

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, March 2012

Development and Evaluation of Novel Algorithms for

Enhanced Aircraft Routing on Ground

Master of Science Thesis in Computer Science

ACHILLEAS F. KATSAROS

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a

publisher or a company), acknowledge the third party about this agreement. If the Author

has signed a copyright agreement with a third party regarding the Work, the Author

warrants hereby that he/she has obtained any necessary permission from this third party to

let Chalmers University of Technology and University of Gothenburg store the Work

electronically and make it accessible on the Internet.

Development and Evaluation of Novel Algorithms for Enhanced Aircraft Routing on

Ground

Achilleas F. Katsaros

© Achilleas F. Katsaros, March 2012.

Examiner: Peter Ljunglöf

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: The logo of the company Jeppesen, where the present work was done, combined

with a picture of aircraft routing on the ground.

Department of Computer Science and Engineering

Göteborg, Sweden March 2012

Abstract

The process of Aircraft Routing on Ground corresponds to the surface movement of aircraft on an

airport’s taxiway network, from a runway exit to a parking stand (arrivals) and from a parking stand

to a runway entrance (departures). Given such a pair of terminal points and depending on the

taxiway network structure, there can be one or more alternative routes that the aircraft can follow to

its destination. From a functional perspective, this surface movement is the link between the

airborne movement and the turnaround process for each aircraft. As the size, the operational

complexity and the traffic of an airport increases, the sequence of “landing-taxiing-turnaround-

taxiing-taking-off” can become tight and the satisfaction of temporal constraints can become critical

in terms of cost-effectiveness, both for the airlines and the airport operators.

From the discussion above we can deduce that the choice of an optimal route on the taxiway

network for each aircraft depends also on the dimension of time, since the traffic load on each

taxiway is a dynamic parameter. The problem that this thesis is concerned with can therefore be

called “4D Taxi Routing on Ground”. The work for this thesis was done at Jeppesen GmbH in Neu-

Isenburg, Germany.

The main focus of this work is the definition, analysis and modeling of the problem of “4D Taxi

Routing on Ground”. The entities that constitute the essence of the problem are described: the

Taxiway Network as a directed, bimodal graph with weights that are functions of time; the Aircraft as

moving agents with a finite set of states; and the Airport Operations as the environment. A set of

objectives that determine the quality of a routing solution is also defined: minimization of taxi time,

hold time and speed changes for each aircraft. Based on these definitions, a mathematical model is

built.

In order to test the soundness of the defined model and its applicability to the problem of “4D

Taxi Routing on Ground”, an optimization algorithm is designed and implemented, based on a

combination of Dijkstra’s SPP algorithm and a Linear Programming formulation. The evaluation of the

algorithm is realized using simulations of a 2-day actual flight schedule and the results support the

assumption of correctness for most of the model design choices, while they also show the

inefficiencies of a static SPP algorithm when applied to a dynamic or “4D” routing problem, thus

indicating directions for further research or potential areas of improvement.

ii

Acknowledgements

The work for this thesis was done at the Advanced Research department of Jeppesen GmbH, in Neu-

Isenburg, Germany from May to October 2011. My thesis supervisor and advisor at Jeppesen, as well

as the person who formulated and proposed the subject of this thesis, is Dr. Nima Barraci, to whom I

express my acknowledgement and gratitude. I learned a lot during those six months thanks to his

broad knowledge of Aviation and Optimization among others and his well-structured way of working.

His focus on the scientific soundness, his way of communicating ideas and his enthusiasm about the

outcome of this thesis guided my efforts. I would also like to express my acknowledgement and

gratitude to my university supervisor and examiner, Dr. Peter Ljunglöf, who reviewed my thesis

document and came up with a number of pointed remarks that improved the academic quality of

this document. His contribution to the sound formulation of the mathematical model and his

proposal on the restructuring of the graph is especially highly appreciated.

Regarding Jeppesen, I would also like to thank the Advanced Research team for making me feel

welcome and providing a great working environment, as well as for their comments and feedback

during the internal presentations of the progress of my thesis. Alicia Grech from the TAAM team

supplied me with the summer 2010 flight schedule for Stockholm-Arlanda airport (the case study for

this work) and with scientific papers about TAAM. Jan-Olof Roos, ATC at Arlanda airport, provided me

with information on the utilization of runways, terminals and parking stands. Pilot Paul Gaede

supported me with an interview which enhanced or corrected my assumptions on a variety of

operational features. The information I obtained from these people was crucial for the model design

and implementation and for the present document. I owe a great thank to them.

Regarding the university, I want to thank my thesis opponent, Malin Ahlberg, for her thorough

review, her cooperation and comments during my presentation. As this thesis concludes these two

years of my master studies, a decision that definitely changed my life in many aspects, I feel the need

to acknowledge the academic community of Chalmers and GU, students I worked with and teachers

that inspired me, especially Björn von Sydow and Jan Jonsson. I already miss being there.

Last but definitely not least, my warmest thanks to my closest people, my family - father

Fragkiskos, mother Konstantina, sister Christina and brother Vassilis – as well as my girlfriend,

Elisabet Tsirkinidou, for their support and encouragement during many ups-and-downs of the recent

years. The best is yet to come.

iii

Table of Contents

Chapter 1 Introduction ... 1

1.1 Airline Operations Research .. 2

1.2 Aircraft Routing on the Ground ... 3

1.2.1 Characteristics and Restrictions .. 4

1.2.2 Objectives and Research Questions .. 5

1.3 Structure of this Thesis .. 7

Chapter 2 The State of the Art ... 9

2.1 A-CDM and the Turnaround Process ... 9

2.1.1 The TITAN Project .. 10

2.1.2 The CAED Project ... 11

2.2 Tools and Products for the Taxiway Routing Process ... 12

2.2.1 Jeppesen Total Airspace and Airport Modeler (TAAM ®) .. 12

2.2.2 Taxi Planner Optimization (TPO) ... 13

2.2.3 ATRiCS Surface Manager (SMAN) .. 13

2.3 Algorithms for Routing Problems .. 15

Chapter 3 Conception and Model Definition .. 17

3.1 The Entities .. 17

3.1.1 The Taxiway Network .. 18

3.1.2 The Aircraft .. 26

3.1.3 The Airport Operations .. 30

3.2 The Model ... 34

3.2.1 The Taxiway Network .. 34

3.2.2 The Aircraft .. 35

3.2.3 The Weight Function ... 36

3.2.4 Routing Metrics and Objectives .. 37

Chapter 4 Model Realization .. 38

4.1 The Classes .. 39

4.2 The Routing Algorithm .. 41

4.2.1 Initialize the Airport ... 42

iv

4.2.2 Assign Aircraft .. 43

4.2.3 Check Waiting Lines ... 44

4.2.4 Route Aircraft .. 44

4.3 The Optimization Algorithms .. 45

4.3.1 The Iterative Version of Dijkstra’s Algorithm .. 46

4.3.2 The Linear Programming Formulation .. 49

Chapter 5 Evaluation .. 50

5.1 Simulation Setup ... 50

5.2 Presentation of the Results ... 51

5.2.1 Pattern 1 - Mixed Operations on Runways 01L and 01R ... 54

5.2.2 Pattern 2 - Mixed Operations on Runways 19L and 19R ... 56

5.2.3 Pattern 3 - Mixed Operations on 01L, Arrivals on 01R, Departures on 08 58

5.2.4 Pattern 4 - Arrivals on Runway 26, Departures on Runway 19R 60

5.2.5 Pattern 5 - Arrivals on Runway 19R, Departures on Runway 08 62

5.2.6 Pattern 6 – Arrivals on Runway 01L, Departures on Runway 08 64

5.2.7 Pattern 7 – Arrivals on Runway 26, Departures on Runway 01L 66

5.2.8 Pattern 8 – Arrivals on Runway 01R, Departures on Runway 01L 68

Chapter 6 Conclusions .. 70

6.1 Answers to the Research Questions .. 70

6.2 Future Work .. 71

v

List of Acronyms

A-CDM Airport Collaborative Decision Making

AGC Aircraft Ground Controller

AIBT Actual In-Block Time

AM Arrival Management

AMDB Airport Mapping Database

AOBT Actual Off-Block Time

ATC Air Traffic Control

ATCO Air Traffic Control Officer

CAED Coordinated Airport through Extreme Decoupling

CFMU Central Flow Management Unit

CTOT Calculated Take-Off Time

DM Departure Management

GA Genetic Algorithm

GM Gate Management

IATA International Air Transport Association

ICAO International Civil Aviation Organization

LP Linear Programming

PLC Product Life Cycle

SESAR Single European Sky ATM Research

SMAN Surface Manager

SOA Service Oriented Approach

SPP Shortest Path Problem

STN Simple Temporal Networks

TAAM Total Airspace and Airport Modeler

TIS TITAN Information Service

TITAN Turnaround Integration in Trajectory and Network

TPO Taxi Planning Optimization

VTTC Variable Taxi Time Calculation

Chapter 1 Introduction

The cycle of an aircraft’s operation consists of a number of consecutive phases. Starting from a

parking stand on an airport’s apron, an aircraft will be routed on the taxiway, enter the runway from

a predefined runway exit (in this case it is a “runway entrance”), speed up and take off, climb to a

specific altitude and follow the instructed airways and altitudes flying to its destination airport. When

it approaches the destination, the aircraft will be commanded to descend and land to the airport’s

runway (or a specified one in case of airports with more than one runway), use a runway exit to start

routing on the taxiway towards the predefined stand on the destination airport where it will be

parked. The turnaround process will follow; unloading passengers and baggage or cargo, refueling,

cleaning, performing various checks, loading again and finally being pushed back to the taxiway to

start routing towards its new destination [6]. According to [7], the phases of flight are the following:

 Standing

 Pushback / Towing

 Taxi

 Take-off

 Initial climb

 En route

 Approach

 Landing

Based on the aircraft’s movement, these operations can be grouped into three categories. The first

group consists of the operations from taking off to landing, which correspond to the airborne

movement, the second group corresponds to the movement on the ground – from the apron to the

runway via the taxiway and vice versa (pushback and taxi flight phases) - and the third group is the

above mentioned turnaround process or an overnight stop, when the aircraft is not moving but

stands parked on the apron. The operation cycle can be extended with the regular maintenance

checks, which could be considered as part of the turnaround process but not of the same frequency;

for example, refueling takes place between two flights, while maintenance can occur from every 500-

800 flight hours to 3-6 months, depending on the type of maintenance checks performed [32].

The reason for this grouping is the high degree of independence among these three

operational categories. There is of course a time-dependence because of the sequential ordering;

each group of operations follows the other in this cycle. However, an aircraft that has already taken

off does not affect the situation on the taxiway anymore, as well as an aircraft routing on the taxiway

does not affect the unloading of cargo from another aircraft already parked at the apron.

The high degree of independence allows the Operations Research to focus on a specific

category, as the present work is focusing on the taxiway routing, but this does not imply full

independence. For example, traffic congestion on the taxiway can affect aircraft approaching the

airport, if they are directed to delay their descent and fly a holding pattern around the airport

instead. Another example is that an aircraft on the taxiway routing towards a parking area may be

forced to hold and wait for another that just finished the turnaround process and is pushed back to

2

the taxiway, if these two aircraft share the same parking area. This holding is an important factor of

taxiway delays and can propagate to other aircraft moving on the taxiway [8].

The purpose of this discussion is to place the operation of taxiway routing into the greater

context of the whole operational cycle of an aircraft and point out relations and complications,

constraints and objectives, all the participating factors that can serve as a basis for first describing

and then defining the model of the problem of 4D Taxi Routing on Ground.

Before proceeding, a clarification on the term “4D” is necessary. This term is used to

emphasize that the problem cannot be defined using the 3 spatial dimensions, but the introduction

of the dimension of time (commonly referred to as the 4th dimension) is also essential. On the other

hand, from the 3 spatial dimensions only 2 are sufficient for describing a ground movement.

Therefore, one could say that the term “4D” is redundant. The reasons for naming the problem “4D

Taxi Routing on Ground” are the following:

 An exact title like “(2+1)D Taxi Routing on Ground” introduces more ambiguity than solves

the problem

 The 3rd dimension (altitude) can be as well included and considered constant

1.1 Airline Operations Research
The Industrial Evolution of the 19th century and the so-called Informational Revolution of the end of

the 20th century have changed and keep on changing our world. Scientific evolution, innovative

ideas and research lead to technological advances, new products and services. New markets and

professions emerge to meet our needs, while others become obsolete and are gradually phased out

or drastically reformed in order to survive. The airline industry began in the 1920s and nowadays, 90

years later, it is reaching maturity and will continue until air travel becomes obsolete. According to

the author of [20]:

“In the 1950s and 1960s the world's air traffic grew on average at around 14-15% each

year. In the decade 1970-79 the annual growth was close to 10%. This still meant that air

traffic, and the airlines with it, doubled in size every seven years or so. In the following

ten years to 1989 growth declined to around 6% annually and in the decade up to 1999

growth was down slightly at 5.2%. In absolute terms, because of the much higher base, a

5% jump in recent years represents a much greater surge in demand than a 10% annual

growth thirty years ago” [20].

However, “the financial performance of the world's airlines taken as a whole has been very

marginal, even in the years when the industry was highly regulated and largely protected from

internal competition” [20]. This is mainly due to the high operating (fuel, crew, maintenance,

handling etc) and other costs (airport taxes, depreciation) airlines have to face. Therefore, there is a

lot of operations research by the related actors (airlines and airport operators) towards optimizing

their processes, which means minimizing costs and/or maximizing revenues. Due to the large

economic size of the airline industry, a cost reduction of a seemingly trivial percentage – 1-2% - can

be translated into large absolute numbers. For example, Lufthansa announced a total revenue of

27.3 billion € for 2010 and the operating result for the same year was 876 million € [10].

3

The evolution of computer processing power and capacity, in the greater context of the

evolution of Computer Science mainly during the last 20 years of the previous century and until

nowadays, has provided the industry operations research (including the aviation industry) with the

essential tools, in order to translate the various operations into mathematical models that consist of

constraints and objectives, solve them with the aid of computers and use the solutions towards

optimizing the way they utilize their resources. Many problems have been well-studied and become

prototypes of combinatorial optimization problems. Some of them, related to the airline operations,

are the following:

 The Timetabling problem: Given a network of operating airports, flight costs and estimations

of passenger demands, produce an optimal (daily-weekly-monthly) time-schedule of flight

operations [14]. This can be combined with the next problem.

 The Fleet Assignment problem: Given a time-schedule of flight legs, assign specific aircraft

types to each flight leg, in order to match the aircraft capacities with the passenger demands

[15].

 The Aircraft Routing problem: Given an assignment of flight legs to aircraft types and timing,

maintenance and availability restrictions, create optimal routes for each aircraft of the

airline’s fleet [16].

 The Crew Scheduling problem, which can be divided into two sub-problems. First, to create

working patterns (pairing) and then to assign these to individual crew (rostering), with

respect to the rules limiting the hours the crew is allowed to work in a specific period of time

[17].

For the above mentioned problems, the decisions are solely taken by the airlines. Other stakeholders,

like the airport operators, do not have any direct profit from the way airlines allocate and assign their

fleet and crew. On the other hand, there exist other optimization problems, which concern both the

airport operator and the airlines. The decisions are the responsibility of the airport operators, but

their results have a financial effect on the airlines, so a good solution constitutes a profit for both

sides. These problems include:

 The coordination of the Turnaround process, which can be defined as the set of services

required from the time the flight arrives at its stand (AIBT – Actual In-Block Time) until the

time it leaves it (AOBT – Actual Off-Block Time). As briefly discussed in the previous section,

these services include passenger and baggage/cargo loading and unloading, aircraft refueling,

cleaning, security checks etc. There are a number of different stakeholders participating in

this process and they have to be efficiently coordinated, so that the set of services is finished

on-time for the aircraft to depart [6], [19].

 The optimization of Aircraft Routing on the Ground, which is the subject of the present thesis

work. An overview of the problem follows in the next section.

1.2 Aircraft Routing on the Ground
The routing of aircraft on the ground or taxi routing process is the generation of a route on the

taxiway for each aircraft to follow after landing – from the runway exit to the parking stand – or

before taking off – from the parking stand to the runway entrance. The problem of deciding on the

4

route that the aircraft will follow can be from trivial to highly complicated, depending on specific

factors that will be presented in the next paragraphs. Arrival and departure taxi routings are not the

only possible surface movements of an aircraft, even though they can be considered as the most

common. An aircraft can move to a maintenance hangar, to an overnight parking position or to the

de-icing facility as well. In the next chapters there will be further discussion about these cases.

1.2.1 Characteristics and Restrictions

First of all, the problem depends on the airport itself. Each airport has its own taxiway network

structure. There can be intersections like the crossroads on city road networks, some wide and long

straight taxiways, where the aircraft can develop a higher taxi speed; there can also be 90° turns into

smaller taxiways (see Appendix I). Some of the taxiways can be one-way directed, in the sense that

both arriving and departing aircraft must traverse them in the same defined direction. Some taxiways

can be bidirectional, where arriving aircraft use the one direction and departing aircraft the other.

Finally, there are some typical limits on the taxiway routing speed, dictated by safety rules. A typical

taxi speed is 15 to 20 knots1 on a straight taxiway and 7 to 12 knots on 90° turns, while the usual

maximum speed is 25 knots and is reached in cases when an aircraft is delayed and hurries to reach

the parking position [8].

The structural characteristics and restrictions of an airport’s taxiway, as well as the speed limits,

where applicable, do not depend on the aircraft routing on the taxiway; they are uniform. However,

there are other restrictions that affect only certain types of aircraft. One of them is the maximum

wingspan allowed on certain (narrower) taxiways. Another is the maximum weight, which can be met

as a restriction on airports that include bridges in their taxiway structure.

All the above characteristics of an airport’s taxiway network are structural, therefore more or

less static. Apart from these, there are also operational characteristics that impose further

restrictions on the choice of a feasible taxiway route and that are changing with time. An airport can

have one or more runways with possibly different orientations. The choice of the runway(s) to be

used for landings and for takeoffs depends on the weather conditions, especially the wind direction,

so it can change during the same day. There are also environmental issues, as well as the need to

reduce noise in case of the existence of residential areas close to the airport. Lastly, the runway

lighting and the visibility during certain hours of the day or under certain circumstances can affect

the choice of the runway(s). Consecutively, this choice also defines which runway exits are used at a

certain time, which in turn affects the taxiway routing process [5], [8].

Other constraints are related to the business and legal aspects of an airport’s operations.

These have an impact on the terminal / gate, thus the parking stand that an aircraft will be routed to.

For example, in European airports there are different terminals for passengers coming from

Schengen and non-Schengen countries. There can also be different terminals for domestic and

international flights. Moreover, within the same terminal, it is usually the case that certain airlines or

airline alliances have allocated a specified range of gates, depending on contracts, agreements or

business relations between the airline and the airport operator. Some airports are hubs or bases of

the same country’s national carrier. For example, the airports of Kastrup in Copenhagen, Arlanda in

1
 A knot is a unit of speed equal to one nautical mile per hour. 1 knot 1.852 km/h [38]

5

Stockholm and Gardermoen in Oslo are hubs of the Scandinavian Airlines (SAS) [33], while Lufthansa

uses the airports of Frankfurt, Düsseldorf and Munich in Germany and Zürich in Switzerland as its

hubs [9]. It is obvious that these airlines have their reserved gates at their hub airports.

The description of the taxiway structural and operational constraints places the problem into

context. As most of the already mentioned problems (fleet assignment, crew scheduling etc), the

problem of aircraft routing on the ground falls into the category of combinatorial optimization: given

an environment that imposes certain constraints and a finite set of resources, the problem is to

allocate / distribute / use these resources in such a way that guarantees feasibility according to the

constraints and optimizes an objective function, which is either a cost function to be minimized or a

profit function to be maximized.

The combinatorial optimization problems are considered “difficult” to solve optimally, because

of their combinatorial nature, where the number of possible solutions grows rapidly (usually

exponentially) with the growing of the problem size. This makes finding the optimal solution by

enumeration practically not feasible in most cases that correspond to real-world problems. In order

to have all the necessary information to define the problem of 4D Taxi Routing on Ground as a sound

mathematical model, a discussion about the objectives of this problem must be made and a number

of research questions that will be attempted to be answered in the present work must be set.

1.2.2 Objectives and Research Questions

What measures are to be optimized during the process of routing aircraft on the taxiway and why

should an airport operator be concerned about optimizing them?

It has been shown [6] that the airports are becoming the bottlenecks of the air transport

network. The quality of service that an airport operator offers to the airlines using it is determined

among others by the lack of delays while arriving to and departing from this airport. The turnaround

process and the need of coordination of the different stakeholders has already been mentioned and

is quite important, but what about the time that an aircraft spends on the ground taxiing to the

parking stand or back to the runway?

In low to normal taxiway traffic conditions, the possibility of two aircraft meeting on a taxiway

intersection during their routings is approximately 20% and in such cases there are explicit directions

from Air Traffic Control (ATC) on which aircraft has the highest priority. Usually the aircraft that does

not have the high priority is informed well beforehand, so that a speed reduction is enough and the

overhead is just a number of seconds. A speed reduction, if possible, is preferable to a full stop on

the taxiway, because the second is more time and fuel consuming [8]. Nevertheless, it is not

uncommon at large airports where aircraft land and take off every minute (or every few minutes)

that a high load of traffic on the taxiway is observed similar to the traffic jams on the streets of big

cities during peak hours. This results to more frequent meetings of aircraft on intersections, lower

taxi speed or even aircraft holding on the ground and waiting for their route to clear in order to

continue.

From this discussion, it becomes evident that the sooner an aircraft reaches the parking stand

or the runway, i.e. exits the taxiway network, the lower the traffic becomes for the rest of the aircraft

6

routing. Therefore an objective is the minimization of taxi time for each aircraft , so that

the taxiway network is less combusted and delays are avoided.

Another objective is the minimization of hold time for each aircraft . The frequency

or possibility of holding on taxiway intersections increases with the taxiway traffic load. Another

important factor that causes holdings on the taxiway is when an aircraft is about to park at a gate

that is still occupied or cannot enter a parking area because it must wait for another aircraft to be

pushed back from the same area [8]. These are results of ineffective gate occupancy coordination or

even of a delayed turnaround process.

Holding on the ground with the engines on is very costly in terms of fuel consumption. For

example the aircraft engine CF6-80C2 (manufacturer: GE Aviation) consumes 0.206 kg of kerosene

per second in idle power [11] and the average price of kerosene (October 2011) is $4.10 per gallon [2]

which is approximately $1.32 per kg2, so every minute of standing idle with one engine on costs

about $16.4 only for the fuel. If this number is multiplied with an average number of minutes that

each aircraft holds on the ground and with the number of an airline’s fleet, the resulting fuel cost for

an airline rises substantially.

There are also other costs that can be added to the fuel costs, like crew overtime payment or

even an overnight stay at an airport hotel for passengers of connecting flights missed because of a

delayed arrival [8]. This is a worst-case scenario and definitely not a common situation. However, it

shows how a delay caused by holding on the taxiway can have a knock-on effect with high costs for

the airline. Last but not least, there are environmental issues with having aircraft standing on the

ground with their engines running.

An aircraft is a massive object, has therefore much bigger inertia than a car for example. It

requires spending much energy in order to start routing after being on hold or in order to change

speed while taxiing. The fuel costs are one of the main costs airlines face and try to reduce, but there

is also the customer – passenger – satisfaction that must be taken into consideration. This is not a

numerical metric; however it can be translated into numbers because a satisfied passenger is more

likely to prefer the same airline in a future trip. And the assumption that a routing on the taxiway

with a steady speed is much more comfortable than feeling the inertia of constant speed changes -

accelerations and decelerations – gives one more reason to introduce a third objective which is the

minimization of the number of speed changes for each aircraft while taxiing.

In a trivial case where an aircraft lands on an airport and there is no other aircraft routing on

the taxiway, the meeting of the objectives set is quite simple. A direction can be given to the aircraft

to follow the shortest path from the runway exit to the parking area, with a steady speed. The

calculation of the shortest path for a static graph with given weights (the lengths of the different

paths) is a well-studied and efficiently solved problem, e.g. the algorithm of Dijkstra [21], [39] and

the A* algorithm [40]. The combinatorial nature of the problem emerges when the load of traffic

increases. A path that is available at a given time point, might not be available after a few seconds

because another aircraft has just entered from the opposite direction. This is where the dimension of

time enters the problem: the graph of the airport taxiway network is a time-dependent one. A

2
 1 gallon 3.785 lt and the density of kerosene is 0.82 kg/lt, so 1 gallon of kerosene weights approximately

3.104 kg [35]

7

seemingly shortest path can turn out to be a bad choice if every aircraft follows it. The occurrence of

a deadlock, where two aircraft wait for each other to move in order to free a path on the taxiway is

also a possibility we cannot rule out.

It becomes clear that the efficient routing of aircraft on the ground can be of great importance

for an airport operator. Minimization of the taxi and the hold time is energy and time saving for the

airlines, making the airport a preferable one. Delays and passenger complaints are avoided; safety

and environmental restrictions are met. The less time the aircraft spend on the taxiway, the more

time becomes available for the turnaround process and the sooner they can leave the airport, thus

increasing the availability of parking stands and the aircraft capacity in terms of gate services,

resulting to higher revenues for the airport operator.

The research questions that will be attempted to be answered in terms of the present thesis

work are the following:

1. How can the above described problem be formulated into a mathematical model?

2. Which algorithms (of which algorithmic classes) are more suitable to deal with this

problem?

3. How efficiently can the objectives be met? How much can the mean taxi time, hold time

etc be decreased?

4. What is the relation between the decrease of the taxi and hold time and the increase in

the airport’s capacity / throughput?

5. How robust can a solving algorithm be, i.e. how well can it deal with last moment

unforeseeable changes?

6. What is the traffic limit for a specific airport, after which the system crashes, i.e. is unable

to recover to a normal operation?

1.3 Structure of this Thesis
This thesis is organized in six chapters and is concluded by three appendices. The present chapter is

an introduction to the problem of 4D Taxi Routing on Ground; a first discussion on the characteristics

and restrictions of the problem and its placement into the context of Airline Operations Research.

The chapter concluded with a set of research questions, which determine the focus and direction of

this thesis. An overview of the current state-of-the-art, regarding commercial products and research

work on this and similar topics, is given in chapter 2.

Chapter 3 presents the concept for a system that captures the essence of 4D Taxi Routing on

Ground and supports the development of algorithms with the purpose of optimizing the objectives

set. The chapter starts with a detailed discussion and a formal definition of the problem and results

to a mathematical model. Chapter 4 describes the realization of the concept and gives an overview

on the class architecture and the optimization algorithms. The environment setup for the evaluations

and their respective results are presented in chapter 5.

Finally, chapter 6 concludes this thesis with a discussion on how satisfactorily the research

questions set above were answered, what improvements can be made and which further directions

of study and research on this topic can be followed.

8

Complementary information can be found in the appendices. Appendix I contains the maps of

the taxiway structure of Stockholm-Arlanda airport as of October 2011. Appendix II contains two

distance matrices for each pair of “runway exit – parking stand area” terminal points for this airport.

The first table starts from the runway exits and the second starts from the parking stand areas.

Appendix III contains the data tables of aircraft types, airlines and destination airports which are

currently related to this airport and were therefore used as test data in our model implementation.

9

Chapter 2 The State of the Art

When an aircraft is landing on an airport runway, the direction on which runway exit to use is already

communicated to the pilot by the Air Traffic Control Officer (ATCO) who is responsible for the landing

traffic management [8]. Once the aircraft is on the ground, the control is handed over to the Aircraft

Ground Controller (AGC), who is responsible for the taxi routing process [22]. If the aircraft has not

received the taxi clearance, i.e. the permission to start taxiing and the route - the sequence of

taxiways - to follow, it must stand still on the runway exit and wait. The taxi route can be fully

communicated a priori - the most usual case in small and medium sized airports - or it can be

communicated in parts while the aircraft moves on the taxiway. In the second case, which is usual in

large airports (e.g. Frankfurt am Main International airport), the ground controller commands the

aircraft to taxi up to a certain point via a specified sequence of taxiways and wait for further

directions [8].

The procedure is similar when an aircraft is departing. In order to be pushed-back and start

routing on the taxiway towards the runway for taking-off, an aircraft must have first obtained the

permission to do so by the ATCO who is responsible for the take-off traffic management. Then the

AGC assumes control. The purpose of this discussion is to point out the interconnection and the tight

timing sequence of aircraft flow from the responsibility of one section of ATC to another. Moreover,

the sequences of landing-taxiing-parking or pushing-back-taxiing-taking-off are not the only links in

the operation chain of an airport and ATC is not the only stakeholder. Different airport partners are

involved in different operations and their objectives and interests are sometimes conflicting with

each other. The decisions of the management area for one operation depend on the outcome of the

preceding operations and accordingly affect the following ones.

In this complex environment, the taxiway routing process cannot be analyzed and presented

without a reference to its surrounding operations. The current state-of-the-art in coordinating the

airport operations is called Airport Collaborative Decision Making (A-CDM) and its application to the

turnaround process is the subject of section 2.1. In section 2.2 we present products and tools related

to the taxiway routing process and section 2.3 closes the chapter with a discussion about classes of

algorithms that are developed for solving different types of network routing problems.

2.1 A-CDM and the Turnaround Process
“The concept of Airport CDM endeavors to bring all the main airport partners (ATC, Aircraft Operator,

Airlines, CFMU and Ground Handlers) together and share operational data in a transparent way.

Information sharing is essential for achieving common situational awareness. Enhancing decision

making processes will lead to achieving maximized operational efficiency and best use of the

available airport infrastructure and resource management” [12].

The above statement defines the term of Airport CDM and the rationale for its introduction.

Airport CDM is a concept, not an implementation nor a protocol. It appeared as the answer to the

inefficiencies of standalone information systems at the different management areas within the

airport operations. Each management unit tries to optimize the utilization of their resources, in order

to maximize profits or minimize costs. Their decisions are facilitated by their information systems,

10

which provide them with frequently updated data of the current situation in their area of interest or

responsibility. The gate manager watches the current gate occupancy on the screen and decides

which gate will be allocated for an aircraft due to arrive within the next minutes. In the same way,

the arrival manager has a view of the situation on the runway and the ground manager has a view of

the taxiway network and so on.

So, the managers make their decisions based on a restricted view of the airport and this leads

to suboptimal solutions. It is like a "short-sighted” algorithm that gets stuck in local optima because it

fails to explore the whole landscape and find the global optimum. A-CDM addresses this problem by

the sharing of information in a transparent and systematic way, so that the airport partners

collaborate on making decisions which enhance the overall operational efficiency of the airport. One

of the airport operations where many stakeholders are involved and where the application of the

concept of A-CDM is quite important is the Turnaround process.

2.1.1 The TITAN Project

TITAN is an abbreviation for “Turnaround Integration in Trajectory and Network” and it is an ongoing

project (October 2011) partially funded through the Seventh Framework Program of the EU and fully

compatible to the SESAR Concept of Operations [42]. The SESAR concept extends the flight operation

management to include the turnaround process with the rationale that when an aircraft is parked on

the ground, “its trajectory is not evolving in the spatial dimensions but it continues to evolve in the

time dimension” [6]. The turnaround process is also in a time-sequence between the previous and

the next flight, so a delay in the turnaround process will result to a late departed flight.

According to [6], “the airport delays in 2008 accounted for around 26.6% of total delays, with

an increasing trend” and the principal origin of airport delays is the turnaround process. There are a

lot of tasks to be coordinated during the turnaround process; the unloading of passengers and

baggage / cargo, the inspection, cleaning and refueling of the aircraft, catering and potable water

replenishment, security checks and the loading of passengers and baggage / cargo for the next flight

are the most significant. There are a lot of factors that can cause a delay in one or more of these

tasks and this delay can propagate to the following tasks thus delaying the whole process.

The TITAN project builds upon the A-CDM concept of sharing information among the

stakeholders by extending this information to include landside and off-airport data. For example, a

train arriving late at the airport terminal or traffic congestion on the highway leading to the airport

may result to passengers coming late for check-in. This information is obtained by automated sensing

facilities and is fed to the TIS (TITAN Information Service) module together with A-CDM data about

the airside situation, in order to proactively assess possible delays. For this purpose, TITAN follows a

service oriented approach (SOA) using the notion of “milestones” as sets of temporal checkpoints to

provide the following services:

 Passenger Flow Information Service - PFIS

 Baggage Flow Information Service - BFIS

 Cargo/Mail Flow Information Service - CMFIS

 Aircraft Status Report Service - ASRS

 Airport Information Report Service – AIRS

11

2.1.2 The CAED Project

Another significant work giving a different perspective on how to coordinate the turnaround process

efficiently is the CAED project developed by Delft University of Technology for Eurocontrol. CAED

stands for “Coordinated Airport through Extreme Decoupling” and the main assumption of this

approach is that “local parties are in the best position to plan their resources and activities” [19]. This

work recognizes the usefulness of A-CDM but points out that it is mostly focused on the airport

processes around ATC and proposes the methodology of “Extreme Decoupling” as “a means of

integrating the ground services and turnaround management with the overall airport planning” [19].

Regarding the coordination of the actors participating in the turnaround process, two solutions

have been proposed; fully centralized planning and fully distributed planning. The first one disregards

the fact (stated above) that local parties have their own organization, business model and know-how

in order to plan their resources and the second one introduces much complexity for resolving

planning conflicts. The CAED project aims to entirely decouple the planning functions using ideas

from both centralized and distributed approaches. The whole planning procedure is divided into

three steps:

1. An overall decoupling of tasks to be performed based on time dependencies. A decoupling

algorithm using Simple Temporal Networks (STNs) will distribute and assign time slots to the

local actors.

2. The local planners will make their planning for their assigned time slots independently and

without the need for communication with other parties.

3. The resulting local plans will be merged together into an overall operational plan, which,

according to properties of the STN, is guaranteed to be conflict-free.

For example, assuming that the tasks to be completed during turnaround are the ones described in

the previous section (passenger and baggage unloading, fueling, cleaning etc), the actors are the

cargo loading, the fueling, the cleaning, the catering and the passenger boarding operator. Some of

their tasks follow a temporal sequence and some others are independent. Cleaning and fueling must

take place after all the passengers have evacuated the aircraft, but they are independent of each

other, so they can take place simultaneously. Each task has a specified duration (with some variations

possible), depending on the aircraft type. Everything must be finished before the estimated

departure time. This way, a STN is built showing work flows and temporal constraints in the form of

inequalities. The decoupling algorithm iteratively finds the solution that satisfies this set of

inequalities and accordingly assigns the time slots during which the local actors will do their tasks.

The creation and consecutive decoupling of a Simple Temporal Network starting from a ground

handling example is presented in the main reference of this section, which is the second deliverable

of the CAED project [19]. Extensive theory about Temporal Constraint Satisfaction Problems, a special

case of which is the Simple Temporal Problem, can be found at the first deliverable of the CAED

project [18], where a STN can alternatively be represented as a directed edge-weighted graph, called

a Distance Graph, which then can be examined for consistency, i.e. having at least one solution, using

the Floyd-Warshall algorithm [43].

12

2.2 Tools and Products for the Taxiway Routing Process
After the presentation of the concept of A-CDM and the current research on its application to the

turnaround process, the focus moves back to the taxiway routing process. The works and commercial

software tools described here are Jeppesen Total Airspace and Airport Modeler (TAAM), Taxi Planner

Optimization (TPO) and ATRiCS Surface Manager (SMAN). The purpose of presenting these different

approaches is to provide an as-complete-as-possible image of the subject of the present thesis.

2.2.1 Jeppesen Total Airspace and Airport Modeler (TAAM ®)

Jeppesen TAAM is a simulation software tool developed to support and facilitate planning, analysis

and decision making for Civil Aviation Authorities, Airport Operators and Airlines. TAAM provides 4D

models of airports and the airspace. The basic features of this tool, that determine its usefulness and

advantages compared to other modeling software, are the following:

 It can be configurable to any airport or airspace

 It can run accurate and detailed simulations in fast-time

 It employs a number of parameters that can be set in order to simulate a wide range of

scenarios

 It offers a rich and comprehensive graphical interface to monitor the movement of aircraft

Being a fast-time simulation tool, TAAM can be combined with optimization or planning techniques

and evaluate their proposed solutions by modeling and simulating scenarios based on these solutions.

A prototype for the automated optimization of taxiway placement using TAAM and a Genetic

Algorithm [31] can be found in [23]. This work addresses the problem of increasing the throughput of

an airport - i.e. the number of aircraft it can serve – based on higher traffic demand. The airport

operator wants to assess the degree of throughput increase as a result of building new taxiways on

the airport. How many taxiways and in which part of the existing taxiway network structure should

they be added so that the airport can serve more aircraft?

For this purpose, a TAAM model of Sydney International Airport was created and a realistic

number of flights were simulated on different configurations of the airport, adding up to 50 new

taxiways and their combinations. The genetic algorithm (GA) was chosen as the optimization

technique because its qualities are suitable for the nature of this problem. The GA can generate

different configurations of the airport by adding various numbers of taxiways on different locations.

Then it can evaluate these configurations using the results of TAAM simulations and combine the

“fittest” solutions to create new generations of improved configurations, searching for the optimum.

The use of TAAM is not restricted to the taxiway network structure of an airport; it is a much

more generic tool. It simulates the 4D aircraft trajectory from gate to gate, both airborne and on the

ground. According to the paper [23] referenced in the previous paragraph, TAAM can facilitate the

reconfiguration of an airport. It can also measure the effect of introducing new flights operating on

this airport or the impact of disruptions, such as construction works on the runways or taxiways. Civil

Aviation Authorities can use TAAM to simulate situations of difficult weather conditions or analyze

and redesign the use of different airways. Airlines can simulate and evaluate their operations thus

leading to changes that can reduce costs and delays by a more effective use of their resources.

13

2.2.2 Taxi Planner Optimization (TPO)

This work of A. Marin and J. Salmerón “introduces taxi planning optimization (TPO) as a methodology

to guide airport surface management operations”. The purpose of this work is to “improve aircraft

taxiing routes and their schedule in situations of congestion, minimizing overall taxiing time (TT), and

helping taxi planners to meet pre-specified goals such as compliance with take-off windows, TT limits

and trajectory conflicts” [22] (abstract). This tool was developed as part of the European Commission

project “LEONARDO” and used the Barajas Airport of Madrid as the base for implementation.

In their paper the authors assume that the primary management tasks in the operation of an

airport are the following:

 Arrival management (AM), which estimates the landing time and runway exit a few minutes

before the aircraft touches ground

 Departure management (DM), which estimates the time that an aircraft is pushed-back from

its parking position and establishes calculated take-off time windows (CTOTs)

 Gate management (GM), which assigns arriving aircraft to the available gates

The process which interacts with all of the above mentioned ones is the process of taxiway routing

and the successful operation of the runways and the gates depends also on the efficient operation of

the taxiway. The management tool that is presented in their work, TPO, must be coordinated with

the tools for AM, DM and GM with the continuous periodical exchange of updated data depicting the

situation from the present and within a certain look-ahead planning timeframe at each management

area. The proposed and efficiently tested operation pattern is to iteratively use data from the AM,

DM and GM modules, execute for 1-2 minutes in order to respectively optimize the taxiway routes

for the next 15-30 minutes, feed the output back to the other modules, receive updated data after 3

minutes and so on.

The model described in the paper is a “large-scale space-time multi-commodity network with

capacity constraints” [22]. The definition of space-time network can be considered as an alternative

name for 4D network and the foundations of the TPO model (the structure of the network graph, the

definition of the origin and destination) have similarities with the model developed for the present

work. The objective function is a weighted sum of the minimization of the overall taxi time and of

penalties for delayed take-offs that don’t meet their respective CTOTs, thus providing the flexibility

to the planner to establish tradeoffs between these goals. Finally, the model is solved as a mixed-

integer optimization problem using Branch & Bound.

2.2.3 ATRiCS Surface Manager (SMAN)

The works presented in the previous two sections are related to the taxiway routing process but not

in the same degree and not from the same point of view. On the one hand, Jeppesen TAAM is a 4D

modeling and simulation tool, adaptable to different airport and airspace configurations – not only

taxiways - and scenarios. It is not an optimization tool though, but it can be combined with such tools

producing considerable results. TPO on the other hand is a research work focused on the taxiway and

performs optimization as its name denotes, but it is not a commercial product, at least not presently.

ATRiCS Surface Manager is related to the taxiway routing process from yet another perspective, it is

neither similar to TAAM nor to TPO.

14

ATRiCS Surface Manager is a software system which automates taxi time calculation, routing,

guidance and control services in one application. It can be configured for basic and advanced

implementation levels, depending on the size of the airport. Based on the current information, SMAN

is operational at Incheon Airport in Seoul, Korea and Kuala Lumpur Airport in Malaysia and has been

tested in field trials at Frankfurt am Main, Munich and the under construction new airport of Berlin-

Brandenburg. The SMAN system supports the controller who is responsible for the ground traffic by

suggesting or assigning optimized taxi routes to the aircraft and by guiding the aircraft accordingly.

The system is integrated into the airport’s surveillance and lighting systems and uses them in order

to continuously check and adjust the situation on the runways, taxiways and apron. The subsystems

of SMAN are the following:

 Variable Taxi Time Calculation: This is a forecasting system which dynamically computes taxi

time estimates up to 60 minutes in advance. This work acknowledges that “advanced taxi

time calculation considerably improves the accuracy of predicted on-block and take-off times”

[13]. It uses updated estimates for landing and off-block times and plans a surface trajectory,

from which the taxi time is deduced. To ensure robustness, VTTC uses a stochastic model of

the airport where it incorporates factors like traffic, preferred taxi routes and visibility and

estimates taxi times for different combinations of these factors.

 Routing: The routing system has two main functions, the creation of a taxi route and the

assignment to the aircraft. The system can be used in a manual, semi-automatic or automatic

mode, depending on who creates and who assigns the route. In semi or fully automatic mode,

SMAN dynamically proposes a route to the controller, which it creates from scratch and in

regard to preferences and feasibility constraints. Of course, this route must also be efficient,

i.e. minimize taxi time and distance.

 Guidance: Once a route has been assigned to an aircraft, the guidance system takes over.

“During taxi, SMAN automatically switches the taxiway centerline lights to unambiguously

indicate the assigned taxi route to the pilots. At any time, the controller can manually control

stop bars and illuminate taxi route sections to statically indicate admissible taxiways to pilots

and drivers” [13]. The taxiway lights can also be adjusted to turn off after the aircraft has

passed from the corresponding taxiway, thus saving energy.

 Control: The control system uses the surveillance systems of the airport to detect high traffic

and ensure provision of spacing, both lateral (when aircraft converge at intersections) and

longtitudal (when one aircraft follows another). In both cases, when the distance falls below

a certain level, an alert is generated. Alerts are also generated in cases of excessive taxi

speed, route deviations and deadlocks, as well as when an assigned route does not comply

with wingspan restrictions. SMAN can also control the runway stop bars to protect arriving

and departing aircraft from other mobiles entering the runway.

Concluding this section, the presentation of SMAN shows how an existing software system can be

implemented at an airport with the purpose of increasing safety and reducing various operating costs

by the automated and efficient routing of aircraft on the ground. Airport operators and authorities

are nowadays looking to this direction.

15

2.3 Algorithms for Routing Problems
This section closes the state-of-the-art chapter by presenting a number of algorithms that have been

applied to problems similar to 4D Taxi Routing on Ground, as well as some general purpose heuristics

which could potentially be adapted to the particularities of this problem. Starting with the heuristics,

the following are well-known and extensively applied algorithmic methods based on the imitation of

natural processes:

 The Genetic Algorithm [31] imitates the natural process of selection and reproduction of the

fittest individuals in every generation. The success of this method depends on how well a

potential solution of the specific problem can be encoded in a data structure such that the

operations of crossover and mutation can be performed with meaningful results. A balance

between “exploitation of the best solutions” and “exploration of the search area” is also a

key factor, as in most heuristics.

 The Ant Colony System imitates the way ants tend to follow the shortest paths on their

movements among their colonies and how these paths tend to stabilize towards optimality

even after changes in the “search area”. Some very interesting applications which show the

efficiency and robustness of the Ant Colony Systems as optimization algorithms can be found

in [25] and [26].

The problem of 4D Taxi Routing on Ground is a shortest path problem enhanced with the dimension

of time. The prototype algorithm for solving the basic single-source shortest path problem is the

algorithm of Dijkstra [39]. A variation of this algorithm was implemented for the present thesis work

and will be described in the fourth chapter. An efficient heuristic which assumes the existence of a

distance table between the destination and each intermediate vertex of the network graph in order

to be applied is the A* Algorithm [40].

There are also numerous and various extensions of the shortest path problem, which were

formulated in order to model the increasing complexity and diversity of contemporary real-world

network and routing problems. The K-Shortest Path Problem models the need to find and use the

best alternative solutions when one shortest path might not be enough. A description of the problem

and a presentation of algorithms that aim to solve it can be found at [27].

A taxiway network can be hierarchical in the sense that it can consist of a number of primary

and a number of secondary taxiways. The object of the Hierarchical Network Design Problem is “to

identify the least cost, two-level hierarchical network”, which “must include a primary path from a

predetermined starting node to a predetermined terminus node” and also “each node not on the

primary path must be connected to some node on that path by means of a secondary path” [28].

Another generalization of the shortest path problem is the Language Constrained Shortest

Path Problem. This problem assumes the existence of “an alphabet , a graph G whose edges are

weighted and labeled in and a regular language ”. The problem “consists of finding a shortest

path p in G such that the concatenated labels along p form a word of L” [29]. This problem applies on

multimodal networks, where roads are differentiated by categories. Last but not least, the Canadian

Traveler Problem is “a stochastic shortest path problem in which one learns the cost of an edge only

when arriving at one of its endpoints. The goal is to find an adaptive policy (adjusting as one learns

more edge lengths) that minimizes the expected cost of travel” [30].

16

At this point, the problem of 4D Taxi Routing on Ground has been described but not analyzed

or formulated into a model. However, and based on these descriptions, we can speculate on the

applicability of the previously presented algorithms to this problem and identify possible limitations.

The heuristics have the advantage of being general purpose methods, therefore applicable to a wide

range of problems. The success of the Genetic Algorithm lies on the encoding of the solutions, and it

can combine (crossover) different parts of the taxiway network into overall routing solutions, so it

can be an efficient method to deal with this problem. The Ant Colony System seems to be even more

promising, due to its flexibility and stabilization ability; it could be executed dynamically while the

aircraft are routing, by periodically sending agents (ants) to the destination to find the shortest path

at that point in time and adapt the aircraft routes accordingly.

The algorithm of Dijkstra applies by definition to static graphs and does not incorporate the

notion of time, so it should somehow be enhanced in order to be applied to a 4D routing problem.

The implemented variation of this algorithm shows certain inefficiencies too, which will be discussed

in the conclusion chapter of the present thesis. Moreover, the A* algorithm assumes that there exists

a coordinate distance map for all pairs of vertices in a graph and this distance map is not always

feasible to obtain or calculate. Therefore, the applicability of A* is generally more limited. On the

other hand, having a list of alternative routes for each aircraft and destination at a given time point

would be an effective way to handle dynamic changes on the taxiway, so a K-Shortest Paths

algorithm could be a good candidate for our problem.

The rest of the routing problems described in the present section were chosen in order to

present some concepts that could be applicable to the 4D Taxi Routing on Ground problem, perhaps

combined or extending an already existing model. A taxiway network could have the form of a

hierarchical network, with primary and secondary taxiways, so this topology could serve in such cases.

There could also be distinctions among vertices or edges of a taxiway graph imposing constraints that

are expressed with the aid of a regular language. Finally, a different approach would be a stochastic

one, similar to the Canadian Traveler that aims to deal with the uncertainty and the dynamic nature

of the problem by finding adaptive policies.

17

Chapter 3 Conception and Model Definition

After introducing the problem of 4D Taxi Routing on Ground and placing it into the context of Airline

Operations Research and after a presentation of the current state-of-the-art regarding research on

this topic and algorithmic classes that have been applied to similar problems, the next step is to

formulate a structured definition that will lead to a sound mathematical model. This chapter is

divided into two main sections. In the first section we formulate and analyze the problem of 4D Taxi

Routing on Ground by distinguishing and describing the three main entities that compose it. The

rationale for this distinction is explained in the beginning of the section. Following and based on the

definitions of the first section, we formulate the mathematical model of the problem, including the

measures for the objectives, in the second section.

3.1 The Entities
ICAO defines the following concepts [1]: An airport (or aerodrome) is “a defined area on land or

water (including any buildings, installations and equipment) intended to be used either wholly or in

part for the arrival, departure and surface movement of aircraft”. Depending on factors like size and

traffic, an airport can have one or more runways. A runway is “a defined rectangular area on a land

aerodrome prepared for the landing and take-off of aircraft”. Another important part of an airport is

the apron, “a defined area, on a land aerodrome, intended to accommodate aircraft for purposes of

loading or unloading passengers, mail or cargo, fuelling, parking or maintenance”. Finally, a taxiway

is a “defined path on a land aerodrome established for the taxiing of aircraft and intended to provide

a link between one part of the aerodrome and another”.

An airport usually has a network of taxiways, resembling a city road network in the sense that

there might be intersections, 90° turns, speed limits and defined directions that an aircraft must

follow when moving on the taxiway. So, the taxiways are where the “surface movement” mentioned

in the previous paragraph takes place. On arrivals, this movement starts from the runway where the

aircraft lands and ends at a specific parking position on the apron. On departures it is the other way

around. Therefore, a taxiway usually provides a link between the runway and the apron. The other

cases of surface movement (maintenance, overnight parking, deicing) are out of the scope of the

present work. However, the model described in the second part of this chapter can be extended in

order to include such movements.

The runway and the apron serve as the source and the destination (and vice-versa) in the

taxiway routing process. Nevertheless, the operations taking place on the runway and the apron are

not a concern of the taxiway routing process, even though they may affect it. For example, if an

aircraft fails to brake effectively in order to use the runway exit which was commanded by ATC, it will

have to use another exit, so the taxiway route will have to be redefined using the new runway exit as

a starting point. However, this can be considered as different input data provided to the taxiway

network system and not as a change to the system itself. Concluding this discussion, the first main

entity that composes the problem of 4D Taxi Routing on Ground is the Taxiway Network.

The taxiway structure of an airport is more or less static; it does not change frequently. As

stated in the introduction chapter, the generation of a path connecting a runway exit and a parking

18

stand on the apron would be a trivial task on an empty taxiway. What provides the dynamic aspect to

the whole procedure is the concurrent movement of other aircraft on the taxiway network, making

the availability of certain paths a function of time. The second main entity of the problem is thus the

Aircraft.

From an abstraction level, the Taxiway Network supplied with Aircraft moving on it can be

considered as a separate system within the surrounding system of the whole airport. These two

entities can define the model of the taxiway network system, as it will be shown later in this chapter.

The interaction of the taxiway network system with its surroundings is the information of the source-

destination pair and the time that an aircraft appears at the source, as an input, and the time that

the aircraft reaches its destination (and possibly other metrics), as an output. This information

depends on several different factors, which can be grouped together under the term Airport

Operations. This is the third entity of the problem. The airport operations include:

 The daily / weekly / seasonal flight schedule that provides the expected times of arrivals and

departures.

 The runway usage pattern, especially in airports with more than one runway. The usage of

the runway(s) and the direction of arrivals and departures on them affect the choice of the

runway exits as starting or ending points of the taxiway routing.

 The airlines operating on the given airport and the corresponding airports of the flights

departing from or arriving at the given airport. The combination “airline - source airport”

defines the terminal of the given airport where the aircraft will be parked, so it affects the

choice of the parking stands.

As a conclusion, one can say that for the problem of the 4D Taxi Routing on Ground, the taxiway

network provides the structure or topology (the spatial dimensions), the movement of aircraft adds

the 4th dimension (time) to the system and the airport operations stand for the environment,

connecting the system to the real world by providing data and operational constraints.

3.1.1 The Taxiway Network

The Taxiway Network is the set of taxiways of an airport. Taxiways serve as links between the runway

and the apron, at least for the purposes of the present work. Apart from the runway exits and the

exits to the parking areas, which are the terminal points of this network, other significant places are

the taxiway intersections, defined as “junctions of two or more taxiways” [1]. An intersection can be

a crossing, where two roads meet but an aircraft moving on the one road cannot enter the other, a

merging, where two or more roads merge into one, or a splitting, where one road splits into two or

more. An intersection can also be a combination of the above. It is obvious that intersections are

important on the taxiway routing, because either a check to avoid conflicts (crossing, merging) or a

routing decision (splitting) has to be made.

The most intuitive and general purpose mathematical structure that serves as a basis for

modeling networks (among others) is the Graph. Using a general definition, a graph is “an abstract

representation of a set of objects where some pairs of the objects are connected by links. The

interconnected objects are represented by mathematical abstractions called vertices, and the links

that connect some pairs of vertices are called edges” [36]. A taxiway network for an airport can be

19

modeled as a graph, where the vertices are the terminal points (runway exits and exits to the parking

areas) and the intersections. The edges of this graph are the taxiways or parts of them that connect

any two of these significant points (vertices). A graph can have many specializations or extensions,

and for the purposes of a taxiway network the edges must be directed, according to the directions of

the respective taxiways. The edges can also be supplied with a weight or cost that corresponds to the

length of the respective taxiways (from a spatial perspective) or the time to traverse them (from a

temporal perspective).

After defining the main entities that participate in the 4D Taxi Routing process, a crucial step

towards modeling the problem in order to develop algorithms that attempt to deal with it, is to

create a graph that corresponds to the taxiway network and captures its structural foundations and

particularities. Having separated the taxiway network from its operational environment, the only

information needed in order to create the graph, is a full map of a given airport plus a database

containing numerical representations of the airport dimensions (lengths of taxiways) and structural

constraints (maximum wingspan and weight allowed on specific edges).

For the present work, all the necessary information was extracted from the Airport Mapping

Database (AMDB) of Jeppesen. In the next subsection a case study will be presented in order to

illustrate the transition of an airport map and relevant information to a graph representing the

taxiway network.

3.1.1.1 The Taxiway Network of Stockholm-Arlanda Airport

The airport we chose to use as a case study for this work is the airport of Stockholm-Arlanda (IATA:

ARN – ICAO: ESSA). It is the largest airport in Sweden, the third largest airport in the Nordic countries,

and the second busiest in terms of international passengers [37]. The choice was mainly based on the

size of the airport and the complexity of its taxiway network. As of October 2011, Stockholm-Arlanda

has 3 runways and 4 terminals and its traffic density can be categorized as follows:

According to [1] (pages 1-1, 1-2), “aerodrome traffic density is medium where the number of

movements in the mean busy hour is of the order of 16 to 25 per runway or typically between 20 to 35

total aerodrome movements.” Also, “the number of movements in the mean busy hour is the

arithmetic mean over the year of the number of movements in the daily busiest hour. Either a take-off

or a landing constitutes a movement.” The published statistics for Stockholm-Arlanda airport [3]

show that for the year 2010, the daily busiest hour was from 17:00 to 17:59 with an average of 39

movements (20 take-offs and 19 landings). According to these facts, Stockholm-Arlanda can be

considered as a medium to heavy traffic density airport.

For the purposes of the present work, the airport that would serve as a case study should be

fairly large and complex, in order to help exploring the problem dimensions; a regional airport with

one runway and one taxiway would not serve. On the other hand, a very large airport (for example

Frankfurt am Main International airport) would require a substantial amount of time to be modeled.

The maps of Stockholm-Arlanda airport are displayed in Appendix I. The resulting graph for the

taxiway network is accordingly displayed in figures 3.1 and 3.2 on pages 20-21, while the necessary

remarks / clarifications are given right after.

20

ZQ

ZS

ZP

ZN

W

P1

P2

P3

P4

X2

X3

X4

X5

ZM

Legend

Runway 08/26

P1 Apron G

P2

P3

P4

Apron F (28, 30, 32, 34, 36, 38, 40, 42, 44)

Apron F (29, 31, 33, 35, 37, 39)

Gates 4, 6, 8 (arr - dep), 10 (only arrivals)

Parking Stand

Intersection

Runway Exit

Figure 3.1: The graph of the northern part of Stockholm-Arlanda airport taxiway network

21

P5ZM

ZL P6

P7

Y10

Y9

Y8

Y7

Y6

ZK

P8ZJ

P9ZH

Y5

Y4

ZG P10

P11ZE-ZF

Y3

Y2

Y1

P12

U

D

P15 P16P14P13

UA UB UC

Legend

Runway 01L/19R

P5 Gates 9, 10 (only departures)

P6

P7

P8

Gates 1, 3, 5, 7 (arr – dep), 9 (only arrivals)

Gates 12, 14, 16, 18 (arr – dep), 20 (only arrivals)

Gates 19, 20 (only departures)

P9 Gates 11, 13, 15, 17 (arr – dep),
19, 32, 34, 36, 38, 40, 42, 44 (only arrivals)

P10

P11

P12

Gates 32, 34, 36, 38, 40, 42, 44 (only departures)

Gates 31, 33, 35, 37, 39, 41, 43, 52, 54, 56, 58

Apron S

P13 Gates 53, 55, 57

P14

P15

P16

Gates 60, 61, 62, 63

Gates 64, 65, 66, 67

Gates 68, 69

Parking Stand

Intersection

Runway Exit

Figure 3.2: The graph of the southern part of Stockholm-Arlanda airport taxiway network

22

The figures 3.1 and 3.2 represent the sub-graphs for the northern and southern part of the taxiway

network of Arlanda airport. The taxiway identifiers (ZS, ZQ, ZP etc) are shown as references to the

airport map, so that the correspondence between the graph and the map can be more evident. It is

also evident (see identifier ZM on both graphs), that these two sub-graphs can be merged into one

overall graph that displays the whole taxiway structure, apart from the taxiways leading to the third

runway - 01R/19L (see maps B and D in Appendix I). This part of the airport was left out of the figures

3.1 and 3.2 but was included in the implementation of the model. The long taxiways leading to and

from the region of the third runway - 01R/19L – are named U and W and are shown in figures 3.1 and

3.2 with dashed lines.

The runways included in the figures are drawn as long rectangles (see legends) and the runway

exits / entrances are the rectangular green vertices of the graph. The triangular red vertices (P…) are

the exits / entrances of the taxiway leading to and from parking areas on the apron. The specific

gates that can be reached from a given taxiway exit are also shown on the legend of the graph. It

should be noted here that the parking areas / gates are located on the apron, so they are not a part

of the taxiway structure. The rectangular green (X..., Y...) and triangular red vertices are the terminal

points of the graph. The circular yellow ones stand for the taxiway intersections; note the existence

of crossings, merges, splits and combinations of them.

A detailed comparison of the figures 3.1 and 3.2 with the respective maps can lead to the

conclusion that some parts of the apron are excluded from the graph, i.e. there are no taxiway exits

leading to and from them. The reason for the exclusion is that these locations are used for other

purposes. They can be maintenance hangars or serve cargo aircraft, but anyway they are not used for

commercial flights. Detailed information about the local regulations at aircraft parking stands can be

found at [4]. We also obtained relevant information by exchanging emails with people working at the

ATC of Arlanda airport.

The edges of the graph are directed. Edges with arrows on both ends represent taxiways that

can be traversed both ways. In this case, one direction is for arrivals and the other is for departures.

A comparison between the maps that display the same part of the airport but in different modes

(northern part: map A for arrivals and C for departures / southern part: map B for arrivals and D for

departures) leads to the conclusion that there are significant differences. There are edges used only

for arrivals, edges used only for departures, edges used for both modes in the same direction and

finally edges used for both modes in opposite directions. The last of these four “edge types” can be

distinguished on the figures 3.1 and 3.2 by the existence of arrows on both ends, as mentioned at the

beginning of this paragraph. However, the graph does not provide further information about the

unidirectional edges and if they used for arrivals, departures or both.

There are also edges whose one vertex is a runway exit. One can notice that some of these

edges are unidirectional and some others are bidirectional. For example, runway exit Y7 can be used

only for arrivals, while Y10 can be used for both arrivals and departures, depending on the runway

exit usage pattern which belongs to the entity of Airport Operations and will be analyzed in section

3.1.3. The same remark can be made for the exits to parking areas too.

At this point it is important to introduce the notion of mode – arrival or departure – and

suggest that the graph displayed in the previous pages is not sufficient for modeling all the aspects of

taxiway routing. This graph is actually a merging of two graphs, the arriving and the departing one.

23

This can be shown on the figures 3.3, 3.4 and 3.5 below, where a fraction of the taxiway network is

used as an example.

P5ZM

ZL P6

P7

Y10

Y9

Y8

Y7

Y6

ZK

P8ZJ

Figure 3.3: A fraction of the graph of Figure 3.2, used as an example

ZL

Y10

Y9

Y8

Y7

Y6

ZK
V2

V3

V1

P6

P7

Figure 3.4: The arrival “component” of the graph of Figure 3.3

24

ZM

ZL

Y10

Y9

Y8

ZK

ZJ

P5

P6

P7

P8

Figure 3.5: The departure “component” of the graph of Figure 3.3

The example figures 3.3, 3.4 and 3.5 can be used for distinguishing the four edge types. The edges

starting from runway exits Y6 and Y7 are used only for arrivals. The edges starting from parking area

exits P5 and P8 are used only for departures. Runway exits Y8, Y9 and Y10, as well as parking area

exits P6 and P7 are used for both modes (bimodal) in opposite directions. Finally, the two vertical

axes – named Y and Z on the maps – are used for both modes but in one direction.

The next section summarizes the necessary steps for the transition from an airport map to a

graph that captures all the essence of taxiway routing and serves as a basis for the mathematical

model. Before proceeding to that, a last remark that can be derived from the figures above is that

when an aircraft reaches a vertex on the graph, the possible next movements are not determined

only by the graph itself, but also by some transition table. For example, on figure 3.4, an aircraft

reaching vertex ZL can be directed towards the parking area of P6 or can turn to V1. From V1 the only

choice is to continue to V2, which corresponds to a crossroad, so in this case the aircraft must

continue to V3. In order to reach the parking area of P7, an aircraft must be coming from ZK. This

example shows that the existence of an edge starting from a given vertex does not necessarily mean

that this edge can be followed, but the additional information of where the aircraft comes from is

also of high importance.

3.1.1.2 Summing-up: From an Airport Map to the Taxiway Network Graph

Stockholm-Arlanda airport was used as a case study for the present work in order to get some insight

into the processes regarding taxiway routing. However, the conclusions must be independent of a

specific airport and the model, which is one of the main goals of this work, must be generic enough

25

and applicable to all types of airports with the minimum of adjustments. The purpose of section 3.1.1

is to define the steps for formulating a graph, including any accompanying information, for the entity

of the Taxiway Network, using a mapping database of a given airport. After the discussion that

preceded and the identification of the problem dimensions with the help of a case study airport, the

map-to-graph procedure can be summarized in steps as follows:

1. Obtain and study the maps showing the taxiway network structure. Using airport regulation

information, limit the taxiway network to the set of taxiways used for arrivals and departures.

2. Identify the runway exits and the exits to parking stand areas and define the modes on which

they are operated. These shall be the terminal vertices of the graph.

3. Identify all the taxiway intersections in the area of interest. These shall be the inner vertices

of the graph.

4. Connect the vertices with edges according to the taxiways on the maps. For each edge record

the crucial information: its type (one of the four types defined in the discussion above), its

length (in meters or some other base unit) and any existing constraints, like maximum speed

wingspan and weight. The maximum speed is usually not stated explicitly, but there are some

empirical limits depending on the form of the taxiway (see chapter 1).

5. For each edge and allowed direction record the possible next edges, thus creating a list of

allowed transitions.

An example of tables (some sample rows) with all the necessary data for a Taxiway Network graph is

displayed below. Table 3.6 shows some edges with the data of step 4. For example, the edge [27, 28]

has a length of 59 meters, the maximum speed is a fraction 0.6 of the global maximum for the

specific airport (because this edge corresponds to a turn on the taxiway, so the speed limit must be

lower), the maximum wingspan is 65 meters and the edge is used only for departures. The edge [29,

30], on the other hand, is used on both modes in opposite directions, i.e. from vertex 29 to 30 on

arrivals and from vertex 30 to 29 on departures, and has a length of 100 meters etc. Also, the edge

[31, 33] is used on both modes but in the same direction and has no wingspan limit (equals zero).

vFrom vTo length speed wingspan arrival departure

27 28 59 0,6 65 0 1

27 31 34 1 0 1 1

27 32 54 0,6 65 1 0

28 30 28 0,6 65 0 1

28 31 21 0,6 0 1 0

29 30 100 0,8 65 1 -1

29 33 120 0,8 0 1 0

30 31 26 0,8 65 1 0

31 32 51 1 65 1 0

31 33 89 1 0 1 1

32 120 48 1 65 1 0

32 122 82 0,6 24 1 0

Table 3.6: Representation of the edge information for a Taxiway Network graph

26

Table 3.7 is related to table 3.6 and shows the transitions for edges that support arrivals. Edge [27, 28]

does not exist on this table, since it is used only for departures. Edge [29, 30] exists and the extra

information is that when reaching vertex 30 coming from vertex 29, the only next step is to move to

edge 31, then to edge 32 and then there are two choices: 120 and 122. In general, there can be more

than two choices as “next edges” depending on the form of the taxiway network. This way one can

traverse the graph from a terminal point and, depending on the mode and the respective transition

table, a tree-like structure of paths can be generated, where the root is a runway exit and the leaves

are all the parking areas accessible from this runway exit (arriving mode), or the root is a parking area

exit and the leaves are all the runway entrances accessible from this parking area exit (departing

mode).

vFrom vTo vNext1 vNext2 length speed wingspan

27 31 33 34 1 0

27 32 120 122 54 0,6 65

28 31 33 21 0,6 0

29 30 31 100 0,8 65

29 33 34 120 0,8 0

30 31 32 26 0,8 65

31 32 120 122 51 1 65

31 33 34 89 1 0

32 120 121 48 1 65

32 122 123 82 0,6 24

Table 3.7: Representation of the arrivals transition for a Taxiway Network graph

3.1.2 The Aircraft

Up to this point, the first entity of the problem of 4D Taxi Routing on Ground, the Taxiway Network,

is described in detail, together with its particularities and a number of well-defined steps for

constructing the corresponding taxiway graph. The foundations are set in order to describe the

second entity, the Aircraft moving on the taxiway. An aircraft has many features, but for the purpose

of the present work the focus is on a small subset of them. The airborne features, the ones that

define the main operation of an aircraft (flying), do not concern the taxiway routing process and the

aircraft can be abstractly considered a large vehicle, with the difference that because of its mass,

speed changes – accelerations and decelerations – are undesirable in regards of fuel cost and

passenger comfort.

The dimensional features of an aircraft that concern the taxiway routing process are its length,

wingspan and weight. The length of an aircraft in combination with its current position determines its

distance from other aircraft routing on the taxiway at the same time, which is obviously important

for the avoidance of conflicts and the safety of routing. The wingspan and weight of an aircraft, as

discussed both in the first chapter and earlier in the present one, determine whether it can enter

specific taxiways, by comparing their structural restrictions with the according features of this type of

aircraft.

27

From these three features, the one used in the model is the aircraft’s wingspan. The weight

restrictions are enforced in a similar way to wingspan restrictions; the aircraft’s value is compared to

the taxiway limit and an “enter”/”don’t enter” decision is made accordingly. Furthermore, instead of

following a very detailed approach of using the length of each aircraft, the alternative approach

followed was to consider each aircraft a moving point (thus just record its position at each time) with

a constant safety distance (say 100 meters) as a “tail” moving with it. Once again and similar to the

discussion of section 3.1 about the other kinds of aircraft movements on the ground apart from

arrivals and departures, a weight restriction and an explicit aircraft length consideration are left out

of the problem model, with the rationale that:

a) the purpose of this work is to create a model for 4D Taxi Routing on Ground that is

fairly simple and compact, yet covers the essential principles and most of the realistic

cases, and

b) the model can be extended later to incorporate such movements and restrictions

The conclusion is that the dimensional feature of an aircraft that is used for the purpose of taxiway

routing is its wingspan. A table containing all the aircraft types used in the Stockholm-Arlanda model

implementation – according to the aircraft that actually use this airport – with their names, lengths

and wingspans can be found in Appendix III. The airline where an aircraft belongs to is another useful

feature, not for the model itself, but for the determination of the terminal and thus the parking area

where the aircraft will be routed to in case of arrival. More about this process will be discussed in

section 3.1.3.

Being the dynamic entity of the taxiway, an aircraft has also some features that change with

time. One of them is the position on the taxiway. This position could be recorded using the

coordinates of an aircraft at each time unit, but since the taxiway network is modeled as a graph, the

position of the aircraft on the graph is a triple [from-vertex, to-vertex, distance]. For example, if the

current position of an aircraft is [29, 30, 45], the aircraft is currently situated on edge [29, 30] – with

direction from vertex 29 to vertex 30 – and its frontal part (its “nose”) is located 45 meters from the

beginning of the edge (from vertex 29). Obviously, the “distance” variable of the position triple must

be less than or equal to the length of the current edge.

Another feature that changes with time is the speed of the aircraft. The speed is usually in the

range from 0 (when the aircraft is on hold) to a maximum allowed speed for the specific taxiway –

edge, where the aircraft is currently situated. For example, using the data from table 3.6 and

assuming that the usual maximum taxiway speed for an airport is 25 knots [8], an aircraft currently

situated on edge [29, 30] – where the speed is set to the 0.8 of the overall maximum - should taxi

with a speed no more than . The aircraft speed is especially important for the

taxi routing process, because it has the key-role of “binding the model together”. The speed

determines the distance covered at each time unit, so it determines the position of the aircraft too.

The speed together with the length of the route that an aircraft will follow determines the total taxi

time, which is the central metric of the problem of 4D Taxi Routing on Ground. Finally, the changes of

speed are themselves recorded and used as another metric of the quality of an assigned route, as

stated in section 1.2.2.

As already stated and described, the aircraft is the entity that enhances the taxiway model

with the dimension of time because of its movement that by definition makes its important features

28

(position, speed) functions of time. The aircraft is the entity that also keeps the metrics of the

problem objectives: taxi time , hold time and speed changes .

An aircraft also has a state which changes during the routing process, as well as a number of

operations / commands that enable the state transitions. The possible states of an aircraft regarding

the taxiway process are shown on table 3.8 and the state transition model is displayed on figure 3.9.

State Description

0 Landed, initialized

1 Waiting at the runway exit to start taxiing (a first-come first-serve queue)

2 Arrival - taxiing with speed sp>0

3 Arrival - on hold (speed sp=0)

4 Parked on the apron - turnaround process

5 Waiting at the parking stand to start taxiing (a first-come first-serve queue)

6 Departure - taxiing with speed sp>0

7 Departure - on hold (speed sp=0)

8 Reached the runway to take-off / finish

Table 3.8: The aircraft states during taxiway routing

On the taxiway in arriving mode

On the taxiway in departing mode

Out of the taxiway (runway, apron)

1 2 3

44 5 6
7

88

init

init

line-up

line-up

taxi

taxi

taxi

taxi

hold

hold

park

take-off

0

Figure 3.9: The aircraft state transition model

29

On figure 3.9, the names of some commands are also displayed. These commands – init, line-up, taxi,

hold, park and take-off – along with a few others are responsible for the routing of the aircraft and

their execution depends on the situation on the taxiway at a given point in time. The complete listing

of the aircraft taxiway commands, their resulting transitions (based on figure 3.9) and the conditions

that trigger them are displayed on table 3.10.

Command Transition Condition

Init , 43
The time has come for a new aircraft to be introduced according

to the flight schedule

Line-up

The aircraft has taken its position at the runway exit or the

parking area exit and must check its priority on the waiting

queue

Update-

priority

Another aircraft left the queue, so the remaining update their

priorities and check which is the first

Hold-on The aircraft is not the first on the waiting queue, must hold on

Taxi

The aircraft is the first on the waiting queue or is on hold and the

taxiway is clear in order to start taxiing again

Update-

position-

speed

The aircraft is on the taxiway and at each time unit must update

its current position and speed

Change-

speed

There is another aircraft ahead or at a crossroad, must change

speed accordingly

Hold
The aircraft is approaching a stopped aircraft ahead or an edge

(taxiway) that is currently unavailable, must stop completely

Park
The arrival routing is finished, the aircraft reached its parking

position

Take-off
The departure routing is finished, the aircraft reached the

runway entrance to take-off

Table 3.10: The aircraft commands during taxiway routing

The commands of table 3.10, apart from changing the aircraft’s state, have an impact on the variable

features and metrics that each aircraft keeps. For example, commands “Hold” and “Hold-on” result in

the aircraft standing still on the taxiway, so they increase the hold time metric accordingly.

The command “Line-up” starts the routing process of the aircraft, so the time that it takes place is

3
 It is also possible that an aircraft appears directly at state 4. This will be explained in chapter 4.

30

recorded and when the command “Park” or “Take-off” is given, thus the routing process is finished,

this time is also recorded and their difference is the taxi time of the aircraft.

Another conclusion which can be deduced from the state transition model of figure 3.9 is that

the state of an aircraft determines its mode, i.e. states 1, 2 and 3 correspond to arriving mode and

states 5, 6 and 7 correspond to departing mode. The mode of the aircraft is quite important, because

the taxiway network graph is also bimodal, as discussed in section 3.1.1, and its form, therefore the

taxiways that the aircraft can follow, depends among others on the respective mode. To make it

simple: an arriving aircraft “sees” an arriving taxiway and a departing aircraft “sees” a departing one.

3.1.3 The Airport Operations

The Airport Operations constitute the third entity of the 4D Taxi Routing on Ground problem. Unlike

the Taxiway Network and the Aircraft, they are not part of the model itself but act as the “plug-in”

between the model and the outside world. An airport has many different types of operations, but the

ones that affect or interact with the taxiway routing system can be grouped into the categories

briefly mentioned at the beginning of this chapter, according to the kind of input they provide to the

taxiway routing process.

3.1.3.1 The Time-Schedule of Arrivals and Departures

The time that an aircraft enters the taxiway depends on the time that the flight operated by this

aircraft is scheduled to arrive or depart. Moreover, the flight schedule contains information, like the

airline that operates the flight, the corresponding airport and the type of the aircraft, which is

absolutely necessary for the generation of the route. The form of a flight schedule used in the

implementation (sample rows from the summer 2010 schedule for Stockholm-Arlanda, provided by

the Jeppesen TAAM team in contact with the airport authorities of Arlanda) is displayed on table 3.11.

time airline_code flight_no airport_code aircraft type arr/dep

09:00 U2 1574 GVA 319 D

09:05 BA 776 LHR 321 A

09:05 DY 3702 UME 733 A

09:05 OK 492 PRG 735 A

09:05 DL 203 JFK 752 D

09:05 QR 92 DOH 332 D

09:05 SK 1042 KRN 736 D

09:10 JZ 428 HAD F50 A

09:10 JZ 474 KID F50 A

09:10 SK 531 LHR 73W D

09:20 LH 3014 MUC 320 A

09:20 TK 1793 IST 320 A

09:25 SK 8 LLA 736 D

09:30 SK 157 GOT 736 D

Table 3.11: Sample of the flight schedule for Arlanda, 2010-11-08, from 09:00 to 09:30

31

The way to read this schedule is quite easy once one knows which airlines and airports correspond to

the codes of table 3.11. For example, an Airbus A321 operating flight BA-776 (British Airways) from

London-Heathrow is scheduled to arrive at 09:05 and a Boeing 737-600 operating flight SK-157 (SAS)

to Gothenburg-Landvetter is scheduled to depart at 09:30. The tables containing the airlines

operating at Stockholm-Arlanda and the destination airports - according to the flight schedule of

summer 2010 – can be found in Appendix III.

3.1.3.2 The Airlines and corresponding Airports

The flight schedule provides the time that each aircraft appears on the taxiway. It also provides the

airline and the corresponding airport of the flight, but the taxiway routing process is not concerned

directly about this information. The input to the Taxiway Routing System is the time and the pair of

terminal vertices that correspond to the source and destination of the route. In case of departures,

the aircraft is already parked at a gate, so it will start routing from there. In case of arrivals, however,

the aircraft must be routed to the appropriate parking area and this depends on the airline and the

airport it comes from.

It is already mentioned in the previous and the present chapter that an airport has a number

of terminals (not to be confused with the “terminal vertices” mentioned in the previous paragraph)

and there are specific parking stand areas on the apron which lead to and from each terminal.

Therefore, in order to find the destination vertex in case of arrivals, the knowledge of the terminal is

necessary, even though it is not sufficient in airports where a terminal has more than one parking

stand areas. The approach followed in the present work, regarding the determination of the

destination vertex given the terminal, will be presented in the next chapter.

So, the challenge is to find the airport terminal – if the airport has more than one terminal -

given the airline and the corresponding airport. For the purposes of this work, this function is just an

intersection. The separation of the passenger area of an airport in terminals is due to legal, handling

and administrative reasons. Different terminals are used for domestic flights, others for international

flights. Within the international terminals, there can be different groupings of destination countries,

depending on passport/visa controls and regulations. Table 3.12 shows the distinction of the

terminals of Stockholm-Arlanda airport [37].

Terminal Type Remarks

2 International Mostly used by low-cost airlines

3 Domestic Serves smaller aircraft from small domestic airports

4 Domestic The main domestic terminal (SAS operates here)

5 International The main international terminal, including non-Schengen arrivals

Table 3.12: The terminals of Stockholm-Arlanda airport

32

This table, together with the tables in Appendix III, gives an impression of how the terminal is defined

given the airline and the airport from which the aircraft departed. Usually, knowledge of this airport

is enough to define the terminal. For example, arrivals from non-Schengen countries will park at

terminal 5. Arrivals from regional domestic airports (Växjö, Karlstad, Halmstad, Mora, etc) will park at

terminal 3. A flight of SAS from Gothenburg will arrive at terminal 4. If there is more than one

terminal for a corresponding airport, an intersection with the set of terminals for the specific airline

is applied. For example, flights from Budapest can arrive at terminal 2 or 5. So, if the flight is

operated by a low-cost airline like Norwegian, it will arrive at terminal 2 and if it is operated by Malév

(the national carrier of Hungary) it will arrive at terminal 5.

3.1.3.3 The Runway Usage Pattern

At this point, the Airport Operations have defined the time and the terminal vertex of the parking

area. The last input needed by the taxiway routing process is the terminal vertex of the runway exit.

No matter if the aircraft is arriving or departing, the position where it will exit or enter the runway

must be generated. An airport has one or more runways and a runway has usually more than one

exit. In a non-trivial case, there will be a substantial number of runway exits to choose from. For

example, Stockholm-Arlanda airport has 3 runways with (10 + 4 + 8) = 22 exits (see maps in Appendix

I). The runways can be parallel or have different orientations or there can be a combination of

parallel and non-parallel runways [41]. The latter case can obviously be met only in airports with

more than two runways and is the case with Stockholm-Arlanda airport. The choice of which

runway(s) to operate at a given time depends on different factors like the load of traffic and the

weather conditions (wind direction, visibility), as well as safety and other regulations like the hour of

the day – at night for example the aircraft must use airways to land or take-off that are not close to

residential areas, in order to avoid noise disturbances [5], [8].

Based on these factors, a number of different runway usage patterns is created and at each

time one pattern is chosen and applied. As of October 2011, the patterns for Stockholm-Arlanda are

displayed on table 3.13 [5].

Pattern Arrivals Departures Traffic load

1 01L / 01R 01L / 01R High

2 19L / 19R 19L / 19R High

3 01L / 01R 01L / 08 High

4 26 19R Medium

5 19R 08 Medium

6 01L 08 Medium

7 26 01L Low

8 01R 01L Low

Table 3.13: The current runway usage patterns of Stockholm-Arlanda airport

33

Depending on the pattern used at a given time, the runway exits and entrances are determined.

Obviously these are exclusive subsets of the set of all the runway exits / entrances; the same way

cannot be used for the exit and entrance of aircraft at the same time. Once again, the approach

followed in the present work, regarding the choice of a runway exit / entrance from the available

subsets defined by the used pattern, will be presented in the next chapter.

3.1.3.4 Overview

The grouping and description of the airport operations that constitute the environment of the

taxiway routing process completes the presentation of the problem entities. Before closing this

section and proceeding to the formulation of the mathematical model, the following figure (3.14)

summarizes the discussions and definitions up to this point and serves as an overview of the subject

of the present work.

The Taxiway Routing System has the main focus; it is composed by the taxiway network and

the aircraft moving on it. The aircraft appear, dynamically transform and disappear from the system

within a moving time-frame. The airport operations define when (arrival or departure time) and

where (source vertex) an aircraft appears in the system, as well as where it will finish its route and

disappear (destination vertex), thus they provide the input to the system. The model of the system

acts as the mathematical abstraction where the optimization algorithm(s) will be applied in order to

propose a routing solution to the aircraft. When each aircraft reaches its destination, it has recorded

actual values for the metrics – taxi time, hold time and speed changes. These are the output of the

system and their evaluation will define the quality of the routing solution proposed by the respective

algorithm and test the performance of the algorithm to the problem of 4D Taxi Routing on Ground.

 Arrivals / departures
schedule

 Runway exit usage
 Airlines / corresponding

airports

Taxiway Network

Aircraft

Airport Operations

arr. / dep. time

source

destination

Evaluation

taxi time

hold time

speed changes

Taxiway Routing System

Model Optimization
Algorithm

Figure 3.14: Overview of the Taxiway Routing System

34

3.2 The Model
The problem of 4D Taxi Routing on Ground is about optimizing a set of objectives applied on the

Taxiway Routing System. According to our conception of the Taxiway Routing System analyzed in the

previous sections of the present chapter, this system is composed of the Taxiway Network and the

Aircraft.

3.2.1 The Taxiway Network

The Taxiway Network is modeled as a time-dependent, labeled, bimodal and directed graph. The

notion of time-dependence on the graph is expressed with a non-static weight function on its

edges, where time is assumed to be discrete, expressed as an integer time unit (for example seconds).

The graph is defined as follows:

where the set

is the set of vertices of the graph and corresponds to certain positions on the Taxiway Network; the

runway exits, the parking stands and the intersections of taxiways (crossings, merges and splits). The

labeling function of the vertices is therefore:

corresponds to ‘runway exit’, ‘parking stand’ and ‘intersection’ respectively. The vertices of the graph

are interconnected via edges which correspond to uninterrupted taxiways, in the sense that an

aircraft can traverse them without implications once it is permitted to. The set of edges is defined as:

and

is the static feature function, returning for each edge the length , the maximum speed and

wingspan allowed on the respective taxiway, as well as the supported modes for this edge, a

subset of {arrivals, departures} - where and - defined as

follows:

 only arrivals from to (one-way one-mode edge)

 only departures from to (one-way one-mode edge)

 arrivals and departures from to (one-way two-modes edge)

 arrivals from to , departures from to (two-way two-modes edge)

The set of possible next edges that can be followed after an edge depends also on the supported

modes for this edge. If , there is only one mode supported, so there is

one set of next edges. Otherwise, there are two sets of next edges, one for each mode. This can be

modeled as the transition function:

35

Each set can have one or more next edges, but there can also be no next edges – if the edge leads to

a terminal point at the given mode. Data examples of the static feature function and the transition

function have already been displayed on tables 3.6 and 3.7 respectively.

3.2.2 The Aircraft

The Aircraft are the agents moving on the graph. The set of aircraft, which has no predefined size

restriction, and the static feature function for each aircraft are defined as follows:

The function returns the dimensional features of each aircraft , i.e. its length , wingspan

and weight . For the present model only the wingspan is considered, even though the model can

be extended to include the other features as well (see the reasoning of section 3.1.2). In that case,

the feature function of the edges would have to be extended accordingly. For example, if the weight

feature is added as the output of function , a maximum weight feature would have to be added as

the output of function and the latter would restrict the allowance of aircraft on the edges based

on the comparison with the former.

The speed, state, mode and position of an aircraft are dynamic features, because they are

functions of time. Their definitions are presented below:

Based on these definitions, we can further elaborate:

 The speed of an aircraft is a real number greater than or equal to zero.

 The state of an aircraft is an enumerative type from 0 to 8, according to the

discussion of section 3.1.2. The aircraft can be considered as a Finite State Machine, given

the specified number of states and the transition table described also in the same section.

 The mode of an aircraft is derived implicitly from its state. States 1, 2 and 3

correspond to arriving mode, states 5, 6 and 7 to departing mode, while states 0, 4 and 8 do

not correspond to any mode, since these are the “non-taxiway” states.

 The position of an aircraft while it is taxiing (or being on hold on the taxiway)

– states 2, 3, 6, 7 – is defined by the current edge and the position on this edge, so it can be

modeled as a duple or alternatively as a triple , where is the

current distance from vertex .

36

 The position of an aircraft while it is parked or pushed back or waiting at a runway exit to

start taxiing – states 1, 4, 5 – is just the vertex of the corresponding parking stand or runway

exit, so (2) in this case can be defined using (1) as: .

3.2.3 The Weight Function

The weight of an edge has a “3-level” definition. On the first level, the weight is static and depends

on the features of the edge, namely its length and maximum speed, so the weight actually stands for

the minimum time to traverse the edge. On the second level, the weight is still static but also

depends on the aircraft that is about to traverse the edge. The wingspan of the aircraft must not

exceed the maximum wingspan allowed on this edge and the mode of the aircraft must be supported

by the edge. On the third level the weight becomes dynamic and depends on the current occupancy

of the edge. The occupancy of an edge can be defined as follows:

In the present model we assume that an occupied edge cannot be entered by another aircraft. This

restriction can be relaxed – and actually it is relaxed in the realization of the model (see chapter 4) -

in order to allow an aircraft enter an edge occupied by another aircraft , if both aircraft are

following the same direction and if the position of in the edge (i.e. the distance from vertex) is

greater than a specified minimum safety distance.

Having defined the occupancy function, the definition of the edge weight function can follow.

The first two levels are merged into one to provide the definition of the static weight:

Based on the static weight (4) and the occupancy function (3), the dynamic weight concludes this

section:

37

3.2.4 Routing Metrics and Objectives

The problem of 4D Taxi Routing on Ground can now be formulated. There is a graph described in

section 3.2.1 and aircraft – described in section 3.2.2 as finite state agents - moving on the graph. The

edges of the graph are supplied with dynamic weights which are functions of the edge features, the

aircraft features and time – described in section 3.2.3. The input to this model consists of:

1. A scheduled time that each aircraft enters the graph:

2. A source vertex:

3. A destination vertex:

The problem of 4D Taxi Routing on Ground is the assignment of a route for each aircraft :

which is consistent according to the structure and constraints of the graph and whose execution will

evaluate the following metrics:

1.

2.

3.

A routing is feasible if it is consistent and additionally the aircraft does not enter an occupied edge,

thus if . A feasible routing is optimal if it satisfies the problem objectives, thus minimizing

the overall taxi time, hold time and speed changes:

38

Chapter 4 Model Realization

The present chapter is an overview of the classes and algorithms built as a realization of the concepts

of the model described in the previous chapter. From a procedural aspect, the whole routing process

follows the sequence displayed on figure 4.1.

Flight Schedule Assignment Route Result Graphs

Airport
Operations

Optimizer Simulation Evaluation

Figure 4.1: Overview of the routing process

The flight schedule of an airport is the “driving force” of the routing process. Each arrival or

departure triggers a new routing on the taxiway. A sample of a flight schedule for Stockholm-Arlanda

is already displayed on table 3.11; here we use one of its rows as an example:

09:05 BA 776 LHR 321 A

At 09:05 flight BA-776 is expected to arrive. The airport operations will define the assignment of the

two terminal points on the taxiway – source and destination – of the route for this aircraft. Suppose

that at 09:05 runway usage pattern 4 is applied (for runway usage patterns see table 3.13). This

means that arrivals take place on runway 26. Based on the airport maps and runway exit

specifications, when an aircraft lands on runway 26, it can follow exit X2 or X3. X2 is randomly chosen

for this example. Flight BA-776 comes from London Heathrow, which means that the aircraft is about

to park on terminal 5. Terminal 5 is serviced by several parking stand areas, for this example P6 is

also randomly - and depending on its occupancy – chosen. So now the source-destination pair is

generated: [X2, P6].

With arrival time, source and destination already known, an optimization algorithm can be

used to generate the whole route – a sequence of edges or vertices on the taxiway – that the aircraft

will follow towards its destination. The resulting route, corresponding to the shortest path between

X2 and P6, is marked with thick green arrows on figure 4.2 and it is the following:

Route: [X2(11) 61 62 63 91 92 94 95 97 98 100 P6(158)]

39

ZP

ZN

P3

P4

P5ZM

X2

ZL P6

Y10

Y9

Y8

61 62

63

91

92

94

95

97

98

100

Figure 4.2: The arrival route followed by flight BA-776

The aircraft will taxi according to the assigned route. At the time that it exits the taxiway, the results

for this routing are recorded; taxi time, hold time, speed changes. For this example, the values of the

routing metrics were: taxi time = 150 seconds, hold time = 0, speed changes = 1. The total distance

covered was 831 meters, a rather short routing.

This procedure is followed for every aircraft arriving or departing. At the end, each flight is just

a set of values for the routing metrics. All these evaluations are gathered, aggregated and displayed

in various graphs, so that conclusions about the performance of the optimization algorithms can be

drawn. The classes that compose the realization of the model and the functionalities they support

are presented in section 4.1. The routing algorithm that builds upon the class functionalities and

binds the airport, the schedule and the optimization together is described in section 4.2. Finally, the

implemented optimization algorithms close this chapter in section 4.3.

4.1 The Classes
The classes that compose the realization of the model are eight and their distinction is based on the

three main entities defined in the previous chapter. The entity of the Taxiway Network is realized by

a class named AirportGraph, which is composed of vertices and edges. This class actually contains all

the information displayed on the graphs of figures 3.1 – 3.5 and 4.2. So, the distinction of the vertices

in runway exits, parking stand areas and intersections is made in the class of the AirportGraph. The

edges and the parking stands have their own structure and functionalities, so they are modeled as

separate classes that compose the AirportGraph: Edge and ParkStand. In the class diagram of figure

4.3, these three classes are distinguished by having green labels.

40

The entity of the Aircraft is realized by two classes, labeled with orange color: the AircraftType

which holds the static features of an aircraft (airline, model name, length and wingspan) and the

Aircraft itself which inherits from the AircraftType and additionally keeps all the dynamic features

and metrics (speed, position, state, taxi time, hold time, speed changes) as well as the commands

that route an aircraft as methods (taxi, hold, line-up, park, take-off – see table 3.10). There is also an

Airport class, labeled blue, which inherits from the AirportGraph, contains Aircraft and includes the

entity of the Airport Operations, thus binding everything together.

Finally, there are two more classes that realize the driving force of the application, which is the

flight schedule. The first is the SchedLine that contains the information for one flight, such as the

flight number, the airline and type of aircraft, the arrival-or-departure flag, the origin or destination

airport and the time the aircraft is scheduled to arrive or depart. The second is of course the

Schedule class, composed of schedule lines, which resembles the entity of a whole flight schedule.

The flight schedule classes are labeled with yellow color on the class diagram displayed below:

+getFinished() : bool

-scLines : object
-finished : bool

Schedule

+setAcInd()
+setFinished()

-flightNo : string
-time : int
-mode : bool
-corrAp : string
-airline : string
-acType : string
-acInd : int
-finished : bool

SchedLine

1

-scLines

*

-airline : string
-name : string
-length : float
-wingspan : float

AircraftType

+init()
+lineUp()
+updPriority()
+holdOn()
+taxi()
+updPosSpeed()
+changeSpeed()
+hold()
+park()
+takeOff()

-state : byte
-times : int
-position : int
-speed : float
-holdTime : int
-speedChanges : int

Aircraft

-initAircraft()
-findRunExit()
-findTerminal()
-findStandArea()
-findAircraft()
-findSrcDest()
-getPriority()
-calcMargin()
-updateEdges()
+assignAircraft()
+checkWaitLines()
+routeAircraft()

-aircraft : object
-airlines
-corrApts
-patterns

Airport
1

-aircraft

*

#getDestinations()
#getLengthSpeed()
#findEdge()
+getCurrentGraph()

-edges : object
-vertices
-parkStands : object
-runExits

AirportGraph

+setOccupied()
+setPreOcc()

-vFrom : int
-vTo : int
-vNext
-mode
-length : float
-wingspan : float
-occupied
-preOcc : bool
-stWeights
-dnWeights

Edge

1

-edges

*

+setOccupied()

-ID : int
-terminal : int
-standArea
-occupied : bool

ParkStand

1

-parkStands

*

Figure 4.3: The class diagram

41

The above listings of properties and methods for the implemented classes are not exhaustive. There

are still some more hidden or auxiliary features, but the purpose of this section is to present the

essential functionality rather than getting into every detail. This functionality, the way it is structured

and the design choices are developed in the coming section.

4.2 The Routing Algorithm
The routing algorithm is based on a specified airport, a flight schedule to be executed on this airport

and an optimization algorithm (or a suite of algorithms) that decide on the 4D routes that the aircraft

will follow on the taxiway. Everything must be interchangeable; the airport is just a set of data files

with a given structure loaded as input before the routing starts, the schedule is also an input file with

the only restriction being its compliance with the airport. Most significantly, the routing process must

be independent of the optimization (see figure 4.1), it should just execute and evaluate the routings

generated for each aircraft. A rough overview of the routing algorithm in pseudo-code is given on

figure 4.4. The main procedures are emphasized in bold letters and analyzed right afterwards.

 Execute Route

 Initialize airport; Load schedule

 Set time unit; Set current time t = 0

 While schedule is not finished loop

 If time for a new schedule line: Assign aircraft

 Check the waiting lines

 Route the aircraft currently on the taxiway

 t = t + time unit;

 End loop

 End

Figure 4.4: Overview of the routing algorithm

The main conclusion regarding the routing process is that, after all initializations, it traverses time

and iteratively creates “snapshots” capturing the situation on the taxiway with a constant period

defined as an input parameter (time unit). This time unit should intuitively be a relatively small

number of seconds, so that there is a frequent “refresh” of the taxiway situation. At every time point

- every “time unit” seconds - and until all flights of the schedule are routed:

 If the time has come for the next scheduled arrival or departure, this routing is assigned to an

aircraft which is then put on the waiting line (runway exit or parking stand area)

 If there are aircraft on the waiting lines from the previous iteration, the first of them can

enter the taxiway

 For all aircraft currently routing on the taxiway, the position and speed for this snapshot are

calculated and further decisions are made if necessary

42

4.2.1 Initialize the Airport

The airport initialization is the creation of an Airport object with all the data for the structural and

operational features already described and analyzed. In this implementation there are two input files,

one for the structural and one for the operational features of the airport. The first input file is used to

create the Airport Graph object with the following properties (see the class diagram - figure 4.3):

 An array of vertices with the distinction of whether they are runway exits, parking stand

areas or intersections

 A composite structure (an array of cells) for the runway exits, containing the runway they are

attached to and the mode-direction pairs they support

 An array of Edge objects

 An array of Parking Stand objects

Each Edge object has a pair of vertices (vFrom, vTo) and one or two sets of next edges (vNext),

depending on its supported modes, as well as a length, a maximum allowed speed and wingspan. The

edges are initially not occupied and their static weights are equal to their dynamic weights and

computed as functions of the mode, length and wingspan. As the present chapter is the realization of

the entities and the model of chapter 3, the present discussion is based completely on the definitions

of section 3.2. In the class constructor there are several checks performed for data consistency within

an edge (the existence of vertices, the length and wingspan are positive numbers etc) and among the

created objects (no duplicates).

Each Parking Stand object corresponds to a parking position on the apron. A parking stand

belongs to a terminal and is part of a parking stand area, so it can be reached through a stand area

terminal vertex of the Airport Graph. The vertex where an aircraft will finish its arrival routing is not

always the same as the vertex where this aircraft will enter the taxiway again in order to start

departure routing. For example, compare the maps A (arrivals) and C (departures) in Appendix I.

There is parking stand - or gate - 10 which belongs to terminal 5 of Stockholm-Arlanda airport. An

arriving aircraft aiming to park there will exit the taxiway from ZN (P4 on figure 3.1), but an aircraft

parked there will enter the taxiway from ZM (P5 on figure 3.2) in order to depart. Apart from these

properties, the implementation of a parking stand should also consider its occupancy, in order to

route aircraft only to available parking stands at each time.

The Airport object inherits the structural features from an Airport Graph object and adds the

operational ones using the second input file. The operational features, as described in section 3.1.3,

are the following:

 A composite structure (an array of cells) for the airlines that operate on the specific airport,

containing the 2-character IATA code (for example “LH” for Lufthansa, “SK” for SAS etc) for

each airline and the set of terminals it uses

 A similar structure for the source / destination airports containing the 3-character IATA code

for each airport and the set of terminals used for flights to and from this airport

 An array of runway usage patterns with the respective runways and directions used under

each pattern (see table 3.13)

There is one last “piece” of information that can be added to the Airport object, if this information is

available. An airport may have aircraft parked on its apron before the time that the schedule starts.

43

So, initializing the airport can also include the introduction of aircraft at certain parking stands

(overnight parking positions), which are accordingly set as occupied. This means that a number of

Aircraft objects are created given their types; their current state is set directly to 4 (parked) and their

position is the stand area vertex that corresponds to the parking stand where they are located.

4.2.2 Assign Aircraft

The airport is initialized, possibly with a number of aircraft at overnight parking positions. A runway

usage pattern is chosen to be the current and a time unit for the iterations is set. Then time starts

running until the scheduled time for the first arrival or departure is reached. Apart from the time and

the mode, a Schedule Line object has the airline, the source / destination airport and the aircraft type

as properties and it has to be assigned to an aircraft. Supplied with all this information, assignAircraft

calls the following methods:

1. findRunExit: according to the current runway usage pattern and the mode (arrival, departure)

of the schedule line to be assigned, a set of possible runway exits is created (see also section

3.1.3.3). A runway exit and an alternative are chosen randomly.

2. findTerminal: given the source airport and the airline, the terminal where the aircraft must

be parked is found (see also section 3.1.3.2).

3. findStandArea: first a list of unoccupied parking stands is produced, given the terminal. Then

a stand area and an alternative are chosen randomly according to the parking stands.

4. findAircraft: given a terminal and an aircraft type, an aircraft of this type parked at a stand of

this terminal is found.

5. findSrcDest: calls methods 1-4. In case of an arrival, the source is a runway exit (findRunExit)

and the destination is a stand area (findStandArea). In case of a departure, the source is a

stand area where an already existing aircraft is parked (findTerminal - findAircraft) and the

destination is a runway “entrance” (findRunExit). In both cases, there is a check performed

whether a path between these two vertices exists and if it does not exist, the alternative

vertices are also checked.

The outcome of this procedure is to generate a source-destination pair of vertices which fulfill the

operational requirements of the given flight schedule line and for which there exists a valid path on

the taxiway that connects them.

In case of an arrival, a new aircraft must be introduced to the system, so an Aircraft object is

created (state = 0). In case of departures, an already existing aircraft parked on the apron (state = 4)

is chosen. The source-destination pair is given to the optimization algorithm that produces the full

route - including the respective speed vector – to be followed. The route is assigned to the aircraft

and the start-routing time is set, so that the total taxi time can be computed when the aircraft

reaches its destination. Finally, the aircraft is placed (lined-up) in its initial position, with its state set

from 0 to 1 or from 4 to 5. Therefore, according to the table 3.10, procedure assignAircraft invokes

the commands “Init” and “Line-up”.

44

4.2.3 Check Waiting Lines

While assignAircraft described in the previous section initializes aircraft and assigns scheduled arrival

or departure routings to them, thus being responsible for the state transitions and ,

checkWaitLines is responsible for the next step, which is to give the permission to the aircraft to

enter the taxiway and start routing. So, checkWaitLines results in the state transitions

and .

Each terminal vertex of the Airport Graph is assumed to have a queue or waiting line for the

aircraft that aim to enter the taxiway from this source. The notion is quite simple: when an aircraft

 appears at a runway exit or a parking stand area ready to start routing, a method called

getPriority is called to assign a priority to this aircraft on the waiting line of the specific vertex.

Priority means that there is no other aircraft ahead on the same waiting line, so the command

“Taxi” is invoked, the aircraft state changes to 2 or 6 and the aircraft starts routing at the next

iteration. Priority means that there are currently aircraft ahead on the same waiting

line, so the command “Hold-on” just increases the hold time of the aircraft . Finally, when an

aircraft leaves the waiting line and starts routing, the command “Update-priority” is invoked for all

the others, decreasing their priority by 1.

4.2.4 Route Aircraft

Up to this point all the procedures described are pre-routing; first the airport is initialized and then

time starts running and the scheduled arrivals and departures are assigned to aircraft, which in turn

line-up until they can enter the taxiway. The most important part is obviously the actual routing of

the aircraft which is described in the present section. The purpose of the routeAircraft procedure is

to route each aircraft from its source to its destination via a sequence of taxiways with respect to the

following assumptions / restrictions that attempt to make this routing as realistic as possible:

 The aircraft moves with a speed that must not exceed the maximum speed allowed on the

edge it traverses.

 When an aircraft enters a new edge: if the edge has speed limit lower than the current speed

of the aircraft, it must decelerate. If the edge has speed limit higher than the current speed

of the aircraft, it can accelerate. However, many speed changes must be avoided according

to the discussion of the first chapter.

 There is a maximum acceleration and deceleration which is realistically acceptable. These are

supplied as input parameters to the routing algorithm.

 The movement of an aircraft is considered to be linear, so the distance covered is equal to

the product of speed () and time (), and the relation between speed and

acc-deceleration () is . For example, suppose that an aircraft is accelerating

from to and that the maximum acceleration allowed

is . This means that the speed change will take

 seconds

during which the aircraft will cover a distance of

 meters.

 The restriction of entering an occupied edge is relaxed in the following manner: if an aircraft

 is about to enter an edge with direction occupied by another aircraft which

moves in direction , then obviously must stop and wait for the edge to become free,

45

otherwise there will be a frontal crash or a mutual blocking (deadlock) situation. However, if

the edge is occupied by an aircraft which moves in the same direction , then can

enter, as long as the distance between the two aircraft is greater than a minimum safety

distance, supplied to the routing algorithm as an input parameter (like time unit and

maximum acc-deceleration).

 Generally when an aircraft follows another aircraft, the distance between them must always

be greater than the minimum safety distance. The following aircraft must therefore adapt its

speed to the speed of the preceding one.

 When two aircraft are about to meet at an intersection (a crossing or a merging), priority is

given to the one that arrives first at this point. The other aircraft must decelerate or hold.

 No overtaking is allowed.

Under these assumptions and at each time point a new snapshot of the situation on the taxiway is

created by executing the procedure routeAircraft for each aircraft that is located on the taxiway at

that time point. This procedure consists of the following steps:

1. Method calcMargin is called, which calculates the time margin from the current position of

an aircraft until it reaches an obstacle, which might be a preceding aircraft or an occupied

edge.

2. Depending on the margin and the current state of the aircraft, the appropriate command is

given: “Change speed”:

 “Hold”:

 “Taxi”:

3. As a result of steps 1 and 2, the position and speed of the aircraft are updated to reflect what

has happened since the last snapshot. This is command “Update-position-speed”.

4. If the aircraft reached its destination, command “Park” or “Take-off” is invoked, the state is

changed to 4 or 8 and the aircraft is not considered anymore, because it is out of the taxiway.

5. If the aircraft is still on the taxiway and depending on its new position, the edges of the graph

are updated (set occupied or unoccupied) using method updateEdges.

This is an overview of the routing algorithm. Certain inefficiencies have been found while running the

simulations and they will be presented in chapter 5. The presentation of the optimization algorithms

can now follow.

4.3 The Optimization Algorithms
The optimization algorithms implemented for the present work were an iterative version of Dijkstra’s

Shortest Path Problem algorithm [39] combined with a linear programming formulation [34]. The

algorithms are not “mixed”; they are rather used in a complementary way and a sequential ordering.

Dijkstra’s algorithm is used for generating a shortest path on the taxiway network graph between the

two terminal vertices. This path is a set of edges and each edge has a maximum speed allowed. The

linear formulation is applied on this “speed vector” in order to find a balance between two objectives:

46

minimize taxi time and minimize speed changes. A more detailed presentation of both algorithms is

given in the following sections.

4.3.1 The Iterative Version of Dijkstra’s Algorithm

The algorithm of Dijkstra is “a graph search algorithm that solves the single-source shortest path

problem for a graph with nonnegative edge path costs, producing a shortest path tree” [39]. The

algorithm starts from a given source vertex of the graph and finds the minimum cost path between

this vertex and every other vertex of the graph. The detailed presentation of how Dijkstra’s algorithm

works is out of the scope of the present work, since this algorithm is well-studied and extensively

referenced. The input to Dijkstra’s algorithm is a graph and a source vertex. Optionally, a destination

vertex can be given as an input and in that case the algorithm is slightly modified in order to stop

once it assigns a final cost to this destination vertex. This is the case in our implementation, since the

source-destination pair is already known and the purpose is to find the minimum cost path that

connects the two vertices.

The Airport Graph class provides a method called getCurrentGraph, which returns a graph

suitable for algorithms like Dijkstra’s by keeping only the arrival or the departure “component” of the

whole graph. For example, suppose that the airport graph is the one displayed on figure 3.3. A valid

path for an arriving aircraft should not include edges used only for departures, so the method

getCurrentGraph will return the graph of figure 3.4, which is unidirectional and where Dijkstra’s

algorithm can be applied without further modifications. This method can result to an even smaller

graph by cutting off edges where the aircraft cannot enter because of wingspan or current occupancy

restrictions. So, the method getCurrentGraph takes the total graph, the mode and wingspan of the

aircraft and a static-or-dynamic decision flag as inputs and outputs the according component sub-

graph.

Now Dijkstra’s algorithm has all the input it needs in order to create a deterministic shortest

path, which will be assigned to the aircraft. However, there is one feature of the model created for

the problem of 4D Taxi Routing on Ground that can lead the application of the algorithm of Dijkstra

to invalid results. This is the transition table mentioned in section 3.1.1.2, which dictates the next

vertices (vNext) that can be reached from each edge. The problem can be illustrated with an example.

Figure 4.5 shows the taxiway network graph of the southern part of Stockholm-Arlanda airport. This

is actually the arrival component of the graph of figure 3.2. Parking stand areas P5, P8 and P10 and

some edges which are only used for departures are not present here and all remaining edges are

unidirectional. The flow of traffic is clearly directed from the runway exits to the parking stand areas.

In this example, we suppose that an aircraft has just arrived at runway exit Y1 and is about to

park at a stand serviced by P13. Dijkstra’s algorithm has a compatible graph (figure 4.5), a source (Y1)

and a destination (P13). The question is what the output of the algorithm will be.

47

ZM

ZL P6

P7

Y10

Y9

Y8

Y7

Y6

ZK

ZJ

P9ZH

Y5

Y4

ZG

P11ZE-ZF

Y3

Y2

Y1

P12

U

D

P13

UA UB UC

24

27

32

23

120 121

126

31

33

34

36

37

38

41

42

43

45

48

104

105

107

108

109

111

112

114

115

116

118

119

35 117

P15 P16P14

Figure 4.5: The arrival “component” of the southern part of Stockholm-Arlanda airport

48

The “pure” version of the algorithm does not consider any invalid transitions when searching the

graph for shortest paths. An edge directed from to can always be followed within a path, so

in this example the algorithm will produce this sequence of vertices:

[Y1 23 24 27 32 120 121 126 P13]

However, based on the airport taxiway maps, an aircraft reaching vertex 27 coming from vertex 24 is

not permitted to turn to 32; it can only proceed straight to 31. The part of the first path that is not

valid is marked with dashed red arrows.

The algorithm of Dijkstra iterates by creating a list of unvisited vertices from a current vertex

which is then considered visited and assigned a final and minimal distance. The addition to the “pure”

version, which created a first “tailored” version, was to intersect the list of unvisited vertices with the

list of valid transitions from the current vertex coming from its previous one. For example, when

starting the algorithm of Dijkstra from vertex Y1, it assigns a minimum distance to 23, 24 and 27 and

creates the path [Y1, 23, 24, 27]. At the next iteration, the current vertex is 27 and its previous is 24.

The list of unvisited neighbors contains vertices 31 and 32, according to the direction of the edges.

This is intersected with the list of valid transitions from edge [24, 27] which contains only 31.

This way, the restriction of the list of neighbors that the algorithm of Dijkstra considers, seems

to overcome the path validity problem. But it does not and this can be shown with a second example

based on the same graph and scenario. After 27, the current vertex is 31, as discussed in the previous

paragraph. The only possible transition from edge [27, 31] is 33; 32 could only be reached if the

aircraft used runway exit Y3. Vertex 33 is followed by 34 and then there are two next vertices, both

valid: 35 and 36. If vertex 35 is followed, the concluding path will be: [Y1, 23, 24, 27, 31, 33, 34, 35,

116, 117, P11]. This is a completely valid path and the optimal from Y1 to P11. However, within this

path, vertex 116 is assigned a final distance and considered visited. This means that vertex 118 and

the whole graph below it will never be reached and their resulting distances will be infinite.

The conclusion is that - on the one hand - the “pure” algorithm of Dijkstra cannot be applied to

this type of graph, because it can generate invalid shortest paths. On the other hand, the restriction

of applying a list with valid transitions can lead the algorithm to not exploring parts of the graph thus

not finding paths that actually exist. The solution which was finally adopted was a third, “iterative”

version of Dijkstra’s algorithm. This version assumes that a path from a given source to a given

destination exists and, if the application of the “tailored” version (the one using the list of transitions)

fails to find the path, it uses the second, third, etc vertex of the distance vector as intermediate

sources and iteratively runs the algorithm until such a vertex is found from which the destination can

be reached. In the case of the graph of figure 4.5 and the source-destination pair [Y1, P13], this

intermediate vertex is 36: If vertex 36 is used as a source, a shortest path to P13 is found. The

concatenation of and produces the following:

[Y1, 23, 24, 27, 31, 33, 34, 36, 37, 38, 41, 42, 43, 45, 48, 104, 105, 107, 108, 109, 111, 112, 114, 115,

116, 118, 119, 121, 126, P13]

This path is marked with thick green arrows. The worst case is when the path indeed does not exist

and the “iterative” version runs N iterations of Dijkstra’s algorithm to conclude that. This imposes a

polynomial overhead of one order of magnitude to the algorithm’s complexity.

49

4.3.2 The Linear Programming Formulation

The iterative version of Dijkstra’s algorithm presented in the previous section produces a sequence of

vertices or edges, which is the route to follow. Each edge is a taxiway or a fragment of a taxiway and

has a speed limit according to the form of this taxiway, as already mentioned. It is also discussed that

the speed of an aircraft at each time determines all the metrics for this aircraft (taxi time, hold time,

speed changes), as well as its position at each time, which plays an important role on the routing of

other aircraft that happen to taxi simultaneously. The speed of the aircraft makes the problem of

Taxiway Routing a 4D one and much more complex than a variation of a shortest path problem.

Acknowledging the importance of the aircraft speed, a linear programming formulation is

implemented in order to provide a “speed pattern” to the aircraft. This pattern can be considered as

a set of directions, like for example: “taxi from point (vertex) 23 and up to 34 with a constant speed

of 18 knots and then turn right to 35 with a speed of 12 knots…” So, this pattern - the output of

solving the LP formulation - is just a vector with a speed value for each edge of the route that the

aircraft will follow. The input to the LP solver is a same size vector with the maximum allowed speed

for each edge, i.e. the set of constraints.

So, we have a sequence of edges, each with a (possibly different) maximum allowed speed.

The purpose of this optimization is to assign a routing speed to each edge that is less than or equal to

the speed limit and additionally finds a balance between the two conflicting objectives: minimize taxi

time and minimize speed changes. There are two extreme solutions, each taking into account only

one of the objectives. The first is to route the aircraft with the maximum speed at each edge; i.e. use

the input vector as output. This solution minimizes taxi time, because the aircraft will taxi with the

maximum allowed speed, but it ignores the speed changes and is actually not a realistic solution; an

aircraft is not a race car. The second extreme is to route the aircraft with a completely steady speed,

which is the minimum value of the input vector. This minimizes speed changes and produces a totally

smooth routing but also a very slow one.

The idea for the LP formulation that was implemented was taken from section 2.5 of the book

[24]. The LP problem described at that section is called “Ice-Cream All Year Round” and is about an

ice-cream factory that wants to setup the production plan for the coming year based on sales

predictions for each month. One solution is to produce just-in-time, but this may lead to great

variations in the produced amount, which have significant costs. On the other hand, a completely flat

production can lead to storage costs for the surpluses of some months. The purpose is to find a

compromise that minimizes the cost both from changes in production and from storage of surpluses.

50

Chapter 5 Evaluation

The classes and algorithms described in chapter 4 were implemented for evaluation and testing in

MATLAB. The airport used as a case study was Stockholm-Arlanda. According to the procedure

described in section 3.1.1.2, the resulting taxiway graph for this airport has 22 runway exits, 16

parking stand areas and 130 intersections, which make a total of 168 vertices. The number of parking

stands corresponding to the 16 stand areas is 88. The edges of the graph are 256, divided in the four

edge types as:

Mode Operation #Edges

[1, 0] Only arrivals 53

[0, 1] Only departures 46

[1, 1] Both modes in the same direction 69

[1, -1] Both modes in opposite directions 88

Table 5.1: The number of edges per type

There are two matrices in Appendix II, displaying the time-distances for each pair of “runway exit –

parking stand area”, computed by iterative executions of the n-Dijkstra algorithm as presented in

chapter 4. It is not obvious that the distance between - for example – runway exit Y1 and parking

stand P1 is the same as the distance [P1, Y1] and the reason is that the graph is not the same in

arriving and departing mode, so the shortest path can vary. Moreover, there are some runway exits

used only for arrivals, so if they are considered destinations the distance is infinite. Concluding, it is

possible that a path [A, B] exists, while the path [B, A] does not exist.

The airlines and origin/destination airports used for determining the terminal and therefore

the parking stand area as a destination vertex for aircraft in arriving mode can be found in Appendix

III, where the types of aircraft flying to Arlanda (according to the flight schedule of summer 2010) are

also listed.

5.1 Simulation Setup
The simulation routings were based on the actual flight schedule of Stockholm-Arlanda airport for

summer 2010. The initial thought was to execute this flight schedule for a chosen day, in order to

test the model implementation and the optimization algorithms on realistic data. However, at the

beginning of this chosen day the airport would not have any aircraft parked on its apron and this

does not correspond to reality. Moreover, there would be a consistency issue if an early departure

according to the schedule could not find any aircraft to be assigned to.

At most medium to large airports, including Arlanda which is also a hub of Scandinavian

Airlines, there is a number of aircraft in overnight parking positions to depart at the next or one of

the next days. A realistic airport implementation should consider this fact and since there was no way

of knowing the number, fleet type and airline of aircraft parked at Arlanda at a given night in summer

2010, an alternative approach was to execute the flight schedule for two consecutive days; the first

day would be a “preparation” day at the end of which there would be aircraft in overnight parking

51

positions for the execution of the “regular” day schedule. The days chosen were the 11th and 12th of

August 2010 because they were the ones with the maximum number of flights, 628 in total, within

the specified period. The routing parameters, as presented in chapter 4, were given the following

values:

 The time unit for the execution loop would have to be small enough to keep a detailed

control of the routing process. However, a time unit of 1 second would make the process

very slow, as there would be 48*60*60 = 172800 loop iterations for a 2-day schedule. The

final choice was a time unit of 10 seconds.

 The minimum safety distance was set to 100 meters.

 The maximum acceleration / deceleration of an aircraft were set to . This is equal

to approximately , where - the g-force “associated with an object is its acceleration

relative to free-fall” [44].

A number of 100 test runs of the 2-day schedule for different runway usage patterns were performed

at first; not all of them were successful. The most common errors were the following (error rates are

displayed on table 5.2):

1. A flight could not be assigned because there was no aircraft available at that time.

2. An aircraft entered an edge occupied by another aircraft.

3. An aircraft “crashed” with another aircraft, i.e. their distance at some point became less than

the minimum safety distance.

4. Two aircraft fell in a deadlock from which they could not escape and as the time proceeded

more aircraft were gathering behind them thus forming two increasing rows of holding

aircraft.

The first 3 errors can be considered as problems deriving from the design choices of the routing

algorithm. There were modifications / improvements made accordingly, but the occurrence of these

errors was not ruled out completely. On the other hand, the deadlock is a rather useful outcome, as

it shows the inefficiencies of the applied version of Dijkstra’s algorithm to the problem of 4D Taxi

Routing on Ground, which is one of the conclusions of the present thesis.

The outcomes of the first test runs of the routing process led to the finally adopted simulation

setup. Different runway usage patterns lead to the utilization of different parts of the taxiway and

the results vary accordingly. So there is a point in grouping the simulations by the runway usage

pattern, as it can also be concluded from the results presented in the next section.

5.2 Presentation of the Results
The 2-day flight schedule for Stockholm-Arlanda airport was simulated for each of the eight runway

usage patterns. A successful simulation of this schedule, which produces 628 taxiway routings, needs

about 18-20 minutes to be completed on a PC with a Pentium® Dual-Core T4300 CPU running at

2.10GHz. An unsuccessful simulation obviously needs less than this time, since the execution stops

when the error is produced. However, there is no error explicitly produced when the deadlock occurs

because this is no violation of the routing rules; the aircraft just gather in rows and hold on the

taxiway. The identification of this situation was made possible with the following assumption:

52

 There is a holding time limit for each aircraft, after which the aircraft is assumed to be

blocked. This limit was set to 600 seconds = 10 minutes (of simulation time).

 The number of aircraft being blocked is constantly recorded. If at some time this number

exceeds a limit, the simulation execution stops and the “deadlock” result is returned. This

limit was set to 5 aircraft, so if more than 5 aircraft have been holding on the taxiway for

more than 10 minutes, we assume that the blocking is permanent.

Under these assumptions and using the set of parameters as described above, a number of up to 20

successful or up to 40 total simulations were executed for each runway usage pattern. The aggregate

outcomes are displayed in table 5.2.

 success error deadlock total succ %

pattern 1 4 6 30 40 10,00%

pattern 2 9 20 11 40 22,50%

pattern 3 20 14 0 34 58,82%

pattern 4 20 0 0 20 100,00%

pattern 5 12 27 1 40 30,00%

pattern 6 20 18 0 38 52,63%

pattern 7 20 3 0 23 86,96%

pattern 8 12 28 0 40 30,00%

 117 116 42 275 42,55%

Table 5.2: The aggregate outcomes of simulations per runway usage pattern

Considering the successful simulations, the aggregate results for the routing metrics are displayed in

table 5.3.

pattern

1
pattern

2
pattern

3
pattern

4
pattern

5
pattern

6
pattern

7
pattern

8

Average speed
(m/sec) 7,81 7,71 6,97 6,84 6,79 6,50 6,85 7,28

Average speed
(knots) 15,18 14,98 13,54 13,29 13,20 12,63 13,31 14,15

Average distance
(m) 2978 2830 2013 1883 1692 1627 1867 2413

Average taxitime
(sec) 381,39 367,28 288,98 275,46 249,14 250,30 272,69 331,56

Average # of sp.
changes 3,52 3,41 2,62 2,60 2,34 2,26 2,56 3,31

Maximum hold time
(sec) 207 407 124 148 169 206 193 159

Table 5.3: The aggregate results of successful simulations per runway usage pattern

Based on tables 5.2 and 5.3, some remarks can be made and some conclusions can be drawn, which

provide reasoning on the correctness and effectiveness of the model and the algorithms.

53

1. Runway usage patterns 1 and 2 use runways 01L/19R and 01R/19L for mixed operations

(arrivals and departures simultaneously). Runway 01R/19L – see maps B and D in Appendix I

– is the most distant runway from the terminal area and every aircraft taxiing to or from this

runway must be routed via taxiway U or W. These are long and straight taxiways, so an

aircraft can taxi with a high speed. This fact is supported by the results: patterns 1 and 2 lead

to the highest average speed and the longest average distance, followed by pattern 8, where

runway 01R/19L is also used.

2. Taxiways U and W support both modes in opposite directions and runway usage patterns 1

and 2 use both modes. This combination, supported by the length of these 2 taxiways, leads

aircraft to deadlocks, which justifies the fact that simulations resulted in deadlocks only

under patterns 1 and 2. Pattern 8 also uses taxiways U and W but in only one mode, so it

does not result in deadlocks. In general, patterns 1, 2 and 8 have the lowest success rates.

3. The runway usage patterns where the number of successful simulations reached the target

number 20 were 3, 4, 6 and 7. These use one runway only for arrivals and one runway only

for departures and the directions of exiting or entering these runways, which respectively

define the sources and destinations of the taxiway routes, result to rare meetings of aircraft

at intersections, thus minimal conflicts.

4. The average taxi time varies, depending on the runway usage pattern, from 250 seconds =

4:10 minutes to 380 seconds = 6:20 minutes. According to [8], typical taxi time at Stockholm-

Arlanda airport is between 5 and 7 minutes, excluding delays on the runway exit in order to

obtain taxi clearance or delays outside the parking stand area if another aircraft is pushed

back at the same time. On average the results of the simulations are therefore comparable

to reality.

In the following pages, the results are illustrated in the form of graphs. For each runway usage

pattern there are 4 graphs:

1. The distribution of the number of aircraft according to their taxi time, grouped in ranges of

30 seconds

2. The taxi time per distance covered, including a tendency line whose angle with the horizontal

axis corresponds to the average taxi speed

3. The hold time per distance covered

4. The speed changes per distance covered

In the third and fourth graph (hold time, speed changes) for each pattern there is no clear tendency

or relation between the respective metrics and the distance covered, even though one can notice

that longer distances are more likely to result to more changes of speed and longer hold times. In

contrast to the taxi time, which naturally depends also on the distance to be covered, the other two

metrics can be considered more as qualitative aspects of the routing solutions. A “good” or efficient

solution can result to no speed changes and no hold time if an aircraft follows a route that avoids

conflicts completely, no matter how long the covered distance is. A final discussion based on these

evaluations will follow in the next chapter, which concludes this work.

54

5.2.1 Pattern 1 - Mixed Operations on Runways 01L and 01R

Figure 5.1: The distribution of aircraft per taxi time

Figure 5.2: Taxi time per distance covered, including the tendency line

0

10

20

30

40

50

60

70

120 180 240 300 360 420 480 540 600 660 720 780 840 900

Pattern 1 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

55

Figure 5.3: Hold time per distance covered

Figure 5.4: Number of speed changes per distance covered

56

5.2.2 Pattern 2 - Mixed Operations on Runways 19L and 19R

Figure 5.5: The distribution of aircraft per taxi time

Figure 5.6: Taxi time per distance covered, including the tendency line

0

10

20

30

40

50

60

70

9
0

1
2

0

1
5

0

1
8

0

2
1

0

2
4

0

2
7

0

3
0

0

3
3

0

3
6

0

3
9

0

4
2

0

4
5

0

4
8

0

5
1

0

5
4

0

5
7

0

6
0

0

6
3

0

6
6

0

6
9

0

7
2

0

Pattern 2 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

57

Figure 5.7: Hold time per distance covered

Figure 5.8: Number of speed changes per distance covered

58

5.2.3 Pattern 3 - Mixed Operations on 01L, Arrivals on 01R, Departures on 08

Figure 5.9: The distribution of aircraft per taxi time

Figure 5.10: Taxi time per distance covered, including the tendency line

0

10

20

30

40

50

60

70

80

90

120 150 180 210 240 270 300 330 360 390 420 450 480 510

Pattern 3 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

59

Figure 5.11: Hold time per distance covered

Figure 5.12: Number of speed changes per distance covered

60

5.2.4 Pattern 4 - Arrivals on Runway 26, Departures on Runway 19R

Figure 5.13: The distribution of aircraft per taxi time

Figure 5.14: Taxi time per distance covered, including the tendency line

0

20

40

60

80

100

120

140

160

120 150 180 210 240 270 300 330 360 390 420 450 480

Pattern 4 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

61

Figure 5.15: Hold time per distance covered

Figure 5.16: Number of speed changes per distance covered

62

5.2.5 Pattern 5 - Arrivals on Runway 19R, Departures on Runway 08

Figure 5.17: The distribution of aircraft per taxi time

Figure 5.18: Taxi time per distance covered, including the tendency line

0

20

40

60

80

100

120

90 120 150 180 210 240 270 300 330 360 390 420 450

Pattern 5 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

63

Figure 5.19: Hold time per distance covered

Figure 5.20: Number of speed changes per distance covered

64

5.2.6 Pattern 6 – Arrivals on Runway 01L, Departures on Runway 08

Figure 5.21: The distribution of aircraft per taxi time

Figure 5.22: Taxi time per distance covered, including the tendency line

0

20

40

60

80

100

120

120 150 180 210 240 270 300 330 360 390 420

Pattern 6 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

65

Figure 5.23: Hold time per distance covered

Figure 5.24: Number of speed changes per distance covered

66

5.2.7 Pattern 7 – Arrivals on Runway 26, Departures on Runway 01L

Figure 5.25: The distribution of aircraft per taxi time

Figure 5.26: Taxi time per distance covered, including the tendency line

0

20

40

60

80

100

120

120 150 180 210 240 270 300 330 360 390 420 450 480 510

Pattern 7 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

67

Figure 5.27: Hold time per distance covered

Figure 5.28: Number of speed changes per distance covered

68

5.2.8 Pattern 8 – Arrivals on Runway 01R, Departures on Runway 01L

Figure 5.29: The distribution of aircraft per taxi time

Figure 5.30: Taxi time per distance covered, including the tendency line

0

10

20

30

40

50

60

70

80

90

100

120 150 180 210 240 270 300 330 360 390 420 450 480 510 540 570

Pattern 8 - Number of Aircraft per Taxi Time

Aircraft

taxi time (sec)

69

Figure 5.31: Hold time per distance covered

Figure 5.32: Number of speed changes per distance covered

70

Chapter 6 Conclusions

The present thesis work was intended to be a thorough study of the problem of 4D Taxi Routing on

Ground. It started with a description of the taxiway routing process and an analysis of its structural

and operational entities, particularities, constraints, as well as the interaction with its surrounding

processes – arrival, departure and gate management. At the end of the first chapter a set of research

questions was defined, which would determine the research directions throughout this work.

6.1 Answers to the Research Questions
The main part of this work was dedicated to answering the first research question: “How can the

above described problem be formulated into a mathematical model?” A model was consecutively

created with the purpose of capturing the essence of the problem; it is based on a time-dependent,

labeled, bimodal and directed graph with agents – finite state machines – moving on it. This is shortly

the answer to the first research question according to this work. The reasoning that concluded to this

model and the model itself were described in chapter 3 and its realization in chapter 4.

The algorithm implemented was a modified iterative version of Dijkstra’s algorithm for the

single-source shortest path problem, supplied with a consequent linear programming optimization of

the speed vector. Since the speed determines the position of an aircraft at each time, the linear

programming optimization focused on the 4th dimension. However, this algorithm-set has significant

inefficiencies. There is no look-ahead in time and no flexibility, two factors that intuitively seem

crucial for a time-dependent problem. Each aircraft is assigned a route that does not change based

on a static image of the taxiway network graph. This route corresponds to the shortest path and is

the optimal solution provided that no other aircraft will be following the same or part of the same

route simultaneously. As the traffic increases, the meetings of aircraft on the taxiway become more

often and Dijkstra’s algorithm does not provide any insight on the current traffic load, in order to

balance it by using alternative routes.

The simulation routing results under runway usage patterns 1 and 2, presented in chapter 5,

show clearly this lack of flexibility of the implemented algorithm. Aircraft are routed via taxiways U

and W, which are long enough - thus it takes more time to traverse them - to increase the possibility

that while an aircraft is taxiing on the one direction – say from A to B – another direction appears at

vertex B intending to taxi on the opposite direction – B to A. According to the routing algorithm, both

aircraft will stop and hold infinitely. This is the mutual blocking or deadlock situation.

Therefore, the answer to the second research question is that a classical SPP algorithm is not

suitable for a 4D problem. In our case, it can be roughly stated that Dijkstra’s algorithm optimizes the

spatial dimensions and the LP formulation optimizes time, however these algorithms are decoupled.

This is more like a stepwise or “fragmented” optimization and the problem of 4D Taxi Routing on

Ground is suspected to need an overall approach where space and time are optimized together. But

what could this approach look like?

In the second chapter a number of tools and algorithms were presented as the current state-

of-the-art in this and similar research areas. Taxi Planner Optimization (TPO), presented in section

71

2.2.2, approaches the problem using a look-ahead LP formulation. The present work used Dijkstra’s

algorithm to gain insight into the problem and propose extensions or alternatives:

 A look-ahead approach that uses the combination of TAAM [23] as a simulation tool for

different routing scenarios and a heuristic, most probably a Genetic Algorithm [31], to

crossover promising candidates towards an optimum. This implies an effective coding of

solutions.

 A dynamic approach that recalculates the routes while the aircraft are already on the taxiway,

using some heuristic methods. The Ant Colony Systems [25] have been proven flexible and

stable and could be combined with a load-balancing objective function.

 Another dynamic approach, that keeps a list of K-Shortest Paths [27] for each aircraft,

evaluates them at each time and acts accordingly.

 A more “experimental” or stochastic approach, similar to the Canadian Traveler Problem [30].

 The utilization of concurrency strategies, like semaphores, to avoid deadlocks.

The algorithm of Dijkstra could as well be used in all of the above mentioned approaches, but only as

the generator of initial routings, which would then be revised continuously. Robustness is a basic

quality issue that has to be addressed by every proposed algorithm.

The third research question is about the problem objectives: “How efficiently can the

objectives be met? How much can the mean taxi time, hold time etc be decreased?” The results of the

simulations are by no means exhaustive. They cannot lead to concrete conclusions, but they can

show some directions or some tendencies. So, these results are considered satisfactory in the sense

that they are relevant to what experience has shown (comparable to the actual values of these

metrics for our case study airport) [8]. There is though a lot of improvement that can be made. Other

algorithms can lead to more efficient solutions, if they address the flexibility and traffic load

balancing issues. This research area seems quite promising and the present work aimed at providing

the foundations where different optimization algorithms can be easily “plugged-in” and evaluated.

6.2 Future Work
The rest of the research questions are intended to be answered in future extensions of the present

work, together with some revisions on the basic model which can potentially make it more adaptable

to the application of different optimization algorithms. A significant revision could be to replace each

vertex categorized as “crossing” with two respective vertices, one for each direction. It is like building

a bridge to replace a crossroad, so that vehicles on the one direction cannot turn into the other

direction. This way, the use of a transition table would be redundant, since the graph would suffice

for this, so the whole model would become much simpler.

A very interesting result indicative of the taxiway routing process and the performance of the

algorithms is the evolution of taxi time with increasing traffic on the taxiway. Such graphs were not

displayed for every runway usage pattern in chapter 5, because the simulation of the 2-day flight

schedule did not produce any significant results. For example, under pattern 4 there were at most 7

aircraft on the taxiway during this schedule. Figure 6.1 below emphasizes this; there is no evident

relation between the increasing traffic on the taxiway and the average taxi time.

72

Figure 6.1: Taxi time per traffic (number of aircraft)

Nevertheless, common sense would expect that increasing traffic leads to more delays, as with any

road network. Therefore a main direction of future work would be the thorough testing (Monte-

Carlo simulations) of the behavior of the taxiway network under all different combinations of input

parameters and increasing traffic until reaching a “breaking point”, a traffic load which is the capacity

limit of a given airport and the answer to the last research question.

Another direction of future work is of course the design and implementation of different

algorithms, as already mentioned above, so that comparisons will be possible. The model and its

realization are independent of the optimization algorithm. They are independent of the airport as

well, so the generation of data files for more airports would support the usefulness of this work.

Apart from these extensions and based on the number of unsuccessful simulations presented in

chapter 5, it is necessary to perform some restructuring on the Matlab code – the routing execution

algorithm – in order to diminish the undesirable outcomes and/or improve the simulations’ speed.

Appendix I – Airport maps

A. Stockholm-Arlanda North – Arrival and Parking

- 2 -

B. Stockholm-Arlanda South – Arrival and Parking

C. Stockholm-Arlanda North –Parking and Departure

- 3 -

D. Stockholm-Arlanda South –Parking and Departure

- 4 -

- 5 -

Appendix II – Distance Matrices

A. From the Runway Exits to the Parking Stand Areas

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16

Y1 3791 3275 3102 2865 Inf 2605 2237 Inf 2680 Inf 1710 3476 3361 3640 3623 3866

Y2 3285 2769 2596 2359 Inf 2099 1731 Inf 2174 Inf 1204 980 798 1077 1060 1303

Y3 3316 2800 2627 2390 Inf 2130 1762 Inf 2205 Inf 1235 1106 924 1203 1186 1429

Y4 Inf Inf Inf Inf Inf Inf Inf Inf 976 Inf 1368 1789 1674 1953 1936 2179

Y5 2765 2249 2076 1839 Inf 1579 1211 Inf 983 Inf 1375 1796 1681 1960 1943 2186

Y6 2369 1853 1680 1443 Inf 1183 900 Inf 1343 Inf 1718 2139 2024 2303 2286 2529

Y7 2354 1838 1665 1428 Inf 1168 968 Inf 1411 Inf 1786 2207 2092 2371 2354 2597

Y8 2464 1948 1775 1538 Inf 1237 Inf Inf 1885 Inf 2260 2681 2566 2845 2828 3071

Y9 2456 1940 1767 1530 Inf 1229 Inf Inf 1877 Inf 2252 2673 2558 2837 2820 3063

Y10 2931 2415 2242 2005 Inf 1704 Inf Inf 2352 Inf 2727 3148 3033 3312 3295 3538

X2 Inf Inf 860 852 Inf 1188 Inf Inf 1783 Inf 2158 2579 2464 2743 2726 2969

X3 960 923 Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf Inf

X4 1947 1971 2412 2377 Inf 2713 Inf Inf 3308 Inf 3683 4104 3989 4268 4251 4494

X5 2697 2721 3162 3127 Inf 3463 Inf Inf 4058 Inf 4433 4854 4739 5018 5001 5244

W1 4724 4748 5189 5154 Inf 5490 5605 Inf 6048 Inf 5078 4390 4441 4469 4136 3853

W2 4631 4655 5096 5061 Inf 5397 5512 Inf 5955 Inf 4985 4297 4348 4376 4043 3760

W3 4688 4712 5153 5118 Inf 5454 5569 Inf 6012 Inf 5042 4354 4405 4433 4100 3817

W4 4255 4279 4720 4685 Inf 5021 5136 Inf 5579 Inf 4609 3921 3972 4000 3667 3384

W5 2968 2992 3433 3398 Inf 3734 4211 Inf 4329 Inf 3684 2996 3047 3075 2742 2459

W6 2715 2739 3180 3145 Inf 3481 4252 Inf 4076 Inf 3725 3037 3088 3116 2783 2500

W7 2336 2360 2801 2766 Inf 3102 4270 Inf 3697 Inf 3743 3055 3106 3134 2801 2518

W8 2311 2335 2776 2741 Inf 3077 4437 Inf 3672 Inf 3910 3222 3273 3301 2968 2685

- 6 -

B. From the Parking Stand Areas to the Runway Exits

 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 X2 X3 X4 X5 W1 W2 W3 W4 W5 W6 W7 W8

P1 3699 3310 3587 Inf Inf Inf Inf 2488 2480 2955 1597 960 1883 2633 4927 4834 4891 4458 Inf 2918 2539 2514

P2 3171 2782 3059 Inf Inf Inf Inf 1960 1952 2427 1069 1007 1934 2684 4978 4885 4942 4509 Inf 2969 2590 2565

P3 2982 2593 2870 Inf Inf Inf Inf 1771 1763 2238 860 1444 2371 3121 5415 5322 5379 4946 Inf 3406 3027 3002

P4 2766 2377 2654 Inf Inf Inf Inf 1555 1547 2022 875 1406 2333 3083 5377 5284 5341 4908 Inf 3368 2989 2964

P5 2618 2229 2506 Inf Inf Inf Inf 1407 1399 1874 973 1504 2431 3181 5475 5382 5439 5006 Inf 3466 3087 3062

P6 2468 2079 2356 Inf Inf Inf Inf 1237 1229 1704 1294 1825 2752 3502 5714 5621 5678 5245 Inf 3787 3408 3383

P7 2305 1916 2193 Inf Inf Inf Inf 1552 1544 2019 1633 2164 3091 3841 5551 5458 5515 5082 Inf 4126 3747 3722

P8 2099 1710 1987 Inf Inf Inf Inf 1607 1599 2074 1688 2219 3146 3896 5345 5252 5309 4876 Inf 3992 3802 3777

P9 1983 1594 1871 Inf Inf Inf Inf 1883 1875 2350 1964 2495 3422 4172 5229 5136 5193 4760 Inf 3876 3894 4053

P10 1924 1535 1812 Inf Inf Inf Inf 2027 2019 2494 2108 2639 3566 4316 5170 5077 5134 4701 Inf 3817 3835 4002

P11 1773 1384 1661 Inf Inf Inf Inf 2236 2228 2703 2317 2848 3775 4525 5019 4926 4983 4550 Inf 3666 3684 3851

P12 785 874 1151 Inf Inf Inf Inf 2627 2619 3094 2708 3239 4166 4916 7210 7117 7174 6741 Inf 5201 4822 4797

P13 1527 1138 1415 Inf Inf Inf Inf 2891 2883 3358 2972 3503 4430 5180 7474 7381 7438 7005 Inf 5465 5086 5061

P14 2103 1714 1991 Inf Inf Inf Inf 3467 3459 3934 3548 4079 5006 5756 4235 4142 4199 3766 Inf 2882 2900 3067

P15 1502 1113 1390 Inf Inf Inf Inf 2866 2858 3333 2947 3478 4405 5155 7449 7356 7413 6980 Inf 5440 5061 5036

P16 1721 1332 1609 Inf Inf Inf Inf 3085 3077 3552 3166 3697 4624 5374 3853 3760 3817 3384 Inf 2500 2518 2685

Appendix III – Data Tables

Tables containing data used in the model implementation

A. Types of Aircraft using the Airport of Stockholm-Arlanda

code name length wingspan

100 Fokker 100 35,6 28,1

319 Airbus A319 33,8 34,1

320 Airbus A320 37,6 34,1

321 Airbus A321 44,5 34,1

32S Airbus A320S 37,6 34,1

332 Airbus A330-200 58,8 60,3

333 Airbus A330-300 63,7 60,3

717 Boeing 717 37,8 28,5

733 Boeing 737-300 33,4 28,9

734 Boeing 737-400 36,5 28,9

735 Boeing 737-500 31 28,9

736 Boeing 737-600 31,2 34,3

738 Boeing 737-800 39,5 34,3

73C Boeing 737-300W 33,4 30,4

73E Boeing 737-500W 31 30,4

73G Boeing 737-700 33,6 34,3

73H Boeing 737-800W 39,5 35,8

73W Boeing 737-700W 33,6 35,8

747 Boeing 747-400 70,7 64,4

752 Boeing 757-200 47,3 38,1

753 Boeing 757-300 54,5 38,1

762 Boeing 767-200 48,5 47,6

767 Boeing 767-300 54,9 47,6

777 Boeing 777-200 63,7 60,9

AB6 Airbus A300-600 54,1 44,9

AR8 Avro RJ85 28,5 26,3

ATP BAE ATP 26 30,6

BEH Beech 1900D 17,6 17,6

CR2 Bombardier CRJ200 26,8 21,2

CR7 Bombardier CRJ700 32,5 23,2

CR9 Bombardier CRJ900 36,4 24,9

DH4 Bombardier DH8-Q400 32,8 28,4

E70 Embraer E-170 29,9 26

E90 Embraer E-190 36,2 28,7

ER4 Embraer ERJ 145 29,9 20

F50 Fokker 50 25,3 29

J31 Jetstream 31 14,4 15,9

M80 MD-80 45,1 32,9

- 8 -

M81 MD-81 45,1 32,9

M82 MD-82 45,1 32,9

M90 MD-90 46,5 32,9

S20 SAAB 2000 27,3 24,8

SF3 SAAB 340 19,7 21,4

B. Airlines operating at the Airport of Stockholm-Arlanda (summer 2010) [37]

code name terminal

2N NextJet 3, 5

2Q Air Åland 5

4P Viking Airlines 5

4U Germanwings 2

5R Karthago Airlines 5

7Y Flying Carpet Air 5

AB Air Berlin 2

AF Air France 5

AY Finnair 5

B2 Belavia Belarusian Airlines 5

BA British Airways 5

BT Air Baltic 5

CA Air China 5

CO Continental Airlines 5

DC Golden Air 4

DL Delta Airlines 5

DY Norwegian 2, 4

ET Ethiopian Airlines 5

FI Icelandair 5

FV Rossiya Airlines 5

HG Niki 2

IB Iberia 5

IR Iran Air 5

IZ Arkia-Israeli Airlines 5

JA B&H Airlines 4, 5

JK Spanair 5

JP Adria Airways 5

JU Jat Airways 5

JZ Skyways 3

KF Blue1 5

KL KLM 5

LH Lufthansa 5

LO LOT 5

LX Swiss International Air Lines 5

MA Malev Hungarian Airlines 5

- 9 -

OK Czech Airlines 5

OS Austrian Airlines 5

OV Estonian Air 5

PC Pegasus Airlines 5

QI Cimber Air 5

QR Qatar Airways 5

RB Syrian Arab Airlines 5

RL Royal Falcon 5

SK Scandinavian Airlines 4, 5

SU Aeroflot Russian Airlines 5

TG Thai Airways 5

TK Turkish Airlines 5

TP TAP Air 5

U2 EasyJet 2

VV Aerosvit Airlines 5

X9 NextJet 3

XQ Sun Express 5

C. Destination Airports from Stockholm-Arlanda (summer 2010) [37]

IATA_code name terminal

ADB Izmir Adnan Menderes Apt 5

ADJ Amman Civil-Marka Airport 5

AGH Ängelholm/Helsingborg Apt 4

AGP Malaga 2, 5

ALC Alicante 2

ALP Aleppo 5

AMS Amsterdam 5

ATH Athens 2, 5

AYT Antalya 5

BCN Barcelona Apt 2, 5

BEG Belgrade 5

BEY Beirut 5

BGO Bergen 2, 5

BKK Bangkok Suvarnabhumi International Apt 5

BLE Borlänge/Falun 3

BLL Billund 5

BRU Brussels Airport 5

BUD Budapest 2, 5

CDG Paris Charles de Gaulle Apt 5

CGN Cologne/Bonn Apt 2

CHQ Chania 2

CPH Copenhagen Kastrup Apt 2, 5

DBV Dubrovnik 5

- 10 -

DOH Doha 5

DUB Dublin 5

DUS Düsseldorf International Airport 5

EDI Edinburgh 5

EPU Parnu 5

ESB Ankara Esenboga Apt 5

EWR Newark Liberty International Apt 5

FAO Faro 2

FCO Rome Fiumicino Apt 5

FRA Frankfurt International Apt 5

GEV Gällivare 3

GOT Göteborg Landvetter Apt 4

GVA Geneva 2, 5

HAD Halmstad 3

HAM Hamburg Airport 5

HEL Helsinki 2, 5

HFS Hagfors 3

IKA Tehran Imam Khomeini International Apt 5

IST Istanbul Ataturk Airport 5

JFK New York J F Kennedy International Apt 5

JKG Jönköping 3

KBP Kiev Borispol Apt 5

KEF Reykjavik Keflavik International Apt 5

KID Kristianstad 3

KLR Kalmar 4

KRF Kramfors/Sollefteå 3

KRN Kiruna 4

KSD Karlstad 3

LED St Petersburg Pulkovo Apt 5

LGW London Gatwick Apt 5

LHR London Heathrow Apt 5

LIN Milan Linate Apt 5

LIS Lisbon 5

LJU Ljubljana 5

LLA Luleå 4

LPA Las Palmas 2

LYC Lycksele 3

MAD Madrid Barajas Apt 5

MAN Manchester International Apt 5

MHQ Mariehamn 5

MLA Malta 5

MMX Malmö Airport 4

MSQ Minsk International Apt 2 5

MUC Munich International Airport 2, 5

MXP Milan Malpensa Apt 2, 5

- 11 -

MXX Mora 3

NCE Nice 2, 5

OER Örnsköldsvik 4

ORD Chicago O'Hare International Apt 5

OSD Åre/Östersund 4

OSK Oskarshamn 3

OSL Oslo Gardermoen Airport 2, 5

OUL Oulu 5

PEK Beijing Capital Apt 5

PMI Palma De Mallorca 2, 5

PMO Palermo 2

PRG Prague 5

RIX Riga 5

RNB Ronneby/Karlskrona 4

SAW Istanbul Sabiha Gokcen Apt 5

SDL Sundsvall 4

SFT Skellefteå 4

SJJ Sarajevo 5

SPU Split 5

SVO Moscow Sheremetyevo International Apt 5

SXF Berlin Schönefeld Apt 2

TAY Tartu 5

TKU Turku 5

TLL Tallinn 5

TLV Tel Aviv Ben Gurion International Apt 5

TMP Tampere 5

TOS Tromso 5

TRD Trondheim Vaernes Airport 5

TUN Tunis 5

TXL Berlin Tegel Apt 2, 5

UME Umeå 4

URE Kuressaare 5

VAA Vaasa 5

VBY Visby 3, 4

VHM Vilhelmina 3

VIE Vienna 2, 5

VXO Växjö 3

WAW Warsaw 5

ZRH Zurich Airport 5

- 12 -

References

Websites, statistics, official documents and others (excluding Wikipedia)

[1] ICAO - Annex 14 to the Convention on International Civil Aviation - Aerodromes Vol.1:

Aerodrome Design and Operations. Fourth Edition, July 2004

[2] Average kerosene prices - http://www.nyserda.org/energy_information/nyeph.asp

[3] Arlanda Airport - http://www.arlanda.se/upload/dokument/Flygmarknad/Facts_2010.pdf

[4] Arlanda Airport - Local regulations at aircraft parking stands - http://www.arlanda.net

[5] Arlanda Airport - Preferred runways

http://www.lfv.se/AIP/AD/AD%202/ESSA/ES_AD_2_ESSA_en.pdf

[6] TITAN Project - Current situation analysis - http://www.titan-project.eu/index.php/library

[7] CAST/ICAO Common Taxonomy Team - Phases of Flight

http://intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf

[8] Notes from an interview with pilot Paul Gaede

[9] Lufthansa Hubs- http://www.lufthansa.com/us/en/Our-hubs-in-Frankfurt-Munich-and-Zurich

[10] Lufthansa Annual Report 2010

[11] ICAO Engine Exhaust Emissions - http://www.caa.co.uk/docs/702/3GE057_01102004.pdf

[12] EUROCONTROL - Airport Collaborative Decision Making (A-CDM) - Introduction

http://www.eurocontrol.int/airports/public/standard_page/APRI_Projects_ACDM.html

[13] ATRiCS Surface Manager - http://www.atcglobalhub.com/PDF/ATRiCS_SMAN_Folder_A4.pdf

Scientific papers, books and presentations

[14] A. Erdmann, A. Nolte, A. Noltemeier and R. Schrader - Modeling and Solving an Airline

Schedule Generation Problem

Annals of Operations Research, Volume 107, Numbers 1-4, 117-142

[15] J. Abara, “Applying Integer Linear Programming to the Fleet Assignment Problem”

Interfaces 1989; 19: 20-28

[16] Lufthansa Symposium 2008 – Aircraft Routing slides

[17] C.P. Medard and N. Sawhney, “Airline Crew Scheduling from Planning to Operations”

European Journal of Operational Research, Vol. 183, No. 3, 2007, pp. 1013-1027.

[18] Pieter Buzing, Lian Ien Oei, Léon Planken, Cees Witteveen, “CAED D1: Literature Survey on

Temporal Decoupling”, Delft University of Technology, Eurocontrol, 2007

http://www.nyserda.org/energy_information/nyeph.asp
http://www.arlanda.se/upload/dokument/Flygmarknad/Facts_2010.pdf
http://www.arlanda.net/
http://www.lfv.se/AIP/AD/AD%202/ESSA/ES_AD_2_ESSA_en.pdf
http://www.titan-project.eu/index.php/library
http://intlaviationstandards.org/Documents/PhaseofFlightDefinitions.pdf
http://www.lufthansa.com/us/en/Our-hubs-in-Frankfurt-Munich-and-Zurich
http://www.caa.co.uk/docs/702/3GE057_01102004.pdf
http://www.eurocontrol.int/airports/public/standard_page/APRI_Projects_ACDM.html
http://www.atcglobalhub.com/PDF/ATRiCS_SMAN_Folder_A4.pdf

- 13 -

[19] Pim van Leeuwen, “CAED D2: Modeling the Turnaround Process; the Coordinated Airport

through Extreme Decoupling”, NLR, Delft University of Technology, Eurocontrol, 2007

[20] Rigas Doganis, “Flying off course: The economics of international airlines”, page 4, Routledge,

2002

[21] E. W. Dijkstra, "A note on two problems in connexion with graphs"

Numerische Mathematik 1: 269–271, 1959

[22] A. Marin and J. Salmerón, 2008, “Taxi Planner Optimization: A Management Tool”, Journal of

Aerospace Engineering, Vol. 222, 1055-1066

[23] John R. Podlena and Keith G. Joshi, “Automated Optimization of Airport Efficiency Using High-

Fidelity Simulation”, 2006

[24] J. Matousek and B. Gaertner, “Understanding and Using Linear Programming”, Springer 2007

[25] M. Dorigo, V. Maniezzo and A. Colorni, "Ant System: Optimization by a Colony of Cooperating

Agents", IEEE Transactions on Systems, Man, and Cybernetics - Part B Cybernetics, Vol. 26, No

1, February 1996

[26] M. Dorigo and L. M. Gambardella, "Ant Colony System: A Cooperative Learning Approach to

the Traveling Salesman Problem", IEEE Transactions on Evolutionary Computation, Vol.1,

No.1, 1997

[27] José L. Santos, “K shortest path algorithms”, University of Coimbra, 2006

[28] J. Current, C. ReVelle and J. Cohon, “The hierarchical network design problem”, European

Journal of Operational Research 27 (1986) 57-66, North-Holland

[29] C. Barrett, K. Bisset, M. Holzer, G. Konjevod, M. Marathe and D. Wagner, "Engineering Label-

Constrained Shortest-Path Algorithms", 2008

[30] David Karger and Evdokia Nikolova, "Exact Algorithms for the Canadian Traveler Problem on

Paths and Trees", MIT Computer Science & AI Lab, 2007

Wikipedia permanent links

[31] Genetic Algorithm – retrieved on 2011-11-20

http://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=460952229

[32] Aircraft maintenance checks – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Aircraft_maintenance_checks&oldid=447828403

[33] Scandinavian Airlines (SAS) – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Scandinavian_Airlines&oldid=454081175

[34] Linear programming – retrieved on 2011-10-31

http://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=458076098

http://en.wikipedia.org/w/index.php?title=Genetic_algorithm&oldid=460952229
http://en.wikipedia.org/w/index.php?title=Aircraft_maintenance_checks&oldid=447828403
http://en.wikipedia.org/w/index.php?title=Scandinavian_Airlines&oldid=454081175
http://en.wikipedia.org/w/index.php?title=Linear_programming&oldid=458076098

- 14 -

[35] Gallon – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Gallon&oldid=453848822

[36] Graph (mathematics) – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Graph_(mathematics)&oldid=454489646

[37] Stockholm-Arlanda Airport – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Stockholm-Arlanda_Airport&oldid=453710080

[38] Knot (unit) – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Knot_(unit)&oldid=451077447

[39] Dijkstra’s algorithm – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=454569329

[40] A* search algorithm – retrieved on 2011-10-11

http://en.wikipedia.org/w/index.php?title=A*_search_algorithm&oldid=454906517

[41] Runway – retrieved on 2011-10-13

http://en.wikipedia.org/w/index.php?title=Runway&oldid=452186744

[42] Single European Sky ATM Research (SESAR) – retrieved on 2011-10-23

http://en.wikipedia.org/w/index.php?title=Single_European_Sky_ATM_Research&oldid=4460

74244

[43] Floyd-Warshall algorithm – retrieved on 2011-10-23

http://en.wikipedia.org/w/index.php?title=Floyd%E2%80%93Warshall_algorithm&oldid=453

820106

[44] g-force – retrieved on 2011-10-26

http://en.wikipedia.org/w/index.php?title=G-force&oldid=456642592

http://en.wikipedia.org/w/index.php?title=Gallon&oldid=453848822
http://en.wikipedia.org/w/index.php?title=Graph_(mathematics)&oldid=454489646
http://en.wikipedia.org/w/index.php?title=Stockholm-Arlanda_Airport&oldid=453710080
http://en.wikipedia.org/w/index.php?title=Knot_(unit)&oldid=451077447
http://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=454569329
http://en.wikipedia.org/w/index.php?title=A*_search_algorithm&oldid=454906517
http://en.wikipedia.org/w/index.php?title=Runway&oldid=452186744
http://en.wikipedia.org/w/index.php?title=Single_European_Sky_ATM_Research&oldid=446074244
http://en.wikipedia.org/w/index.php?title=Single_European_Sky_ATM_Research&oldid=446074244
http://en.wikipedia.org/w/index.php?title=Floyd%E2%80%93Warshall_algorithm&oldid=453820106
http://en.wikipedia.org/w/index.php?title=Floyd%E2%80%93Warshall_algorithm&oldid=453820106
http://en.wikipedia.org/w/index.php?title=G-force&oldid=456642592

