turnaround process. 

 

2.1.1 The TITAN Project 

TITAN is an abbreviation for “Turnaround Integration in Trajectory and Network” and it is an ongoing 

project (October 2011) partially funded through the Seventh Framework Program of the EU and fully 

compatible to the SESAR Concept of Operations [42]. The SESAR concept extends the flight operation 

management to include the turnaround process with the rationale that when an aircraft is parked on 

the ground, “its trajectory is not evolving in the spatial dimensions but it continues to evolve in the 

time dimension” [6]. The turnaround process is also in a time-sequence between the previous and 

the next flight, so a delay in the turnaround process will result to a late departed flight. 

According to [6], “the airport delays in 2008 accounted for around 26.6% of total delays, with 

an increasing trend” and the principal origin of airport delays is the turnaround process. There are a 

lot of tasks to be coordinated during the turnaround process; the unloading of passengers and 

baggage / cargo, the inspection, cleaning and refueling of the aircraft, catering and potable water 

replenishment, security checks and the loading of passengers and baggage / cargo for the next flight 

are the most significant. There are a lot of factors that can cause a delay in one or more of these 

tasks and this delay can propagate to the following tasks thus delaying the whole process. 

The TITAN project builds upon the A-CDM concept of sharing information among the 

stakeholders by extending this information to include landside and off-airport data. For example, a 

train arriving late at the airport terminal or traffic congestion on the highway leading to the airport 

may result to passengers coming late for check-in. This information is obtained by automated sensing 

facilities and is fed to the TIS (TITAN Information Service) module together with A-CDM data about 

the airside situation, in order to proactively assess possible delays. For this purpose, TITAN follows a 

service oriented approach (SOA) using the notion of “milestones” as sets of temporal checkpoints to 

provide the following services: 

 Passenger Flow Information Service - PFIS 

 Baggage Flow Information Service - BFIS 

 Cargo/Mail Flow Information Service - CMFIS 

 Aircraft Status Report Service - ASRS 

 Airport Information Report Service – AIRS 
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2.1.2 The CAED Project 

Another significant work giving a different perspective on how to coordinate the turnaround process 

efficiently is the CAED project developed by Delft University of Technology for Eurocontrol. CAED 

stands for “Coordinated Airport through Extreme Decoupling” and the main assumption of this 

approach is that “local parties are in the best position to plan their resources and activities” [19]. This 

work recognizes the usefulness of A-CDM but points out that it is mostly focused on the airport 

processes around ATC and proposes the methodology of “Extreme Decoupling” as “a means of 

integrating the ground services and turnaround management with the overall airport planning” [19]. 

Regarding the coordination of the actors participating in the turnaround process, two solutions 

have been proposed; fully centralized planning and fully distributed planning. The first one disregards 

the fact (stated above) that local parties have their own organization, business model and know-how 

in order to plan their resources and the second one introduces much complexity for resolving 

planning conflicts. The CAED project aims to entirely decouple the planning functions using ideas 

from both centralized and distributed approaches. The whole planning procedure is divided into 

three steps: 

1. An overall decoupling of tasks to be performed based on time dependencies. A decoupling 

algorithm using Simple Temporal Networks (STNs) will distribute and assign time slots to the 

local actors. 

2. The local planners will make their planning for their assigned time slots independently and 

without the need for communication with other parties. 

3. The resulting local plans will be merged together into an overall operational plan, which, 

according to properties of the STN, is guaranteed to be conflict-free. 

For example, assuming that the tasks to be completed during turnaround are the ones described in 

the previous section (passenger and baggage unloading, fueling, cleaning etc), the actors are the 

cargo loading, the fueling, the cleaning, the catering and the passenger boarding operator. Some of 

their tasks follow a temporal sequence and some others are independent. Cleaning and fueling must 

take place after all the passengers have evacuated the aircraft, but they are independent of each 

other, so they can take place simultaneously. Each task has a specified duration (with some variations 

possible), depending on the aircraft type. Everything must be finished before the estimated 

departure time. This way, a STN is built showing work flows and temporal constraints in the form of 

inequalities. The decoupling algorithm iteratively finds the solution that satisfies this set of 

inequalities and accordingly assigns the time slots during which the local actors will do their tasks. 

The creation and consecutive decoupling of a Simple Temporal Network starting from a ground 

handling example is presented in the main reference of this section, which is the second deliverable 

of the CAED project [19]. Extensive theory about Temporal Constraint Satisfaction Problems, a special 

case of which is the Simple Temporal Problem, can be found at the first deliverable of the CAED 

project [18], where a STN can alternatively be represented as a directed edge-weighted graph, called 

a Distance Graph, which then can be examined for consistency, i.e. having at least one solution, using 

the Floyd-Warshall algorithm [43]. 
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2.2 Tools and Products for the Taxiway Routing Process 
After the presentation of the concept of A-CDM and the current research on its application to the 

turnaround process, the focus moves back to the taxiway routing process. The works and commercial 

software tools described here are Jeppesen Total Airspace and Airport Modeler (TAAM), Taxi Planner 

Optimization (TPO) and ATRiCS Surface Manager (SMAN). The purpose of presenting these different 

approaches is to provide an as-complete-as-possible image of the subject of the present thesis. 

 

2.2.1 Jeppesen Total Airspace and Airport Modeler (TAAM ®) 

Jeppesen TAAM is a simulation software tool developed to support and facilitate planning, analysis 

and decision making for Civil Aviation Authorities, Airport Operators and Airlines. TAAM provides 4D 

models of airports and the airspace. The basic features of this tool, that determine its usefulness and 

advantages compared to other modeling software, are the following: 

 It can be configurable to any airport or airspace 

 It can run accurate and detailed simulations in fast-time 

 It employs a number of parameters that can be set in order to simulate a wide range of 

scenarios 

 It offers a rich and comprehensive graphical interface to monitor the movement of aircraft 

Being a fast-time simulation tool, TAAM can be combined with optimization or planning techniques 

and evaluate their proposed solutions by modeling and simulating scenarios based on these solutions. 

A prototype for the automated optimization of taxiway placement using TAAM and a Genetic 

Algorithm [31] can be found in [23]. This work addresses the problem of increasing the throughput of 

an airport - i.e. the number of aircraft it can serve – based on higher traffic demand. The airport 

operator wants to assess the degree of throughput increase as a result of building new taxiways on 

the airport. How many taxiways and in which part of the existing taxiway network structure should 

they be added so that the airport can serve more aircraft? 

For this purpose, a TAAM model of Sydney International Airport was created and a realistic 

number of flights were simulated on different configurations of the airport, adding up to 50 new 

taxiways and their combinations. The genetic algorithm (GA) was chosen as the optimization 

technique because its qualities are suitable for the nature of this problem. The GA can generate 

different configurations of the airport by adding various numbers of taxiways on different locations. 

Then it can evaluate these configurations using the results of TAAM simulations and combine the 

“fittest” solutions to create new generations of improved configurations, searching for the optimum. 

The use of TAAM is not restricted to the taxiway network structure of an airport; it is a much 

more generic tool. It simulates the 4D aircraft trajectory from gate to gate, both airborne and on the 

ground. According to the paper [23] referenced in the previous paragraph, TAAM can facilitate the 

reconfiguration of an airport. It can also measure the effect of introducing new flights operating on 

this airport or the impact of disruptions, such as construction works on the runways or taxiways. Civil 

Aviation Authorities can use TAAM to simulate situations of difficult weather conditions or analyze 

and redesign the use of different airways. Airlines can simulate and evaluate their operations thus 

leading to changes that can reduce costs and delays by a more effective use of their resources. 
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2.2.2 Taxi Planner Optimization (TPO) 

This work of A. Marin and J. Salmerón “introduces taxi planning optimization (TPO) as a methodology 

to guide airport surface management operations”. The purpose of this work is to “improve aircraft 

taxiing routes and their schedule in situations of congestion, minimizing overall taxiing time (TT), and 

helping taxi planners to meet pre-specified goals such as compliance with take-off windows, TT limits 

and trajectory conflicts” [22] (abstract). This tool was developed as part of the European Commission 

project “LEONARDO” and used the Barajas Airport of Madrid as the base for implementation. 

In their paper the authors assume that the primary management tasks in the operation of an 

airport are the following: 

 Arrival management (AM), which estimates the landing time and runway exit a few minutes 

before the aircraft touches ground 

 Departure management (DM), which estimates the time that an aircraft is pushed-back from 

its parking position and establishes calculated take-off time windows (CTOTs) 

 Gate management (GM), which assigns arriving aircraft to the available gates 

The process which interacts with all of the above mentioned ones is the process of taxiway routing 

and the successful operation of the runways and the gates depends also on the efficient operation of 

the taxiway. The management tool that is presented in their work, TPO, must be coordinated with 

the tools for AM, DM and GM with the continuous periodical exchange of updated data depicting the 

situation from the present and within a certain look-ahead planning timeframe at each management 

area. The proposed and efficiently tested operation pattern is to iteratively use data from the AM, 

DM and GM modules, execute for 1-2 minutes in order to respectively optimize the taxiway routes 

for the next 15-30 minutes, feed the output back to the other modules, receive updated data after 3 

minutes and so on. 

The model described in the paper is a “large-scale space-time multi-commodity network with 

capacity constraints” [22]. The definition of space-time network can be considered as an alternative 

name for 4D network and the foundations of the TPO model (the structure of the network graph, the 

definition of the origin and destination) have similarities with the model developed for the present 

work. The objective function is a weighted sum of the minimization of the overall taxi time and of 

penalties for delayed take-offs that don’t meet their respective CTOTs, thus providing the flexibility 

to the planner to establish tradeoffs between these goals. Finally, the model is solved as a mixed-

integer optimization problem using Branch & Bound. 

 

2.2.3 ATRiCS Surface Manager (SMAN) 

The works presented in the previous two sections are related to the taxiway routing process but not 

in the same degree and not from the same point of view. On the one hand, Jeppesen TAAM is a 4D 

modeling and simulation tool, adaptable to different airport and airspace configurations – not only 

taxiways - and scenarios. It is not an optimization tool though, but it can be combined with such tools 

producing considerable results. TPO on the other hand is a research work focused on the taxiway and 

performs optimization as its name denotes, but it is not a commercial product, at least not presently. 

ATRiCS Surface Manager is related to the taxiway routing process from yet another perspective, it is 

neither similar to TAAM nor to TPO. 
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ATRiCS Surface Manager is a software system which automates taxi time calculation, routing, 

guidance and control services in one application. It can be configured for basic and advanced 

implementation levels, depending on the size of the airport. Based on the current information, SMAN 

is operational at Incheon Airport in Seoul, Korea and Kuala Lumpur Airport in Malaysia and has been 

tested in field trials at Frankfurt am Main, Munich and the under construction new airport of Berlin-

Brandenburg. The SMAN system supports the controller who is responsible for the ground traffic by 

suggesting or assigning optimized taxi routes to the aircraft and by guiding the aircraft accordingly. 

The system is integrated into the airport’s surveillance and lighting systems and uses them in order 

to continuously check and adjust the situation on the runways, taxiways and apron. The subsystems 

of SMAN are the following: 

 Variable Taxi Time Calculation: This is a forecasting system which dynamically computes taxi 

time estimates up to 60 minutes in advance. This work acknowledges that “advanced taxi 

time calculation considerably improves the accuracy of predicted on-block and take-off times” 

[13]. It uses updated estimates for landing and off-block times and plans a surface trajectory, 

from which the taxi time is deduced. To ensure robustness, VTTC uses a stochastic model of 

the airport where it incorporates factors like traffic, preferred taxi routes and visibility and 

estimates taxi times for different combinations of these factors. 

 Routing: The routing system has two main functions, the creation of a taxi route and the 

assignment to the aircraft. The system can be used in a manual, semi-automatic or automatic 

mode, depending on who creates and who assigns the route. In semi or fully automatic mode, 

SMAN dynamically proposes a route to the controller, which it creates from scratch and in 

regard to preferences and feasibility constraints. Of course, this route must also be efficient, 

i.e. minimize taxi time and distance. 

 Guidance: Once a route has been assigned to an aircraft, the guidance system takes over. 

“During taxi, SMAN automatically switches the taxiway centerline lights to unambiguously 

indicate the assigned taxi route to the pilots. At any time, the controller can manually control 

stop bars and illuminate taxi route sections to statically indicate admissible taxiways to pilots 

and drivers” [13]. The taxiway lights can also be adjusted to turn off after the aircraft has 

passed from the corresponding taxiway, thus saving energy. 

 Control: The control system uses the surveillance systems of the airport to detect high traffic 

and ensure provision of spacing, both lateral (when aircraft converge at intersections) and 

longtitudal (when one aircraft follows another). In both cases, when the distance falls below 

a certain level, an alert is generated. Alerts are also generated in cases of excessive taxi 

speed, route deviations and deadlocks, as well as when an assigned route does not comply 

with wingspan restrictions. SMAN can also control the runway stop bars to protect arriving 

and departing aircraft from other mobiles entering the runway. 

Concluding this section, the presentation of SMAN shows how an existing software system can be 

implemented at an airport with the purpose of increasing safety and reducing various operating costs 

by the automated and efficient routing of aircraft on the ground. Airport operators and authorities 

are nowadays looking to this direction. 
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2.3 Algorithms for Routing Problems 
This section closes the state-of-the-art chapter by presenting a number of algorithms that have been 

applied to problems similar to 4D Taxi Routing on Ground, as well as some general purpose heuristics 

which could potentially be adapted to the particularities of this problem. Starting with the heuristics, 

the following are well-known and extensively applied algorithmic methods based on the imitation of 

natural processes: 

 The Genetic Algorithm [31] imitates the natural process of selection and reproduction of the 

fittest individuals in every generation. The success of this method depends on how well a 

potential solution of the specific problem can be encoded in a data structure such that the 

operations of crossover and mutation can be performed with meaningful results. A balance 

between “exploitation of the best solutions” and “exploration of the search area” is also a 

key factor, as in most heuristics. 

 The Ant Colony System imitates the way ants tend to follow the shortest paths on their 

movements among their colonies and how these paths tend to stabilize towards optimality 

even after changes in the “search area”. Some very interesting applications which show the 

efficiency and robustness of the Ant Colony Systems as optimization algorithms can be found 

in [25] and [26]. 

The problem of 4D Taxi Routing on Ground is a shortest path problem enhanced with the dimension 

of time. The prototype algorithm for solving the basic single-source shortest path problem is the 

algorithm of Dijkstra [39]. A variation of this algorithm was implemented for the present thesis work 

and will be described in the fourth chapter. An efficient heuristic which assumes the existence of a 

distance table between the destination and each intermediate vertex of the network graph in order 

to be applied is the A* Algorithm [40]. 

There are also numerous and various extensions of the shortest path problem, which were 

formulated in order to model the increasing complexity and diversity of contemporary real-world 

network and routing problems. The K-Shortest Path Problem models the need to find and use the 

best alternative solutions when one shortest path might not be enough. A description of the problem 

and a presentation of algorithms that aim to solve it can be found at [27]. 

A taxiway network can be hierarchical in the sense that it can consist of a number of primary 

and a number of secondary taxiways. The object of the Hierarchical Network Design Problem is “to 

identify the least cost, two-level hierarchical network”, which “must include a primary path from a 

predetermined starting node to a predetermined terminus node” and also “each node not on the 

primary path must be connected to some node on that path by means of a secondary path” [28]. 

Another generalization of the shortest path problem is the Language Constrained Shortest 

Path Problem. This problem assumes the existence of “an alphabet   , a graph G whose edges are 

weighted and labeled in   and a regular language    ”. The problem “consists of finding a shortest 

path p in G such that the concatenated labels along p form a word of L” [29]. This problem applies on 

multimodal networks, where roads are differentiated by categories. Last but not least, the Canadian 

Traveler Problem is “a stochastic shortest path problem in which one learns the cost of an edge only 

when arriving at one of its endpoints. The goal is to find an adaptive policy (adjusting as one learns 

more edge lengths) that minimizes the expected cost of travel” [30]. 
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At this point, the problem of 4D Taxi Routing on Ground has been described but not analyzed 

or formulated into a model. However, and based on these descriptions, we can speculate on the 

applicability of the previously presented algorithms to this problem and identify possible limitations. 

The heuristics have the advantage of being general purpose methods, therefore applicable to a wide 

range of problems. The success of the Genetic Algorithm lies on the encoding of the solutions, and it 

can combine (crossover) different parts of the taxiway network into overall routing solutions, so it 

can be an efficient method to deal with this problem. The Ant Colony System seems to be even more 

promising, due to its flexibility and stabilization ability; it could be executed dynamically while the 

aircraft are routing, by periodically sending agents (ants) to the destination to find the shortest path 

at that point in time and adapt the aircraft routes accordingly. 

The algorithm of Dijkstra applies by definition to static graphs and does not incorporate the 

notion of time, so it should somehow be enhanced in order to be applied to a 4D routing problem. 

The implemented variation of this algorithm shows certain inefficiencies too, which will be discussed 

in the conclusion chapter of the present thesis. Moreover, the A* algorithm assumes that there exists 

a coordinate distance map for all pairs of vertices in a graph and this distance map is not always 

feasible to obtain or calculate. Therefore, the applicability of A* is generally more limited. On the 

other hand, having a list of alternative routes for each aircraft and destination at a given time point 

would be an effective way to handle dynamic changes on the taxiway, so a K-Shortest Paths 

algorithm could be a good candidate for our problem. 

The rest of the routing problems described in the present section were chosen in order to 

present some concepts that could be applicable to the 4D Taxi Routing on Ground problem, perhaps 

combined or extending an already existing model. A taxiway network could have the form of a 

hierarchical network, with primary and secondary taxiways, so this topology could serve in such cases. 

There could also be distinctions among vertices or edges of a taxiway graph imposing constraints that 

are expressed with the aid of a regular language. Finally, a different approach would be a stochastic 

one, similar to the Canadian Traveler that aims to deal with the uncertainty and the dynamic nature 

of the problem by finding adaptive policies. 
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Chapter 3 Conception and Model Definition 

After introducing the problem of 4D Taxi Routing on Ground and placing it into the context of Airline 

Operations Research and after a presentation of the current state-of-the-art regarding research on 

this topic and algorithmic classes that have been applied to similar problems, the next step is to 

formulate a structured definition that will lead to a sound mathematical model. This chapter is 

divided into two main sections. In the first section we formulate and analyze the problem of 4D Taxi 

Routing on Ground by distinguishing and describing the three main entities that compose it. The 

rationale for this distinction is explained in the beginning of the section. Following and based on the 

definitions of the first section, we formulate the mathematical model of the problem, including the 

measures for the objectives, in the second section. 

 

3.1 The Entities 
ICAO defines the following concepts [1]: An airport (or aerodrome) is “a defined area on land or 

water (including any buildings, installations and equipment) intended to be used either wholly or in 

part for the arrival, departure and surface movement of aircraft”. Depending on factors like size and 

traffic, an airport can have one or more runways. A runway is “a defined rectangular area on a land 

aerodrome prepared for the landing and take-off of aircraft”. Another important part of an airport is 

the apron, “a defined area, on a land aerodrome, intended to accommodate aircraft for purposes of 

loading or unloading passengers, mail or cargo, fuelling, parking or maintenance”. Finally, a taxiway 

is a “defined path on a land aerodrome established for the taxiing of aircraft and intended to provide 

a link between one part of the aerodrome and another”. 

An airport usually has a network of taxiways, resembling a city road network in the sense that 

there might be intersections, 90° turns, speed limits and defined directions that an aircraft must 

follow when moving on the taxiway. So, the taxiways are where the “surface movement” mentioned 

in the previous paragraph takes place. On arrivals, this movement starts from the runway where the 

aircraft lands and ends at a specific parking position on the apron. On departures it is the other way 

around. Therefore, a taxiway usually provides a link between the runway and the apron. The other 

cases of surface movement (maintenance, overnight parking, deicing) are out of the scope of the 

present work. However, the model described in the second part of this chapter can be extended in 

order to include such movements. 

The runway and the apron serve as the source and the destination (and vice-versa) in the 

taxiway routing process. Nevertheless, the operations taking place on the runway and the apron are 

not a concern of the taxiway routing process, even though they may affect it. For example, if an 

aircraft fails to brake effectively in order to use the runway exit which was commanded by ATC, it will 

have to use another exit, so the taxiway route will have to be redefined using the new runway exit as 

a starting point. However, this can be considered as different input data provided to the taxiway 

network system and not as a change to the system itself. Concluding this discussion, the first main 

entity that composes the problem of 4D Taxi Routing on Ground is the Taxiway Network. 

The taxiway structure of an airport is more or less static; it does not change frequently. As 

stated in the introduction chapter, the generation of a path connecting a runway exit and a parking 
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stand on the apron would be a trivial task on an empty taxiway. What provides the dynamic aspect to 

the whole procedure is the concurrent movement of other aircraft on the taxiway network, making 

the availability of certain paths a function of time. The second main entity of the problem is thus the 

Aircraft. 

From an abstraction level, the Taxiway Network supplied with Aircraft moving on it can be 

considered as a separate system within the surrounding system of the whole airport. These two 

entities can define the model of the taxiway network system, as it will be shown later in this chapter. 

The interaction of the taxiway network system with its surroundings is the information of the source-

destination pair and the time that an aircraft appears at the source, as an input, and the time that 

the aircraft reaches its destination (and possibly other metrics), as an output. This information 

depends on several different factors, which can be grouped together under the term Airport 

Operations. This is the third entity of the problem. The airport operations include: 

 The daily / weekly / seasonal flight schedule that provides the expected times of arrivals and 

departures. 

 The runway usage pattern, especially in airports with more than one runway. The usage of 

the runway(s) and the direction of arrivals and departures on them affect the choice of the 

runway exits as starting or ending points of the taxiway routing. 

 The airlines operating on the given airport and the corresponding airports of the flights 

departing from or arriving at the given airport. The combination “airline - source airport” 

defines the terminal of the given airport where the aircraft will be parked, so it affects the 

choice of the parking stands. 

As a conclusion, one can say that for the problem of the 4D Taxi Routing on Ground, the taxiway 

network provides the structure or topology (the spatial dimensions), the movement of aircraft adds 

the 4th dimension (time) to the system and the airport operations stand for the environment, 

connecting the system to the real world by providing data and operational constraints. 

 

3.1.1 The Taxiway Network 

The Taxiway Network is the set of taxiways of an airport. Taxiways serve as links between the runway 

and the apron, at least for the purposes of the present work. Apart from the runway exits and the 

exits to the parking areas, which are the terminal points of this network, other significant places are 

the taxiway intersections, defined as “junctions of two or more taxiways” [1]. An intersection can be 

a crossing, where two roads meet but an aircraft moving on the one road cannot enter the other, a 

merging, where two or more roads merge into one, or a splitting, where one road splits into two or 

more. An intersection can also be a combination of the above. It is obvious that intersections are 

important on the taxiway routing, because either a check to avoid conflicts (crossing, merging) or a 

routing decision (splitting) has to be made. 

The most intuitive and general purpose mathematical structure that serves as a basis for 

modeling networks (among others) is the Graph. Using a general definition, a graph is “an abstract 

representation of a set of objects where some pairs of the objects are connected by links. The 

interconnected objects are represented by mathematical abstractions called vertices, and the links 

that connect some pairs of vertices are called edges” [36]. A taxiway network for an airport can be 
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modeled as a graph, where the vertices are the terminal points (runway exits and exits to the parking 

areas) and the intersections. The edges of this graph are the taxiways or parts of them that connect 

any two of these significant points (vertices). A graph can have many specializations or extensions, 

and for the purposes of a taxiway network the edges must be directed, according to the directions of 

the respective taxiways. The edges can also be supplied with a weight or cost that corresponds to the 

length of the respective taxiways (from a spatial perspective) or the time to traverse them (from a 

temporal perspective). 

After defining the main entities that participate in the 4D Taxi Routing process, a crucial step 

towards modeling the problem in order to develop algorithms that attempt to deal with it, is to 

create a graph that corresponds to the taxiway network and captures its structural foundations and 

particularities. Having separated the taxiway network from its operational environment, the only 

information needed in order to create the graph, is a full map of a given airport plus a database 

containing numerical representations of the airport dimensions (lengths of taxiways) and structural 

constraints (maximum wingspan and weight allowed on specific edges). 

For the present work, all the necessary information was extracted from the Airport Mapping 

Database (AMDB) of Jeppesen. In the next subsection a case study will be presented in order to 

illustrate the transition of an airport map and relevant information to a graph representing the 

taxiway network. 

 

3.1.1.1 The Taxiway Network of Stockholm-Arlanda Airport 

The airport we chose to use as a case study for this work is the airport of Stockholm-Arlanda (IATA: 

ARN – ICAO: ESSA). It is the largest airport in Sweden, the third largest airport in the Nordic countries, 

and the second busiest in terms of international passengers [37]. The choice was mainly based on the 

size of the airport and the complexity of its taxiway network. As of October 2011, Stockholm-Arlanda 

has 3 runways and 4 terminals and its traffic density can be categorized as follows: 

According to [1] (pages 1-1, 1-2), “aerodrome traffic density is medium where the number of 

movements in the mean busy hour is of the order of 16 to 25 per runway or typically between 20 to 35 

total aerodrome movements.” Also, “the number of movements in the mean busy hour is the 

arithmetic mean over the year of the number of movements in the daily busiest hour. Either a take-off 

or a landing constitutes a movement.” The published statistics for Stockholm-Arlanda airport [3] 

show that for the year 2010, the daily busiest hour was from 17:00 to 17:59 with an average of 39 

movements (20 take-offs and 19 landings). According to these facts, Stockholm-Arlanda can be 

considered as a medium to heavy traffic density airport. 

For the purposes of the present work, the airport that would serve as a case study should be 

fairly large and complex, in order to help exploring the problem dimensions; a regional airport with 

one runway and one taxiway would not serve. On the other hand, a very large airport (for example 

Frankfurt am Main International airport) would require a substantial amount of time to be modeled. 

The maps of Stockholm-Arlanda airport are displayed in Appendix I. The resulting graph for the 

taxiway network is accordingly displayed in figures 3.1 and 3.2 on pages 20-21, while the necessary 

remarks / clarifications are given right after. 
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Figure 3.1: The graph of the northern part of Stockholm-Arlanda airport taxiway network 
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Figure 3.2: The graph of the southern part of Stockholm-Arlanda airport taxiway network 

  



22 

The figures 3.1 and 3.2 represent the sub-graphs for the northern and southern part of the taxiway 

network of Arlanda airport. The taxiway identifiers (ZS, ZQ, ZP etc) are shown as references to the 

airport map, so that the correspondence between the graph and the map can be more evident. It is 

also evident (see identifier ZM on both graphs), that these two sub-graphs can be merged into one 

overall graph that displays the whole taxiway structure, apart from the taxiways leading to the third 

runway - 01R/19L (see maps B and D in Appendix I). This part of the airport was left out of the figures 

3.1 and 3.2 but was included in the implementation of the model. The long taxiways leading to and 

from the region of the third runway - 01R/19L – are named U and W and are shown in figures 3.1 and 

3.2 with dashed lines. 

The runways included in the figures are drawn as long rectangles (see legends) and the runway 

exits / entrances are the rectangular green vertices of the graph. The triangular red vertices (P…) are 

the exits / entrances of the taxiway leading to and from parking areas on the apron. The specific 

gates that can be reached from a given taxiway exit are also shown on the legend of the graph. It 

should be noted here that the parking areas / gates are located on the apron, so they are not a part 

of the taxiway structure. The rectangular green (X..., Y...) and triangular red vertices are the terminal 

points of the graph. The circular yellow ones stand for the taxiway intersections; note the existence 

of crossings, merges, splits and combinations of them. 

A detailed comparison of the figures 3.1 and 3.2 with the respective maps can lead to the 

conclusion that some parts of the apron are excluded from the graph, i.e. there are no taxiway exits 

leading to and from them. The reason for the exclusion is that these locations are used for other 

purposes. They can be maintenance hangars or serve cargo aircraft, but anyway they are not used for 

commercial flights. Detailed information about the local regulations at aircraft parking stands can be 

found at [4]. We also obtained relevant information by exchanging emails with people working at the 

ATC of Arlanda airport. 

The edges of the graph are directed. Edges with arrows on both ends represent taxiways that 

can be traversed both ways. In this case, one direction is for arrivals and the other is for departures. 

A comparison between the maps that display the same part of the airport but in different modes 

(northern part: map A for arrivals and C for departures / southern part: map B for arrivals and D for 

departures) leads to the conclusion that there are significant differences. There are edges used only 

for arrivals, edges used only for departures, edges used for both modes in the same direction and 

finally edges used for both modes in opposite directions. The last of these four “edge types” can be 

distinguished on the figures 3.1 and 3.2 by the existence of arrows on both ends, as mentioned at the 

beginning of this paragraph. However, the graph does not provide further information about the 

unidirectional edges and if they used for arrivals, departures or both. 

There are also edges whose one vertex is a runway exit. One can notice that some of these 

edges are unidirectional and some others are bidirectional. For example, runway exit Y7 can be used 

only for arrivals, while Y10 can be used for both arrivals and departures, depending on the runway 

exit usage pattern which belongs to the entity of Airport Operations and will be analyzed in section 

3.1.3. The same remark can be made for the exits to parking areas too. 

At this point it is important to introduce the notion of mode – arrival or departure – and 

suggest that the graph displayed in the previous pages is not sufficient for modeling all the aspects of 

taxiway routing. This graph is actually a merging of two graphs, the arriving and the departing one. 
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This can be shown on the figures 3.3, 3.4 and 3.5 below, where a fraction of the taxiway network is 

used as an example. 
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Y10
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Y8

Y7

Y6
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Figure 3.3: A fraction of the graph of Figure 3.2, used as an example 
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Figure 3.4: The arrival “component” of the graph of Figure 3.3 
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Figure 3.5: The departure “component” of the graph of Figure 3.3 

 

The example figures 3.3, 3.4 and 3.5 can be used for distinguishing the four edge types. The edges 

starting from runway exits Y6 and Y7 are used only for arrivals. The edges starting from parking area 

exits P5 and P8 are used only for departures. Runway exits Y8, Y9 and Y10, as well as parking area 

exits P6 and P7 are used for both modes (bimodal) in opposite directions. Finally, the two vertical 

axes – named Y and Z on the maps – are used for both modes but in one direction. 

The next section summarizes the necessary steps for the transition from an airport map to a 

graph that captures all the essence of taxiway routing and serves as a basis for the mathematical 

model. Before proceeding to that, a last remark that can be derived from the figures above is that 

when an aircraft reaches a vertex on the graph, the possible next movements are not determined 

only by the graph itself, but also by some transition table. For example, on figure 3.4, an aircraft 

reaching vertex ZL can be directed towards the parking area of P6 or can turn to V1. From V1 the only 

choice is to continue to V2, which corresponds to a crossroad, so in this case the aircraft must 

continue to V3. In order to reach the parking area of P7, an aircraft must be coming from ZK. This 

example shows that the existence of an edge starting from a given vertex does not necessarily mean 

that this edge can be followed, but the additional information of where the aircraft comes from is 

also of high importance. 

 

3.1.1.2 Summing-up: From an Airport Map to the Taxiway Network Graph 

Stockholm-Arlanda airport was used as a case study for the present work in order to get some insight 

into the processes regarding taxiway routing. However, the conclusions must be independent of a 

specific airport and the model, which is one of the main goals of this work, must be generic enough 
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and applicable to all types of airports with the minimum of adjustments. The purpose of section 3.1.1 

is to define the steps for formulating a graph, including any accompanying information, for the entity 

of the Taxiway Network, using a mapping database of a given airport. After the discussion that 

preceded and the identification of the problem dimensions with the help of a case study airport, the 

map-to-graph procedure can be summarized in steps as follows: 

1. Obtain and study the maps showing the taxiway network structure. Using airport regulation 

information, limit the taxiway network to the set of taxiways used for arrivals and departures. 

2. Identify the runway exits and the exits to parking stand areas and define the modes on which 

they are operated. These shall be the terminal vertices of the graph. 

3. Identify all the taxiway intersections in the area of interest. These shall be the inner vertices 

of the graph. 

4. Connect the vertices with edges according to the taxiways on the maps. For each edge record 

the crucial information: its type (one of the four types defined in the discussion above), its 

length (in meters or some other base unit) and any existing constraints, like maximum speed 

wingspan and weight. The maximum speed is usually not stated explicitly, but there are some 

empirical limits depending on the form of the taxiway (see chapter 1). 

5. For each edge and allowed direction record the possible next edges, thus creating a list of 

allowed transitions. 

An example of tables (some sample rows) with all the necessary data for a Taxiway Network graph is 

displayed below. Table 3.6 shows some edges with the data of step 4. For example, the edge [27, 28] 

has a length of 59 meters, the maximum speed is a fraction 0.6 of the global maximum for the 

specific airport (because this edge corresponds to a turn on the taxiway, so the speed limit must be 

lower), the maximum wingspan is 65 meters and the edge is used only for departures. The edge [29, 

30], on the other hand, is used on both modes in opposite directions, i.e. from vertex 29 to 30 on 

arrivals and from vertex 30 to 29 on departures, and has a length of 100 meters etc. Also, the edge 

[31, 33] is used on both modes but in the same direction and has no wingspan limit (equals zero). 

 

vFrom vTo length speed wingspan arrival departure 

27 28 59 0,6 65 0 1 

27 31 34 1 0 1 1 

27 32 54 0,6 65 1 0 

28 30 28 0,6 65 0 1 

28 31 21 0,6 0 1 0 

29 30 100 0,8 65 1 -1 

29 33 120 0,8 0 1 0 

30 31 26 0,8 65 1 0 

31 32 51 1 65 1 0 

31 33 89 1 0 1 1 

32 120 48 1 65 1 0 

32 122 82 0,6 24 1 0 

Table 3.6: Representation of the edge information for a Taxiway Network graph 
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Table 3.7 is related to table 3.6 and shows the transitions for edges that support arrivals. Edge [27, 28] 

does not exist on this table, since it is used only for departures. Edge [29, 30] exists and the extra 

information is that when reaching vertex 30 coming from vertex 29, the only next step is to move to 

edge 31, then to edge 32 and then there are two choices: 120 and 122. In general, there can be more 

than two choices as “next edges” depending on the form of the taxiway network. This way one can 

traverse the graph from a terminal point and, depending on the mode and the respective transition 

table, a tree-like structure of paths can be generated, where the root is a runway exit and the leaves 

are all the parking areas accessible from this runway exit (arriving mode), or the root is a parking area 

exit and the leaves are all the runway entrances accessible from this parking area exit (departing 

mode). 

 

vFrom vTo vNext1 vNext2 length speed wingspan 

27 31 33   34 1 0 

27 32 120 122 54 0,6 65 

28 31 33   21 0,6 0 

29 30 31   100 0,8 65 

29 33 34   120 0,8 0 

30 31 32   26 0,8 65 

31 32 120 122 51 1 65 

31 33 34   89 1 0 

32 120 121   48 1 65 

32 122 123   82 0,6 24 

Table 3.7: Representation of the arrivals transition for a Taxiway Network graph 

 

3.1.2 The Aircraft 

Up to this point, the first entity of the problem of 4D Taxi Routing on Ground, the Taxiway Network, 

is described in detail, together with its particularities and a number of well-defined steps for 

constructing the corresponding taxiway graph. The foundations are set in order to describe the 

second entity, the Aircraft moving on the taxiway. An aircraft has many features, but for the purpose 

of the present work the focus is on a small subset of them. The airborne features, the ones that 

define the main operation of an aircraft (flying), do not concern the taxiway routing process and the 

aircraft can be abstractly considered a large vehicle, with the difference that because of its mass, 

speed changes – accelerations and decelerations – are undesirable in regards of fuel cost and 

passenger comfort. 

The dimensional features of an aircraft that concern the taxiway routing process are its length, 

wingspan and weight. The length of an aircraft in combination with its current position determines its 

distance from other aircraft routing on the taxiway at the same time, which is obviously important 

for the avoidance of conflicts and the safety of routing. The wingspan and weight of an aircraft, as 

discussed both in the first chapter and earlier in the present one, determine whether it can enter 

specific taxiways, by comparing their structural restrictions with the according features of this type of 

aircraft. 
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From these three features, the one used in the model is the aircraft’s wingspan. The weight 

restrictions are enforced in a similar way to wingspan restrictions; the aircraft’s value is compared to 

the taxiway limit and an “enter”/”don’t enter” decision is made accordingly. Furthermore, instead of 

following a very detailed approach of using the length of each aircraft, the alternative approach 

followed was to consider each aircraft a moving point (thus just record its position at each time) with 

a constant safety distance (say 100 meters) as a “tail” moving with it. Once again and similar to the 

discussion of section 3.1 about the other kinds of aircraft movements on the ground apart from 

arrivals and departures, a weight restriction and an explicit aircraft length consideration are left out 

of the problem model, with the rationale that: 

a) the purpose of this work is to create a model for 4D Taxi Routing on Ground that is 

fairly simple and compact, yet covers the essential principles and most of the realistic 

cases, and 

b) the model can be extended later to incorporate such movements and restrictions 

The conclusion is that the dimensional feature of an aircraft that is used for the purpose of taxiway 

routing is its wingspan. A table containing all the aircraft types used in the Stockholm-Arlanda model 

implementation – according to the aircraft that actually use this airport – with their names, lengths 

and wingspans can be found in Appendix III. The airline where an aircraft belongs to is another useful 

feature, not for the model itself, but for the determination of the terminal and thus the parking area 

where the aircraft will be routed to in case of arrival. More about this process will be discussed in 

section 3.1.3. 

Being the dynamic entity of the taxiway, an aircraft has also some features that change with 

time. One of them is the position on the taxiway. This position could be recorded using the 

coordinates of an aircraft at each time unit, but since the taxiway network is modeled as a graph, the 

position of the aircraft on the graph is a triple [from-vertex, to-vertex, distance]. For example, if the 

current position of an aircraft is [29, 30, 45], the aircraft is currently situated on edge [29, 30] – with 

direction from vertex 29 to vertex 30 – and its frontal part (its “nose”) is located 45 meters from the 

beginning of the edge (from vertex 29). Obviously, the “distance” variable of the position triple must 

be less than or equal to the length of the current edge. 

Another feature that changes with time is the speed of the aircraft. The speed is usually in the 

range from 0 (when the aircraft is on hold) to a maximum allowed speed for the specific taxiway – 

edge, where the aircraft is currently situated. For example, using the data from table 3.6 and 

assuming that the usual maximum taxiway speed for an airport is 25 knots [8], an aircraft currently 

situated on edge [29, 30] – where the speed is set to the 0.8 of the overall maximum - should taxi 

with a speed no more than                 . The aircraft speed is especially important for the 

taxi routing process, because it has the key-role of “binding the model together”. The speed 

determines the distance covered at each time unit, so it determines the position of the aircraft too. 

The speed together with the length of the route that an aircraft will follow determines the total taxi 

time, which is the central metric of the problem of 4D Taxi Routing on Ground. Finally, the changes of 

speed are themselves recorded and used as another metric of the quality of an assigned route, as 

stated in section 1.2.2. 

As already stated and described, the aircraft is the entity that enhances the taxiway model 

with the dimension of time because of its movement that by definition makes its important features 
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(position, speed) functions of time. The aircraft is the entity that also keeps the metrics of the 

problem objectives: taxi time       , hold time        and speed changes       .  

An aircraft also has a state which changes during the routing process, as well as a number of 

operations / commands that enable the state transitions. The possible states of an aircraft regarding 

the taxiway process are shown on table 3.8 and the state transition model is displayed on figure 3.9. 

 

State Description 

0 Landed, initialized 

1 Waiting at the runway exit to start taxiing (a first-come first-serve queue) 

2 Arrival - taxiing with speed sp>0 

3 Arrival - on hold (speed sp=0) 

4 Parked on the apron - turnaround process 

5 Waiting at the parking stand to start taxiing (a first-come first-serve queue) 

6 Departure - taxiing with speed sp>0 

7 Departure - on hold (speed sp=0) 

8 Reached the runway to take-off / finish 

Table 3.8: The aircraft states during taxiway routing 

 

On the taxiway in arriving mode

On the taxiway in departing mode

Out of the taxiway (runway, apron)

1 2 3

44 5 6
7

88

init

init

line-up

line-up

taxi

taxi

taxi

taxi

hold

hold

park

take-off

0

Figure 3.9: The aircraft state transition model 
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On figure 3.9, the names of some commands are also displayed. These commands – init, line-up, taxi, 

hold, park and take-off – along with a few others are responsible for the routing of the aircraft and 

their execution depends on the situation on the taxiway at a given point in time. The complete listing 

of the aircraft taxiway commands, their resulting transitions (based on figure 3.9) and the conditions 

that trigger them are displayed on table 3.10. 

 

Command Transition Condition 

Init  , 43 
The time has come for a new aircraft to be introduced according 

to the flight schedule 

Line-up         

The aircraft has taken its position at the runway exit or the 

parking area exit and must check its priority on the waiting 

queue 

Update-

priority 
        

Another aircraft left the queue, so the remaining update their 

priorities and check which is the first 

Hold-on         The aircraft is not the first on the waiting queue, must hold on 

Taxi 
        

        

The aircraft is the first on the waiting queue or is on hold and the 

taxiway is clear in order to start taxiing again 

Update-

position-

speed 

        

        

The aircraft is on the taxiway and at each time unit must update 

its current position and speed 

Change-

speed 
        

There is another aircraft ahead or at a crossroad, must change 

speed accordingly 

Hold         
The aircraft is approaching a stopped aircraft ahead or an edge 

(taxiway) that is currently unavailable, must stop completely 

Park     
The arrival routing is finished, the aircraft reached its parking 

position 

Take-off     
The departure routing is finished, the aircraft reached the 

runway entrance to take-off 

Table 3.10: The aircraft commands during taxiway routing 

 
The commands of table 3.10, apart from changing the aircraft’s state, have an impact on the variable 

features and metrics that each aircraft keeps. For example, commands “Hold” and “Hold-on” result in 

the aircraft standing still on the taxiway, so they increase the hold time        metric accordingly. 

The command “Line-up” starts the routing process of the aircraft, so the time that it takes place is 

                                                           
3
 It is also possible that an aircraft appears directly at state 4. This will be explained in chapter 4. 
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recorded and when the command “Park” or “Take-off” is given, thus the routing process is finished, 

this time is also recorded and their difference is the taxi time        of the aircraft. 

Another conclusion which can be deduced from the state transition model of figure 3.9 is that 

the state of an aircraft determines its mode, i.e. states 1, 2 and 3 correspond to arriving mode and 

states 5, 6 and 7 correspond to departing mode. The mode of the aircraft is quite important, because 

the taxiway network graph is also bimodal, as discussed in section 3.1.1, and its form, therefore the 

taxiways that the aircraft can follow, depends among others on the respective mode. To make it 

simple: an arriving aircraft “sees” an arriving taxiway and a departing aircraft “sees” a departing one. 

 

3.1.3 The Airport Operations 

The Airport Operations constitute the third entity of the 4D Taxi Routing on Ground problem. Unlike 

the Taxiway Network and the Aircraft, they are not part of the model itself but act as the “plug-in” 

between the model and the outside world. An airport has many different types of operations, but the 

ones that affect or interact with the taxiway routing system can be grouped into the categories 

briefly mentioned at the beginning of this chapter, according to the kind of input they provide to the 

taxiway routing process. 

 

3.1.3.1 The Time-Schedule of Arrivals and Departures 

The time that an aircraft enters the taxiway depends on the time that the flight operated by this 

aircraft is scheduled to arrive or depart. Moreover, the flight schedule contains information, like the 

airline that operates the flight, the corresponding airport and the type of the aircraft, which is 

absolutely necessary for the generation of the route. The form of a flight schedule used in the 

implementation (sample rows from the summer 2010 schedule for Stockholm-Arlanda, provided by 

the Jeppesen TAAM team in contact with the airport authorities of Arlanda) is displayed on table 3.11. 

 

time airline_code flight_no airport_code aircraft type arr/dep 

09:00 U2 1574 GVA 319 D 

09:05 BA 776 LHR 321 A 

09:05 DY 3702 UME 733 A 

09:05 OK 492 PRG 735 A 

09:05 DL 203 JFK 752 D 

09:05 QR 92 DOH 332 D 

09:05 SK 1042 KRN 736 D 

09:10 JZ 428 HAD F50 A 

09:10 JZ 474 KID F50 A 

09:10 SK 531 LHR 73W D 

09:20 LH 3014 MUC 320 A 

09:20 TK 1793 IST 320 A 

09:25 SK 8 LLA 736 D 

09:30 SK 157 GOT 736 D 

Table 3.11: Sample of the flight schedule for Arlanda, 2010-11-08, from 09:00 to 09:30 
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The way to read this schedule is quite easy once one knows which airlines and airports correspond to 

the codes of table 3.11. For example, an Airbus A321 operating flight BA-776 (British Airways) from 

London-Heathrow is scheduled to arrive at 09:05 and a Boeing 737-600 operating flight SK-157 (SAS) 

to Gothenburg-Landvetter is scheduled to depart at 09:30. The tables containing the airlines 

operating at Stockholm-Arlanda and the destination airports - according to the flight schedule of 

summer 2010 – can be found in Appendix III. 

 

3.1.3.2 The Airlines and corresponding Airports 

The flight schedule provides the time that each aircraft appears on the taxiway. It also provides the 

airline and the corresponding airport of the flight, but the taxiway routing process is not concerned 

directly about this information. The input to the Taxiway Routing System is the time and the pair of 

terminal vertices that correspond to the source and destination of the route. In case of departures, 

the aircraft is already parked at a gate, so it will start routing from there. In case of arrivals, however, 

the aircraft must be routed to the appropriate parking area and this depends on the airline and the 

airport it comes from. 

It is already mentioned in the previous and the present chapter that an airport has a number 

of terminals (not to be confused with the “terminal vertices” mentioned in the previous paragraph) 

and there are specific parking stand areas on the apron which lead to and from each terminal. 

Therefore, in order to find the destination vertex in case of arrivals, the knowledge of the terminal is 

necessary, even though it is not sufficient in airports where a terminal has more than one parking 

stand areas. The approach followed in the present work, regarding the determination of the 

destination vertex given the terminal, will be presented in the next chapter. 

So, the challenge is to find the airport terminal – if the airport has more than one terminal - 

given the airline and the corresponding airport. For the purposes of this work, this function is just an 

intersection. The separation of the passenger area of an airport in terminals is due to legal, handling 

and administrative reasons. Different terminals are used for domestic flights, others for international 

flights. Within the international terminals, there can be different groupings of destination countries, 

depending on passport/visa controls and regulations. Table 3.12 shows the distinction of the 

terminals of Stockholm-Arlanda airport [37]. 

 

Terminal Type Remarks 

2 International Mostly used by low-cost airlines 

3 Domestic Serves smaller aircraft from small domestic airports 

4 Domestic The main domestic terminal (SAS operates here) 

5 International The main international terminal, including non-Schengen arrivals 

Table 3.12: The terminals of Stockholm-Arlanda airport 
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This table, together with the tables in Appendix III, gives an impression of how the terminal is defined 

given the airline and the airport from which the aircraft departed. Usually, knowledge of this airport 

is enough to define the terminal. For example, arrivals from non-Schengen countries will park at 

terminal 5. Arrivals from regional domestic airports (Växjö, Karlstad, Halmstad, Mora, etc) will park at 

terminal 3. A flight of SAS from Gothenburg will arrive at terminal 4. If there is more than one 

terminal for a corresponding airport, an intersection with the set of terminals for the specific airline 

is applied. For example, flights from Budapest can arrive at terminal 2 or 5. So, if the flight is 

operated by a low-cost airline like Norwegian, it will arrive at terminal 2 and if it is operated by Malév 

(the national carrier of Hungary) it will arrive at terminal 5. 

 

3.1.3.3 The Runway Usage Pattern 

At this point, the Airport Operations have defined the time and the terminal vertex of the parking 

area. The last input needed by the taxiway routing process is the terminal vertex of the runway exit. 

No matter if the aircraft is arriving or departing, the position where it will exit or enter the runway 

must be generated. An airport has one or more runways and a runway has usually more than one 

exit. In a non-trivial case, there will be a substantial number of runway exits to choose from. For 

example, Stockholm-Arlanda airport has 3 runways with (10 + 4 + 8) = 22 exits (see maps in Appendix 

I). The runways can be parallel or have different orientations or there can be a combination of 

parallel and non-parallel runways [41]. The latter case can obviously be met only in airports with 

more than two runways and is the case with Stockholm-Arlanda airport. The choice of which 

runway(s) to operate at a given time depends on different factors like the load of traffic and the 

weather conditions (wind direction, visibility), as well as safety and other regulations like the hour of 

the day – at night for example the aircraft must use airways to land or take-off that are not close to 

residential areas, in order to avoid noise disturbances [5], [8]. 

Based on these factors, a number of different runway usage patterns is created and at each 

time one pattern is chosen and applied. As of October 2011, the patterns for Stockholm-Arlanda are 

displayed on table 3.13 [5]. 

 

Pattern Arrivals Departures Traffic load 

1 01L / 01R 01L / 01R High 

2 19L / 19R 19L / 19R High 

3 01L / 01R 01L / 08 High 

4 26 19R Medium 

5 19R 08 Medium 

6 01L 08 Medium 

7 26 01L Low 

8 01R 01L Low 

Table 3.13: The current runway usage patterns of Stockholm-Arlanda airport 
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Depending on the pattern used at a given time, the runway exits and entrances are determined. 

Obviously these are exclusive subsets of the set of all the runway exits / entrances; the same way 

cannot be used for the exit and entrance of aircraft at the same time. Once again, the approach 

followed in the present work, regarding the choice of a runway exit / entrance from the available 

subsets defined by the used pattern, will be presented in the next chapter. 

 

3.1.3.4 Overview 

The grouping and description of the airport operations that constitute the environment of the 

taxiway routing process completes the presentation of the problem entities. Before closing this 

section and proceeding to the formulation of the mathematical model, the following figure (3.14) 

summarizes the discussions and definitions up to this point and serves as an overview of the subject 

of the present work. 

The Taxiway Routing System has the main focus; it is composed by the taxiway network and 

the aircraft moving on it. The aircraft appear, dynamically transform and disappear from the system 

within a moving time-frame. The airport operations define when (arrival or departure time) and 

where (source vertex) an aircraft appears in the system, as well as where it will finish its route and 

disappear (destination vertex), thus they provide the input to the system. The model of the system 

acts as the mathematical abstraction where the optimization algorithm(s) will be applied in order to 

propose a routing solution to the aircraft. When each aircraft reaches its destination, it has recorded 

actual values for the metrics – taxi time, hold time and speed changes. These are the output of the 

system and their evaluation will define the quality of the routing solution proposed by the respective 

algorithm and test the performance of the algorithm to the problem of 4D Taxi Routing on Ground. 

 

 Arrivals / departures 
schedule

 Runway exit usage
 Airlines / corresponding 

airports

Taxiway Network

Aircraft

Airport Operations

arr. / dep. time

source

destination

Evaluation

taxi time

hold time

speed changes

Taxiway Routing System

Model Optimization
Algorithm  

Figure 3.14: Overview of the Taxiway Routing System 
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3.2 The Model 
The problem of 4D Taxi Routing on Ground is about optimizing a set of objectives applied on the 

Taxiway Routing System. According to our conception of the Taxiway Routing System analyzed in the 

previous sections of the present chapter, this system is composed of the Taxiway Network and the 

Aircraft. 

 

3.2.1 The Taxiway Network 

The Taxiway Network is modeled as a time-dependent, labeled, bimodal and directed graph. The 

notion of time-dependence on the graph is expressed with a non-static weight function        on its 

edges, where time is assumed to be discrete, expressed as an integer time unit (for example seconds). 

The graph is defined as follows: 

                   

where the set 

              

is the set of vertices of the graph and corresponds to certain positions on the Taxiway Network; the 

runway exits, the parking stands and the intersections of taxiways (crossings, merges and splits). The 

labeling function of the vertices is therefore: 

                              

corresponds to ‘runway exit’, ‘parking stand’ and ‘intersection’ respectively. The vertices of the graph 

are interconnected via edges which correspond to uninterrupted taxiways, in the sense that an 

aircraft can traverse them without implications once it is permitted to. The set of edges is defined as: 

                        

and                    

is the static feature function, returning for each edge     the length    , the maximum speed      and 

wingspan      allowed on the respective taxiway, as well as the supported modes for this edge, a 

subset of {arrivals, departures} - where              and                      - defined as 

follows: 

             only arrivals from   to   (one-way one-mode edge) 

             only departures from   to   (one-way one-mode edge) 

                arrivals and departures from   to   (one-way two-modes edge) 

                 arrivals from   to  , departures from   to   (two-way two-modes edge) 

The set of possible next edges that can be followed after an edge     depends also on the supported 

modes for this edge. If                         , there is only one mode supported, so there is 

one set of next edges. Otherwise, there are two sets of next edges, one for each mode. This can be 

modeled as the transition function: 
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Each set can have one or more next edges, but there can also be no next edges – if the edge leads to 

a terminal point at the given mode. Data examples of the static feature function    and the transition 

function       have already been displayed on tables 3.6 and 3.7 respectively. 

 

3.2.2 The Aircraft 

The Aircraft are the agents moving on the graph. The set of aircraft, which has no predefined size 

restriction, and the static feature function for each aircraft are defined as follows: 

           

          

The function    returns the dimensional features of each aircraft   , i.e. its length   , wingspan     

and weight    . For the present model only the wingspan is considered, even though the model can 

be extended to include the other features as well (see the reasoning of section 3.1.2). In that case, 

the feature function of the edges would have to be extended accordingly. For example, if the weight 

feature is added as the output of function   , a maximum weight feature would have to be added as 

the output of function    and the latter would restrict the allowance of aircraft on the edges based 

on the comparison with the former. 

The speed, state, mode and position of an aircraft are dynamic features, because they are 

functions of time. Their definitions are presented below: 

                

                          

                       

                                 

Based on these definitions, we can further elaborate: 

 The speed              of an aircraft is a real number greater than or equal to zero. 

 The state              of an aircraft is an enumerative type from 0 to 8, according to the 

discussion of section 3.1.2. The aircraft can be considered as a Finite State Machine, given 

the specified number of states and the transition table described also in the same section. 

 The mode             of an aircraft is derived implicitly from its state. States 1, 2 and 3 

correspond to arriving mode, states 5, 6 and 7 to departing mode, while states 0, 4 and 8 do 

not correspond to any mode, since these are the “non-taxiway” states. 

 The position                 of an aircraft while it is taxiing (or being on hold on the taxiway) 

– states 2, 3, 6, 7 – is defined by the current edge and the position on this edge, so it can be 

modeled as a duple           or alternatively as a triple            , where     is the 

current distance from vertex   . 
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 The position of an aircraft while it is parked or pushed back or waiting at a runway exit to 

start taxiing – states 1, 4, 5 – is just the vertex of the corresponding parking stand or runway 

exit, so (2) in this case can be defined using (1) as:                                     . 

 

3.2.3 The Weight Function 

The weight of an edge has a “3-level” definition. On the first level, the weight is static and depends 

on the features of the edge, namely its length and maximum speed, so the weight actually stands for 

the minimum time to traverse the edge. On the second level, the weight is still static but also 

depends on the aircraft that is about to traverse the edge. The wingspan of the aircraft must not 

exceed the maximum wingspan allowed on this edge and the mode of the aircraft must be supported 

by the edge. On the third level the weight becomes dynamic and depends on the current occupancy 

of the edge. The occupancy of an edge can be defined as follows: 

 
                               

                  

                                              

                                                                    

        

 
In the present model we assume that an occupied edge cannot be entered by another aircraft. This 

restriction can be relaxed – and actually it is relaxed in the realization of the model (see chapter 4) - 

in order to allow an aircraft    enter an edge     occupied by another aircraft   , if both aircraft are 

following the same direction and if the position of    in the edge (i.e. the distance from vertex   ) is 

greater than a specified minimum safety distance. 

Having defined the occupancy function, the definition of the edge weight function can follow. 

The first two levels are merged into one to provide the definition of the static weight: 

 
                         

                  

   
    

                                    

                                                                

        

 
Based on the static weight (4) and the occupancy function (3), the dynamic weight concludes this 

section: 
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3.2.4 Routing Metrics and Objectives 

The problem of 4D Taxi Routing on Ground can now be formulated. There is a graph described in 

section 3.2.1 and aircraft – described in section 3.2.2 as finite state agents - moving on the graph. The 

edges of the graph are supplied with dynamic weights which are functions of the edge features, the 

aircraft features and time – described in section 3.2.3. The input to this model consists of: 

 
1. A scheduled time that each aircraft enters the graph: 

                                                 

 
2. A source vertex: 

                        
                                 

                                
  

 
3. A destination vertex: 

                                  
                                

                                
  

 
The problem of 4D Taxi Routing on Ground is the assignment of a route for each aircraft   : 

                                                             

which is consistent according to the structure and constraints of the graph and whose execution will 

evaluate the following metrics: 

                                    

              

 

1.                                          

2.                                                              

3.                   

                                                                          

 
A routing is feasible if it is consistent and additionally the aircraft does not enter an occupied edge, 

thus if         . A feasible routing is optimal if it satisfies the problem objectives, thus minimizing 

the overall taxi time, hold time and speed changes: 
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Chapter 4 Model Realization 

The present chapter is an overview of the classes and algorithms built as a realization of the concepts 

of the model described in the previous chapter. From a procedural aspect, the whole routing process 

follows the sequence displayed on figure 4.1. 

 

Flight Schedule Assignment Route Result Graphs

Airport 
Operations

Optimizer Simulation Evaluation

 

 

Figure 4.1: Overview of the routing process 

 
The flight schedule of an airport is the “driving force” of the routing process. Each arrival or 

departure triggers a new routing on the taxiway. A sample of a flight schedule for Stockholm-Arlanda 

is already displayed on table 3.11; here we use one of its rows as an example: 

 

09:05 BA 776 LHR 321 A 

 

At 09:05 flight BA-776 is expected to arrive. The airport operations will define the assignment of the 

two terminal points on the taxiway – source and destination – of the route for this aircraft. Suppose 

that at 09:05 runway usage pattern 4 is applied (for runway usage patterns see table 3.13). This 

means that arrivals take place on runway 26. Based on the airport maps and runway exit 

specifications, when an aircraft lands on runway 26, it can follow exit X2 or X3. X2 is randomly chosen 

for this example. Flight BA-776 comes from London Heathrow, which means that the aircraft is about 

to park on terminal 5. Terminal 5 is serviced by several parking stand areas, for this example P6 is 

also randomly - and depending on its occupancy – chosen. So now the source-destination pair is 

generated: [X2, P6]. 

With arrival time, source and destination already known, an optimization algorithm can be 

used to generate the whole route – a sequence of edges or vertices on the taxiway – that the aircraft 

will follow towards its destination. The resulting route, corresponding to the shortest path between 

X2 and P6, is marked with thick green arrows on figure 4.2 and it is the following: 

 
Route: [X2(11)    61    62    63    91    92    94    95    97    98   100   P6(158)] 
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Figure 4.2: The arrival route followed by flight BA-776 

 

The aircraft will taxi according to the assigned route. At the time that it exits the taxiway, the results 

for this routing are recorded; taxi time, hold time, speed changes. For this example, the values of the 

routing metrics were: taxi time = 150 seconds, hold time = 0, speed changes = 1. The total distance 

covered was 831 meters, a rather short routing. 

This procedure is followed for every aircraft arriving or departing. At the end, each flight is just 

a set of values for the routing metrics. All these evaluations are gathered, aggregated and displayed 

in various graphs, so that conclusions about the performance of the optimization algorithms can be 

drawn. The classes that compose the realization of the model and the functionalities they support 

are presented in section 4.1. The routing algorithm that builds upon the class functionalities and 

binds the airport, the schedule and the optimization together is described in section 4.2. Finally, the 

implemented optimization algorithms close this chapter in section 4.3. 

 

4.1 The Classes 
The classes that compose the realization of the model are eight and their distinction is based on the 

three main entities defined in the previous chapter. The entity of the Taxiway Network is realized by 

a class named AirportGraph, which is composed of vertices and edges. This class actually contains all 

the information displayed on the graphs of figures 3.1 – 3.5 and 4.2. So, the distinction of the vertices 

in runway exits, parking stand areas and intersections is made in the class of the AirportGraph. The 

edges and the parking stands have their own structure and functionalities, so they are modeled as 

separate classes that compose the AirportGraph: Edge and ParkStand. In the class diagram of figure 

4.3, these three classes are distinguished by having green labels. 
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The entity of the Aircraft is realized by two classes, labeled with orange color: the AircraftType 

which holds the static features of an aircraft (airline, model name, length and wingspan) and the 

Aircraft itself which inherits from the AircraftType and additionally keeps all the dynamic features 

and metrics (speed, position, state, taxi time, hold time, speed changes) as well as the commands 

that route an aircraft as methods (taxi, hold, line-up, park, take-off – see table 3.10). There is also an 

Airport class, labeled blue, which inherits from the AirportGraph, contains Aircraft and includes the 

entity of the Airport Operations, thus binding everything together. 

Finally, there are two more classes that realize the driving force of the application, which is the 

flight schedule. The first is the SchedLine that contains the information for one flight, such as the 

flight number, the airline and type of aircraft, the arrival-or-departure flag, the origin or destination 

airport and the time the aircraft is scheduled to arrive or depart. The second is of course the 

Schedule class, composed of schedule lines, which resembles the entity of a whole flight schedule. 

The flight schedule classes are labeled with yellow color on the class diagram displayed below: 

 

+getFinished() : bool

-scLines : object
-finished : bool

Schedule

+setAcInd()
+setFinished()

-flightNo : string
-time : int
-mode : bool
-corrAp : string
-airline : string
-acType : string
-acInd : int
-finished : bool

SchedLine

1

-scLines

*

-airline : string
-name : string
-length : float
-wingspan : float

AircraftType

+init()
+lineUp()
+updPriority()
+holdOn()
+taxi()
+updPosSpeed()
+changeSpeed()
+hold()
+park()
+takeOff()

-state : byte
-times : int
-position : int
-speed : float
-holdTime : int
-speedChanges : int

Aircraft

-initAircraft()
-findRunExit()
-findTerminal()
-findStandArea()
-findAircraft()
-findSrcDest()
-getPriority()
-calcMargin()
-updateEdges()
+assignAircraft()
+checkWaitLines()
+routeAircraft()

-aircraft : object
-airlines
-corrApts
-patterns

Airport
1

-aircraft

*

#getDestinations()
#getLengthSpeed()
#findEdge()
+getCurrentGraph()

-edges : object
-vertices
-parkStands : object
-runExits

AirportGraph

+setOccupied()
+setPreOcc()

-vFrom : int
-vTo : int
-vNext
-mode
-length : float
-wingspan : float
-occupied
-preOcc : bool
-stWeights
-dnWeights

Edge

1

-edges

*

+setOccupied()

-ID : int
-terminal : int
-standArea
-occupied : bool

ParkStand

1

-parkStands

*

Figure 4.3: The class diagram 
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The above listings of properties and methods for the implemented classes are not exhaustive. There 

are still some more hidden or auxiliary features, but the purpose of this section is to present the 

essential functionality rather than getting into every detail. This functionality, the way it is structured 

and the design choices are developed in the coming section. 

 

4.2 The Routing Algorithm 
The routing algorithm is based on a specified airport, a flight schedule to be executed on this airport 

and an optimization algorithm (or a suite of algorithms) that decide on the 4D routes that the aircraft 

will follow on the taxiway. Everything must be interchangeable; the airport is just a set of data files 

with a given structure loaded as input before the routing starts, the schedule is also an input file with 

the only restriction being its compliance with the airport. Most significantly, the routing process must 

be independent of the optimization (see figure 4.1), it should just execute and evaluate the routings 

generated for each aircraft. A rough overview of the routing algorithm in pseudo-code is given on 

figure 4.4. The main procedures are emphasized in bold letters and analyzed right afterwards. 

 

 Execute Route 

  Initialize airport; Load schedule 

  Set time unit; Set current time t = 0 

  While schedule is not finished loop 

   If time for a new schedule line: Assign aircraft 

   Check the waiting lines 

   Route the aircraft currently on the taxiway 

   t = t + time unit; 

  End loop 

 End 

Figure 4.4: Overview of the routing algorithm 
 

The main conclusion regarding the routing process is that, after all initializations, it traverses time 

and iteratively creates “snapshots” capturing the situation on the taxiway with a constant period 

defined as an input parameter (time unit). This time unit should intuitively be a relatively small 

number of seconds, so that there is a frequent “refresh” of the taxiway situation. At every time point 

- every “time unit” seconds - and until all flights of the schedule are routed: 

 If the time has come for the next scheduled arrival or departure, this routing is assigned to an 

aircraft which is then put on the waiting line (runway exit or parking stand area) 

 If there are aircraft on the waiting lines from the previous iteration, the first of them can 

enter the taxiway 

 For all aircraft currently routing on the taxiway, the position and speed for this snapshot are 

calculated and further decisions are made if necessary  
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4.2.1 Initialize the Airport 

The airport initialization is the creation of an Airport object with all the data for the structural and 

operational features already described and analyzed. In this implementation there are two input files, 

one for the structural and one for the operational features of the airport. The first input file is used to 

create the Airport Graph object with the following properties (see the class diagram - figure 4.3): 

 An array of vertices with the distinction of whether they are runway exits, parking stand 

areas or intersections 

 A composite structure (an array of cells) for the runway exits, containing the runway they are 

attached to and the mode-direction pairs they support 

 An array of Edge objects 

 An array of Parking Stand objects 

Each Edge object has a pair of vertices (vFrom, vTo) and one or two sets of next edges (vNext), 

depending on its supported modes, as well as a length, a maximum allowed speed and wingspan. The 

edges are initially not occupied and their static weights are equal to their dynamic weights and 

computed as functions of the mode, length and wingspan. As the present chapter is the realization of 

the entities and the model of chapter 3, the present discussion is based completely on the definitions 

of section 3.2. In the class constructor there are several checks performed for data consistency within 

an edge (the existence of vertices, the length and wingspan are positive numbers etc) and among the 

created objects (no duplicates). 

Each Parking Stand object corresponds to a parking position on the apron. A parking stand 

belongs to a terminal and is part of a parking stand area, so it can be reached through a stand area 

terminal vertex of the Airport Graph. The vertex where an aircraft will finish its arrival routing is not 

always the same as the vertex where this aircraft will enter the taxiway again in order to start 

departure routing. For example, compare the maps A (arrivals) and C (departures) in Appendix I. 

There is parking stand - or gate - 10 which belongs to terminal 5 of Stockholm-Arlanda airport. An 

arriving aircraft aiming to park there will exit the taxiway from ZN (P4 on figure 3.1), but an aircraft 

parked there will enter the taxiway from ZM (P5 on figure 3.2) in order to depart. Apart from these 

properties, the implementation of a parking stand should also consider its occupancy, in order to 

route aircraft only to available parking stands at each time. 

The Airport object inherits the structural features from an Airport Graph object and adds the 

operational ones using the second input file. The operational features, as described in section 3.1.3, 

are the following: 

 A composite structure (an array of cells) for the airlines that operate on the specific airport, 

containing the 2-character IATA code (for example “LH” for Lufthansa, “SK” for SAS etc) for 

each airline and the set of terminals it uses 

 A similar structure for the source / destination airports containing the 3-character IATA code 

for each airport and the set of terminals used for flights to and from this airport 

 An array of runway usage patterns with the respective runways and directions used under 

each pattern (see table 3.13) 

There is one last “piece” of information that can be added to the Airport object, if this information is 

available. An airport may have aircraft parked on its apron before the time that the schedule starts. 
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So, initializing the airport can also include the introduction of aircraft at certain parking stands 

(overnight parking positions), which are accordingly set as occupied. This means that a number of 

Aircraft objects are created given their types; their current state is set directly to 4 (parked) and their 

position is the stand area vertex that corresponds to the parking stand where they are located. 

 

4.2.2 Assign Aircraft 

The airport is initialized, possibly with a number of aircraft at overnight parking positions. A runway 

usage pattern is chosen to be the current and a time unit for the iterations is set. Then time starts 

running until the scheduled time for the first arrival or departure is reached. Apart from the time and 

the mode, a Schedule Line object has the airline, the source / destination airport and the aircraft type 

as properties and it has to be assigned to an aircraft. Supplied with all this information, assignAircraft 

calls the following methods: 

 
1. findRunExit: according to the current runway usage pattern and the mode (arrival, departure) 

of the schedule line to be assigned, a set of possible runway exits is created (see also section 

3.1.3.3). A runway exit     and an alternative      are chosen randomly. 

2. findTerminal: given the source airport and the airline, the terminal where the aircraft must 

be parked is found (see also section 3.1.3.2). 

3. findStandArea: first a list of unoccupied parking stands is produced, given the terminal. Then 

a stand area     and an alternative      are chosen randomly according to the parking stands. 

4. findAircraft: given a terminal and an aircraft type, an aircraft of this type parked at a stand of 

this terminal is found. 

5. findSrcDest: calls methods 1-4. In case of an arrival, the source is a runway exit (findRunExit) 

and the destination is a stand area (findStandArea). In case of a departure, the source is a 

stand area where an already existing aircraft is parked (findTerminal - findAircraft) and the 

destination is a runway “entrance” (findRunExit). In both cases, there is a check performed 

whether a path between these two vertices exists and if it does not exist, the alternative 

vertices are also checked. 

 
The outcome of this procedure is to generate a source-destination pair of vertices which fulfill the 

operational requirements of the given flight schedule line and for which there exists a valid path on 

the taxiway that connects them. 

In case of an arrival, a new aircraft must be introduced to the system, so an Aircraft object is 

created (state = 0). In case of departures, an already existing aircraft parked on the apron (state = 4) 

is chosen. The source-destination pair is given to the optimization algorithm that produces the full 

route - including the respective speed vector – to be followed. The route is assigned to the aircraft 

and the start-routing time is set, so that the total taxi time can be computed when the aircraft 

reaches its destination. Finally, the aircraft is placed (lined-up) in its initial position, with its state set 

from 0 to 1 or from 4 to 5. Therefore, according to the table 3.10, procedure assignAircraft invokes 

the commands “Init” and “Line-up”. 
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4.2.3 Check Waiting Lines 

While assignAircraft described in the previous section initializes aircraft and assigns scheduled arrival 

or departure routings to them, thus being responsible for the state transitions       and      , 

checkWaitLines is responsible for the next step, which is to give the permission to the aircraft to 

enter the taxiway and start routing. So, checkWaitLines results in the state transitions            

and          . 

Each terminal vertex of the Airport Graph is assumed to have a queue or waiting line for the 

aircraft that aim to enter the taxiway from this source. The notion is quite simple: when an aircraft 

   appears at a runway exit or a parking stand area ready to start routing, a method called 

getPriority is called to assign a priority to this aircraft on the waiting line of the specific vertex. 

Priority     means that there is no other aircraft ahead on the same waiting line, so the command 

“Taxi” is invoked, the aircraft state changes to 2 or 6 and the aircraft    starts routing at the next 

iteration. Priority     means that there are currently       aircraft ahead on the same waiting 

line, so the command “Hold-on” just increases the hold time of the aircraft   . Finally, when an 

aircraft leaves the waiting line and starts routing, the command “Update-priority” is invoked for all 

the others, decreasing their priority by 1. 

 

4.2.4 Route Aircraft 

Up to this point all the procedures described are pre-routing; first the airport is initialized and then 

time starts running and the scheduled arrivals and departures are assigned to aircraft, which in turn 

line-up until they can enter the taxiway. The most important part is obviously the actual routing of 

the aircraft which is described in the present section. The purpose of the routeAircraft procedure is 

to route each aircraft from its source to its destination via a sequence of taxiways with respect to the 

following assumptions / restrictions that attempt to make this routing as realistic as possible: 

 The aircraft moves with a speed that must not exceed the maximum speed allowed on the 

edge it traverses. 

 When an aircraft enters a new edge: if the edge has speed limit lower than the current speed 

of the aircraft, it must decelerate. If the edge has speed limit higher than the current speed 

of the aircraft, it can accelerate. However, many speed changes must be avoided according 

to the discussion of the first chapter. 

 There is a maximum acceleration and deceleration which is realistically acceptable. These are 

supplied as input parameters to the routing algorithm. 

 The movement of an aircraft is considered to be linear, so the distance covered is equal to 

the product of speed ( ) and time (  ),            and the relation between speed and 

acc-deceleration ( ) is         . For example, suppose that an aircraft is accelerating 

from              to                and that the maximum acceleration allowed 

is            . This means that the speed change will take     
     

 
   seconds 

during which the aircraft will cover a distance of      
     

 
        meters. 

 The restriction of entering an occupied edge is relaxed in the following manner: if an aircraft 

   is about to enter an edge     with direction     occupied by another aircraft    which 

moves in direction    , then obviously    must stop and wait for the edge to become free, 
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otherwise there will be a frontal crash or a mutual blocking (deadlock) situation. However, if 

the edge is occupied by an aircraft    which moves in the same direction    , then    can 

enter, as long as the distance between the two aircraft is greater than a minimum safety 

distance, supplied to the routing algorithm as an input parameter (like time unit and 

maximum acc-deceleration). 

 Generally when an aircraft follows another aircraft, the distance between them must always 

be greater than the minimum safety distance. The following aircraft must therefore adapt its 

speed to the speed of the preceding one. 

 When two aircraft are about to meet at an intersection (a crossing or a merging), priority is 

given to the one that arrives first at this point. The other aircraft must decelerate or hold. 

 No overtaking is allowed. 

Under these assumptions and at each time point a new snapshot of the situation on the taxiway is 

created by executing the procedure routeAircraft for each aircraft that is located on the taxiway at 

that time point. This procedure consists of the following steps: 

 
1. Method calcMargin is called, which calculates the time margin from the current position of 

an aircraft until it reaches an obstacle, which might be a preceding aircraft or an occupied 

edge. 

2. Depending on the margin and the current state of the aircraft, the appropriate command is 

given: “Change speed”:                

 “Hold”:                

 “Taxi”:                

3. As a result of steps 1 and 2, the position and speed of the aircraft are updated to reflect what 

has happened since the last snapshot. This is command “Update-position-speed”. 

4. If the aircraft reached its destination, command “Park” or “Take-off” is invoked, the state is 

changed to 4 or 8 and the aircraft is not considered anymore, because it is out of the taxiway. 

5. If the aircraft is still on the taxiway and depending on its new position, the edges of the graph 

are updated (set occupied or unoccupied) using method updateEdges. 

 
This is an overview of the routing algorithm. Certain inefficiencies have been found while running the 

simulations and they will be presented in chapter 5. The presentation of the optimization algorithms 

can now follow. 

 

4.3 The Optimization Algorithms 
The optimization algorithms implemented for the present work were an iterative version of Dijkstra’s 

Shortest Path Problem algorithm [39] combined with a linear programming formulation [34]. The 

algorithms are not “mixed”; they are rather used in a complementary way and a sequential ordering. 

Dijkstra’s algorithm is used for generating a shortest path on the taxiway network graph between the 

two terminal vertices. This path is a set of edges and each edge has a maximum speed allowed. The 

linear formulation is applied on this “speed vector” in order to find a balance between two objectives: 
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minimize taxi time and minimize speed changes. A more detailed presentation of both algorithms is 

given in the following sections. 

 

4.3.1 The Iterative Version of Dijkstra’s Algorithm 

The algorithm of Dijkstra is “a graph search algorithm that solves the single-source shortest path 

problem for a graph with nonnegative edge path costs, producing a shortest path tree” [39]. The 

algorithm starts from a given source vertex of the graph and finds the minimum cost path between 

this vertex and every other vertex of the graph. The detailed presentation of how Dijkstra’s algorithm 

works is out of the scope of the present work, since this algorithm is well-studied and extensively 

referenced. The input to Dijkstra’s algorithm is a graph and a source vertex. Optionally, a destination 

vertex can be given as an input and in that case the algorithm is slightly modified in order to stop 

once it assigns a final cost to this destination vertex. This is the case in our implementation, since the 

source-destination pair is already known and the purpose is to find the minimum cost path that 

connects the two vertices. 

The Airport Graph class provides a method called getCurrentGraph, which returns a graph 

suitable for algorithms like Dijkstra’s by keeping only the arrival or the departure “component” of the 

whole graph. For example, suppose that the airport graph is the one displayed on figure 3.3. A valid 

path for an arriving aircraft should not include edges used only for departures, so the method 

getCurrentGraph will return the graph of figure 3.4, which is unidirectional and where Dijkstra’s 

algorithm can be applied without further modifications. This method can result to an even smaller 

graph by cutting off edges where the aircraft cannot enter because of wingspan or current occupancy 

restrictions. So, the method getCurrentGraph takes the total graph, the mode and wingspan of the 

aircraft and a static-or-dynamic decision flag as inputs and outputs the according component sub-

graph. 

Now Dijkstra’s algorithm has all the input it needs in order to create a deterministic shortest 

path, which will be assigned to the aircraft. However, there is one feature of the model created for 

the problem of 4D Taxi Routing on Ground that can lead the application of the algorithm of Dijkstra 

to invalid results. This is the transition table mentioned in section 3.1.1.2, which dictates the next 

vertices (vNext) that can be reached from each edge. The problem can be illustrated with an example. 

Figure 4.5 shows the taxiway network graph of the southern part of Stockholm-Arlanda airport. This 

is actually the arrival component of the graph of figure 3.2. Parking stand areas P5, P8 and P10 and 

some edges which are only used for departures are not present here and all remaining edges are 

unidirectional. The flow of traffic is clearly directed from the runway exits to the parking stand areas. 

In this example, we suppose that an aircraft has just arrived at runway exit Y1 and is about to 

park at a stand serviced by P13. Dijkstra’s algorithm has a compatible graph (figure 4.5), a source (Y1) 

and a destination (P13). The question is what the output of the algorithm will be. 
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Figure 4.5: The arrival “component” of the southern part of Stockholm-Arlanda airport 
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The “pure” version of the algorithm does not consider any invalid transitions when searching the 

graph for shortest paths. An edge     directed from    to    can always be followed within a path, so 

in this example the algorithm will produce this sequence of vertices: 

[Y1    23    24    27    32    120    121    126    P13] 

However, based on the airport taxiway maps, an aircraft reaching vertex 27 coming from vertex 24 is 

not permitted to turn to 32; it can only proceed straight to 31. The part of the first path that is not 

valid is marked with dashed red arrows. 

The algorithm of Dijkstra iterates by creating a list of unvisited vertices from a current vertex 

which is then considered visited and assigned a final and minimal distance. The addition to the “pure” 

version, which created a first “tailored” version, was to intersect the list of unvisited vertices with the 

list of valid transitions from the current vertex coming from its previous one. For example, when 

starting the algorithm of Dijkstra from vertex Y1, it assigns a minimum distance to 23, 24 and 27 and 

creates the path [Y1, 23, 24, 27]. At the next iteration, the current vertex is 27 and its previous is 24. 

The list of unvisited neighbors contains vertices 31 and 32, according to the direction of the edges. 

This is intersected with the list of valid transitions from edge [24, 27] which contains only 31. 

This way, the restriction of the list of neighbors that the algorithm of Dijkstra considers, seems 

to overcome the path validity problem. But it does not and this can be shown with a second example 

based on the same graph and scenario. After 27, the current vertex is 31, as discussed in the previous 

paragraph. The only possible transition from edge [27, 31] is 33; 32 could only be reached if the 

aircraft used runway exit Y3. Vertex 33 is followed by 34 and then there are two next vertices, both 

valid: 35 and 36. If vertex 35 is followed, the concluding path will be: [Y1, 23, 24, 27, 31, 33, 34, 35, 

116, 117, P11]. This is a completely valid path and the optimal from Y1 to P11. However, within this 

path, vertex 116 is assigned a final distance and considered visited. This means that vertex 118 and 

the whole graph below it will never be reached and their resulting distances will be infinite. 

The conclusion is that - on the one hand - the “pure” algorithm of Dijkstra cannot be applied to 

this type of graph, because it can generate invalid shortest paths. On the other hand, the restriction 

of applying a list with valid transitions can lead the algorithm to not exploring parts of the graph thus 

not finding paths that actually exist. The solution which was finally adopted was a third, “iterative” 

version of Dijkstra’s algorithm. This version assumes that a path from a given source to a given 

destination exists and, if the application of the “tailored” version (the one using the list of transitions) 

fails to find the path, it uses the second, third, etc vertex of the distance vector as intermediate 

sources and iteratively runs the algorithm until such a vertex is found from which the destination can 

be reached. In the case of the graph of figure 4.5 and the source-destination pair [Y1, P13], this 

intermediate vertex is 36: If vertex 36 is used as a source, a shortest path to P13 is found. The 

concatenation of                      and                       produces the following: 

[Y1, 23, 24, 27, 31, 33, 34, 36, 37, 38, 41, 42, 43, 45, 48, 104, 105, 107, 108, 109, 111, 112, 114, 115, 

116, 118, 119, 121, 126, P13] 

This path is marked with thick green arrows. The worst case is when the path indeed does not exist 

and the “iterative” version runs N iterations of Dijkstra’s algorithm to conclude that. This imposes a 

polynomial overhead of one order of magnitude to the algorithm’s complexity. 
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4.3.2 The Linear Programming Formulation 

The iterative version of Dijkstra’s algorithm presented in the previous section produces a sequence of 

vertices or edges, which is the route to follow. Each edge is a taxiway or a fragment of a taxiway and 

has a speed limit according to the form of this taxiway, as already mentioned. It is also discussed that 

the speed of an aircraft at each time determines all the metrics for this aircraft (taxi time, hold time, 

speed changes), as well as its position at each time, which plays an important role on the routing of 

other aircraft that happen to taxi simultaneously. The speed of the aircraft makes the problem of 

Taxiway Routing a 4D one and much more complex than a variation of a shortest path problem. 

Acknowledging the importance of the aircraft speed, a linear programming formulation is 

implemented in order to provide a “speed pattern” to the aircraft. This pattern can be considered as 

a set of directions, like for example: “taxi from point (vertex) 23 and up to 34 with a constant speed 

of 18 knots and then turn right to 35 with a speed of 12 knots…” So, this pattern - the output of 

solving the LP formulation - is just a vector with a speed value for each edge of the route that the 

aircraft will follow. The input to the LP solver is a same size vector with the maximum allowed speed 

for each edge, i.e. the set of constraints. 

So, we have a sequence of edges, each with a (possibly different) maximum allowed speed. 

The purpose of this optimization is to assign a routing speed to each edge that is less than or equal to 

the speed limit and additionally finds a balance between the two conflicting objectives: minimize taxi 

time and minimize speed changes. There are two extreme solutions, each taking into account only 

one of the objectives. The first is to route the aircraft with the maximum speed at each edge; i.e. use 

the input vector as output. This solution minimizes taxi time, because the aircraft will taxi with the 

maximum allowed speed, but it ignores the speed changes and is actually not a realistic solution; an 

aircraft is not a race car. The second extreme is to route the aircraft with a completely steady speed, 

which is the minimum value of the input vector. This minimizes speed changes and produces a totally 

smooth routing but also a very slow one. 

The idea for the LP formulation that was implemented was taken from section 2.5 of the book 

[24]. The LP problem described at that section is called “Ice-Cream All Year Round” and is about an 

ice-cream factory that wants to setup the production plan for the coming year based on sales 

predictions for each month. One solution is to produce just-in-time, but this may lead to great 

variations in the produced amount, which have significant costs. On the other hand, a completely flat 

production can lead to storage costs for the surpluses of some months. The purpose is to find a 

compromise that minimizes the cost both from changes in production and from storage of surpluses. 
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Chapter 5 Evaluation 

The classes and algorithms described in chapter 4 were implemented for evaluation and testing in 

MATLAB. The airport used as a case study was Stockholm-Arlanda. According to the procedure 

described in section 3.1.1.2, the resulting taxiway graph for this airport has 22 runway exits, 16 

parking stand areas and 130 intersections, which make a total of 168 vertices. The number of parking 

stands corresponding to the 16 stand areas is 88. The edges of the graph are 256, divided in the four 

edge types as: 

Mode Operation #Edges 

[1, 0] Only arrivals 53 

[0, 1] Only departures 46 

[1, 1] Both modes in the same direction 69 

[1, -1] Both modes in opposite directions 88 

Table 5.1: The number of edges per type 
 
There are two matrices in Appendix II, displaying the time-distances for each pair of “runway exit – 

parking stand area”, computed by iterative executions of the n-Dijkstra algorithm as presented in 

chapter 4. It is not obvious that the distance between - for example – runway exit Y1 and parking 

stand P1 is the same as the distance [P1, Y1] and the reason is that the graph is not the same in 

arriving and departing mode, so the shortest path can vary. Moreover, there are some runway exits 

used only for arrivals, so if they are considered destinations the distance is infinite. Concluding, it is 

possible that a path [A, B] exists, while the path [B, A] does not exist. 

The airlines and origin/destination airports used for determining the terminal and therefore 

the parking stand area as a destination vertex for aircraft in arriving mode can be found in Appendix 

III, where the types of aircraft flying to Arlanda (according to the flight schedule of summer 2010) are 

also listed. 

 

5.1 Simulation Setup 
The simulation routings were based on the actual flight schedule of Stockholm-Arlanda airport for 

summer 2010. The initial thought was to execute this flight schedule for a chosen day, in order to 

test the model implementation and the optimization algorithms on realistic data. However, at the 

beginning of this chosen day the airport would not have any aircraft parked on its apron and this 

does not correspond to reality. Moreover, there would be a consistency issue if an early departure 

according to the schedule could not find any aircraft to be assigned to. 

At most medium to large airports, including Arlanda which is also a hub of Scandinavian 

Airlines, there is a number of aircraft in overnight parking positions to depart at the next or one of 

the next days. A realistic airport implementation should consider this fact and since there was no way 

of knowing the number, fleet type and airline of aircraft parked at Arlanda at a given night in summer 

2010, an alternative approach was to execute the flight schedule for two consecutive days; the first 

day would be a “preparation” day at the end of which there would be aircraft in overnight parking 
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positions for the execution of the “regular” day schedule. The days chosen were the 11th and 12th of 

August 2010 because they were the ones with the maximum number of flights, 628 in total, within 

the specified period. The routing parameters, as presented in chapter 4, were given the following 

values: 

 The time unit for the execution loop would have to be small enough to keep a detailed 

control of the routing process. However, a time unit of 1 second would make the process 

very slow, as there would be 48*60*60 = 172800 loop iterations for a 2-day schedule. The 

final choice was a time unit of 10 seconds. 

 The minimum safety distance was set to 100 meters. 

 The maximum acceleration / deceleration of an aircraft were set to         . This is equal 

to approximately      , where   - the g-force “associated with an object is its acceleration 

relative to free-fall” [44]. 

A number of 100 test runs of the 2-day schedule for different runway usage patterns were performed 

at first; not all of them were successful. The most common errors were the following (error rates are 

displayed on table 5.2): 

1. A flight could not be assigned because there was no aircraft available at that time. 

2. An aircraft entered an edge occupied by another aircraft. 

3. An aircraft “crashed” with another aircraft, i.e. their distance at some point became less than 

the minimum safety distance. 

4. Two aircraft fell in a deadlock from which they could not escape and as the time proceeded 

more aircraft were gathering behind them thus forming two increasing rows of holding 

aircraft. 

 
The first 3 errors can be considered as problems deriving from the design choices of the routing 

algorithm. There were modifications / improvements made accordingly, but the occurrence of these 

errors was not ruled out completely. On the other hand, the deadlock is a rather useful outcome, as 

it shows the inefficiencies of the applied version of Dijkstra’s algorithm to the problem of 4D Taxi 

Routing on Ground, which is one of the conclusions of the present thesis. 

The outcomes of the first test runs of the routing process led to the finally adopted simulation 

setup. Different runway usage patterns lead to the utilization of different parts of the taxiway and 

the results vary accordingly. So there is a point in grouping the simulations by the runway usage 

pattern, as it can also be concluded from the results presented in the next section. 

 

5.2 Presentation of the Results 
The 2-day flight schedule for Stockholm-Arlanda airport was simulated for each of the eight runway 

usage patterns. A successful simulation of this schedule, which produces 628 taxiway routings, needs 

about 18-20 minutes to be completed on a PC with a Pentium® Dual-Core T4300 CPU running at 

2.10GHz. An unsuccessful simulation obviously needs less than this time, since the execution stops 

when the error is produced. However, there is no error explicitly produced when the deadlock occurs 

because this is no violation of the routing rules; the aircraft just gather in rows and hold on the 

taxiway. The identification of this situation was made possible with the following assumption: 
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 There is a holding time limit for each aircraft, after which the aircraft is assumed to be 

blocked. This limit was set to 600 seconds = 10 minutes (of simulation time). 

 The number of aircraft being blocked is constantly recorded. If at some time this number 

exceeds a limit, the simulation execution stops and the “deadlock” result is returned. This 

limit was set to 5 aircraft, so if more than 5 aircraft have been holding on the taxiway for 

more than 10 minutes, we assume that the blocking is permanent. 

Under these assumptions and using the set of parameters as described above, a number of up to 20 

successful or up to 40 total simulations were executed for each runway usage pattern. The aggregate 

outcomes are displayed in table 5.2. 

 

  success error deadlock total succ % 

pattern 1 4 6 30 40 10,00% 

pattern 2 9 20 11 40 22,50% 

pattern 3 20 14 0 34 58,82% 

pattern 4 20 0 0 20 100,00% 

pattern 5 12 27 1 40 30,00% 

pattern 6 20 18 0 38 52,63% 

pattern 7 20 3 0 23 86,96% 

pattern 8 12 28 0 40 30,00% 

  117 116 42 275 42,55% 

Table 5.2: The aggregate outcomes of simulations per runway usage pattern 
 
Considering the successful simulations, the aggregate results for the routing metrics are displayed in 

table 5.3. 

 

  
pattern 

1 
pattern 

2 
pattern 

3 
pattern 

4 
pattern 

5 
pattern 

6 
pattern 

7 
pattern 

8 

Average speed 
(m/sec) 7,81 7,71 6,97 6,84 6,79 6,50 6,85 7,28 

Average speed 
(knots) 15,18 14,98 13,54 13,29 13,20 12,63 13,31 14,15 

Average distance 
(m) 2978 2830 2013 1883 1692 1627 1867 2413 

Average taxitime 
(sec) 381,39 367,28 288,98 275,46 249,14 250,30 272,69 331,56 

Average # of sp. 
changes 3,52 3,41 2,62 2,60 2,34 2,26 2,56 3,31 

Maximum hold time 
(sec) 207 407 124 148 169 206 193 159 

Table 5.3: The aggregate results of successful simulations per runway usage pattern 
 

Based on tables 5.2 and 5.3, some remarks can be made and some conclusions can be drawn, which 

provide reasoning on the correctness and effectiveness of the model and the algorithms. 
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1. Runway usage patterns 1 and 2 use runways 01L/19R and 01R/19L for mixed operations 

(arrivals and departures simultaneously). Runway 01R/19L – see maps B and D in Appendix I 

– is the most distant runway from the terminal area and every aircraft taxiing to or from this 

runway must be routed via taxiway U or W. These are long and straight taxiways, so an 

aircraft can taxi with a high speed. This fact is supported by the results: patterns 1 and 2 lead 

to the highest average speed and the longest average distance, followed by pattern 8, where 

runway 01R/19L is also used. 

2. Taxiways U and W support both modes in opposite directions and runway usage patterns 1 

and 2 use both modes. This combination, supported by the length of these 2 taxiways, leads 

aircraft to deadlocks, which justifies the fact that simulations resulted in deadlocks only 

under patterns 1 and 2. Pattern 8 also uses taxiways U and W but in only one mode, so it 

does not result in deadlocks. In general, patterns 1, 2 and 8 have the lowest success rates. 

3. The runway usage patterns where the number of successful simulations reached the target 

number 20 were 3, 4, 6 and 7. These use one runway only for arrivals and one runway only 

for departures and the directions of exiting or entering these runways, which respectively 

define the sources and destinations of the taxiway routes, result to rare meetings of aircraft 

at intersections, thus minimal conflicts. 

4. The average taxi time varies, depending on the runway usage pattern, from 250 seconds = 

4:10 minutes to 380 seconds = 6:20 minutes. According to [8], typical taxi time at Stockholm-

Arlanda airport is between 5 and 7 minutes, excluding delays on the runway exit in order to 

obtain taxi clearance or delays outside the parking stand area if another aircraft is pushed 

back at the same time. On average the results of the simulations are therefore comparable 

to reality. 

In the following pages, the results are illustrated in the form of graphs. For each runway usage 

pattern there are 4 graphs: 

1. The distribution of the number of aircraft according to their taxi time, grouped in ranges of 

30 seconds 

2. The taxi time per distance covered, including a tendency line whose angle with the horizontal 

axis corresponds to the average taxi speed                  

3. The hold time per distance covered 

4. The speed changes per distance covered 

 
In the third and fourth graph (hold time, speed changes) for each pattern there is no clear tendency 

or relation between the respective metrics and the distance covered, even though one can notice 

that longer distances are more likely to result to more changes of speed and longer hold times. In 

contrast to the taxi time, which naturally depends also on the distance to be covered, the other two 

metrics can be considered more as qualitative aspects of the routing solutions. A “good” or efficient 

solution can result to no speed changes and no hold time if an aircraft follows a route that avoids 

conflicts completely, no matter how long the covered distance is. A final discussion based on these 

evaluations will follow in the next chapter, which concludes this work. 
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5.2.1 Pattern 1 - Mixed Operations on Runways 01L and 01R 

 

 
Figure 5.1: The distribution of aircraft per taxi time 

 

 
Figure 5.2: Taxi time per distance covered, including the tendency line 
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Figure 5.3: Hold time per distance covered 

 

 
Figure 5.4: Number of speed changes per distance covered 
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5.2.2 Pattern 2 - Mixed Operations on Runways 19L and 19R 

 

 
Figure 5.5: The distribution of aircraft per taxi time 

 

 
Figure 5.6: Taxi time per distance covered, including the tendency line 
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Figure 5.7: Hold time per distance covered 

 

 
Figure 5.8: Number of speed changes per distance covered 
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5.2.3 Pattern 3 - Mixed Operations on 01L, Arrivals on 01R, Departures on 08 

 

 
Figure 5.9: The distribution of aircraft per taxi time 

 

 
Figure 5.10: Taxi time per distance covered, including the tendency line 
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Figure 5.11: Hold time per distance covered 

 

 
Figure 5.12: Number of speed changes per distance covered 
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5.2.4 Pattern 4 - Arrivals on Runway 26, Departures on Runway 19R 

 

 
Figure 5.13: The distribution of aircraft per taxi time 

 

 
Figure 5.14: Taxi time per distance covered, including the tendency line 
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Figure 5.15: Hold time per distance covered 

 

 
Figure 5.16: Number of speed changes per distance covered 
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5.2.5 Pattern 5 - Arrivals on Runway 19R, Departures on Runway 08 

 

 
Figure 5.17: The distribution of aircraft per taxi time 

 

 
Figure 5.18: Taxi time per distance covered, including the tendency line 
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Figure 5.19: Hold time per distance covered 

 

 
Figure 5.20: Number of speed changes per distance covered 
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5.2.6 Pattern 6 – Arrivals on Runway 01L, Departures on Runway 08 

 

 
Figure 5.21: The distribution of aircraft per taxi time 

 

 
Figure 5.22: Taxi time per distance covered, including the tendency line 
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Figure 5.23: Hold time per distance covered 

 

 
Figure 5.24: Number of speed changes per distance covered 
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5.2.7 Pattern 7 – Arrivals on Runway 26, Departures on Runway 01L 

 

 
Figure 5.25: The distribution of aircraft per taxi time 

 

 
Figure 5.26: Taxi time per distance covered, including the tendency line 
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Figure 5.27: Hold time per distance covered 

 

 
Figure 5.28: Number of speed changes per distance covered 
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5.2.8 Pattern 8 – Arrivals on Runway 01R, Departures on Runway 01L 

 

 
Figure 5.29: The distribution of aircraft per taxi time 

 

 
Figure 5.30: Taxi time per distance covered, including the tendency line 
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Figure 5.31: Hold time per distance covered 

 

 
Figure 5.32: Number of speed changes per distance covered 
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Chapter 6 Conclusions 

The present thesis work was intended to be a thorough study of the problem of 4D Taxi Routing on 

Ground. It started with a description of the taxiway routing process and an analysis of its structural 

and operational entities, particularities, constraints, as well as the interaction with its surrounding 

processes – arrival, departure and gate management. At the end of the first chapter a set of research 

questions was defined, which would determine the research directions throughout this work. 

 

6.1 Answers to the Research Questions 
The main part of this work was dedicated to answering the first research question: “How can the 

above described problem be formulated into a mathematical model?” A model was consecutively 

created with the purpose of capturing the essence of the problem; it is based on a time-dependent, 

labeled, bimodal and directed graph with agents – finite state machines – moving on it. This is shortly 

the answer to the first research question according to this work. The reasoning that concluded to this 

model and the model itself were described in chapter 3 and its realization in chapter 4. 

The algorithm implemented was a modified iterative version of Dijkstra’s algorithm for the 

single-source shortest path problem, supplied with a consequent linear programming optimization of 

the speed vector. Since the speed determines the position of an aircraft at each time, the linear 

programming optimization focused on the 4th dimension. However, this algorithm-set has significant 

inefficiencies. There is no look-ahead in time and no flexibility, two factors that intuitively seem 

crucial for a time-dependent problem. Each aircraft is assigned a route that does not change based 

on a static image of the taxiway network graph. This route corresponds to the shortest path and is 

the optimal solution provided that no other aircraft will be following the same or part of the same 

route simultaneously. As the traffic increases, the meetings of aircraft on the taxiway become more 

often and Dijkstra’s algorithm does not provide any insight on the current traffic load, in order to 

balance it by using alternative routes. 

The simulation routing results under runway usage patterns 1 and 2, presented in chapter 5, 

show clearly this lack of flexibility of the implemented algorithm. Aircraft are routed via taxiways U 

and W, which are long enough - thus it takes more time to traverse them - to increase the possibility 

that while an aircraft is taxiing on the one direction – say from A to B – another direction appears at 

vertex B intending to taxi on the opposite direction – B to A. According to the routing algorithm, both 

aircraft will stop and hold infinitely. This is the mutual blocking or deadlock situation. 

Therefore, the answer to the second research question is that a classical SPP algorithm is not 

suitable for a 4D problem. In our case, it can be roughly stated that Dijkstra’s algorithm optimizes the 

spatial dimensions and the LP formulation optimizes time, however these algorithms are decoupled. 

This is more like a stepwise or “fragmented” optimization and the problem of 4D Taxi Routing on 

Ground is suspected to need an overall approach where space and time are optimized together. But 

what could this approach look like? 

In the second chapter a number of tools and algorithms were presented as the current state-

of-the-art in this and similar research areas. Taxi Planner Optimization (TPO), presented in section 
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2.2.2, approaches the problem using a look-ahead LP formulation. The present work used Dijkstra’s 

algorithm to gain insight into the problem and propose extensions or alternatives: 

 A look-ahead approach that uses the combination of TAAM [23] as a simulation tool for 

different routing scenarios and a heuristic, most probably a Genetic Algorithm [31], to 

crossover promising candidates towards an optimum. This implies an effective coding of 

solutions. 

 A dynamic approach that recalculates the routes while the aircraft are already on the taxiway, 

using some heuristic methods. The Ant Colony Systems [25] have been proven flexible and 

stable and could be combined with a load-balancing objective function. 

 Another dynamic approach, that keeps a list of K-Shortest Paths [27] for each aircraft, 

evaluates them at each time and acts accordingly. 

 A more “experimental” or stochastic approach, similar to the Canadian Traveler Problem [30]. 

 The utilization of concurrency strategies, like semaphores, to avoid deadlocks. 

The algorithm of Dijkstra could as well be used in all of the above mentioned approaches, but only as 

the generator of initial routings, which would then be revised continuously. Robustness is a basic 

quality issue that has to be addressed by every proposed algorithm. 

The third research question is about the problem objectives: “How efficiently can the 

objectives be met? How much can the mean taxi time, hold time etc be decreased?” The results of the 

simulations are by no means exhaustive. They cannot lead to concrete conclusions, but they can 

show some directions or some tendencies. So, these results are considered satisfactory in the sense 

that they are relevant to what experience has shown (comparable to the actual values of these 

metrics for our case study airport) [8]. There is though a lot of improvement that can be made. Other 

algorithms can lead to more efficient solutions, if they address the flexibility and traffic load 

balancing issues. This research area seems quite promising and the present work aimed at providing 

the foundations where different optimization algorithms can be easily “plugged-in” and evaluated. 

 

6.2 Future Work 
The rest of the research questions are intended to be answered in future extensions of the present 

work, together with some revisions on the basic model which can potentially make it more adaptable 

to the application of different optimization algorithms. A significant revision could be to replace each 

vertex categorized as “crossing” with two respective vertices, one for each direction. It is like building 

a bridge to replace a crossroad, so that vehicles on the one direction cannot turn into the other 

direction. This way, the use of a transition table would be redundant, since the graph would suffice 

for this, so the whole model would become much simpler. 

A very interesting result indicative of the taxiway routing process and the performance of the 

algorithms is the evolution of taxi time with increasing traffic on the taxiway. Such graphs were not 

displayed for every runway usage pattern in chapter 5, because the simulation of the 2-day flight 

schedule did not produce any significant results. For example, under pattern 4 there were at most 7 

aircraft on the taxiway during this schedule. Figure 6.1 below emphasizes this; there is no evident 

relation between the increasing traffic on the taxiway and the average taxi time. 
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Figure 6.1: Taxi time per traffic (number of aircraft) 

 
Nevertheless, common sense would expect that increasing traffic leads to more delays, as with any 

road network. Therefore a main direction of future work would be the thorough testing (Monte-

Carlo simulations) of the behavior of the taxiway network under all different combinations of input 

parameters and increasing traffic until reaching a “breaking point”, a traffic load which is the capacity 

limit of a given airport and the answer to the last research question. 

Another direction of future work is of course the design and implementation of different 

algorithms, as already mentioned above, so that comparisons will be possible. The model and its 

realization are independent of the optimization algorithm. They are independent of the airport as 

well, so the generation of data files for more airports would support the usefulness of this work. 

Apart from these extensions and based on the number of unsuccessful simulations presented in 

chapter 5, it is necessary to perform some restructuring on the Matlab code – the routing execution 

algorithm – in order to diminish the undesirable outcomes and/or improve the simulations’ speed. 

 



Appendix I – Airport maps 

A. Stockholm-Arlanda North – Arrival and Parking 
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B. Stockholm-Arlanda South – Arrival and Parking 

 
 
C. Stockholm-Arlanda North –Parking and Departure 
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D. Stockholm-Arlanda South –Parking and Departure 
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Appendix II – Distance Matrices 

A. From the Runway Exits to the Parking Stand Areas 

  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 

Y1 3791 3275 3102 2865 Inf 2605 2237 Inf 2680 Inf 1710 3476 3361 3640 3623 3866 

Y2 3285 2769 2596 2359 Inf 2099 1731 Inf 2174 Inf 1204 980 798 1077 1060 1303 

Y3 3316 2800 2627 2390 Inf 2130 1762 Inf 2205 Inf 1235 1106 924 1203 1186 1429 

Y4 Inf Inf Inf Inf Inf Inf Inf Inf 976 Inf 1368 1789 1674 1953 1936 2179 

Y5 2765 2249 2076 1839 Inf 1579 1211 Inf 983 Inf 1375 1796 1681 1960 1943 2186 

Y6 2369 1853 1680 1443 Inf 1183 900 Inf 1343 Inf 1718 2139 2024 2303 2286 2529 

Y7 2354 1838 1665 1428 Inf 1168 968 Inf 1411 Inf 1786 2207 2092 2371 2354 2597 

Y8 2464 1948 1775 1538 Inf 1237 Inf Inf 1885 Inf 2260 2681 2566 2845 2828 3071 

Y9 2456 1940 1767 1530 Inf 1229 Inf Inf 1877 Inf 2252 2673 2558 2837 2820 3063 

Y10 2931 2415 2242 2005 Inf 1704 Inf Inf 2352 Inf 2727 3148 3033 3312 3295 3538 

X2 Inf Inf 860 852 Inf 1188 Inf Inf 1783 Inf 2158 2579 2464 2743 2726 2969 

X3 960 923 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf 

X4 1947 1971 2412 2377 Inf 2713 Inf Inf 3308 Inf 3683 4104 3989 4268 4251 4494 

X5 2697 2721 3162 3127 Inf 3463 Inf Inf 4058 Inf 4433 4854 4739 5018 5001 5244 

W1 4724 4748 5189 5154 Inf 5490 5605 Inf 6048 Inf 5078 4390 4441 4469 4136 3853 

W2 4631 4655 5096 5061 Inf 5397 5512 Inf 5955 Inf 4985 4297 4348 4376 4043 3760 

W3 4688 4712 5153 5118 Inf 5454 5569 Inf 6012 Inf 5042 4354 4405 4433 4100 3817 

W4 4255 4279 4720 4685 Inf 5021 5136 Inf 5579 Inf 4609 3921 3972 4000 3667 3384 

W5 2968 2992 3433 3398 Inf 3734 4211 Inf 4329 Inf 3684 2996 3047 3075 2742 2459 

W6 2715 2739 3180 3145 Inf 3481 4252 Inf 4076 Inf 3725 3037 3088 3116 2783 2500 

W7 2336 2360 2801 2766 Inf 3102 4270 Inf 3697 Inf 3743 3055 3106 3134 2801 2518 

W8 2311 2335 2776 2741 Inf 3077 4437 Inf 3672 Inf 3910 3222 3273 3301 2968 2685 
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B. From the Parking Stand Areas to the Runway Exits 

  Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 X2 X3 X4 X5 W1 W2 W3 W4 W5 W6 W7 W8 

P1 3699 3310 3587 Inf Inf Inf Inf 2488 2480 2955 1597 960 1883 2633 4927 4834 4891 4458 Inf 2918 2539 2514 

P2 3171 2782 3059 Inf Inf Inf Inf 1960 1952 2427 1069 1007 1934 2684 4978 4885 4942 4509 Inf 2969 2590 2565 

P3 2982 2593 2870 Inf Inf Inf Inf 1771 1763 2238 860 1444 2371 3121 5415 5322 5379 4946 Inf 3406 3027 3002 

P4 2766 2377 2654 Inf Inf Inf Inf 1555 1547 2022 875 1406 2333 3083 5377 5284 5341 4908 Inf 3368 2989 2964 

P5 2618 2229 2506 Inf Inf Inf Inf 1407 1399 1874 973 1504 2431 3181 5475 5382 5439 5006 Inf 3466 3087 3062 

P6 2468 2079 2356 Inf Inf Inf Inf 1237 1229 1704 1294 1825 2752 3502 5714 5621 5678 5245 Inf 3787 3408 3383 

P7 2305 1916 2193 Inf Inf Inf Inf 1552 1544 2019 1633 2164 3091 3841 5551 5458 5515 5082 Inf 4126 3747 3722 

P8 2099 1710 1987 Inf Inf Inf Inf 1607 1599 2074 1688 2219 3146 3896 5345 5252 5309 4876 Inf 3992 3802 3777 

P9 1983 1594 1871 Inf Inf Inf Inf 1883 1875 2350 1964 2495 3422 4172 5229 5136 5193 4760 Inf 3876 3894 4053 

P10 1924 1535 1812 Inf Inf Inf Inf 2027 2019 2494 2108 2639 3566 4316 5170 5077 5134 4701 Inf 3817 3835 4002 

P11 1773 1384 1661 Inf Inf Inf Inf 2236 2228 2703 2317 2848 3775 4525 5019 4926 4983 4550 Inf 3666 3684 3851 

P12 785 874 1151 Inf Inf Inf Inf 2627 2619 3094 2708 3239 4166 4916 7210 7117 7174 6741 Inf 5201 4822 4797 

P13 1527 1138 1415 Inf Inf Inf Inf 2891 2883 3358 2972 3503 4430 5180 7474 7381 7438 7005 Inf 5465 5086 5061 

P14 2103 1714 1991 Inf Inf Inf Inf 3467 3459 3934 3548 4079 5006 5756 4235 4142 4199 3766 Inf 2882 2900 3067 

P15 1502 1113 1390 Inf Inf Inf Inf 2866 2858 3333 2947 3478 4405 5155 7449 7356 7413 6980 Inf 5440 5061 5036 

P16 1721 1332 1609 Inf Inf Inf Inf 3085 3077 3552 3166 3697 4624 5374 3853 3760 3817 3384 Inf 2500 2518 2685 

 



Appendix III – Data Tables 

Tables containing data used in the model implementation 

A. Types of Aircraft using the Airport of Stockholm-Arlanda 

code name length wingspan 

100 Fokker 100 35,6 28,1 

319 Airbus A319 33,8 34,1 

320 Airbus A320 37,6 34,1 

321 Airbus A321 44,5 34,1 

32S Airbus A320S 37,6 34,1 

332 Airbus A330-200 58,8 60,3 

333 Airbus A330-300 63,7 60,3 

717 Boeing 717 37,8 28,5 

733 Boeing 737-300 33,4 28,9 

734 Boeing 737-400 36,5 28,9 

735 Boeing 737-500 31 28,9 

736 Boeing 737-600 31,2 34,3 

738 Boeing 737-800 39,5 34,3 

73C Boeing 737-300W 33,4 30,4 

73E Boeing 737-500W 31 30,4 

73G Boeing 737-700 33,6 34,3 

73H Boeing 737-800W 39,5 35,8 

73W Boeing 737-700W 33,6 35,8 

747 Boeing 747-400 70,7 64,4 

752 Boeing 757-200 47,3 38,1 

753 Boeing 757-300 54,5 38,1 

762 Boeing 767-200 48,5 47,6 

767 Boeing 767-300 54,9 47,6 

777 Boeing 777-200 63,7 60,9 

AB6 Airbus A300-600 54,1 44,9 

AR8 Avro RJ85 28,5 26,3 

ATP BAE ATP 26 30,6 

BEH Beech 1900D 17,6 17,6 

CR2 Bombardier CRJ200 26,8 21,2 

CR7 Bombardier CRJ700 32,5 23,2 

CR9 Bombardier CRJ900 36,4 24,9 

DH4 Bombardier DH8-Q400 32,8 28,4 

E70 Embraer E-170 29,9 26 

E90 Embraer E-190 36,2 28,7 

ER4 Embraer ERJ 145 29,9 20 

F50 Fokker 50 25,3 29 

J31 Jetstream 31 14,4 15,9 

M80 MD-80 45,1 32,9 
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M81 MD-81 45,1 32,9 

M82 MD-82 45,1 32,9 

M90 MD-90 46,5 32,9 

S20 SAAB 2000 27,3 24,8 

SF3 SAAB 340 19,7 21,4 

 

B. Airlines operating at the Airport of Stockholm-Arlanda (summer 2010) [37] 

code name terminal 

2N NextJet 3, 5 

2Q Air Åland 5 

4P Viking Airlines 5 

4U Germanwings 2 

5R Karthago Airlines 5 

7Y Flying Carpet Air 5 

AB Air Berlin 2 

AF Air France 5 

AY Finnair 5 

B2 Belavia Belarusian Airlines 5 

BA British Airways 5 

BT Air Baltic 5 

CA Air China 5 

CO Continental Airlines 5 

DC Golden Air 4 

DL Delta Airlines 5 

DY Norwegian 2, 4 

ET Ethiopian Airlines 5 

FI Icelandair 5 

FV Rossiya Airlines 5 

HG Niki 2 

IB Iberia 5 

IR Iran Air 5 

IZ Arkia-Israeli Airlines 5 

JA B&H Airlines 4, 5 

JK Spanair 5 

JP Adria Airways 5 

JU Jat Airways 5 

JZ Skyways 3 

KF Blue1 5 

KL KLM 5 

LH Lufthansa 5 

LO LOT 5 

LX Swiss International Air Lines 5 

MA Malev Hungarian Airlines 5 
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OK Czech Airlines 5 

OS Austrian Airlines 5 

OV Estonian Air 5 

PC Pegasus Airlines 5 

QI Cimber Air 5 

QR Qatar Airways 5 

RB Syrian Arab Airlines 5 

RL Royal Falcon 5 

SK Scandinavian Airlines 4, 5 

SU Aeroflot Russian Airlines 5 

TG Thai Airways 5 

TK Turkish Airlines 5 

TP TAP Air 5 

U2 EasyJet 2 

VV Aerosvit Airlines 5 

X9 NextJet 3 

XQ Sun Express 5 

 

C. Destination Airports from Stockholm-Arlanda (summer 2010) [37] 

IATA_code name terminal 

ADB Izmir Adnan Menderes Apt 5 

ADJ Amman Civil-Marka Airport 5 

AGH Ängelholm/Helsingborg Apt 4 

AGP Malaga 2, 5 

ALC Alicante 2 

ALP Aleppo 5 

AMS Amsterdam 5 

ATH Athens 2, 5 

AYT Antalya 5 

BCN Barcelona Apt 2, 5 

BEG Belgrade 5 

BEY Beirut 5 

BGO Bergen 2, 5 

BKK Bangkok Suvarnabhumi International Apt 5 

BLE Borlänge/Falun 3 

BLL Billund 5 

BRU Brussels Airport 5 

BUD Budapest 2, 5 

CDG Paris Charles de Gaulle Apt 5 

CGN Cologne/Bonn Apt 2 

CHQ Chania 2 

CPH Copenhagen Kastrup Apt 2, 5 

DBV Dubrovnik 5 
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DOH Doha 5 

DUB Dublin 5 

DUS Düsseldorf International Airport 5 

EDI Edinburgh 5 

EPU Parnu 5 

ESB Ankara Esenboga Apt 5 

EWR Newark Liberty International Apt 5 

FAO Faro 2 

FCO Rome Fiumicino Apt 5 

FRA Frankfurt International Apt 5 

GEV Gällivare 3 

GOT Göteborg Landvetter Apt 4 

GVA Geneva 2, 5 

HAD Halmstad 3 

HAM Hamburg Airport 5 

HEL Helsinki 2, 5 

HFS Hagfors 3 

IKA Tehran Imam Khomeini International Apt 5 

IST Istanbul Ataturk Airport 5 

JFK New York J F Kennedy International Apt 5 

JKG Jönköping 3 

KBP Kiev Borispol Apt 5 

KEF Reykjavik Keflavik International Apt 5 

KID Kristianstad 3 

KLR Kalmar 4 

KRF Kramfors/Sollefteå 3 

KRN Kiruna 4 

KSD Karlstad 3 

LED St Petersburg Pulkovo Apt 5 

LGW London Gatwick Apt 5 

LHR London Heathrow Apt 5 

LIN Milan Linate Apt 5 

LIS Lisbon 5 

LJU Ljubljana 5 

LLA Luleå 4 

LPA Las Palmas 2 

LYC Lycksele 3 

MAD Madrid Barajas Apt 5 

MAN Manchester International Apt 5 

MHQ Mariehamn 5 

MLA Malta 5 

MMX Malmö Airport 4 

MSQ Minsk International Apt 2 5 

MUC Munich International Airport 2, 5 

MXP Milan Malpensa Apt 2, 5 
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MXX Mora 3 

NCE Nice 2, 5 

OER Örnsköldsvik 4 

ORD Chicago O'Hare International Apt 5 

OSD Åre/Östersund 4 

OSK Oskarshamn 3 

OSL Oslo Gardermoen Airport 2, 5 

OUL Oulu 5 

PEK Beijing Capital Apt 5 

PMI Palma De Mallorca 2, 5 

PMO Palermo 2 

PRG Prague 5 

RIX Riga 5 

RNB Ronneby/Karlskrona 4 

SAW Istanbul Sabiha Gokcen Apt 5 

SDL Sundsvall 4 

SFT Skellefteå 4 

SJJ Sarajevo 5 

SPU Split 5 

SVO Moscow Sheremetyevo International Apt 5 

SXF Berlin Schönefeld Apt 2 

TAY Tartu 5 

TKU Turku 5 

TLL Tallinn 5 

TLV Tel Aviv Ben Gurion International Apt 5 

TMP Tampere 5 

TOS Tromso 5 

TRD Trondheim Vaernes Airport 5 

TUN Tunis 5 

TXL Berlin Tegel Apt 2, 5 

UME Umeå 4 

URE Kuressaare 5 

VAA Vaasa 5 

VBY Visby 3, 4 

VHM Vilhelmina 3 

VIE Vienna 2, 5 

VXO Växjö 3 

WAW Warsaw 5 

ZRH Zurich Airport 5 
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