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Abstract 
 

BACKGROUND: The success of software development projects depends highly on 

meeting the assigned schedule and budget of the project which are often defined in 

terms of a project plan. Estimation is the basis for planning; therefore, having a reliable 

way of estimating effort needed to perform the tasks is a must for a reliable project plan.  

Already in 1987, Samson, Nevill and Dugard, showed that there is a strong and 

direct influence of formal specification metrics onto the effort needed for implementation. 

Since then, there has been some progress in various aspects of formal specifications; the 

introduction of specification slicing methods, slice-based specification metrics, and 

methods for visualization of specifications has opened new ways for measuring properties 

of specifications with more metrics. Nevertheless, there hasn’t been much progress in the 

field of cost estimation using recent achievements of formal specifications.  

METHODS: The main focus in this thesis work is to examine if there is a 

correlation between formal Z specification measures and implementation related 

measures. In concise, this work tries to explain the correlation between the measures in 

specifications and the measures in code which can be used as input parameters in 

currently existing software cost estimation models to estimate the total cost of software. 

This is examined through an experiment which is conducted via measuring 28 subjects 

using 11 metrics in specifications and 4 metrics in code. 

CONCLUSION: The results of this thesis work show the size of code, which is the 

main input parameter of outstanding software cost estimation models, is predictable from 

formal Z specifications. There are proofs which show that 3 out of 4 investigated metrics 

in code are in correlation with the metrics in formal Z specifications. 
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1. Chapter 1:  

Introduction 

 

 

 

1.1 Context 

In consequence of the increase in complexity of software systems, producing 

correct, reliable software has become a concern for software industry [1, p.56]. Software 

quality becomes a paramount aspect when it comes to safety-critical systems where 

human lives might be in danger. For example a defect in the navigation system of an 

airplane full of passengers or in a control system of a nuclear powerhouse can lead to a 

catastrophe. Despite of all concerns, we don’t see these catastrophes too frequently. The 

fewer defects in these software systems are because of applying more precise methods 

throughout the development life cycle of these safety-critical software systems 

comparing to methods used for developing commercial software like iPhone applications.  

Formal methods are rigorous techniques based on mathematical notation that can 

be used to specify and verify software models [3, p.268]. Formal methods provide a 

rigorous mathematical basis to software development [1, p.56]. By using formal 

methods, software developers can systematically specify, develop, and verify a system 

[2, p.34]. As formal methods in software development permit more precise specification 

and earlier error detection [1, p.56], they are been being applied widely in development 

of safety-critical software systems. 

Bowen provides a conclusion of pros and cons of the formal methods [4, p.15]. It 

states that despite benefits of formal methods, there had been claims about infeasibility 

of application of these methods for problems in the scale of the real world problems. 

Sensible proponents of these methods propose that a cost/benefit analysis should be 

performed before applying these methods and they should be applied only in case of 

providing apparent advantages in development costs. According to this opinion, using 

formal methods in development of a simple management information system for a 

business, as an example, is not worthwhile. Proponents of the formal methods claim that 

despite the apparent complexity the formal methods add to the process, they indeed 

reduce the overall cost of software development. Proponents justify it by mentioning the 

huge cost saving in testing and maintenance, which contain the major software 

development costs, in comparison with slight increase in cost of specification and design. 

Formal specifications are a part of formal methods which use mathematical 

notation to describe, in a precise way, the properties which a software system must 

have, without unduly constraining the way in which these properties are achieved [5, 

p.42]. Mathematical specifications have three virtues: being concise, precise, and 

unambiguous. Practical experiences show that the mathematical specification of a system 

is shorter than the English text version as mathematical expressions can convey 

complexities of real world in short structures [5, p.42]. They are precise because they 

use mathematical expressions which are precise and accurate. They are unambiguous as 

mathematical expressions prevent different interpretations from the same expression. 

The Z notation is one of the widely-used methods of documenting software 

specifications in a formal way [21, chapter 11]. Figure 1-1 shows a sample Z schema. Z 

is a state-based specification language. It considers a software system as an entity which 

accepts inputs, then may change the internal state according to that and then may 

provide outputs if required. This vision provides the benefit of isolation from details of 

implementation like user interface details [5, p.42]. Therefore, one can combine Z 
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specifications together with other forms of specifications documentation methods like 

UML for one software system. In these combinations the Z-based part of specifications 

can play the role of describing the core state management part of the system, or maybe 

just the critical part whereas the other formats can describe requirements for other 

aspects of the system like user interface. 

 

 

Figure 1-1- A sample Z schema, the smallest units of Z notation. The variables used in this schema are 

declared on the top of central dividing line and on the part below, the relationship between variables are given. 

 

Because of the formality advantages, some tools are already developed which can 

transform the formal specifications to code in languages like C++ or Java [6]. As state-

based specifications are precise and formal, they can be a good source for estimation of 

the cost of the software in early development stages of software development process, 

once the software specifications is in hand.  

1.2 Scope 

Already in 1987, Samson, Nevill and Dugard, showed that there is a strong and 

direct influence of specification metrics onto metrics of the implementation [7]. By 

counting the number of mathematic equations in specifications, the authors 

demonstrated that an estimation of effort, needed for implementation, is possible. There 

has been some progress in various aspects of formal specifications since then, however 

there hasn’t been much progress in the field of cost estimation using recent 

achievements of formal specifications.  

The introduction of specification slicing methods [8] and slice-based specification 

metrics has opened new windows for measuring properties of specifications with more 

metrics. For example because of interdependencies between software requirement 

sections, it had been difficult to measure the quality of specifications. However, by using 

slicing methods in [9], the author demonstrates that slice-based coupling and cohesion 

measures in formal Z specifications can reasonably be defined in the same way as in the 

implemented code. 

There are rarely empirically validated correlations between code and specification 

metrics around. Moreover, for reasons of simplicity in calculation, mostly size-based
1
 

measures, like number of operations in modules, are used in previous experiments. 

Therefore, it seems that an empirical study, which investigates relations between 

measures in Z specification and the implementation measures, can fill up this gap. 

The main focus in this thesis work is to examine if there is a correlation 

between formal Z specification measures and implementation related measures. 

To answer this question, a measurement experiment is conducted in which the 

specification and code metrics are measured and the correlation between these measures 

is investigated using statistical methods. For this purpose, two basic questions are 

addressed first. The first question is “which measures are unique descriptors for 

properties of formal Z specifications?” The second question is “which quality and 

complexity measures, for code or specifications, are used in currently existing predictive 

                                                 
1
 Categories of formal specifications’ metrics will be discussed in Chapter 2 
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models?” After addressing these questions, the empirical experiment is conducted to 

examine if there is a correlation between formal Z specification measures and 

implementation related measures. In concise, this thesis tries to explain the correlation 

between the measures in specifications and the measures in code, those are input 

parameters in currently existing estimation models.  

1.3 Value 

The success of any software development project depends highly on meeting the 

assigned schedule and budget of the project which are often defined in terms of project 

plan. Estimation is the basis for planning; planning doesn’t make sense without knowing 

the amount of effort needed for a project. Therefore, having a reliable way of estimating 

effort needed to perform the tasks is a must for a successful project management. The 

outcome of this research will provide some help for a reliable estimation for a better plan 

for at least a part of software projects, those are based on Z specifications. 

Regardless of the project and the project management structure, investments are 

the pushing force for every project because they help to provide the needed resources 

for the projects. Investment decisions are highly influenced by the schedule and budget 

of the project which itself is dependent on estimations. Therefore, the expectation of the 

outcome of this research is to facilitate the decision making process for investment on a 

part of software projects, those are based on Z specifications. 

The Software Engineering Body of Knowledge is sectioned by Key Areas, each of 

which comprised of sub-areas [10, chapter 1]. The Software Engineering Management 

key area consists of six sub-areas where the second one, which is Software Project 

Planning, contains the knowledge about cost estimation. Therefore, the current research 

will contribute in the cost estimation part of SWEBOK. 

1.4 Method 

In order to address the main question of this thesis, a set of appropriate1 metrics 

applicable on Z specifications are identified. This is achieved by a literature review on 

existing metrics and the outcome forms the next chapter of the thesis, “Measures in Z 

Specifications”. Then the appropriate code metrics, which work as input for currently 

existing prediction models, are identified to be measured in the experiment. For this 

purpose, the prediction models are investigated in a literature review. The result of this 

study is presented in chapter 3, “Predictive Models.” 

Then a collection of Z specifications and related implemented code is collected and 

measured, using the set of provided metrics. Having specification and correspondent 

implementation measurement values, and using statistical analysis methods, the 

correlation of these sets of metrics are examined. The result of this section is presented 

in chapter 4, “The Experiment.” The final part of the thesis concludes the results of 

previous chapters. The following table summarizes the research steps and methods. 

 

 

 

 

 

 

 

                                                 
1
 The specification-related metrics should have special criteria, which will be defined in chapter 2, to be 

employable in the experiment 



Page 6 of 46 

 

Step Objective(s) Method 

#1 
 Define “key” Z specification metrics. 

 Collect a set of key metrics. 
Literature Review 

#2 

 Identify the outstanding software cost 

estimation models. 

 Identifying the important code metrics for these 

software cost estimation models. 

Literature Review 

#3 

 Collect a set of specifications in Z and 

corresponding codes. 

 Collect the tools for measurement. 

 Measure them with the collection of metrics. 

 Examine the correlation between two sets of 

metrics. 

Experiment 

#4  Conclude the important results.  

Table 1-1- Planned steps for the research 

 

One major foreseen risk in this research is shortage in specifications-code pairs. 

Since many of the software systems based on Z specifications are for safety-critical 

systems, it’s not easy to gain access to their code. As a starting point, parts of 

specifications and their code from the Tokeneer ID Station1 software project are 

available. In the analysis of this risk either of these two approaches are chosen; 

presenting analysis with less validity or extend the schedule to enlarge the sample.  

Another foreseen risk is lack of enough tools for the measurement of all the found 

key metrics. In this case, measurements of just the metrics for which measurement tools 

exist or extending the existing tools to cover all metrics are probable solutions. As a 

starting point a tool which measures a number of specification metrics, namely the size-

based measures (CC – conceptual complexity), the structure-based measures (logical 

complexity and def/use count), and the semantic-based measures (coupling, cohesion, 

overlap), is available. 

                                                 
1
 http://www.adacore.com/home/products/sparkpro/tokeneer, last visited: January 2011 

http://www.adacore.com/home/products/sparkpro/tokeneer
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2. Chapter 2:  

Measures in Z Specifications 

 

 

 

 

2.1 Objectives 

The main objective of this section is to provide a collection of specification-related 

measures which are applicable to Z specifications through reviewing literature of formal 

specification metrics domain. At the first part of this chapter, the focus area on literature 

review is specified, then the results of this study are presented, and then the analysis of 

the resulting metrics is provided. The analysis is from aspect of applicability to the 

experiment which is conducted later in this research.  

2.2 Method 

Throughout the literature review the main focus is on the measures which are 

applicable to Z specifications. Metrics applicable to other formal specifications are 

applicable to Z as it is a specific formal specification notation. Since this research is 

aiming at using tools for measuring the metrics in Z specifications, and to keep the right 

level of abstraction, the mathematical details of explored metrics are kept hidden. 

A customized approach similar to the approach explained in [12] was used to 

conduct the literature review. An empty queue was formed, at the first step, in order to 

keep track of the list of papers to be read. Then it was populated by the initial set of 

papers. Bollin’s articles ([9], [11]) were used as a starting point for the review and two 

other papers ([5], [7]) for gaining domain knowledge.  

While reading papers, new keywords and concepts related to domain were 

discovered as well as the papers which seemed indispensable to read for this study. 

These papers added to the end of the reading queue. The new keywords and concepts 

are used for narrowing down the search in Google Scholar for related papers. 

Introduction and conclusion of the selected papers were examined in order to make sure 

that the paper is in the target domain. Moreover, forward/backward chaining method 

based on references/citations of papers is used to find more papers [12]. 

2.3 Formal Specification Measures 

As mentioned earlier, Z is a specific formal specification thus all metrics apply to 

formal specifications, apply to Z as well. The term specification is used instead of formal 

specification throughout this work for simplicity reasons. However wherever referred to 

other forms of specification, like text or UML, it’s mentioned explicitly. 

Bollin in [9] takes the approach of categorizing specifications’ metrics into two 

main categories: complexity and quality metrics.  Complexity is defined as “The degree 

to which the structure, behavior, and application of an organization is difficult to 

understand and validate due to its physical size, the intertwined relationships between its 

components, and the significant number of interactions required by its collaborating 

components to provide organizational capabilities” [3, p.109]. However, the complexity 

in specifications is usually interpreted to and measured based on attributes which are 

related to just the size of specifications. One reason is that measures to assess the other 

attributes of specifications than size, or other qualities of so-called “Good Specifications”, 

had not been defined. It was due to interdependency concepts which were either not at 
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all or only implicitly available for software specifications [9, p.24]. Therefore, Bollin 

separates complexity from other quality metrics for specifications [9, p.24]. However this 

categorization seems to be not appropriate as the two categories have serious conceptual 

overlap. 

Specifications of the same size don’t have necessarily the same complexity. That’s 

because the relationships between sub-components add more complexity. Therefore, the 

total complexity is more than what results from just summing up the complexity of sub-

components [11, p.158]. Therefore, different sets of metrics to measure other aspects of 

the complexity are needed. Bollin in [11, p.148] took another approach and categorized 

the metrics into 3 categories: quantity/size-based, structure-based, and semantic-based. 

Although the firstly mentioned approach seems to be refined version of the second one 

by Bollin, the second approach is used throughout this work because of previously 

mentioned reason. 

Quantity/size-based metrics are related to physical size [11, p.148]. These 

measures are easy to quantify, mostly easy to calculate, and there are lots of studies in 

this field [11, p.156]. Lines of specification code, abbreviated to LOC, is a size-based 

metric which is measured by counting the lines of specification text [11, p.156]. It’s a 

popular metric because of ease of calculation. However, it’s not precise (i.e. value differs 

if comments or empty lines are counted) [11, p.156]. Samson et al. [7] show that if LOC 

is defined precisely, which can be done easier in formal specifications than other types, it 

has a strong correlation with LOC in its implementation code.  

A few other metrics, derived from LOC, count primes of a formal specification 

instead of LOC which have clearer and more comparable semantic complexity [11, p158]. 

Primes are the smallest structural units of a formal specification. Vinter et al. in [14] 

show the count of Z specification’s structural units correlates with specification’s 

complexity. However, there is no quantitative assessment for that. The approach of 

counting primes in a specification instead of LOC is called conceptual complexity and it 

provides the ability of comparing and quantifying the complexity of specifications [11, 

p.163]. Conceptual complexity is a measure for the difficulty of understanding of 

code/specifications [16, p.73]. 

Nogueria et al. in [15] define two new metrics, Fine Granularity Complexity (FGC) 

and Large Granularity Complexity (LGC). FGC is count of input and output data of specific 

operation units, called operators. LGC is the summation of number of operators, total 

number of input and output, and the number of data-types.  

Samson et al. [7, p.245] define three metrics, namely number of equations per 

operation (NEQOP), number of equations per module (NEQMOD), and number of 

operations per module (NOPS). They also show, in a case study, that these metrics of 

specifications have correlation with cyclomatic complexity of related implementation. 

Cyclomatic complexity is a complexity measure for code, defined by McCabe [13], which 

is a measure for a way of modularizing so the resulting modules are both testable and 

maintainable. It seems important to save a lot of cost of development in testing and 

maintenance of software.  

Kokol et al. in [17] define a metric called α-metric for code and they extended it 

to be applicable on formal specifications. Their case study shows that this metric has 

different values for the same specifications written with different specifications’ 

languages [17]. There is not much discussion about it after the presentation of this 
metric and therefore, α-metric didn’t find its place in software industry [11, p.158]. Table 

2-1 summarizes the size-based metrics with their meaning. 
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Metric Conveys 

Specifications LOC 
Size of specifications in terms of number of 

text lines. 

Conceptual 

complexity (CC) 

Size of specifications in terms of number of 

primes. A measure for difficulty of 

understanding of specifications. 

Number of 

operators/equations 

Size of specification in terms of the number 

of operators/equations in a 

specification/module. 

FGC 
Complexity of each operator1 in the system 

in terms of inputs and outputs. 

LGC 

Complexity of the whole system in terms of 

number of operators, input/output data, and 

types. 

α-metric 
Measures the information content 

specifications. 

Table 2-1- Size-based metrics for formal specifications 

 

Structure-based complexity metrics have to do with logical and data structures 

aspect of complexity like the flow of control, number of identifiers and their validity, and 

the number of references [11, p.148]. Many of the metrics of this category were not 

applicable until recently. That’s because control/data flow is not a dominant aspect of 

specifications and also formal specifications mostly don’t have control structures. 

Furthermore, it is difficult to generate a control/data flow presentation for specifications 

[9, p.24]. However, Bollin provides methods for determining data/control dependencies 

using a graphical representation of specifications called ASRN2 [11, chapters 4, 5]. An 

ASRN maps a formal specification to a graph. This mapping allows us to use the vast 

algorithms and concepts developed for graph theory for the software specifications. 

As mentioned earlier, cyclomatic complexity is a semantic-based code-related 

metric which is defined to measure computational complexity and can be used to 

measure testability and maintainability of code [13, p.308]. Bollin has provided two 

metrics by transforming the code-based cyclomatic complexity metric to specifications 

domain [11, p.165]. Cyclomatic complexity for specifications is calculated by counting all 

control dependencies in the ASRN of specifications. Extended cyclomatic complexity, 

which is later renamed to Logical Complexity by Bollin, is in form of ordered tuple with 

upper and lower bound values [11, p.166]. The upper bound is the cyclomatic complexity 

for specifications and the lower bound is calculated by counting vertices with special 

criteria in the ASRN [11, p.166]. 

Definition-Use (DU) is a code-based metric which is based on control-flow graph 

of program [18]. Bollin has provided a transformation of DU for specification domain 

called DU count [11, p.165]. DU count for specifications is equal to the total number of 

data dependencies in the related ASRN [11, p.165].  

 

                                                 
1
 Unit of a specific operation  

2
 Augmented specification relationship net 



Page 10 of 46 

 

Table 2-2 summarizes the structure-based metrics which were discussed in this 

section. 

 

Metric Conveys 

Logical complexity Computational complexity of specifications 

Definition Use (DU) 
Count 

Data flow dependencies of specifications 

Table 2-2- Structure-based metrics for formal specifications 

 

Semantic-based category measures are focused on semantic relationship between 

sub-components of a component or system and are commonly defined to measure 

coupling, which is a measure for strength of inter-component connections, and cohesion, 

which is a measure for mutual affinity of sub-components of a component [11, p.148]. 

Carrington et al. define two metrics for specification modules, one for functional 

cohesion and another for communicational coupling [19]. These metrics are calculated by 

counting the state variables of code modules and those which are used commonly 

between different code modules. 

 Lakhotia provided a rule-based algorithm to measure cohesion in code by 

examining the control and data flow of variables [20]. Bollin showed that this measure 

can, though not fully, be transformed to the domain of specifications using ASRN [11, 

p.162]. 

Coupling and coherence metrics are not easily transformable from code domain to 

specification as these metrics are based on control/data dependencies which are tough to 

define for specification domain [9, p.24]. However with the methods of specification 

slicing1 [8], a few code-based metrics are transformed and applied on slices of 

specifications, called slice-based metrics.  

Bollin [9] provides a transformation for a set of slice-based code-related metrics 

which measure coupling and cohesion of formal Z specifications using the specification 

slices. Using these metrics, Bollin shows that we can calculate coupling, cohesion, and 

overlap. Coupling is a measure for the strength of inter-component connections, and 

cohesion is a measure for the mutual affinity of sub-components of a component [9]. 

Overlap expresses the number of primes which are common to all specification slices [9].  

Table 2-3 contains a summary of the discussed semantic-based metrics together 

with their meanings. 

 

 

 

 

 

 

 

 

 

                                                 
1
 For more explanation of static and dynamic slicing using famous Birthday Book sample in Z refer to [8] 
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Metric Conveys 

Functional Cohesion Functional cohesion1 of specifications 

Communication 
Coupling  

Coupling of modules of specifications  

Rule-based Algorithm Cohesion (all levels) of specifications 

Slice-based Coupling 
Strength of inter-slice connections in 

specifications 

Slice-based Cohesion Mutual affinity of slices of a specification 

Slice-based Overlap 
The number of primes which are common to 

all specification slices 

Table 2-3- Semantic-based metrics for formal specifications 

 

Now that we have some information for a collection of metrics in hand, we can 

provide a summary of metrics which are unique descriptors of Z specifications.  

Among size-based metrics we identified Specification LOC, Conceptual Complexity, 
Number of Operators (NEQOP, NEQMOD, NOPS), FGC/LGC, and α-metric. Though 

Specification LOC is popular because of simplicity of calculation as mentioned before, it 

can stand for different definitions unless it is defined precisely. α-metric also results in 

different values while measuring different specifications with different languages written 

for the same functionality. Therefore, it can not be a good candidate for specification-

based estimations. The conceptual complexity is easy to calculate and provides ability to 

compare since it is based on concrete formal specifications’ units. 

For the structure-based metrics category we identified Cyclomatic Complexity, 

which will be referred to as Logical Complexity hereafter, and Definition-use count 

metric. Both these metrics are calculable and precise as they have mathematical-related 

definitions and based on ASRN which itself is based on the graph theory. 

For semantic-based metrics we identified functional cohesion, communicational 

coupling, rule-based approach, and slice based coupling, cohesion, and overlap. As 

mentioned, the rule-based approach for code is not thoroughly transformed for 

specifications and it can not be used as a reliable metric for specifications. No specific 

drawback is found for the rest of metrics in semantic-based category. Table 2-4 

summarizes the metrics explored in this study.  

 

 

 

 

 

 

                                                 
1
 All parts which contribute to a single and specific function [11, p.154] 
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Cat. Metric Comments 

S
iz

e
-B

a
s
e
d
 

Specifications LOC 
Not precise but measurement tools are 

available. 

Conceptual 

complexity (CC) 

No drawback found and measurement tools 

are available. 

Number of 

operators/equations 

No drawbacks found but no measurement 

tools available 

FGC/LGC 
No drawbacks found but no measurement 

tools available 

α-metric Different values for different languages 

S
tr

u
c
tu

re

-B
a
s
e
d
 

Logical complexity 
No drawback found and measurement tools 

are available. 

Definition Use (DU) 
Count 

No drawback found and measurement tools 

are available. 

S
e
m

a
n
ti
c
-B

a
s
e
d
 Functional cohesion 

No drawbacks found but no measurement 

tools available 

Communicational 

coupling 

No drawbacks found but no measurement 

tools available 

Rule-based approach Not thoroughly defined for specifications 

Slice-based coupling, 
cohesion, and overlap 

No drawback found and measurement tools 

are available. 

Table 2-4- Summary of metrics for Z specifications 

 

Some of the metrics, like Lines of Code, have different interpretations and 

measurement methods. Therefore, such metrics should be defined precisely together 

with the measurement method in case of using in an experiment. For this reason, the 

precise definition and measurement method for the metrics used in experiment is 

provided in chapter 4 which explains the experiment details. 
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3. Chapter 3:  

Predictive Models 

 

 

 

 

3.1 Introduction 

The main objective of this chapter is to present the result of investigation in the 

salient software cost estimation models which currently exist and are already validated in 

practice. The investigation performed with the focus on the main advantages and 

drawbacks of these models and their connection points to this thesis in terms of code or 

specification metrics. Therefore, the goal of this short study is to find at least one reliable 

cost estimation model for which a code or specifications metric is an important input. 

Defined by Wikipedia1, “Cost estimation models are mathematical algorithms or 

parametric equations used to estimate the costs of a product or project.” Software cost 

estimation techniques are used for a number of purposes including budgeting, trade-off 

and risk analysis, project planning and control, and software improvement investment 

analysis [22, p.177]. As “effort” and “cost” are in a direct relation in software projects, 

cost estimation and effort estimation terms are sometimes used in each other’s place. 

This short review has been performed in order to find the models which suit the 

purposes of this thesis. These models should be reliable; means that they should have 

been empirically validated. They should also have inputs from code or specification 

metrics so that a relation can be made to the output of the later experiment of this 

thesis.  

To reach to the outstanding papers in this topic for the review, a systematic 

method is applied. At first, Google Scholar is used for the search using the following 

logical combination of keywords: 

“Software” AND “estimation” AND (“cost” OR “effort”) 

Then the abstract, introduction, and conclusion of the resulting papers were 

examined to assure that they’re relevant to the purposes of the study. Number of 

citations, publish date, and references of papers are also examined in order to prioritize 

them. The two next sections will provide the results of reviewing the selected set of 

papers on software cost estimation models. 

3.2 Cost Estimation Approaches 

A classification for estimation models seems necessary in order to present the 

results of the review in an organized way. One of the major differences between 

estimation models is based on using Source Line of Code (SLOC) as the primary input for 

the model [22, p.417]. This approach provides a simple categorization of the models; 

those models which use SLOC as an input and those which do not. The models which 

don’t use specification or code metrics are not in the focus of this review as they can not 

be integrated into this thesis to form a total cost estimation model.    

Boehm provides six approaches of estimation techniques, namely model-based or 

parametric, expertise-based, learning-oriented, dynamics-based, regression-based, and 

Composite [22, p.178]. 

                                                 
1
 Last visited: February 2011 
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Another estimation approach categorization is provided by Jørgensen et al. in 

which they have identified 13 estimation approaches [28, p.42]. However, they have 

used a simple top level categorization, with 3 categories, implicitly throughout the text: 

expert estimation, formal estimation, and combination-based estimation [28, p.39]. 

Since the expert- and combination-based estimation techniques can not be related to this 

thesis’ results, they won’t be in focus. 

3.3 Estimation Models 

SLIM1 is a software life-cycle model which used a Rayleigh manpower distribution 

model for estimating the needed effort for a software project [24]. A Raylegh curve is the 

graphical presentation for a mathematical equation which shows the relation between 

delivery time and needed effort for a software project. SLIM is a parametric model and 

can be calibrated using finished projects data or by answering a set of questions in case 

of lack of previous data [22, p.179].  

According to SLIM’s cost estimation formula, a project cost can be reduced to 

50% by simply increasing its schedule by 19% [25, p.10] which seems far from the real 

world software projects data. This issue made a validity weakness for this model. 

Nevertheless, SLIM has a good performance when it is compared to a few other 

outstanding estimation methods [23, p.428]. SLIM is a proprietary model and therefore, 

it has a limitation for using this method for cost estimations.  

Doty is another parametric cost estimation model which considers a number of 

characteristics of software projects as factors in its cost estimation formula [25, p.12]. 

Estimation formula in Doty has a discontinuity when code size, as input parameter, is 

equal to 10K delivered source instructions. As another weakness, the estimated cost 

increases by 92% by simply answering “yes” to one of characteristic factors [25, p.12].  

COCOMO II is an updated version of the COnstructive COst MOdel, the popular 

cost estimation model of the 1980s [22, p.189]. COCOMO II covers the weaknesses of 

the old version in confronting the new software development processes and capabilities 

[22, p.189]. The initial version of the model consists of three sub-models each of which 

has their own application area; the application composition model for the software 

projects which uses ICASE2 tools for rapid application development; the early design 

model is aimed at early cost estimation in projects and accepts source lines of code 

(SLOC) or function points3 as the main input together with 5 scale factors and 7 effort 

multipliers; the post-architecture model is applicable when the top level design is 

complete and it accepts source lines of code or function points as the main input together 

with 17 effort multipliers and 5 scale factors [22, p.190]. No specific drawbacks are 

found for COCOMO II in the reviewed papers. 

Mulisek et al. in [26] have provided an analysis on sensitivity of COCOMO II 

model. Their research reveals that the COCOMO II model is sensitive firstly to size input 

parameter and then to effort multipliers. Therefore, the experiment of this thesis which is 

aimed at providing a precise estimation for the size of code, as input parameter of the 

model, can help to provide more precision for COCOMO II model. The internal equations 

and parameter values are also fully available for this model. Therefore, this model seems 

to be good candidate to be related to the results of the experiment in this thesis in order 

to form a total cost estimation model. 

PRICE-S is a parametric and proprietary estimation model which has been used in 

several U.S. DoD, NASA, and other government software projects [22, p.182]. Since the 

model equations are not published, it can not be used for this research purposes. 

                                                 
1
 Software Lifecycle Management 

2
 Integrated Computer Aided Software Engineering 

3
 “A function point is a unit of measurement to express the amount of business functionality an information 

system provides to a user.”, Wikipedia, last visited: February 2011 
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There are a few other estimation techniques, like Checkpoint, ESTIMACS, SEER-

SEM, and SELECT, which are based on functionality-based size measures or other OO-

related metrics [22]. OO-related measures are not in hand at least until the early design 

stage since they are dependent on the architectural and design decisions.  Since 

functionality-based size metrics, like function points, are not the dominant aspect of 

formal specifications, this thesis results are not beneficial for them. Therefore, these 

models are not reviewed in this study. 

Table 3-1 summarizes the advantages and drawbacks of the candidate models for 

a total cost estimation model based on the later experiment in this thesis. 

 

Model Advantage(s) Drawback(s) 

SLIM -Good precision -Proprietary model 

Doty -Easy to calibrate 
-Discontinuity on DSI=10K 

-Lack of sufficient precision 

COCOMO II 
-Applicable in different stages of SW 
life-cycle 
-Easy to calibrate 

No drawback found in reviewed 
papers 

PRICE-S -Used in government projects -Proprietary  

Table 3-1- Advantages/drawbacks summary of reviewed cost estimation models 

 

Briand et al. in [27] provided an analysis on accuracy of software cost estimation 

models. The results of their research show that the estimation models which are based 

on analogy are less accurate than the rest. With this exception all other cost estimation 

models have more or less the same accuracy. Another research reveals that the 

algorithmic estimation techniques should be calibrated in target organizations to work 

well [23, p.427]. Moreover, it should be mentioned that there’s no single cost estimation 

model which can suit for all situations [22, p.177]. 

3.3.1 Input Parameters 

SLIM uses Delivered Source Instruction (DSI) as the main input prameter which is 

a metric for describing the size of code. Boehm defines DSI as program instructions 

created by project personnel that are part of the final product [23, p.418]. DSI can be 

assumed as a more precise definition for source lines of code which doesn’t include 

comments, empty lines, and etc. There are a few tools
1
 which can calculate DSI in a 

variety of programming languages. Other input parameters in basic model of SLIM 

consist of development time and a technology constant which can be calibrated based on 

past projects [25, p.10].  

Similar to SLIM, Doty also uses DSI as one of its input parameters. The other 

input parameters include the factors for characteristics of software projects. These 

factors accept the value of Zero or One according to the description of factor and 

therefore, they are not to be estimated. 

As mentioned before, different sub-models of COCOMO II use a variety of input 

parameters from which the number of source lines of code (SLOC) is estimable. The rest 

of input factors are either determined parameters, like function points, or parameters 

related to the characteristics of the project which are not to be estimated. 

Three different code size metrics, namely Count Line Code, Lines Executable, 

Lines Declarative, are considered for the experiment of this thesis. Using these three 

                                                 
1
 http://www.locmetrics.com/alternatives.html, last visited: February 2011 

http://www.locmetrics.com/alternatives.html
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metrics, one can calculate the value for various definitions of SLOC and DSI. Table 3-2 

summarizes these metrics with their definitions. 

 

Metric Definition 

Count Line Code Is equal to Lines Executable + Lines Declarative 

Lines Executable total lines that have executable code on them 

Lines Declarative total lines that have declarative code on them 

Table 3-2- Code metrics to be considered in the experiment 

 

3.4 Summary 

According to the results of this study, SLOC and DSI are the most commonly used 

metrics in code which are used as input for estimation models. SLOC and DSI are 

quantifiable and objective, though difficult to estimate at the beginning of a software 

project [22, p.417].  

Estimation of size of the software, in terms of source lines of code, seems to be 

the common problem for models which have such an input. Therefore, regardless of the 

discussed cost/effort estimation models, the results of the experiment in this thesis can 

be used in every model which uses SLOC or DSI as an input for the size of the software. 

The next chapter provides details of an experiment which is conducted in order to 

investigate the correlation between measures in Z specifications and measures in 

implemented code of a software system.  
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4. Chapter 4:  

The Experiment 

 

 

 

 

4.1 Introduction 

The study conducted in chapter two revealed that specifications in Z can be 

measured with different types of metrics. The results of literature review, in the previous 

chapter, also show that there are reliable software cost estimation models which need 

the SLOC or DSI as input parameter. Therefore, a study which investigates the 

correlation between metrics of Z specifications and metrics of code can provide a means 

to estimate total software cost once the specifications are in hand.  

The next section sets the design of the study. The later sections state the results 

and make a discussion over those results. This chapter will end with an analysis of the 

threats to the validity of this study. 

4.2  Methodology 

4.2.1 Subjects 

Subjects for this study are a set of pairs of code modules together with their 

related specifications in Z. In order to collect the sample, by searching on web and 

sending emails to a few major researchers in Z formal specifications field, it revealed that 

there is just one software system in industrial scale whose both the code and Z 

specifications are publicly available and it is called Tokeneer ID Station1, implemented via 

ADA programming language. However, there are many subjects of Z specifications with 

code for the learning purposes which could not be used since this experiment is focused 

on industrial-scale real world problems. 

A software module can be considered as a set of instructions which accepts 

inputs, performs the computations, and probably changes the state and/or generates 

outputs. With this definition, one software system can be broken up into several software 

modules, each of which can be considered as a subject for the study. However, the main 

issue here is to find the modules in a proper level of granularity.  

A code module should fit in a part of specifications to be the good representative 

of the specifications. It means that the module should implement exactly that part of 

specification, neither more nor less. Figures 4-1 and 4-2 depict a particular example of 

this situation. In this example a utility module which is providing different services for 

several modules cannot be a part of one of the subjects (figure 4-1). That’s because it is 

providing some other features for other modules which are not in a particular subject. 

However, if a related specification slice exists for the utility module, it can be a subject 

itself (figure 4-2).  

 

Because of the mentioned issues in providing subjects, the code and 

documentations of the Tokeneer are investigated precisely and in different abstraction 

                                                 
1
 www.adacore.com/tokeneer , Last visited: March 2011 

http://www.adacore.com/tokeneer
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levels of code, and subjects are identified one by one. Therefore, all the subjects for this 

study are formed via a step-wise procedure which is explained here in this section.  

According to code documentations of Tokeneer, most of the procedures are 

mapped to one or a few formal design traceability units. A formal design traceability unit 

is a package of formal design schemata in Z. However, they are not specification 

schemata, to be measured, and they just provide a means to trace to the formal 

specifications traceability units. Formal specifications traceability units are packages 

containing the specification schemata in Z which are to be measured. INFORMED Design1 

document of the Tokeneer project is used to trace the procedures in code which lack the 

traceability documentations. 

Regarding the situation for extracting subjects, each final subject consists of a 

cluster of procedures in code together with a cluster of related Z schemata. Therefore 

each subject contains a set of Z schemata and the set of code procedures which 

implement those schemata.  To keep the traceability, a table is formed with four 

columns: Procedures, Formal Design (FD) Traceability Units, Formal Specifications (FS) 

Traceability Units, and Z schemata. 

 

 

Figure 4-1- A non-mappable situation which results in no sample 

 

 

Figure 4-2- A mappable situation which results in 3 samples 

 

                                                 
1
 http://www.adacore.com/wp-content/files/auto_update/sparkdocs-docs/Informed.htm, Last visited: 

September 2011 

http://www.adacore.com/wp-content/files/auto_update/sparkdocs-docs/Informed.htm
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The sample extraction procedure starts with choosing one procedure of code and 

listing it under the column for procedures in a clean table for a new sample. FD units for 

the chosen procedure are listed under the FD column. Under the FS column, the FS units 

related to the FD units are listed in the same manner. To this point of process the list 

contains just the FS units related to the primarily chosen procedure. However, there may 

be still some procedures which participate in implementing the listed FS units. Therefore, 

another scan in reverse way is performed.  

In this way, the list of FD units is enriched by finding all FD units related to the list 

of FS units. Then again the code is inspected for other procedures which relate to the 

listed FD units. This forward/backward procedure is performed until no more entry can be 

found and added to the lists.  

At this point one subject is formed containing the list of procedures and the list of 

Z schemata related to the FS units. It’s good to mention that the subjects with loosed 

traceability are eliminated since their code and specification clusters are not representing 

each other properly. A total of 28 subjects are formed via this procedure and they are 

listed in Appendix A. 

4.2.2 Variables 

The independent variables in this study are the metrics in specifications and 

dependent variables are the code metrics. These specification and code metrics are 

chosen through procedures described in the previous chapters and they are defined 

precisely here in this section. Study subjects are measured with these metrics and form 

the variable values. Table 4-1 shows the metrics with which the Z specifications are 

measured. An exact and clear definition is also provided to remove the ambiguity so that 

the experiment becomes repeatable. For the calculation of Z specification measures, an 

Eclipse plug-in from the ViZ project is used [29]. 

 

Cat. Metric Definition 

S
iz

e
-

B
a
s
e
d
 Specifications LOC Number of text lines in the specifications. 

Conceptual 

complexity (CC) 
Number of primes in the specifications. 

S
tr

u
c
tu

re

-B
a
s
e
d
 

Logical complexity 
In the ASRN of the specification:  

Edges - Nodes + Connected Components 

Definition Use (DU) 
Count 

Number of data dependencies in the ASRN of the 

specifications. 

S
e
m

a
n
ti
c
-

B
a
s
e
d
 

Slice-based Coupling 
According to Bollin’s paper [9, p.26], it is calculated as the 

amount of information flow between schemas. 

Slice-based Cohesion 
According to Bollin’s paper [9, p.26], it’s calculated via 

Tightness and Coverage metrics  

Slice-based Overlap 
The number of primes which are common to all 

specification slices 

Table 4-1- Specification metrics and measurement methods 

 

Table 4-2 lists the code metrics to be measured in the experiment together with 

the clear definition of them. The metrics are chosen according to the results of the study 

in chapter three. The cyclomatic complexity metric is added to this list in order to 

investigate the correlation between the metrics in specifications with the complexity of 
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code. If this correlation is found, it helps to pre-locate the parts of the system with high 

complexity in order to take special considerations in implementation. The metrics in code 

are calculated using a tool called SciTools Understand
1
 for which a temporary license is 

acquired from its producer company. 

 

Metric Definition 

Count Line Code 

The number of lines that contain source code. Note that a line can 

contain source and a comment and thus count towards multiple 

metrics. For Classes this is the sum of the Count Line Code for the 

member functions of the class. 

Lines Executable total lines that have executable Ada code on them 

Lines Declarative total lines that have declarative Ada code on them 

Cyclomatic 

Complexity 

Cyclomatic complexity [13] In the control flow graph of the code:  

Edges - Nodes + Connected Components. 

This metric is applicable just in procedure level 

Table 4-2- Code metrics and measurement methods 

4.2.3 Hypotheses 

There are two hypotheses in this study; there is no correlation between selected 

metrics in Z specifications and metrics in code of software systems or there is a 

correlation between them. Therefore it’s assumed that the metrics in Z specifications 

have absolutely no effect on the metrics in code unless a reason is found to reject this 

hypothesis. The hypotheses are formulated as follows: 

 Null hypothesis (H0): Selected metrics in Z specifications do not correlate 

with metrics in code for a software system. 

 Alternative hypothesis (H1): Selected metrics in Z specifications correlate 

with metrics in code for a software system. 

4.3 Results 

As mentioned before, each subject of this study contains a set of procedures 

together with a set of Z schemata. Therefore, the main aim is to calculate the mentioned 

metrics for each subject, not for each procedure and schemata in the subjects. Hence, 

these metrics should be summarized for each subject.  

According to the concepts of size and complexity, the size and complexity of a 

group of procedures is equal to summation of size and complexity of each procedure in 

the group. Therefore, it’s enough to calculate the summation of the count line code, lines 

executable, lines declarative, and cyclomatic complexity of all procedures in a particular 

subject to achieve the values of these metrics for that subject.  

The size and complexity metrics of Z schemata are calculated for each subject in 

the same manner. However, the calculation is not simple for the sematic-based measures 

in Z unlike the other measures. One simplistic way of calculating semantic-based 

measures for a group of schemata is to calculate the average of the values of metrics. 

The results of the measurement of metrics for every sample together with a summary 

table for all the samples are provided in Appendix B. 

 

 

                                                 
1
 http://www.scitools.com/index.php, Last visited: March 2011 

http://www.scitools.com/index.php
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4.4 Discussion 

The main aim in this correlational study is to search for a reason to reject the null 

hypothesis of the study. Therefore, a statistical reason should convince that there is a 

correlation between one or more independent variables and the dependent variables. For 

this purpose, regression test is applied to the measurement data. The analysis results are 

discussed here in this section. 

According to the regression analysis concepts, if the P-value for an independent 

variable is less than 0.05, it means that there is less than 5% chance of the dependent 

variable values would have come up in a random distribution [30]. In other words, there 

is a probability of 0.95 that the independent variable affects the dependent variable and 

hence, the null hypothesis is rejected. Therefore, each and every metric in code, or the 

same dependent variable, is investigated to find such a correlation. 

Table 4-3 has a summary of regression analysis results. According to this table 

and for Count Line Code as the dependent variable, the P-values for a few of independent 

variables, or the same specification metrics, are less than 0.05. These metrics are 

namely Specification Line of Code, Conceptual Complexity, Definition-Use, Minimum 

Coverage, and Coupling. Therefore the null hypothesis is rejected for these specification 

metrics and they are in correlation with Count Line Code. Regression test results for Lines 

Executable as dependent variable indicate that Specification Line of Code, Conceptual 

Complexity, Definition-Use, Minimum Coverage, and Coupling metrics in specifications 

have correlation with Lines Executable in code. Comparing to Count Line Code and Lines 

Executable, there are fewer specification metrics, namely Definition-Use, Minimum 

Coverage, and Coupling in correlation with Lines Declarative. Unlike the other code 

metrics, Cyclomatic Complexity in code doesn’t show any correlation with metrics in 

specifications, even Cyclomatic Complexity of specifications.  

The R-Square value for the regressions shows the percentage of variation of code 

metrics which is explained by metrics in specifications. In other words, the value of R-

Square indicates whether a regression equation is useful to predict the value of a specific 

metric in code from metrics in Z specifications [31, p.240]. Therefore, 85% of variation 

of Count Line Code is explained by the metrics in specifications. This amount grows to 

88% for Lines Executable but it is weaker for Lines Declarative which is 73%.  For 

Cyclomatic Complexity in code, just 44% of variation of the metric is explained by 

specification metrics.  

The value of Significance F indicates the amount of reliability of regression results. 

If Significance F for a regression analysis is less than 0.05, it proves that regression 

analysis results are reliable. Therefore, results of regression analysis are highly reliable 

for Count Line Code and Lines Executable, and reliable for Lines Declarative. However, 

the results are not reliable for Cyclomatic Complexity in code.The detailed results of 

regression analysis for metrics in code are provided in Appendix C. 
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Regression Parameter 
Count Line 
Code 

Lines 
Executable 

Lines 
Declarative 

Cyclomatic 
Complexity 

R-Square 0.85 0.88 0.73 0.44 

Significance F 0.00009 0.00002 0.007 0.38 

P
-V

a
le

 

LOC in specifications 0.03 0.01 0.19 0.52 

Conceptual Complexity 0.02 0.01 0.11 0.21 

Cyclomatic Complexity Low 0.26 0.24 0.14 0.21 

Cyclomatic Complexity High 0.23 0.18 0.15 0.18 

Definition-Use Count 0.04 0.02 0.05 0.06 

Tightness 0.37 0.34 0.39 0.68 

Min Coverage 0.05 0.05 0.04 0.28 

Coverage 0.20 0.20 0.11 0.26 

Max Coverage 0.60 0.63 0.35 0.41 

Overlap 0.35 0.44 0.30 0.83 

Coupling 0.02 0.02 0.03 0.53 

Table 4-3- Summary of regression analysis results 

 

Figures 4-3 to 4-6 are Scatter plots that show the deviation of regression values 

from real values. X dimension for all the points in these figures is the regression values. 

However, Y dimension for points are in two types. For the points with + shaped markers, 

Y is regression values and for the points with diamond-shaped markers, Y is real values 

for the metric in code. Therefore, the regression values form the line Y=X and the real 

values have some deviation from regression values in Y dimension.  

Figures 4-3 implies that except a few outliers, the rest of points have acceptable 

deviation from regression values for Count Line Code. For Lines Executable, the points 

are more integrated in figure 4-4. However, figure 4-5 shows a more intense scatter for 

Lines Declarative and this is even more intense for Cyclomatic Complexity of code in 

figure 4-6. 

Figures 4-7 to 4-10 project the deviation of regression values from real values for 

each sample. The X-axes are the sample numbers. These figures confirm the regression 

results which show there can be a reliable estimation for Code Line Code, Lines 

Executable, and Lines Declarative based on metrics in specifications. However, the 

deviation of estimated values and real values for Cyclomatic Complexity of code is rather 

intense. 
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Figure 4-3- Scatter plot based on regression analysis results for Count Line Code 

 

 

Figure 4-4- Scatter plot based on regression analysis results for Lines Executable 
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Figure 4-5- Scatter plot based on regression analysis results for Lines Declarative 

 

 

Figure 4-6- Scatter plot based on regression analysis results for Cyclomatic Complexity 
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Figure 4-7- Real values vs. regression values for each sample for Count Line Code 

 

 

Figure 4-8- Real values vs. regression values for each sample for Lines Executable 
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Figure 4-9- Real values vs. regression values for each sample for Lines Declarative 

 

 

Figure 4-10- Real values vs. regression values for each sample for Cyclomatic Complexity 
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Regression analysis results together with the graphs confirm that three out of four 

chosen metrics in code are predictable from metrics in Z specifications. Table 4-6 

presents the coefficients for these metrics in regression results. 

 

Component 
Count Line 
Code 

Lines 
Executable 

Lines 
Declarative 

Cyclomatic 
Complexity 

Intercept 120.21 60.74 56.01 5.78 

LOC in specifications (LOCS) -1.79 -1.35 -0.44 -0.12 

Conceptual Complexity (CC) 3.26 2.48 0.97 0.40 

Cyclomatic Complexity Low (CCL) 4.89 3.14 2.81 1.27 

Cyclomatic Complexity High (CCH) -0.03 -0.02 -0.02 -0.01 

Definition-Use Count (DU) -0.18 -0.13 -0.07 -0.04 

Tightness (TI) 566.57 377.12 231.53 60.40 

Min Coverage (NCOV) -1473.22 -910.95 -673.96 -180.65 

Coverage (COV) 1076.74 669.17 579.60 218.94 

Max Coverage (XCOV) -261.73 -152.67 -205.97 -98.11 

Overlap (OLAP) 194.55 99.66 94.01 10.30 

Coupling (COUP) -1004.59 -605.06 -389.66 -58.85 

Table 4-6- Coefficients for the components of regression analysis 

 

According to the presented discussions, the formula for predicting chosen metrics 

in code is presented here. 

 

               
                                                         
                                                              
        

 

                
                                                         
                                                                 

 

                 
                                                         
                                                                 

 

As a conclusion from the results presented in this chapter, it can be said that 

apart from Cyclomatic Complexity of code, there are signs for the rest of code metrics, 

namely Lines of Code, Lines Executable, and Lines Declarative, which show there are 

correlations between selected metrics in specifications and those code metrics. 

Nevertheless, there are some validity threats to the results which prevent this study to 

make any claim about the precise quality of this correlation. Therefore, a few other 

statistical tests, which could be applied in order to identify the precise quality of this 
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correlation, are ignored in this thesis work.  These validity threats are discussed in the 

next section. 

4.5 Threats to Validity 

Two applied simplifications during this research might make threats to validity of 

the results. These simplifications have been applied during extraction of the 28 samples 

and also, during measurement of metrics for each sample. 

The first simplification has been applied in order to form subjects of the study 

where the parts of code should represent the implementation of the parts of 

specifications. In the process of extracting samples, which is explained before, an 

approximation technique is applied. The quality and reasons for applying this technique is 

explained here. 

Procedure call-backs in code are usual in almost all programming languages and 

styles, including the code which is investigated in this study. Though the sub-procedures 

of a cluster of procedures in a particular sample participate in implementation of the 

cluster of specifications of that sample, they are not taken into account in this study. 

That is because considering one further level of procedure call-backs will lead to cluster 

interlacement until whole the code becomes just one huge sample. This interlacement 

happens because of some procedures which are called by two or more procedures from 

different code clusters. Therefore the code parts approximately, and not precisely, 

represent the implementation of the specifications and this is a threat to validity of 

results of this study. 

The other threat to validity of results is in the way of calculating metrics for 

samples which is explained in section 4-3. As each sample of this study consists of a 

cluster of specifications and a cluster of procedures in code, the metrics should be 

calculated for whole the cluster rather than one particular procedure or Z schemata. 

There are problems with calculating the metrics since the metrics are defined for a single 

procedure or Z schemata. In order to get around this problem it is needed to extend the 

definition of those metrics for clusters.  

According to definition of size and complexity metrics, The value of a size or 

complexity metric for a cluster of items, either procedures in code or schemata of Z 

specifications, is equal to summation of the values of that metric for each of items in that 

cluster. For example the value of Count Line Code for a cluster of procedures is equal to 

summation of values of Count Line Code for each of procedures in that cluster. 

For semantic-based metrics in Z specification the average of measurement values 

for each schema in the cluster is calculated. This is the simplified way of calculating these 

metrics, though compatible with the definition of the metrics. The more precise way of 

calculating semantic-based metrics for clusters is more complex and in that way, the 

weight of each schema in the cluster should be taken into account. To find the weight of 

each schema, the structure of schemata should be inspected and be compared with the 

other schemata in the cluster. Then a percentage of weight should be considered for each 

schema in a way that the summation of the percentages for schemata in the cluster 

becomes 100. This way of calculating metrics is costlier in terms of time and expertise 

needed to judge the complexity of each schema. 

All subjects of this experiment are extracted from one system which is 

implemented by one specific development team and one programming language. This 

issue should also be considered as a thread to validity of this study. 
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5. Chapter 5:  

Conclusions 

 

 

 

 

 

5.1 Introduction 

The goal of this chapter is to conclude the results of the master thesis which is 

aimed at examining if Z-based specification measures can be used for predicting 

properties of related code implementations.  

For this reason three different studies are performed; a literature review in order 

to collect an appropriate set of metrics in Z specifications, another literature review in 

order to identify the code metrics which play a major role as input for outstanding 

software cost estimation models, and an experiment aimed at examining the correlation 

between collected specifications and code metrics. The next section will provide a 

summary for the results of each conducted study in this master thesis. 

5.2 Study on Z Metrics 

The literature review on the specification metrics is performed with focus on 

applicability on Z-specifications and availability of tools for measurement. This review 

resulted in three categories of metrics including total of eleven metrics, namely line of 

code in specifications, conceptual complexity, two metrics for logical (cyclomatic) 

complexity, definition use count, coupling, four metrics for cohesion, and overlap. 

5.3 Study on Code Metrics 

A literature review is performed in order to find the code metrics which can be 

used as input for outstanding software cost estimation models. Therefore, software cost 

estimation models are reviewed to find the outstanding ones and the useful code metrics 

as inputs parameters for them. 

According to results of this study, COCOMO II is the most widely used among 

non-proprietary cost estimation models. The cost estimation model called Doty is also 

used despite of lack of enough precision. The code metric called Source Line of Code, or 

a more precise definition of that called Delivered Source Instructions, are used in both of 

these models, and a few other reviewed models, as input parameter for estimating the 

cost of software. 

Being able to estimate complexity of code will also help to identify the risky parts 

of the implementation to apply special management and/or software development 

techniques as complexity is important in reducing the cost of software maintenance. 

5.4 The Experiment 

Because of lack of enough experimental subjects, an industrial project is broke 

down to smaller samples with a step-wise method which is explained in section 4-2-1 of 

chapter 4. Then, the measurement is performed on 28 extracted subjects each of which 

containing a set of Z schemata and a set of procedures/functions in code. List of study 
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subjects is provided in Appendix A and the result of measurements in Appendix B. Full 

results of this study are available on internet1. 

Via a few statistical tests on measurement data, it revealed that metrics in Z-

specifications are in correlation with size-based metrics in code. Nevertheless, because of 

validity threats which are explained in chapter 4, this master thesis is unable to make 

any claim about exact quality of correlation between Z metrics and code metrics. 

However, this study could not find any prove for correlation of specification metrics and 

the only studied metric for complexity of code, Cyclomatic Complexity. 

5.5 Further Studies 

Despite of proof for existence of correlation between specification and code 

metrics, no total cost estimation model is proposed in this thesis work. However, if the 

mentioned validity threats are removed or alleviated, then the last part of this study can 

be repeated, with more statistical tests, in order to investigate the exact quality of 

correlation between measures in specifications and measures in implementation. 

According to results of the literature review study for cost estimation models, a good 

estimation for size of code can lead to total software cost estimation model which is a 

mixing with existing cost estimation models like COCOMO II. 

The further studies can be conducted once the software industry start to use Z 

specifications more widely and reveal the code of the software. It is a good situation to 

raise the need of an official repository of formal specifications and related codes to 

facilitate later studies on formal specifications. Moreover, in case of availability of more 

measurement tools for Z-specifications, the correlation of more metrics can be examined. 

 

 

 

                                                 
1
 http://goo.gl/yGnC7 

https://docs.google.com/spreadsheet/ccc?key=0AvuP_wv3juEydFZ5Vy1JTHU2QlNzUkNMcEF4R2hHLWc&hl=en_US
http://goo.gl/yGnC7


Page 31 of 46 

 

Appendix A- List of Study Subjects 
 

# Procedures Z Schemas 

1 Admin.FinishOp AdminFinishOp 

2 Admin.Logon AdminLogon 

3 Admin.Logout AdminLogout 

4 Admin.StartOp AdminStartOp 

5 

AdminToken.IsPresent 
Clock.TheCurrentTime 
Door.TheCurrentDoor 
Door.TheDoorAlarm 
Floppy.IsPresent 
Floppy.CurrentFloppy 
Latch.IsLocked 
Screen.SetMessage 
UserToken.IsPresent 

DoorLatchAlarm 
UserToken 
AdminToken 
Finger 
Floppy 
Keyboard 

6 

Alarm.UpdateDevice 
Screen.UpdateScreen 
Updates.Activity 
Updates.EarlyActivity 
Latch.UpdateDevice 
Display.UpdateDevice 
Admin.SecurityOfficerIsPresent 

TISEarlyUpdate 
TISUpdate 

7 
AuditLog.AddElementToLog 
AuditLog.TruncateLog 

AddElementsToLog 

8 AuditLog.ArchiveLog ArchiveLog 

9 AuditLog.ClearLogEntries ClearLog 

10 

AuditLog.Init 
AdminToken.Init 
CertificateStore.Init 
ConfigData.Init 
Configuration.Init 
Display.Init 
Door.Init 
Enclave.Init 
Floppy.Init 
Keyboard.Init 
KeyStore.Init 
TISMain.Init 
UserToken.Init 
Latch.Init 
Admin.Init 
Stats.Init 
Screen.Init 

StartContext 
StartNonEnrolledStation 
StartEnrolledStation 
TISStartup 
InitDoorLatchAlarm 
InitKeyStore 
InitConfig 
InitAdmin 
InitStats 
InitAuditLog 
InitIDStation 
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11 

Cert.Attr.Auth.Construct 
Cert.Attr.Auth.TheRole 
Cert.Attr.Auth.TheClearance 
Cert.Attr.Auth.Extract 
Cert.Attr.IandA.TheTemplate 
IandACert.Extract 
PrivCert.TheRole 
PrivCert.TheClearance 
PrivCert.Extract 
AttrCert.TheBaseCert 
IDCert.TheSubject 
IDCert.ThePublicKey 
IDCert.Extract 
Cert.TheIssuer 
Cert.TheID 
Cert.TheMechanism 
Cert.GetData 
Cert.GetSignature 
CertProcessing.ExtractIDCertData 
CertProcessing.ExtractPrivCertData 
CertProcessing.ExtractIACertData 
CertProcessing.ExtractAuthCertData 
CertProcessing.ObtainRawData 
CertProcessing.ObtainSignatureData 
CertProcessing.ConstructAuthCert 
Cert.Attr.Auth.SetContents 
CertProcessing.AddAuthSignature 
UserToken.GetClass 

NewAuthCert 
CertificateId 
Certificate 
IDCert 
CAIdCert 
AttCertificate 
PrivCert 
AuthCert 
IandACert 

12 

Cert.Attr.Auth.IsOK 
KeyStore.PrivateKeyPresent 
KeyStore.IssuerIsThisTIS 
Cert.IssuerKnown 
Cert.IsOK 
KeyStore.KeyMatchingIssuerPresent 
KeyStore.ThisTIS 

CertIssuerKnown 
CertOK 
CertIssuerIsThisTIS 
AuthCertOK 
KeyStore 

13 

ConfigData.ValidateFile 
ConfigData.AuthPeriodIsEmpty 
ConfigData.GetAuthPeriod 
ConfigData.IsInEntryPeriod 
ConfigData.TheLatchUnlockDuration 
ConfigData.TheAlarmSilentDuration 
ConfigData.TheFingerWaitDuration 
ConfigData.TheTokenRemovalDuration 
ConfigData.TheEnclaveClearance 
ConfigData.TheSystemMaxFar 
ConfigData.TheAlarmThresholdEntries 

Config 

14 Display.SetValue 

AuditDoor 
AuditLatch 
AuditAlarm 
AuditLogAlarm 
AuditDisplay 
AuditScreen 
NoChange 
LogChange 

15 Enclave.CompleteFailedAdminLogon FailedAdminTokenRemoved 

16 Enclave.ResetScreenMessage 
ResetScreenMessage 
UserEntryContext 

17 UserToken.UpdateAuthCert UpdateUserToken 

18 Floppy.Write UpdateFloppy 

19 
KeyStore.IsVerifiedBy 
KeyStore.Sign 

KEYPART 
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20 

Stats.AddFailedBio 
Stats.AddSuccessfulEntry 
Stats.AddFailedEntry 
Stats.AddSuccessfulBio 

AddSuccessfulEntryToStats 
AddFailedEntryToStats 
AddSuccessfulBioCheckToStats 
AddFailedBioCheckToStats 

21 
ConfigData.TheDisplayFields 
Stats.DisplayStats 

IDStation 

22 
TISMain.Processing 
TISMain.MainLoopBody 

TISIdle 
TISAdminOp 
TISProcessing 

23 UserEntry.FailedAccessTokenRemoved 
FailedAccessTokenRemoved 
TISCompleteFailedAccess 

24 UserEntry.Progress TISUserEntryOp 

25 

UserEntry.ReadFinger 
UserEntry.UserTokenTorn 
UserEntry.ValidateUserToken 
UserEntry.ValidateFinger 
UserEntry.UpdateToken 
UserEntry.ValidateEntry 
UserEntry.StartEntry 
UserToken.GetIandATemplate 
UserToken.ReadAndCheck 

ReadFingerOK 
NoFinger 
FingerTimeout 
TISReadFinger 
EntryOK 
WriteUserTokenFail 
WriteUserToken 
TISWriteUserToken 
WriteUserTokenOK 
ValidateFingerFail 
TISValidateFinger 
FingerOK 
ValidateFingerOK 
BioCheckRequired 
ValidateUserTokenOK 
BioCheckNotRequired 
ReadUserToken 
TISReadUserToken 

26 UserEntry.UnlockDoor 

UnlockDoorOK 
WaitingTokenRemoval 
TokenRemovalTimeout 
TISUnlockDoor 

27 UserToken.AddAuthCert AddAuthCertToUserToken 
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28 

AdminToken.GetRole 
AdminToken.Interface.Poll 
AdminToken.Poll 
AdminToken.ReadAndCheck 
Bio.Poll 
Clock.Poll 
ConfigData.UpdateData 
ConfigData.WriteFile 
Configuration.UpdateData 
Display.ChangeDoorUnlockedMsg 
Door.LockDoor 
Door.Poll 
Door.UnlockDoor 
Door.UpdateDoorAlarm 
Enclave.AdminLogout 
Enclave.AdminOp 
Enclave.ArchiveLogOp 
Enclave.BadAdminTokenTear 
Enclave.CompleteFailedEnrolment 
Enclave.EnrolOp 
Enclave.OverrideDoorLockOp 
Enclave.ProgressAdminActivity 
Enclave.ReadEnrolmentData 
Enclave.ShutdownOp 
Enclave.StartAdminActivity 
Enclave.UpdateConfigDataOp 
Enclave.ValidateAdminToken 
Enclave.ValidateEnrolmentData 
Enrolment.Validate 
Floppy.CheckWrite 
Floppy.Read 
Keyboard.Interface.Poll 
Keyboard.Poll 
Keyboard.Read 
Latch.SetTimeout 
Latch.UpdateInternalLatch 
UserEntry.DisplayPollUpdate 
UserToken.Interface.Poll 
UserToken.Poll 
KeyStore.AddKey 
Poll.Activity 

AdminTokenOK 
AdminTokenTimeout 
ClearLogThenAddElements 
CompleteFailedEnrolment 
EnrolContext 
FailedEnrolFloppyRemoved 
FinishArchiveLog 
FinishArchiveLogBadMatch 
FinishArchiveLogFail 
FinishArchiveLogNoFloppy 
FinishArchiveLogOK 
FinishUpdateConfigData 
FinishUpdateConfigDataFail 
FinishUpdateConfigDataOK 
LockDoor 
LoginAborted 
NoOpRequest 
OverrideDoorLockOK 
PollAdminToken 
PollDoor 
PollFinger 
PollFloppy 
PollKeyboard 
PollTime 
PollUserToken 
ReadAdminToken 
ReadEnrolmentData 
ReadEnrolmentFloppy 
RequestEnrolment 
ShutdownOK 
ShutdownWaitingDoor 
StartArchiveLog 
StartArchiveLogOK 
StartArchiveLogWaitingFloppy 
StartUpdateConfigData 
StartUpdateConfigOK 
StartUpdateConfigWaitingFloppy 
TISAdminLogon 
TISAdminLogout 
TISArchiveLogOp 
TISCompleteFailedAdminLogon 
TISCompleteTimeoutAdminLogout 
TISOverrideDoorLockOp 
TISPoll 
TISReadAdminToken 
TISShutdownOp 
TISStartAdminOp 
TISUpdateConfigDataOp 
TISValidateAdminToken 
TokenRemovedAdminLogout 
UnlockDoor 
ValidateAdminTokenFail 
ValidateAdminTokenOK 
ValidateEnrolmentData 
ValidateEnrolmentDataFail 
ValidateEnrolmentDataOK 
ValidateOpRequest 
ValidateOpRequestOK 
WaitingAdminTokenRemoval 
WaitingFloppyRemoval 
UpdateKeyStore 
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Appendix B- Measurement Results 

 

Full results of this study are available on internet1 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

                                                 
1
 http://goo.gl/yGnC7 

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Admin.FinishOp 5 1 4 1 AdminFinishOp 24.00 33.00 17.00 3457.00 114.00 0.67 0.67 0.67 0.67 1.00 0.24

Sample 01

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Admin.Logon 7 2 5 1 AdminLogon 31.00 36.00 16.00 3248.00 108.00 0.65 0.65 0.65 0.65 1.00 0.23

Sample 02

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Admin.Logout 5 1 4 1 AdminLogout 23 32 16 3248 111 0.65 0.65 0.65 0.65 1.00 0.24

Sample 03

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Admin.StartOp 6 1 5 1 AdminStartOp 31 39 19 3875 115 0.69 0.69 0.69 0.69 1.00 0.23

Sample 04

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

AdminToken.IsPresent 5 1 4 1 AdminToken 4 2 1 1 0 0 0 0 0 0 0

Clock.TheCurrentTime 5 1 4 1 DoorLatchAlarm 15 16 1 1303 29 0.00 0.11 0.48 0.67 0.66 0.12

Door.TheCurrentDoor 5 1 4 1 Finger 4 2 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Door.TheDoorAlarm 5 1 4 1 Floppy 5 3 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Floppy.IsPresent 21 11 10 1 Keyboard 4 2 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Floppy.CurrentFloppy 5 1 4 1 UserToken 4 2 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Latch.IsLocked 5 1 4 1 Summation 36 27 6 1308 29 0.00 0.11 0.48 0.67 0.66 0.12

Screen.SetMessage 13 9 4 2 Average 6 4.5 1 218 4.83 0.00 0.02 0.08 0.11 0.11 0.02

UserToken.IsPresent 5 1 4 1

Summation 69 27 42 10

Average 7.67 3.00 4.67 1.11

Sample 05

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Alarm.UpdateDevice 9 6 3 2 TISEarlyUpdate 98 78 11 2173 52 0.36 0.36 0.57 0.64 0.27 0.19

Screen.UpdateScreen 59 49 10 8 TISUpdate 208 180 43 9121 498 0.08 0.11 0.56 0.68 0.13 0.49

Updates.Activity 11 5 6 1 Summation 306 258 54 11294 550 0.44 0.47 1.13 1.32 0.39 0.68

Updates.EarlyActivity 6 2 4 1 Average 153 129 27 5647 275 0.22 0.24 0.57 0.66 0.20 0.34

Latch.UpdateDevice 17 13 4 3

Display.UpdateDevice 32 25 7 4

Admin.SecurityOfficerIsPresent 5 1 4 1

Summation 139 101 38 20

Average 19.86 14.43 5.43 2.86

Sample 06

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

AuditLog.AddElementToLog 23 14 9 2 AddElementsToLog 36 17 3 437 11 1 1 1 1 1 0.13

AuditLog.TruncateLog 17 11 6 1

Summation 40 25 15 3

Average 20 12.5 7.5 1.5

Sample 07

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

AuditLog.ArchiveLog 68 56 12 8 ArchiveLog 28 18 3 437 0 1 1 1 1 1 0.04

Sample 08

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

AuditLog.ClearLogEntries 29 24 5 4 ClearLog 32 25 3 437 10 0.4 0.5 0.58 0.7 0.41 0.04

Sample 09

https://docs.google.com/spreadsheet/ccc?key=0AvuP_wv3juEydFZ5Vy1JTHU2QlNzUkNMcEF4R2hHLWc&hl=en_US
http://goo.gl/yGnC7
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Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

AuditLog.Init 118 93 25 9 StartContext 187 173 51 8907 311 0.10 0.10 0.10 0.10 1.00 0.28

AdminToken.Init 5 2 3 1 StartNonEnrolledStation 202 181 53 8951 316 0.08 0.09 0.60 0.73 0.16 0.46

CertificateStore.Init 22 18 4 3 StartEnrolledStation 202 181 53 8951 316 0.08 0.09 0.60 0.73 0.16 0.46

ConfigData.Init 77 56 21 3 TISStartup 221 193 55 8995 321 0.07 0.08 0.63 0.72 0.11 0.44

Configuration.Init 4 1 3 1 InitDoorLatchAlarm 23 22 1 1391 29 0.77 0.77 0.77 0.77 1.00 0.09

Display.Init 13 9 4 2 InitKeyStore 12 10 1 439 3 0.80 0.80 0.80 0.80 1.00 0.04

Door.Init 6 3 3 1 InitConfig 23 18 1 437 0 0.00 0.13 0.17 0.25 0.00 0.02

Enclave.Init 8 5 3 2 InitAdmin 21 31 1 3083 56 0.64 0.64 0.64 0.64 0.99 0.23

Floppy.Init 47 34 13 3 InitStats 14 11 1 89 0 0.00 0.25 0.25 0.25 0.96 0.00

Keyboard.Init 4 1 3 1 InitAuditLog 10 7 1 1 0 0.00 0.50 0.50 0.50 0.00 0.00

KeyStore.Init 35 23 12 4 InitIDStation 187 170 1 8907 310 0.00 0.01 0.18 0.54 0.00 0.35

TISMain.Init 33 30 3 2 Summation 1102 997 219 50151 1662 2.53 3.46 5.24 6.03 5.38 2.36

UserToken.Init 5 2 3 1 Average 100.18 90.64 19.91 4559.18 151.09 0.23 0.31 0.48 0.55 0.49 0.21

Latch.Init 5 2 3 1

Admin.Init 6 2 4 1

Stats.Init 8 4 4 1

Screen.Init 35 28 7 3

Summation 431 313 118 39

Average 25.35 18.41 6.94 2.29

Sample 10

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Cert.Attr.Auth.Construct 42 26 16 1 NewAuthCert 54 42 1 875 3 0 0.12 0.76 0.94 0.72 0.07

Cert.Attr.Auth.TheRole 5 1 4 1 CertificateId 3 1 1 1 0 0 0 0 0 0 0

Cert.Attr.Auth.TheClearance 5 1 4 1 Certificate 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.Auth.Extract 37 27 10 1 IDCert 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.IandA.TheTemplate 5 1 4 1 CAIdCert 15 11 1 1 0 1 1 1 1 1 0

Cert.Attr.IandA.Extract 36 26 10 1 AttCertificate 5 3 1 1 0 0 0 0 0 0 0

UserToken.GetClass 5 1 4 1 PrivCert 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.Priv.TheRole 5 1 4 1 AuthCert 5 3 1 1 0 0 0 0 0 0 0

Cert.Attr.Priv.TheClearance 5 1 4 1 IandACert 4 2 1 1 0 0 0 0 0 0 0

Cert.Attr.Priv.Extract 37 27 10 1 Summation 101 71 9 883 3 1.00 1.12 1.76 1.94 1.72 0.07

CertProcessing.AddAuthSignature 10 3 7 1 Average 11.22 7.89 1.00 98.11 0.33 0.11 0.12 0.20 0.22 0.19 0.01

Cert.Attr.TheBaseCert 5 1 4 1

Cert.Attr.Auth.SetContents 18 7 11 1

Cert.ID.TheSubject 5 1 4 1

Cert.ID.ThePublicKey 5 1 4 1

Cert.ID.Extract 53 42 11 2

CertProcessing.ConstructAuthCert 31 2 29 1

Cert.TheIssuer 5 1 4 1

Cert.TheID 5 1 4 1

Cert.TheMechanism 6 1 5 1

Cert.GetData 11 4 7 1

Cert.GetSignature 11 4 7 1

CertProcessing.ExtractIDCertData 33 24 9 1

CertProcessing.ExtractPrivCertData 32 23 9 1

CertProcessing.ExtractIACertData 30 21 9 1

CertProcessing.ExtractAuthCertData 32 23 9 1

CertProcessing.ObtainRawData 13 5 8 1

CertProcessing.ObtainSignatureData 13 5 8 1

Summation 500 281 219 29

Average 17.86 40.14 31.29 4.14

Sample 11

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Cert.Attr.Auth.IsOK 11 5 6 1 CertIssuerKnown 17 14 1 439 3 0.75 0.75 0.75 0.75 0.98 0.04

KeyStore.PrivateKeyPresent 5 1 4 1 CertOK 22 17 1 439 3 0.80 0.80 0.80 0.80 0.98 0.04

KeyStore.IssuerIsThisTIS 12 6 6 2 CertIssuerIsThisTIS 18 15 1 439 3 0.80 0.80 0.80 0.80 0.76 0.04

Cert.IssuerKnown 8 3 5 1 AuthCertOK 32 25 1 439 3 0.86 0.86 0.86 0.86 0.69 0.04

Cert.IsOK 19 12 7 2 KeyStore 6 6 1 439 3 0.67 0.67 0.67 0.67 1.00 0.04

KeyStore.KeyMatchingIssuerPresent 9 3 6 1 Summation 95 77 5 2195 15 3.87 3.87 3.87 3.87 4.41 0.21

KeyStore.ThisTIS 5 1 4 1 Average 19.00 15.40 1.00 439.00 3.00 0.77 0.77 0.77 0.77 0.88 0.04

Summation 69 31 38 9

Average 9.86 4.43 5.43 1.29

Sample 12

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

ConfigData.ValidateFile 402 273 129 15 Config 12 10 1 437 0 1 1 1 1 1 0.04

ConfigData.AuthPeriodIsEmpty 19 14 5 4

ConfigData.GetAuthPeriod 19 12 7 3

ConfigData.IsInEntryPeriod 5 1 4 1

ConfigData.TheLatchUnlockDuration 5 1 4 1

ConfigData.TheAlarmSilentDuration 5 1 4 1

ConfigData.TheFingerWaitDuration 5 1 4 1

ConfigData.TheTokenRemovalDuration 5 1 4 1

ConfigData.TheEnclaveClearance 5 1 4 1

ConfigData.TheSystemMaxFar 5 1 4 1

ConfigData.TheAlarmThresholdEntries 15 10 5 2

Summation 490 316 174 31

Average 44.55 28.73 15.82 2.82

Sample 13

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Display.SetValue 13 9 4 2 AuditDoor 57 37 9 1739 49 0.77 0.77 0.77 0.77 1.00 0.17

AuditLatch 57 37 9 1739 46 0.77 0.77 0.77 0.77 1.00 0.17

AuditAlarm 58 37 9 1739 43 0.77 0.77 0.77 0.77 1.00 0.17

AuditLogAlarm 41 20 3 437 14 1.00 1.00 1.00 1.00 0.97 0.12

AuditDisplay 152 134 41 8687 377 0.62 0.62 0.64 0.67 0.54 0.49

AuditScreen 152 134 41 8687 330 0.62 0.62 0.64 0.67 0.52 0.49

NoChange 138 135 42 8896 398 0.65 0.66 0.68 0.69 0.47 0.47

LogChange 199 171 42 8896 481 0.43 0.57 0.64 0.71 0.29 0.46

Summation 854 705 196 40820 1738 5.63 5.77 5.91 6.04 5.79 2.55

Average 106.75 88.13 24.50 5102.50 217.25 0.70 0.72 0.74 0.76 0.72 0.32

Sample 14
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Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Enclave.CompleteFailedAdminLogon 12 9 3 1 FailedAdminTokenRemoved 209 175 43 9105 557 0.08 0.10 0.59 0.70 0.13 0.49

Sample 15

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Enclave.ResetScreenMessage 13 9 4 4 ResetScreenMessage 39 56 15 3039 370 0.48 0.48 0.60 0.61 0.13 0.28

UserEntryContext 186 185 42 8896 677 0.00 0.08 0.57 0.66 0.00 0.50

Summation 225 241 57 11935 1047 0.48 0.56 1.17 1.27 0.13 0.78

Average 112.50 120.50 28.50 5967.50 523.50 0.24 0.28 0.59 0.63 0.06 0.39

Sample 16

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

UserToken.UpdateAuthCert 23 15 8 2 UpdateUserToken 156 149 41 8687 312 0.11 0.11 0.39 0.67 0.51 0.50

Sample 17

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Floppy.Write 46 37 9 4 UpdateFloppy 173 164 41 8687 394 0.09 0.10 0.53 0.61 0.21 0.48

Sample 18

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

KeyStore.IsVerifiedBy 36 24 12 3 KEYPART 3 1 1 1 0 0 0 0 0 0 0

KeyStore.Sign 37 26 11 3

Summation 73 50 23 6

Average 36.5 25 11.5 3

Sample 19

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Stats.AddFailedBio 7 3 4 2 AddSuccessfulEntryToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Stats.AddSuccessfulEntry 7 3 4 2 AddFailedEntryToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.01

Stats.AddFailedEntry 7 3 4 2 AddSuccessfulBioCheckToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Stats.AddSuccessfulBio 7 3 4 2 AddFailedBioCheckToStats 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Summation 28 12 16 8 Summation 56 44 4 4 96 0 1 1 1 0 0.02

Average 7 3 4 2 Average 14 11 1 1 24 0 0.25 0.25 0.25 0 0.00

Sample 20

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

ConfigData.TheDisplayFields 30 13 17 1 IDStation 126 126 1 8687 310 0 0.02 0.55 0.66 0.54 0.49

Stats.DisplayStats 12 4 8 1

Summation 42 17 25 2

Average 21 8.5 12.5 1

Sample 21

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

TISMain.Processing 28 21 7 6 TISIdle 142 139 1 9732 371 0 0.02 0.59 0.68 0.53 0.48

TISMain.MainLoopBody 13 10 3 3 TISAdminOp 540 445 80 16838 1771 0 0.04 0.65 0.76 0.00 0.36

Summation 41 31 10 9 TISProcessing 1369 1049 184 38574 3300 0 0.01 0.55 0.81 0.00 0.23

Average 20.5 15.5 5 4.5 Summation 2051 1633 265 65144 5442 0 0.06 1.79 2.25 0.53 1.07

Average 683.67 544.33 88.33 21714.67 1814.00 0.00 0.02 0.60 0.75 0.18 0.36

Sample 22

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

UserEntry.FailedAccessTokenRemoved 14 10 4 1 FailedAccessTokenRemoved 229 205 44 9314 791 0 0.01 0.50 0.69 0.00 0.49

TISCompleteFailedAccess 244 221 48 10150 847 0 0.01 0.49 0.68 0.00 0.47

Summation 473 426 92 19464 1638 0 0.02 0.99 1.37 0.00 0.96

Average 236.50 213.00 46.00 9732.00 819.00 0 0.01 0.49 0.68 0.00 0.48

Sample 23

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

UserEntry.Progress 24 17 7 7 TISUserEntryOp 615 497 92 19346 1862 0 0.02 0.45 0.76 0.00 0.33

Sample 24

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

UserEntry.ReadFinger 33 28 5 4 ReadFingerOK 222 200 45 9523 768 0.00 0.08 0.60 0.68 0.00 0.49

UserEntry.UserTokenTorn 14 10 4 1 NoFinger 158 151 44 9314 341 0.11 0.11 0.11 0.11 1.00 0.29

UserEntry.ValidateUserToken 67 60 7 4 FingerTimeout 221 199 44 9314 767 0.00 0.08 0.59 0.67 0.00 0.50

UserEntry.ValidateFinger 62 43 19 4 TISReadFinger 276 242 52 10986 969 0.00 0.01 0.52 0.71 0.00 0.46

UserEntry.UpdateToken 32 27 5 4 EntryOK 224 200 44 9314 774 0.00 0.08 0.60 0.68 0.00 0.49

UserEntry.ValidateEntry 32 28 4 3 WriteUserTokenFail 241 208 46 9732 789 0.00 0.07 0.58 0.69 0.00 0.49

UserEntry.StartEntry 5 2 3 1 WriteUserToken 259 222 48 10150 865 0.00 0.07 0.59 0.69 0.00 0.48

UserToken.GetIandATemplate 5 1 4 1 TISWriteUserToken 288 246 50 10568 963 0.00 0.01 0.51 0.70 0.00 0.46

UserToken.ReadAndCheck 161 119 42 2 WriteUserTokenOK 241 208 46 9732 789 0.00 0.07 0.58 0.69 0.00 0.49

Summation 411 318 93 24 ValidateFingerFail 229 205 44 9314 791 0.00 0.01 0.50 0.69 0.00 0.49

Average 45.67 35.33 10.33 2.67 TISValidateFinger 282 245 48 10150 967 0.00 0.03 0.42 0.72 0.00 0.45

FingerOK 14 10 1 1 0 1.00 1.00 1.00 1.00 1.00 0.00

ValidateFingerOK 231 205 44 9314 791 0.00 0.01 0.50 0.69 0.00 0.49

BioCheckRequired 240 207 47 9941 772 0.00 0.08 0.59 0.68 0.00 0.49

ValidateUserTokenOK 260 221 49 10359 849 0.00 0.08 0.60 0.69 0.00 0.48

BioCheckNotRequired 223 199 44 9314 767 0.00 0.08 0.59 0.67 0.00 0.50

ReadUserToken 224 200 45 9523 787 0.00 0.08 0.60 0.68 0.00 0.49

TISReadUserToken 227 202 45 9523 787 0.00 0.08 0.60 0.68 0.00 0.49

Summation 4060 3570 786 166072 13536 1.11 2.01 10.07 12.11 2.00 8.02

Average 225.56 198.33 43.67 9226.22 752.00 0.06 0.11 0.56 0.67 0.11 0.45

Sample 25
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Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

UserEntry.UnlockDoor 24 20 4 3 UnlockDoorOK 238 212 44 9314 815 0.00 0.01 0.53 0.70 0.00 0.48

WaitingTokenRemoval 159 153 45 9523 374 0.10 0.10 0.10 0.10 1.00 0.28

TokenRemovalTimeout 222 200 45 9523 773 0.00 0.08 0.60 0.68 0.00 0.49

TISUnlockDoor 271 240 51 10777 950 0.00 0.01 0.54 0.71 0.00 0.45

Summation 890 805 185 39137 2912 0.10 0.20 1.77 2.19 1.00 1.71

Average 222.50 201.25 46.25 9784.25 728.00 0.03 0.05 0.44 0.55 0.25 0.43

Sample 26

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

UserToken.AddAuthCert 51 41 10 4 AddAuthCertToUserToken 42 28 7 1293 26 0.89 0.89 0.89 0.89 0.51 0.08

Sample 27

Procs CLC LE LD CC Z Schemata LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

AdminToken.GetRole 5 1 4 1 AdminTokenOK 25 15 1 439 3 0.00 0.40 0.40 0.40 0.00 0.04

AdminToken.Interface.Poll 4 1 3 1 AdminTokenTimeout 235 206 46 9732 826 0.00 0.07 0.59 0.69 0.00 0.49

AdminToken.Poll 5 2 3 1 ClearLogThenAddElements 35 28 3 437 10 0.36 0.45 0.53 0.64 0.41 0.04

AdminToken.ReadAndCheck 136 103 33 4 CompleteFailedEnrolment 196 178 45 9523 487 0.08 0.10 0.56 0.69 0.16 0.48

Bio.Poll 5 1 4 1 EnrolContext 170 160 41 8687 318 0.10 0.11 0.38 0.65 0.40 0.50

Clock.Poll 4 1 3 1 FailedEnrolFloppyRemoved 184 169 43 9105 460 0.09 0.10 0.57 0.70 0.16 0.49

ConfigData.UpdateData 30 13 17 1 FinishArchiveLog 207 181 49 10359 561 0.08 0.09 0.60 0.73 0.12 0.48

ConfigData.WriteFile 150 123 27 3 FinishArchiveLogBadMatch 225 185 48 10150 570 0.08 0.09 0.61 0.73 0.11 0.48

Configuration.UpdateData 112 74 38 3 FinishArchiveLogFail 241 198 50 10568 579 0.07 0.09 0.62 0.73 0.10 0.47

Display.ChangeDoorUnlockedMsg 7 3 4 2 FinishArchiveLogNoFloppy 223 184 47 9941 565 0.08 0.09 0.61 0.72 0.11 0.49

Door.LockDoor 7 4 3 1 FinishArchiveLogOK 207 181 49 10359 561 0.08 0.09 0.60 0.73 0.12 0.48

Door.Poll 34 28 6 4 FinishUpdateConfigData 225 184 48 10150 565 0.08 0.09 0.61 0.73 0.11 0.48

Door.UnlockDoor 15 11 4 1 FinishUpdateConfigDataFail 224 184 47 9941 565 0.08 0.09 0.61 0.72 0.11 0.49

Door.UpdateDoorAlarm 27 21 6 3 FinishUpdateConfigDataOK 225 184 48 10150 565 0.08 0.09 0.61 0.73 0.11 0.48

Enclave.AdminLogout 27 23 4 4 LockDoor 24 23 7 1303 56 0.79 0.79 0.79 0.79 1.00 0.12

Enclave.AdminOp 14 10 4 4 LoginAborted 230 202 44 9314 799 0.00 0.08 0.59 0.68 0.00 0.50

Enclave.ArchiveLogOp 56 42 14 2 NoOpRequest 185 170 46 9732 492 0.09 0.10 0.51 0.70 0.23 0.49

Enclave.BadAdminTokenTear 11 8 3 1 OverrideDoorLockOK 230 190 46 9732 549 0.08 0.09 0.65 0.73 0.08 0.48

Enclave.CompleteFailedEnrolment 8 5 3 2 PollAdminToken 29 25 2 210 13 0.75 0.75 0.75 0.75 0.55 0.01

Enclave.EnrolOp 13 9 4 3 PollDoor 40 37 7 1303 35 0.75 0.75 0.75 0.75 1.00 0.12

Enclave.OverrideDoorLockOp 15 11 4 1 PollFinger 28 25 2 210 2 0.75 0.75 0.75 0.75 0.55 0.01

Enclave.ProgressAdminActivity 16 11 5 4 PollFloppy 30 27 2 210 23 0.40 0.60 0.67 0.80 0.11 0.01

Enclave.ReadEnrolmentData 12 9 3 2 PollKeyboard 29 25 3 419 3 0.75 0.75 0.75 0.75 1.00 0.01

Enclave.ShutdownOp 21 17 4 2 PollTime 39 35 7 1303 39 0.70 0.70 0.70 0.70 1.00 0.12

Enclave.StartAdminActivity 56 37 19 3 PollUserToken 28 25 2 210 27 0.75 0.75 0.75 0.75 0.55 0.01

Enclave.UpdateConfigDataOp 27 21 6 4 ReadAdminToken 209 176 45 9523 543 0.08 0.10 0.57 0.71 0.15 0.49

Enclave.ValidateAdminToken 39 33 6 3 ReadEnrolmentData 201 182 45 9523 506 0.08 0.09 0.59 0.70 0.13 0.47

Enclave.ValidateEnrolmentData 31 25 6 2 ReadEnrolmentFloppy 184 169 43 9105 460 0.09 0.10 0.57 0.70 0.16 0.49

Enrolment.Validate 119 85 34 7 RequestEnrolment 184 169 43 9105 365 0.09 0.10 0.51 0.69 0.23 0.49

Floppy.CheckWrite 22 17 5 3 ShutdownOK 223 186 45 9523 489 0.08 0.09 0.64 0.73 0.08 0.48

Floppy.Read 32 23 9 3 ShutdownWaitingDoor 184 169 44 9314 463 0.09 0.10 0.55 0.70 0.19 0.49

Keyboard.Interface.Poll 4 1 3 1 StartArchiveLog 297 251 51 10777 1139 0.00 0.06 0.61 0.72 0.00 0.46

Keyboard.Poll 4 1 3 1 StartArchiveLogOK 195 175 45 9523 526 0.08 0.09 0.61 0.72 0.13 0.48

Keyboard.Read 12 5 7 1 StartArchiveLogWaitingFloppy 191 173 45 9523 525 0.08 0.10 0.58 0.70 0.16 0.49

KeyStore.AddKey 31 22 9 3 StartUpdateConfigData 292 248 51 10777 1116 0.00 0.06 0.62 0.72 0.00 0.47

Latch.SetTimeout 5 1 4 1 StartUpdateConfigOK 191 173 45 9523 502 0.08 0.10 0.58 0.70 0.16 0.49

Latch.UpdateInternalLatch 22 17 5 3 StartUpdateConfigWaitingFloppy 191 173 45 9523 525 0.08 0.10 0.58 0.70 0.16 0.49

Poll.Activity 10 6 4 1 TISAdminLogon 343 274 58 12240 1250 0.00 0.06 0.63 0.74 0.00 0.44

UserEntry.DisplayPollUpdate 12 8 4 3 TISAdminLogout 295 249 53 11195 1111 0.00 0.06 0.61 0.72 0.00 0.46

UserToken.Interface.Poll 4 1 3 1 TISArchiveLogOp 376 312 64 13494 1353 0.00 0.05 0.63 0.74 0.00 0.43

UserToken.Poll 5 2 3 1 TISCompleteFailedAdminLogon 221 184 45 9523 582 0.08 0.09 0.58 0.70 0.13 0.48

Summation 1169 836 333 93 TISCompleteTimeoutAdminLogout 224 186 45 9523 582 0.08 0.09 0.58 0.70 0.13 0.48

Average 28.51 20.39 8.12 2.27 TISOverrideDoorLockOp 294 249 50 10568 1036 0.00 0.06 0.64 0.72 0.00 0.47

TISPoll 301 266 52 10986 615 0.67 0.68 0.70 0.71 0.27 0.36

TISReadAdminToken 213 178 45 9523 543 0.08 0.10 0.57 0.71 0.15 0.49

TISShutdownOp 243 202 48 10150 628 0.07 0.08 0.65 0.74 0.07 0.46

TISStartAdminOp 252 206 54 11404 650 0.07 0.08 0.63 0.74 0.09 0.45

TISUpdateConfigDataOp 355 294 60 12658 1319 0.00 0.05 0.64 0.73 0.00 0.44

TISValidateAdminToken 292 239 50 10568 1056 0.00 0.07 0.62 0.72 0.00 0.47

TokenRemovedAdminLogout 234 205 45 9523 826 0.00 0.07 0.60 0.69 0.00 0.50

UnlockDoor 36 33 9 1739 53 0.80 0.80 0.80 0.80 1.00 0.15

UpdateKeyStore 33 19 6 445 4 0.88 0.88 0.88 0.88 0.77 0.04

ValidateAdminTokenFail 209 175 44 9314 506 0.08 0.10 0.57 0.70 0.14 0.49

ValidateAdminTokenOK 221 180 44 9314 553 0.08 0.10 0.60 0.71 0.11 0.49

ValidateEnrolmentData 237 192 46 9732 582 0.08 0.09 0.62 0.72 0.10 0.47

ValidateEnrolmentDataFail 207 174 43 9105 468 0.09 0.10 0.59 0.70 0.13 0.49

ValidateEnrolmentDataOK 216 178 44 9314 446 0.08 0.10 0.59 0.70 0.14 0.49

ValidateOpRequest 249 204 54 11404 650 0.07 0.08 0.63 0.74 0.09 0.45

ValidateOpRequestOK 224 187 51 10777 592 0.08 0.09 0.61 0.74 0.11 0.47

WaitingAdminTokenRemoval 169 158 43 9105 344 0.09 0.11 0.37 0.63 0.40 0.50

WaitingFloppyRemoval 169 158 43 9105 346 0.09 0.11 0.37 0.63 0.40 0.50

Summation 11669 9967 2376 499935 31927 11.36 13.27 37.29 43.53 13.83 23.99

Average 191.30 163.39 38.95 8195.66 523.39 0.19 0.22 0.61 0.71 0.23 0.39

Sample 28
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Sample# CLC LE LD CC LOC CC CyclL CyclU DU  Tightness  MinCov  Cov  MaxCov  Overlap  Coupling

Sample01 5 1 4 1 24 33 17 3457 114 0.67 0.67 0.67 0.67 1.00 0.24

Sample02 7 2 5 1 31 36 16 3248 108 0.65 0.65 0.65 0.65 1.00 0.23

Sample03 5 1 4 1 23 32 16 3248 111 0.65 0.65 0.65 0.65 1.00 0.24

Sample04 6 1 5 1 31 39 19 3875 115 0.69 0.69 0.69 0.69 1.00 0.23

Sample05 69 27 42 10 36 27 6 1308 29 0.00 0.02 0.08 0.11 0.11 0.02

Sample06 139 101 38 20 306 258 54 11294 550 0.22 0.24 0.57 0.66 0.20 0.34

Sample07 40 25 15 3 36 17 3 437 11 1.00 1.00 1.00 1.00 1.00 0.13

Sample08 68 56 12 8 28 18 3 437 0 1.00 1.00 1.00 1.00 1.00 0.04

Sample09 29 24 5 4 32 25 3 437 10 0.40 0.50 0.58 0.70 0.41 0.04

Sample10 431 313 118 39 1102 997 219 50151 1662 0.23 0.31 0.48 0.55 0.49 0.21

Sample11 500 281 219 29 101 71 9 883 3 0.11 0.12 0.20 0.22 0.19 0.01

Sample12 69 31 38 9 95 77 5 2195 15 0.77 0.77 0.77 0.77 0.88 0.04

Sample13 490 316 174 31 12 10 1 437 0 1.00 1.00 1.00 1.00 1.00 0.04

Sample14 13 9 4 2 854 705 196 40820 1738 0.70 0.72 0.74 0.76 0.72 0.32

Sample15 12 9 3 1 209 175 43 9105 557 0.08 0.10 0.59 0.70 0.13 0.49

Sample16 13 9 4 4 225 241 57 11935 1047 0.24 0.28 0.59 0.63 0.06 0.39

Sample17 23 15 8 2 156 149 41 8687 312 0.11 0.11 0.39 0.67 0.51 0.50

Sample18 46 37 9 4 173 164 41 8687 394 0.09 0.10 0.53 0.61 0.21 0.48

Sample19 73 50 23 6 3 1 1 1 0 0.00 0.00 0.00 0.00 0.00 0.00

Sample20 28 12 16 8 56 44 4 4 96 0.00 0.25 0.25 0.25 0.00 0.00

Sample21 42 17 25 2 126 126 1 8687 310 0.00 0.02 0.55 0.66 0.54 0.49

Sample22 41 31 10 9 2051 1633 265 65144 5442 0.00 0.02 0.60 0.75 0.18 0.36

Sample23 14 10 4 1 473 426 92 19464 1638 0.00 0.01 0.49 0.68 0.00 0.48

Sample24 24 17 7 7 615 497 92 19346 1862 0.00 0.02 0.45 0.76 0.00 0.33

Sample25 411 318 93 24 4060 3570 786 166072 13536 0.06 0.11 0.56 0.67 0.11 0.45

Sample26 24 20 4 3 890 805 185 39137 2912 0.03 0.05 0.44 0.55 0.25 0.43

Sample27 51 41 10 4 42 28 7 1293 26 0.89 0.89 0.89 0.89 0.51 0.08

Sample28 1169 836 333 93 11669 9967 2376 499935 31927 0.19 0.22 0.61 0.71 0.23 0.39

Summary of measurement for all samples
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Appendix C- Analysis Results 
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The endless cycle of idea and action,  

Endless invention, endless experiment,  

Brings knowledge of motion, but not of stillness;  

Knowledge of speech, but not of silence;  

Knowledge of words, and ignorance of the Word.  

Where is the Life we have lost in living?  

Where is the wisdom we have lost in knowledge?  

Where is the knowledge we have lost in information?  

 

T.S. Eliot 


