

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

Göteborg, Sweden, June 2011

Measuring the Impact of Changes to the

Complexity and Coupling Properties of

Automotive Software Systems

Master of Science Thesis in Software Engineering and Management

DARKO DURISIC

 2

The Author grants to Chalmers University of Technology and University of Gothenburg the non-

exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible

on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain

text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a

company), acknowledge the third party about this agreement. If the Author has signed a copyright

agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained

any necessary permission from this third party to let Chalmers University of Technology and University

of Gothenburg store the Work electronically and make it accessible on the Internet.

Measuring the Impact of Changes to the Complexity and Coupling Properties of Automotive

Software Systems

DARKO DURISIC

© DARKO DURISIC, June 2011.

Supervisor: MIROSLAW STARON

Examiner: GERARDO SCHNEIDER

University of Gothenburg

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover: Changes are essential in cars’ evolution process.

Department of Computer Science and Engineering

Göteborg, Sweden June 2011.

 3

Acknowledgements

First, I would like to express my deepest gratitude to Dr. Miroslaw Staron, who patiently guided me

through the entire research and always inspired to do better.

Then, I would like to thank equally important persons credited for this work - Martin Nilsson, Peter

Nordkam and Göran Lundqvist from Volvo, who were always eager to discuss my findings and

tirelessly read all my reports providing me with prompt feedback. Additionally, there are many others

from Volvo to whom I owe great thanks for the time spent in explaining different things to me and

giving me constructive ideas.

Finally, I am infinitely grateful to my family and SS, who were always there for me when I needed them

most. I dedicate my entire research described in this thesis to my brother Bogdan.

 4

Measuring the Impact of Changes to the Complexity and
Coupling Properties of Automotive Software Systems

Darko Durisic
Department of Computer Science and Engineering

Chalmers and Gothenburg University
Gothenburg, Sweden

gusdurida@student.gu.se

ABSTRACT

BACKGROUND: In the past few decades, exponential increase

in the amount of software used in cars has been recorded.

Complex software is hard to maintain, especially due to constant

changes which are essential in a car evolution process. To avoid

the possible negative impact of changes on the system quality

attributes, appropriate measurements of change are needed.

METHOD: The research presented in this paper is based on the

quantitative case study conducted together with our industrial

partner Volvo Car Corporation (VCC) [1].

RESULTS: The structural complexity and coupling analysis of

automotive software systems compared through different

releases are applicable for measuring the size and locating the

origin of the biggest and the most severe architectural changes.

CONCLUSION: By applying the metrics after each significant

change in the system, it is possible to verify that certain quality

attributes have not decreased to an unsatisfactory level and to

identify parts of the system which should be tested more. This

increases the product quality and reduces its development cost.

Keywords

Automotive software, product quality, quality metrics,

architectural change, maintainability, complexity, coupling.

1. INTRODUCTION
The amount of software in today's cars has reached one gigabyte

of on board binary code (excluding the infotainment domain),

and is constantly increasing [2]. Research shows that more than

80% of innovations in cars are related to software and the

majority of them are increasing the interaction between

previously less dependent parts of the system [3]. At the same

time, quality demands for safety, reliability and performance

must remain high for the whole car product, including software

[4]. Most of the quality attributes are improved with the use of

software. A good example of this is "Pedestrian detection"

technology, as a part of Volvo's safety system, which is able to

prevent more than 50% of pedestrian-involved accidents [5].

However, huge binary code increases the probability of fault

propagation in already complex automotive software systems1,

resulting in significantly harder integration testing [4].

Additionally, constant changes in the development process may

lead the actual implementation of the system away from its

design and architectural decisions making validation of the

quality attributes extremely difficult.

1 Automotive software systems realize up to 2000 software-

based functions with more than 10% user functions [3].

Still, software changes are essential in a car evolution process

and can take place in any stage of the platform's2 lifecycle [4].

An example of this has been presented in [4] using a car's

headlights: the initial software version controlling this unit in a

car was implemented just to turn the lights on and off, the

second version was able to adjust manually the beam of light

and turn it along the vertical axe, while the current version is

able to turn the lights in both directions, horizontally and

vertically, automatically following the car's movement in curves

or when crossing a speed bump. Even in case of their high

architectural significance, it would be very inefficient to wait for

the new platform release to implement these types of changes

[4]. On the other hand, a platforms' lifecycle is quite long today.

Due to the high and relatively cheap competitors on the market,

product quality is vital but not sufficient to sell the expensive

product. For this reason, and implied by low production cost

demand, one system platform should be designed to endure all

changes and have a satisfying quality for at least 5-6 years.

Under these circumstances, the platform's maintainability

properties and the change management process play one of the

most important roles.

Apart from their frequency implying the risk of deteriorated

quality, software changes in automotive systems can cause two

additional problems:

First, integration and regression testing is very hard since most

of the software components are developed by different

suppliers. Research shows that only 25% of functionalities are

created inside car companies (Original Equipment

Manufacturers - OEMs), while the rest is just integrated after the

delivery from suppliers [3]. This way of working increases the

quality of delivered components since suppliers get quite

experienced while delivering similar components to different

OEMs. However, it also increases the development cost since it

most often requires modifications and upgrades of already

implemented components. Such a distributed development

makes communication between OEMs and suppliers extremely

difficult, especially during the development process.

Second, most of the changes in automotive software systems are

either additions or improvements of the existing functionalities

represented with new signals on the electronic busses [4]. As

such, the majority of them is affecting the communication

between different parts of the system and can be classified as

architectural changes [6]. Architectural changes are more likely

to cause scattering of functionalities through different sub-

systems potentially causing serious malfunctions in others [7].

2 Platform contains software and hardware infrastructure used in

a particular car model(s).

 5

For example, one of the most commonly known faults is a car's

"no-start" problem when a driver is, for no specific reason,

unable to start the engine of the car, doing it normally just a few

seconds later. The explanation for this behavior most probably

lies in the start-up process which initiates many different checks

and at least one of them fails. The reason for this failure could

be the existence of an error in one of the sub-systems which

might have nothing to do with the engine, gear or other

important start-up modules. Still, due to the high interaction

between sub-systems, the error is able to propagate and create

an incorrect state resulting in the abortion of the car's start-up

process. This phenomenon known as the "ripple" effect3 [8]

represents one of the biggest threats to software systems and it is

significantly increased with the introduction of architectural

changes.

Having in mind the necessity and significance of changes from

one side, potential problems they might provoke from the other,

and constant demand for low cost, it is very hard to approach

the quality issues in a good and systematic way. This is why

measuring the size and potential impact of changes on other

parts of the system could be the key for assuring robustness,

reliability and other quality requirements. It is important to

gather this information as soon as possible in the development

process in order to reduce the number of late changes and lower

the production cost. An example of this has been presented in

[4]. It explains that being able to foresee the overload of specific

electronic bus and deploying some of the software components

to another place in the system before sending requirements to

suppliers is much cheaper and efficient than sending a change

request later. Additionally, applying the metrics which are able

to localize the area that suffered most severe changes indicate

parts of the system which should be tested more in order to

eliminate potential "ripple effects" [4].

Several metrics able to provide useful results based on the

structural system requirements can be applied before sending

change requests to suppliers. In this paper, we present two most

applicable ones to embedded automotive software systems – one

based on modules’ complexity and one based on modules’

coupling. We also explain that the measurement results should

be compared through different system releases (with focus on

the difference between the current and future release) in order to

be able to capture the size and potential impact of changes.

Finally, we suggest how to interpret their results in order to

come to the correct conclusion which should imply the future

steps towards securing the desired quality. Since our metrics

should be applied in the early stages of the development process

(before sending change requests to suppliers) where not many

behavioral properties of the system are known, they are mostly

focused on structural system properties such as inter-module

communication [4]. Still, they can identify early which parts of

the system will be affected by changes which can significantly

reduce the production cost as well [4].

The rest of the paper is organized as follows: Section 2

describes the related work. Section 3 describes our research

method. Section 4 describes the organization of the studied

automotive software system at VCC. Section 5 describes the

3 In this context, term “ripple effect” is used when a relatively

small fault in one part of the system might manifest as a huge

malfunction in another.

quality metrics applicable to measure the complexity and

coupling of automotive software systems. Section 6 describes

the suggested way to present measurement results and how they

should be interpreted. Section 7 describes the example of the

automotive software system and demonstrates the use of

presented metrics. Section 8 describes the theoretical and

empirical validation of the metrics and Section 9 describes the

conclusions and discusses the future work.

2. RELATED WORK
There have been several attempts to measure the size of

architectural changes in software systems. One of the most

interesting ones is described in [9] where authors try to measure

the distance between architectures through different system

releases, based on the chosen architectural properties. Also,

several researches tried to perform change impact analysis on

the architectural level based on the dependencies between

architectural units, such as [10] and [11]. However, we are not

aware of any attempts to approach change impact analyses from

the architectural point of view, based on the complexity and

coupling increase in the system through system releases.

There are many different metrics used to measure the

complexity and coupling in software systems. Generally,

coupling metrics are based on inter-module relations, but

complexity metrics can be based on either intra-module

relations, inter-module relations (structural complexity), or both

[12]. Since this paper observes automotive software systems

from the perspective of OEMs4, it is not possible to apply most

of the intra-module complexity metrics available today since

they are based on a source code analyses (such as lines of code,

the number of operators and operands [13], control graphs [14],

syntactic constructs [15], etc. [12]). However, information about

the modules and their communication interfaces is available

very early (on a design level) and that is why we based our

metrics mostly on these structural system properties. An

alternative approach to this could be the use of FPA (Function

Point Analysis) [16], where each function would be assigned to

one or more system modules. Then, the complexity of one

module can be calculated as a sum of complexities of all of the

functions assigned to it.

The original measure behind our metrics is the strength of

module dependencies, as introduced by Stevens et al. [17].

Since then, many different metrics based on this have been

introduced such as [18], [19], [20] and [21], especially with the

evolution of object-oriented software systems [22]. Some of

them rely on the data obtained from source code (such as the

number of input-output (IO) variables and methods invoked).

Other metrics more interesting for this research focus strictly on

the dependences between modules and the information

exchange between them - denoted as structural metrics [12].

Probably the most widely accepted structural metric is the one

based on modules’ fan-in and fan-out introduced by Henry et al.

[23], and it was our major inspiration for defining the

complexity model. The coupling model was inspired by the

Package Coupling Metrics (PCM) defined by Gupta et al. [24].

Despite the fact that there exist a lot of books and papers related

to the complexity and coupling of software systems, we were

4 Majority of modules are developed by suppliers and delivered

to OEMs as a "black box" platform specific executable code.

 6

unable to find many of these related to the automotive domain.

This kind of specialized approach is important for several

reasons such as hierarchical organization of automotive software

architecture, distributed development of components, timing

constraints in communication between components and

prioritization of non-functional requirements where safety and

cost have top priority. Most of the things we found related to the

automotive domain were related to the AUTOSAR5 [25] and the

principle of complex function decomposition using different

software components. We also found many tools available to

support the design, implementation and testing of components

delivered by suppliers following the AUTOSAR standard, but

we found no concrete measures for calculating the complexity

and coupling between these components and/or between higher

architectural units in the system.

3. RESEARCH METHOD
According to [26], the formal definition of our research goal is

defined as: Analyze the automotive software system for the

purpose of measuring the effect of changes to its architectural

properties, with respect to maintainability, robustness,

reliability and cost, from the point of view of the system

architects, designers and testers and in the context of the

software systems developed at Volvo Car Corporation.

The research is conducted using the empirical research method

[27] [28] based on the quantitative approach [29]. We first

studied the organization of automotive software systems and

development process used at VCC [1], with the aim to identify

cause-effect relationships between the risk of deteriorated

quality and architectural changes. Our hypothesis was based on

the assumption that an early measurement of size and impact of

changes (before their realization by suppliers) can be helpful in

order to avoid potentially bad architectural and design decisions

which could affect the product quality and thus reduce the

production cost.

After defining the research goal and hypothesis, we conducted a

thorough case study analysis [30] and tested the applicability of

several different metrics. We concluded, together with our

industrial partners from Volvo, that metrics based on the

structural complexity and coupling increase in the system are

the most suitable ones6. In addition, since none of the existing

ones were entirely applicable to the automotive domain or did

not use the specific characteristics of automotive software

systems in order to produce the most correct results, we had to

modify the chosen metrics without changing their main logic

explained by the authors.

All data used in this study is provided by VCC and is based on

the several software platforms deployed to different types of

Volvo cars. In order to perform the measurements and present

their results, a tool has been implemented which is able to apply

the complexity and coupling metrics described in this paper.

Apart from metrics' validation purposes, the tool will be used at

Volvo regularly (before the realization of changes) in order to

5 AUTOSAR - AUTomotive Open System Architecture is a

standard developed by OEMs, suppliers and tool developers in

order to improve the development process and system quality.

6 One of the main reasons for focusing on the structural metrics

is the necessity to apply them early.

increase the efficiency of the software development process,

improve the system quality and reduce the production cost.

The theoretical validation of the measures is done according to

the complexity and coupling properties defined by Briand et al.

[31] (described more in Section 8.1). The empirical validation is

done at VCC and it is based on the measurements' results

provided by the implemented tool (described more in Section

8.2). Throughout the entire research, many different workshops

and interviews with system architects, software designers and

component testers were held at VCC. At the beginning, their

purpose was to get familiar with the automotive software

development process, system organization and the problems

arose from constant changes. Later, their purpose was to

interpret the measurements' results and validate them.

Apart from the metrics themselves, the focus of this research

was placed on the presentation and interpretation of their results

(described more in Section 6). This was also done with a great

help of our industrial partners from Volvo.

4. DESIGNING SOFTWARE SYSTEMS

AT VCC
Changes in the software systems often involve the introduction

of new dependency requirements between two components. It is

also possible to modify the existing dependency requirements,

or remove some in case they are no longer needed. To better

understand the need to measure the size and possible impact of

these changes to automotive software systems, it is necessary

first to understand their common hierarchical organization. This

is important because changes in the higher architectural units

and possible faults they might cause usually manifest as a more

severe malfunctions in the system, harder to be removed. The

studied system is developed at VCC and can be observed from

two different views - logical view and pre-deployment view.

4.1 Logical View
The logical view represents a hierarchical organization of

software components, sub-systems and domains (an example is

shown in Figure 1). Software components are the smallest

architectural units grouped into sub-systems mostly according to

their functionalities and interaction between themselves [4]. In

the logical view, they communicate by sending/receiving logical

signals. At the top level, the automotive software system is

usually divided into different domains clustered according to

their application area and associated quality requirements [3].

Each domain contains number of sub-systems and it is possible

to have different levels of sub-systems and software components

as well. The following domains are the most common ones:

1. Power train and chassis – contains the sub-systems

responsible for controlling the engine, transmission, etc.

2. Body – contains the sub-systems such as lights, locking, etc.

3. Safety – contains the sub-systems responsible for active

(cruising, auto-braking) and passive (air-bags, belts) safety.

4. Management – contains the common vehicle sub-systems

used by all domains such as settings, diagnostics, etc.

5. Human-Machine Interface – contains the sub-systems

responsible for interaction between users and the vehicle.

6. Infotainment – contains the information and entertainment

sub-systems such as navigation, telephone, etc.

 7

Figure 1 shows an example of the logical view of one small part

of the system containing one domain (SafetyControl), two sub-

systems (PedestrianDetection and SafetyHandler) and 3

software components (PedestrianDetector, PedestrianManager

and SafetyBrakeManager). Both PedestrianDetection and

SafetyHandler sub-systems belong to SafetyControl domain.

PedestrianDetector and PedestrianManager software

components belong to PedestrianDetection sub-system, while

SafetyBrakeManager software component belongs to

SafetyHandler sub-system. The example is made for the

purposes of this paper in order to explain better the common

organization of automotive software systems and does not

reflect a part of a real system used at VCC.

Figure 1: Example of the logical view

Considering the logical view organization of the automotive

software system explained in this section, the following can be

changed: The addition/removal of a signal between the existing

logical software components, the addition/removal of a logical

software component with its signals, the addition/removal of a

sub-system with its components and the addition/removal of an

entire domain7 with its sub-systems. Additionally, software

components/sub-systems can be moved to other sub-

systems/domains, respectively.

4.2 Pre-Deployment View
The pre-deployment view has two purposes: First, to show the

network topology of ECUs8 and second, to show the initial

deployment of software components to particular ones.

Different ECUs are connected via electronic system buses

(mostly CAN, LIN, MOST and flex-ray), and they very often

work together in order to accomplish one functionality [3].

Domain ECUs are connecting different logical domains and

they usually exchange signals via one (backbone) flex-ray bus.

ECUs inside one domain usually communicate via CAN or LIN

7 Note that the addition/removal of domains is not very common

during the life-span of one platform, but these changes are

rather introduced with the release of the new one.

8 ECU (Electronic Control Unit) represents embedded software

system in charge of one or more electrical systems in a

platform. Typically inside a car, there exist 70-100 ECUs.

buses. MOST is used for the infotainment domain due to its high

speed capabilities.

Figure 2 shows an example of the network topology containing

2 domain ECUs (SafetyMaster and InfotainmentMaster) and 5

other ECUs (Radar, Camera, NightVision, TV and Radio).

SafetyMaster and InfotainmentMaster, as domain ECUs, are

connected via flex-ray electronic bus. Radar, Camera and

NightVision ECUs belong to SafetyMaster domain. Radar and

Camera are connected via CAN, while NightVision is connected

to Camera via LIN bus. TV and Radio ECUs belong to the

InfotainmentMaster domain, so they are connected via MOST.

Figure 2: Example of the network topology

Each software component in the logical view is pre-deployed to

one ECU. Since suppliers may realize software components

differently, the actual deployment can be seen only after they

are delivered by suppliers and this is the reason for naming this

view – "pre-deployment" view. Often, the decision where one

component will be pre-deployed is not made according to their

functionalities, but other reasons such as vicinity to hardware

(sensors, actuators and buses) or bus load [4]. That is why

logical software components from one sub-system may be

deployed to different ECUs, and logical software components

from different sub-systems may be deployed to the same ECU.

Components pre-deployed to different ECUs communicate via

ports by sending/receiving system signals.

Figure 3 shows an example of the pre-deployment system view

for the logical view shown in Figure 1. Logical software

components PedestrianDetector, PedestrianManager and

SafetyBrakeManager are mapped to the pre-deployed software

components with the same names, and they are all pre-deployed

to SafetyMaster ECU.

Figure 3: Example of the pre-deployment view

 8

Considering the pre-deployment view organization of the

automotive software system explained in this section, the

following can be changed: The addition/removal of a signal

between the existing pre-deployed software components, the

addition/removal of a pre-deployed software component with its

signals and the addition/removal of an ECU with its

components. Additionally, software components can be moved

to other ECUs.

5. QUALITY METRICS
When an architectural change occurs, it could be quite valuable

to see how the level of complexity and coupling increases in the

system, since it directly affects its maintainability attributes

such as flexibility, extensibility and system life time. Indirectly,

it affects other quality attributes as well as reliability (the risk of

faults) and robustness (the risk of "ripple" effects). Having in

mind the organization of automotive software systems described

in Section 4, it is possible to measure structural complexity and

coupling of modules based on the strength of their dependences,

after each significant change in the system. Moreover, this

process can be completely automated in case of unified

approach used by OEMs to store dependency requirements.

We define our complexity and coupling measures according to

the properties of complexity and coupling measures defined in

[31], as explained in Section 8. Generally, the complexity of one

component captures the strength of its dependencies towards all

other components in the system, regardless of the modules they

belong to. On the other hand, the coupling of one component

captures only the strength of its dependencies towards

components which belong to different modules.

Our quality metrics are based on the increase/decrease in the

modules’ complexity and coupling through different system

releases. Additionally, the comparison between the results of

two metrics in the same release is also taken into consideration

when defining the future strategies for securing the quality

requirements of the system (explained more in Section 6). Since

automotive software systems can be observed from two different

views - the logical view and the pre-deployment view, both

complexity and coupling measures can be applied to both views.

This is why we divided our measures into the logical view

measures and the pre-deployment view measures. We present in

Section 5.1 the logic behind the logical view complexity

measure defined in formulas (4) and (5) and coupling measure

defined in formula (9). Due to their similarity, we present in

Section 5.2 the necessary modifications in order to define the

pre-deployment view complexity and coupling measures.

5.1 Logical View Measures
One of the best known structural complexity metrics focused on

inter-module complexity is the one defined by Henry et al.

based on modules’ fan-in and fan-out [23]. Fan-in represents the

number of modules which are calling a given module, while fan-

out represents the number of modules which are called by the

given module. Complexity of one module is defined as:

(1a)  2iii foutfinC  [23]

where fini represents fan-in of module i, fouti fan-out of module i

and Ci its complexity.

Since automotive software systems are distributed, it is not

possible to call one module (in our case software component)

from another, but rather send and receive signals containing

information. Still, since the main logic based on the number of

dependencies stays the same, fan-in can be defined as the

number of received signals from other software components in

the system (input complexity) and fan-out as the number of

transmitted signals to other software components in the system

(output complexity). Based on the logic of fin and fout, we can

define cin and cout to be input and output complexities of one

software component based on one or more complexity attributes

(not just the number of sent/received signals) such as

hierarchical level of signals, timing constraints, etc [4].

Additionally as explained in [4], we can omit the exponent 2

from formula (1a) due to its unjustified amplification of

measurement results. Now, we can calculate single component’s

complexity in the following way:

 (1b) iii coutcinC  [4]

The overall sub-system, domain and system complexity can be

defined as a sum of all components' complexities (Cn) in a sub-

system, domain or system, respectively, with n modules:

(2) 



n

i

in CC
1

[4]

Due to the size of automotive software systems, measuring the

overall system complexity increase does not provide very useful

results, since a small change in one part of the system will not

affect the entire system much [4]. Imagine a change has been

made and new signal has been introduced between two software

components in the system. If those components previously had

relatively low complexity, it might get noticeable higher now

after the change is implemented. At the same time in case it was

the only change in the system, overall system complexity will

not change much. This is why another approach concerning

specific inter-component and inter-sub-system dependences

must be applied in order to produce valuable results.

One of the solutions is to use Dependency Structure Matrix

(DSM) [32] in order to present the relations between different

components in the system. DSM was originally created to

optimize product development process and show task

dependencies, but it can also be applied to software architecture.

It preserves components’ hierarchy and it is able to show inter-

module and intra-module dependencies in a visible way.

Additionally, it can be used for other analyses such as

identification of architectural patterns. Also, different tools can

be found to support these analyses [32].

DSM is a square matrix where each component is assigned to

one row and column with the same index. Each DSMi,j field in

the matrix has value 1 if there is at least one signal sent from

component assigned to row i to component assigned to column j

of the DSM, or 0 otherwise. However, this value does not

contain any quantitative (such as the number of exchanged

signals) and/or qualitative (such as the hierarchical level of the

signal) attributes which would more precisely estimate the

strength of dependency between them. This is why we suggest

the use of Complexity Structure Matrix (CSM) instead [4].

CSM is a square matrix where each software component (as the

lowest hierarchical unit) in the system is assigned to one row

 9

and column with the same index (like DSM), but its fields

contain a value derived from a formula (CSM formula)

calculating the strength of dependency between components [4].

The example is presented in [4]: Two software components

which are exchanging multiple signals should have higher

complexity value than the ones exchanging only one signal. For

this reason, CSMi,j should contain a value derived from a

formula (from now on referred to as the CSM formula) which

calculates the number of sent signals from component assigned

to row i to component assigned to column j of the CSM. Then,

new dependency on higher hierarchical level (between domains)

increases the complexity more than new dependency on lower

hierarchical level (between sub-systems), and this should also be

included into the CSM formula. Additionally, if other attributes

such as signal timing properties (period, maximum travel time,

etc.) are available, they can also be included into the formula.

It stems from the previous discussion that the CSM formula can

contain multiple attributes (the number of exchanged signals,

their hierarchical level, timing properties, etc.). Since not all

attributes have the same value range9, it is necessary to scale

them to the desired range of values with lower limit set to one.

This is important because in best scenario, they should not

affect the complexity calculation but can never decrease it. On

the other hand, the number of exchanged signals which is the

main and as such mandatory attribute can have value zero, if

there is no dependency between two software components. For

some attributes without a range (such as type of signals), it is

necessary to include the weight factor in the CSM formula

(inter-sub-system signals weights more than intra-sub-system,

etc.). In the logical view, we focus on the following two

attributes: the number of exchanged signals between software

components and their type (intra-sub-system, inter-sub-system

or inter-domain), so the CSM formula looks as follows:

 (3a) 



num

jik

ji ktypeCSM
,1

,)([4]

where num represents the number of signals sent from software

component assigned to row i to software component assigned to

column j of the CSM and type(k) its weight factor depending on

the signal type (intra-sub-system, inter-sub-system, inter-

domain). Based on the logic where higher structural units in the

hierarchy should exchange less signals, we concluded, together

with Volvo experts, that intra-sub-system signals should have

weight factor 1, inter-sub-systems signals weight factor 1.3 and

inter-domain signals weight factor 1.8 [4].

After creation of CSM, the rest of the complexity calculations

can be done automatically. For example, the sum of all elements

in column j (j i) represents input complexity of the software

component assigned to column j of the CSM, while the sum of

all elements in row i (i j) represents the output complexity of

the software component assigned to row i of the CSM.

(4) 



n

ijj

jii CSMcout
,1

, , 



n

jii

jij CSMcin
,1

, [4]

9 For example, the number of exchanged signals is usually 1-10,

while the signal period is usually 1-1000 milliseconds.

Incorporating formula (4) into formula (1b), a single software

component's complexity (Cx) can be calculated as:

(5) 



n

xii

xi

n

xjj

jxx CSMCSMC
,1

,

,1

,

Incorporating formula (5) into formula (2), total complexity of a

sub-system, domain or system containing n software

components (Cn) can be calculated as:

(6)  
 











n

x

n

xii

xi

n

xjj

jxn CSMCSMC
1 ,1

,

,1

,

According to formula (6), the explained complexity model

includes the internal dependencies between components inside

the same sub-systems and domains when calculating their

complexity. However, the measure excluding them could also

be useful, especially in prediction of possible fault propagations

in the system. For this purpose, Package Coupling Metrics

(PCM) named and defined by Gupta et al. can be used to

supplement the explained complexity measure [24]. According

to them, the following formula can be used to calculate the

coupling between two packages based on the number of

dependencies between the software components contained

inside of them (where one component belongs to one package,

and the other component belong to the other package on the

same hierarchical level):

(7)     
 


n

i

m

ijj

l

j

l

i

l

b

l

a eerPPCoup
1 ,1

11,,

  
 


m

j

n

jii

l

i

l

j eer
1 ,1

11, [24]

where Pa
l and Pb

l represent two packages on the hierarchical

level l, r(ei
l+1,ej

l+1) the directed dependency between module ei

and module ej on the hierarchical level l+1 (where eiPa
l and

ejPb
l), and m and n their total number of components,

respectively.

Total coupling of a single package in the system containing t

packages is calculated as:

(8)    



t

abb

l

b

l

a

l

a PPCoupPPCM
1

, [24]

Applied to the automotive software systems logical view, CSM

can be used as a source for obtaining strengths of dependencies

between software components. In this case, based on formulas

(7) and (8), the following formula can be used to calculate

package coupling of a single sub-system/domain:

(9)  
   

   








 

 
























t

abb
m

j

n

i
PindPind

n

i

m

j
PindPind

l

a

i
l

aj
l

b

j
l

bi
l

a

CSM

CSM

PPCM
1

1 1
,

1 1
,

 [4]

where Pa
l
 and Pb

l
 represent two sub-systems/domains on the

hierarchical level l, m and n the number of their components and

 10

ind function which returns the CSM index assigned to the

component inside particular package.

The results of the complexity measures defined in formulas (5)

and (6) and coupling measures defined in formula (9) should be

compared and analyzed together, as explained in Section 6. The

demonstration of the measurement process can be seen in the

example provided in Section 7.

5.2 Pre-Deployment View Measures
When creating the requirements specification for suppliers in

order to implement particular functionalities, information from

the logical view is not sufficient. Suppliers need to know to

which ECUs particular software components will be deployed

as well. This is mostly due to the existence of several other

external requirements such as hardware requirements (CPU

frequency, memory consumption, etc.), necessary for suppliers

to be aware of while implementing the components. For this

reason, it is also important to estimate the potential impact of

changes to the network topology in the pre-deployment view as

well. This is done by measuring the complexity and coupling

increase in the system in a similar way as it was presented for

the logical view in Section 5.1.

In the pre-deployment view, logical software components are

mapped to pre-deployed software components and the ECUs

can be considered as sub-systems containing the pre-deployed

components. It stems from the previous that the pre-deployment

system organization is very similar to the logical system

organization, so both complexity and coupling measures defined

for the logical view can be applied here as well. However,

formula (3a) used for calculating the strength of dependencies

between software components (the CSM formula) has to be

modified for two reasons [4]: first, signal types can no longer be

intra-sub-system, inter-sub-system or inter-domain, but intra-

ECU and inter-ECU instead. Second, additional timing

constraint concerning the maximum allowed time for a signal to

travel between ECUs (MaxAge) is available for the system

signals (inter-ECU signals) and should also be included into the

CSM formula. The lower the MaxAge value is, the more

complex system we have since it is harder to satisfy all timing

requirements.

Based on a network topology where system signals and their

timing constraints have strong impact on system performance,

we concluded, together with Volvo experts, that intra-ECU

signals should have weight factor 1, inter-ECU signals weight

factor 1.5 and the weight factor for the MaxAge attribute should

vary from [1-1.5), depending on its value [4]. Assuming that it

ranges from [1-1000] milliseconds, new CSM formula looks as

follows:

(3b) 












num

jik

ji
ms

kMaxAge
ktypelCSM

,1

,
2000

)(
5,1*)([4]

where num represents the number of signals sent from the ECU

assigned to row i to the ECU assigned to column j of the CSM,

type(k) the weight factor depending on the signal type (intra-

ECU, inter-ECU), and MaxAgei,j(k) its maximum allowed time

to travel between the ECUs assigned to row i and column j of

the CSM. MaxAge for intra-ECU signals is set to 1000

milliseconds by default, so it does not affect the calculation.

The rest of the pre-deployment view complexity and coupling

measurements can be done in the same way as explained for the

logical view, by applying formulas (5), (6) and (9).

6. PRESENTATION AND

INTERPRETATION OF RESULTS

6.1 Presentation of Measurement Results
Presentation and interpretation of measurement results is crucial

for understanding the impact of changes and planning corrective

actions in case they are needed. This is why it is important to

present the results unambiguously so that conclusions can be

made quickly. In order to achieve this, we suggest graphical

representation of complexity and coupling increase/decrease in

the system through different system releases using histograms.

Despite the fact that the explained complexity and coupling

measures produce numerical results, they do not represent a

strong base for their interpretation. For example, if one sub-

system is exchanging 100 different signals with substantial

number of other sub-systems, it indicates its very high

complexity and coupling value. However, this does not

necessarily have to be a sign of bad architecture because the

purpose of this sub-system might be to conduct different signals

towards destination sub-systems. This is why the presentation of

complexity and coupling change through different releases

compared with other modules in the system could be much more

useful. This way system architects, designers and testers can use

their knowledge about the system to compare the measurement

results with their expectations. In order to maintain the quality

of the system through releases, the explained measures should

be applied after each architecturally significant change [4].

For presenting the level of complexity and coupling

increase/decrease in each hierarchical level for both system

views10, we suggest the use of histograms. Several histograms

should be used for this purpose and most of them are

demonstrated in the example presented in Section 7:

1. Logical software components' complexity change –

presents the change in the complexity of all logical

software components in the system between previous and

current system releases (Figure 8).

2. Logical sub-systems' complexity change – presents the

change in the complexity of all sub-systems in the system

between previous and current system releases (Figure 9).

3. Logical sub-systems' coupling change – presents the

change in the coupling of all sub-systems in the system

between previous and current system releases (Figure 10).

4. Logical domains' complexity change – presents the change

in the complexity of all domains in the system between

previous and current system releases.

5. Logical domains' coupling change – presents the change

in the coupling of all domains in the system between

previous and current system releases.

10The logical system view has three hierarchical levels: logical

software components, sub-systems and domains. The pre-

deployment system view has two hierarchical levels: pre-

deployed software components and ECUs.

 11

6. Pre-deployment software components' complexity change

– presents the change in the complexity of all pre-

deployed software components in the system between

previous and current system releases (Figure 12).

7. Pre-deployment ECUs' complexity change – presents the

change in the complexity of all ECUs in the system

between previous and current system releases (Figure 13).

8. Pre-deployment ECUs' coupling change – presents the

change in the coupling of all ECUs in the system between

previous and current system releases (Figure 14).

Note that it is not possible to measure coupling of logical and

pre-deployed software components as the smallest architectural

units, according to formula (9). In addition to the explained

histograms which present complexity and coupling change

between previous and current system releases, we suggest the

use of Trend charts (Figures 11 and 15). Their purpose is to

present the complexity and coupling change of a specific logical

software component, sub-system or domain in the logical view,

and the complexity and coupling change of a pre-deployed

software component or ECU in the pre-deployment view,

through all available system releases including the newest one.

6.2 Interpretation of Measurement Results
As a first step when interpreting measurement results, we

suggest finding of sub-systems, as logical units, and ECUs, as

physical units, which have suffered significant increase in their

complexity and/or coupling. After identifying such sub-systems

and ECUs, we can go one level lower and see which software

components (logical in case of sub-systems and pre-deployment

in case of ECUs) are mostly responsible for this increase.

Apart from identifying sub-systems and ECUs which suffered

most severe changes, our focus should be on the comparison

between complexity and coupling measurement results. The

following example illustrates why this is important: imagine that

one sub-system has increased in complexity much more than it

has increased in coupling. This indicates that changes

introduced a lot of new functions assigned to this sub-system.

However, they are localized and as such do not represent a huge

threat to other parts of the system (not high risk of fault

propagation and "ripple" effects). Still, this sub-system should

clearly be tested more after the implementation of changes. On

the other hand, if one sub-system has increased/decreased in

coupling similarly as it has increased/decrease in complexity,

this could indicate possible serious architectural changes that

might affect many parts in the system. The reason and origin of

these types of changes should be investigated further in order to

foresee places in the system vulnerable to "ripple" effects. The

same steps should be taken in case of removal of one sub-

system (or ECU in the pre-deployment view). In addition to this,

every substantial increase in the coupling of domains could be a

sign of bad architecture, since domains represent the highest

logical units in the system which should not be tightly coupled.

If complexity and/or coupling of one or more parts of the system

indicated by measurement results have increased to an

unsatisfactory level, it could affect the quality requirements of

the entire system (such as maintainability, reliability and

robustness). In that case, there are three possible steps that could

be taken in order to minimize this risk:

1. Immediate structural recomposition in parts of the system

affected by changes before sending requirements for their

realization to suppliers. The purpose of this is to balance

the complexity and/or coupling in the system11.

2. Proceeding with implementation of changes having in

mind identified problems for future system releases or

introduction of new software platform.

3. Proceeding with implementation of changes having in

mind sub-system with high complexity and coupling

increase in integration and regression testing phases. This

knowledge can also reduce the cost of testing.

In addition to this, information about the most variable parts in

the system could be used to point out functionally unstable sub-

systems that need special attention while tested and/or potential

structural recomposition in future.

7. EXAMPLE
In this section, we demonstrate the complexity and coupling

measurements and show how their results should be presented

and interpreted in order to fully capture the impact of changes.

We first describe the example system in Section 7.1, then we

demonstrate the measurements and present their results in

Section 7.2, and finally we discuss the results in Section 7.3.

7.1 The Example System Description
In this section, we show the example of the automotive software

system from both logical and pre-deployment views. It is

important to understand that despite the fact that it reflects the

logic and organization of a real software system used in cars, it

does not represent one (or part of it) and it is created for the

purpose of understanding better the presented metrics.

Figure 4 shows the logical view of the current system release

before the realization of changes. The system is divided into two

domains: SafetyControl and VehicleControl. Each domain

contains two sub-systems with at least one software component.

The purpose of this system is to realize the car’s "Auto-brake"

feature when pedestrian is detected in front of the car.

SafetyControl domain is responsible for passengers' safety in the

car and contains two sub-systems: PedestrianDetection and

SafetyHandler. PedestrianDetection sub-system is responsible

for detecting the pedestrians on the car's track and issuing a

request for braking to SafetyHandler sub-system, in case a

driver did not react fast enough. SafetyHandler sub-system is

responsible for transmitting all safety requests to VehicleControl

domain, such as braking, release of the air-bags, etc.

VehicleControl domain is responsible for controlling the vehicle

and contains two sub-systems: BrakeControl and

VehicleManagement. BrakeControl sub-system is responsible

for braking and it periodically sends braking status to

PedestrianDetection sub-system, so it can issue a brake request

in case driver is not braking when pedestrian is detected.

VehicleManagement sub-system is responsible for receiving all

requests sent to VehicleControl domain, such as braking and

transmission, and forwarding them to the responsible sub-

system inside VehicleControl domain.

11For example, this could be done by introducing new software

components which can take some of the functionalities [4].

 12

Figure 4: Logical view of the current system release

Figure 5: Pre-deployment view of the current system release

Figure 6: Logical view of the future system release

Figure 7: Pre-deployment view of the future system release

 13

Figure 5 shows the pre-deployment view of the current system

release before the realization of changes. All software

components from the logical view shown in Figure 4 are now

pre-deployed to tree ECUs: SafetyMaster, VehicleMaster and

ControlMaster. The number assigned to each inter-ECU signal

(system signal) represents its maximum allowed time to travel

between the two ECUs (MaxAge).

Figure 6 shows the logical view of the future system release

after the realization of changes. First, it has been concluded that

VehicleManagement sub-system inside VehicleControl domain

is no longer needed and requests for controlling the vehicle

should be sent directly to the responsible sub-system (not via

VehicleManagement as shown in Figure 4). Second, another

software component (SafetyManager) has been introduced to

SafetyHandler sub-system which is responsible for warning the

passengers and other road users about the safety issues using

sound, lights etc.

Figure 7 shows the pre-deployment view of the future system

release after the realization of changes. Software components

from VehicleManagement sub-system are removed from

VehicleMaster and ControlMaster ECUs, and new

SafetyManager software component added to SafetyHandler

sub-system is pre-deployed to SafetyMaster ECU. The number

assigned to each inter-ECU signal represents its MaxAge.

7.2 Measurements and Results Presentation
In this section, we demonstrate the use and presentation of the

results of the logical and pre-deployment view complexity and

coupling metrics based on the example presented in Section 5.1.

7.2.1 Logical View
Before calculating the complexity and coupling of the logical

view software components, sub-systems and domains, it is

necessary to create CSM. Since we are applying the complexity

and coupling measures in order to present their difference

between two releases, two CSMs should be created: one for the

system release before the realization of changes, and one for the

system release after the realization of changes.

CSM presented in Table 2 corresponds to the current system

release shown in Figure 4, and each field in the CSM is

calculated using formula (3a) and signal weights defined in

Section 5.1. As explained in Section 5.1, each row and column

in the matrix with the same index is assigned to one logical

software component from the logical view. In this case, CSM

indexes assigned to software components from Figure 4 are

shown in Table 1 (PedestrianDetector software component is

assigned to CSM row and column 1, PedestrianManager to

CSM row and column 2, etc.).

Table 1: CSM assignment of the current release SW components

PedestrianDetector 1

PedestrianManager 2

SafetyBrakeManager 3

BrakeStatInformator 4

BrakeManager 5

VehicleInfoCollector 6

VehicleHandler 7

Table 2: CSM for the logical view current system release

 1 2 3 4 5 6 7

1 1 0 0 0 0 0

2 0 1,3 0 0 0 0

3 0 0 0 0 1,8 0

4 0 1,8 0 0 1,3 0

5 0 0 0 1 0 0

6 0 0 0 0 0 1

7 0 0 0 0 1,3 0

For example, software component PedestrianDetector with

CSM index 1 is sending one intra-sub-system signal

PedestrianDetected to software component PedestrianManager

(Figure 4) with CSM index 2 (Table 1). According to formula

(3a), this implies that CSM1,2 field in the matrix should contain

value 1, as shown in Table 2. The rest of the CSM fields shown

in Table 2 are calculated in the same way.

CSM shown in Table 4 corresponds to the future system release

shown in Figure 6. The values of its fields are calculated in the

same way as the values of the CSM fields shown in Table 2 for

the current system release. CSM indexes assigned to the future

release software components are presented in Table 312.

Table 3: CSM assignment of the future release SW components

PedestrianDetector 1

PedestrianManager 2

SafetyManager 3

SafetyBrakeManager 4

BrakeStatInformator 5

BrakeManager 6

Table 4: CSM for the logical view future system release

 1 2 3 4 5 6

1 1 0 0 0 0

2 0 0 1,3 0 0

3 0 0 1 0 1,8

4 0 0 2 1,8 0

5 0 1,8 0 0 0

6 0 0 0 0 1

Applying formulas (5) and (6) described in Section 5.1 to CSMs

shown in Tables 2 and 4, it is possible to calculate complexity

of all logical software components, sub-systems and domains in

both current and future system releases.

Figure 8 shows the complexity difference between the current

(in the charts referred to as Release 1) and future (in the charts

referred to as Release 2) system releases for all logical software

components. Components shown in the horizontal axis in the

histogram are ordered by complexity difference between the two

releases, where the ones with the highest difference are placed

at the beginning in order to be easily noticed.

12Note that the numbers assigned for the same logical software

components in two releases differ between Tables 1 and 3.

 14

0
1
2
3
4
5
6
7
8
9

10

Sa
fe

ty
Bra

ke
kM

an
age

r

Sa
fe

ty
M

an
ag

er

Vehicl
eIn

fo
Colle

ct
or

Bra
ke

St
at

In
fo

rm
at

or

Vehicl
eHan

dler

Bra
ke

M
ana

ge
r

Ped
es

tri
anM

an
ag

er

Ped
es

tri
anD

ete
ct

or

C
o
m
p
le
xi
ty

Release 1

Release 2

Figure 8: Logical software components’ complexity change

For example, according to formula (5) explained in Section 5.1,

total complexity of BrakeManager software component with

CSM index 5 in the current system release (Table 1) is equal to

the multiplication of sums of all values in row 5 and column 5

of the CSM shown in Table 2. Therefore, its total complexity

equals (0 + 0 + 0 + 1 + 0 + 0) * (0 + 0 + 0 + 0 + 0 + 1.3) = 1.3,

as shown in Figure 8. However, complexity of BrakeManager

software component with CSM index 6 in the future system

release (Table 3) is equal to the multiplication of sums of all

values in row 6 and column 6 in the CSM shown in Table 4.

Therefore, its total complexity equals 1 * 1.8 = 1.8, as shown in

Figure 8. Finally, a visible increase of 1.8 - 1.3 = 0.5 of

BrakeManager software component is also presented in the

same figure. The rest of the calculations shown in Figure 8 are

done in the same way.

Figure 9 shows the complexity difference between the two

releases for all sub-systems. The complexity change of each

sub-system is calculated as a sum of complexities of all of its

logical software components. For example, sub-system

BrakeControl in the current system release contains two

software components: BrakeManager and BrakeStatInformator,

so its total complexity equals 3.1 + 1.3 = 4.4, as shown in Figure

9. The same logic can be applied to BrakeControl sub-system in

the future system release, where its total complexity equals 5.04

+ 1.8 = 6.84, as shown in Figure 9. Finally, a visible complexity

increase of 6.84 - 4.4 = 2.44 of BrakeControl sub-system is also

presented in the same figure. The rest of the calculations shown

in Figure 9 are done in the same way. Sub-systems shown in the

horizontal axis in the histogram are ordered by complexity

difference.

0

2

4

6

8

10

12

14

16

Sa
fe

ty
Han

dler

Vehicl
eM

an
ag

em
en

t

Bra
ke

Contro
l

Ped
es

tri
anD

ete
ct

ion

C
o
m
p
le
xi
ty

Release 1

Release 2

Figure 9: Logical sub-systems’ complexity change

Calculating the complexity difference between the current and

future system releases for all logical domains can be done in the

same way as for the sub-systems. The complexity change of

each domain is calculated as a sum of complexities of all of its

components and should be presented in a histogram similar to

the one shown in Figure 9.

In the logical view, coupling measurements can only be applied

to sub-systems and domains (according to formula (9) explained

in Section 5.1 which requires a package of components). Figure

10 shows the coupling change for all sub-systems between the

current and future system releases, based on CSMs shown in

Tables 2 and 4. Sub-systems shown in the horizontal axis in the

histogram are ordered by complexity difference.

0

1

2

3

4

5

6

Vehicl
eM

an
ag

em
en

t

Sa
fe

ty
Han

dler

Bra
ke

Contro
l

Ped
es

tri
anD

ete
ct

ion

C
o
u
p
lin
g

Release 1

Release 2

Figure 10: Logical sub-systems’ coupling change

For example, sub-system BrakeControl in the current system

release contains two software components: BrakeManager with

CSM index 5 and BrakeStatInformator with CSM index 4

(Table 1). Its total coupling is equal to the sum of all strengths

of dependences between these two components and other

components in the system, not counting the strength of

dependency between them. In CSM shown in Table 2, the

strength of dependency between components is shown in fields

CSM4,2 (BrakeStatInformator  PedestrianManager), CSM4,6

(BrakeStatInformator  VehicleInfoControl) and CSM7,5

(VehicleHandler  BrakeManager). Therefore, its total

coupling equals 1.8 + 1.3 + 1.3 = 4.4, as shown in Figure 10.

After applying the same calculation for BrakeControl sub-

system in the future system release, its total coupling equals 1.8

+ 1.8 + 1.8 = 5.4, as shown in Figure 10. Finally, a visible

complexity increase of 5.4 - 4.4 = 1 of BrakeControl is also

presented in the same figure. The rest of the calculations shown

in Figure 10 are done in the same way.

Similarly to this, we can present the coupling change of domains

between the current and future system releases with histograms.

The charts shown in Figures 8, 9 and 10 are used to present the

complexity or coupling change of all software components, sub-

systems and domains between the current and future system

releases. However, it could also be useful to see the complexity

and coupling change of a specific software component, sub-

system or domain through all available releases. For this

purpose, we suggest the use of Trend charts. An example is

shown in Figure 11 for the complexity trend of sub-system

BrakeControl in two releases (in reality, there should be more).

 15

0

1

2

3

4

5

6

7

8

Release 1 Release 2

C
o
m
p
le
xi
ty

BrakeControl

Figure 11: BrakeControl sub-system’s complexity trend

7.2.2 Pre-deployment View
Similarly to the logical view complexity and coupling change

measurements, first step in measuring the pre-deployment

complexity and coupling change between the two releases is to

create two CSMs, one for the current system release and one for

the future system release. Since each pre-deployed software

component is mapped to a logical software component with the

same name, we can use the CSM indexes assigned to logical

software components for the pre-deployed software components

as well. Therefore, based on the CSM indexes assigned to

software components in Table 1, Table 5 shows CSM for the

current system release in the pre-deployment view. Based on the

CSM indexes assigned to software components in Table 3,

Table 6 shows CSM for the future system release in the pre-

deployment view. Each field in the two CSMs is calculated

using formula (3b) described in Section 5.2.

Table 5: CSM for the pre-deploy. view current system release

 1 2 3 4 5 6 7

1 1 0 0 0 0 0

2 0 1 0 0 0 0

3 0 0 0 0 1,9 0

4 0 1,9 0 0 1 0

5 0 0 0 2,1 0 0

6 0 0 0 0 0 2,1

7 0 0 0 0 1 0

For example, software component SafetyBrakeManager with

CSM index 3 is sending one inter-ECU signal BrakeRequest1

with MaxAge 500 milliseconds to software component

VehicleInfoCollector (Figure 5) with CSM index 6 (Table 1).

According to formula (3b), this implies that CSM3,6 field in the

matrix should contain value 1.5 * (1.5 – 500 / 2000)  1.9, as

shown in Table 5. The rest of the CSM fields shown in Table 5

are calculated in the same way.

The values of the CSM fields shown in Table 6 for the future

system release in the pre-deployment view are calculated in the

same way as the values of the CSM fields for the current system

release shown in Table 5. Applying formulas (5) and (6)

described in Section 5.1 to created CSMs shown in Tables 5 and

6, it is possible to calculate complexity for all pre-deployed

software components and ECUs in both current and future

system releases.

Table 6: CSM for the pre-deploy. view future system release

 1 2 3 4 5 6

1 1 0 0 0 0

2 0 0 1 0 0

3 0 0 2,1 0 1

4 0 0 4,1 1,9 0

5 0 1,9 0 0 0

6 0 0 0 0 1,5

Figure 12 shows the complexity difference between the two

releases of all pre-deployed software components. Components

shown in the horizontal axis in the histogram are ordered by

complexity difference between the two releases, where the ones

with the highest difference are placed at the beginning.

0
2
4
6
8

10
12
14
16
18
20

Sa
fe

ty
Bra

ke
M

ana
ge

r

Sa
fe

ty
M

an
ag

er

Vehicl
eIn

fo
Colle

ct
or

Vehicl
eHan

dler

Bra
ke

M
ana

ge
r

Bra
ke

St
at

In
fo

rm
at

or

Ped
es

tri
anD

ete
ct

or

Ped
es

tri
anM

an
ag

er

C
o
m
p
le
xi
ty

Release 1

Release 2

Figure 12: Pre-deployment SW components’ complexity change

For example, according to formula (5) explained in Section 5.1,

total complexity of BrakeManager software component with

CSM index 5 in the current system release (Table 1) is equal to

the multiplication of sums of all values in row 5 and column 5

of the CSM shown in Table 5. Therefore, its total complexity

equals (0 + 0 + 0 + 2.1 + 0 + 0) * (0 + 0 + 0 + 0 + 0 + 1) = 2.1,

as shown in Figure 12. However, complexity of BrakeManager

software component with CSM index 6 in the future system

release (Table 3) is equal to the multiplication of sums of all

values in row 6 and column 6 in the CSM shown in Table 6.

Therefore, its total complexity equals 1 * 1.5 = 1.5, as shown in

Figure 12. Finally, a visible increase of 2.1 - 1.5 = 0.6 of

BrakeManager software component is also presented in the

same figure. The rest of the complexity calculations between the

releases shown in Figure 12 are done in the same way.

Figure 13 shows the complexity difference between the two

releases for all ECUs. The complexity change of each ECU is

calculated as a sum of complexities of all of its pre-deployed

software components. For example, ControlMaster ECU in the

current system release contains two software components:

BrakeManager and VehicleHandler, so its total complexity

equals 2.1 + 2.1 = 4.2, as shown in Figure 13. The same logic

can be applied to ControlMaster ECU in the future system

release, where its total complexity equals 12.6 + 1.5 = 14.1, as

shown in Figure 13. Finally, a visible complexity increase of

14.1 - 4.2 = 9.9 of ControlMaster ECU is also presented in the

same figure. The rest of the calculations shown in Figure 13 are

 16

done in the same way. ECUs shown in the horizontal axis in the

histogram are ordered by complexity difference.

Figure 13: Pre-deployment ECUs’ complexity change

In the pre-deployment, coupling measurements can only be

applied to ECUs (according to formula (9) explained in Section

5.1 which requires a package of components). Figure 14 shows

the coupling change for all ECUs between the current and future

system releases, based on CSMs shown in Tables 5 and 6. ECUs

shown in the horizontal axis in the histogram are ordered by

complexity difference.

Figure 14: Pre-deployment ECUs’ coupling change

For example, ControlMaster ECU in the current system release

contains two software components: BrakeManager with CSM

index 5 and VehicleHandler with CSM index 7 (Table 1). Its

total coupling is equal to the sum of all strengths of dependences

between these two components and other components in the

system, not counting the strength of dependency between them.

In CSM shown in Table 4, the strength of dependency between

components is shown in fields CSM5,4 (BrakeManager 

BrakeStatInformator) and CSM6,7 (VehicleInfoCollector 

VehicleHandler). Therefore, its total coupling equals 2.1 + 2.1 =

4.2, as shown in Figure 14. After applying the same logic for

ControlMaster ECU in the future system release, its total

coupling equals 4.1 + 2.1 + 1.5 = 7.7, as shown in Figure 14.

Finally, a visible complexity increase of 7.7 - 4.2 = 3.5 of

ControlMaster ECU is also shown in the same figure. The rest

of the calculations shown in Figure 14 are done similarly.

Following the same logic as for the logical view, it is useful to

see the complexity and coupling change of a specific software

component or ECU through all system releases in the pre-

deployment view as well, using Trend charts. An example is

shown in Figure 15 for the coupling trend of ECU

ControlMaster in two releases (in reality, there should be more).

Figure 15: ControlMaster ECU’s coupling trend

7.3 Results Interpretation
We start the analysis from the logical view. Figure 9 shows

much higher increase in the complexity of sub-system

SafetyHandler in comparison to its coupling increase shown in

Figure 10. After looking at the logical software components'

complexity change presented in Figure 8, it can be concluded

that there are two main reasons for such a high complexity

increase of SafetyHandler: the addition of new software

component SafetyManager and the increase in complexity of

software component SafetyBrakeManager13. From the logical

point of view, these changes are not truly architectural and can

be considered as upgrades of the existing system. This means

that eventual faults created inside this sub-system are not very

likely to affect the other parts of the system and overall system

robustness, concerning the possibility of fault propagations.

However, SafetyHandler sub-system should be thoroughly

tested after the integration and possibly broken into smaller sub-

systems in future releases in order to reduce its complexity.

The removal of VehicleManagement sub-system represents the

opposite case. This is a high level architectural change since

VehicleManagement sub-system was responsible for receiving

all vehicle requests and transferring them to the right sub-system

inside VehicleControl domain. Now after VehicleManagement

sub-system is removed, the decision about which sub-system

inside VehicleControl domain is responsible for receiving

particular signal is transferred to the sender side. This change

requires finding and testing of all parts of the system involved in

the change, in case it is approved for realization.

After determining the cause for substantial complexity increase

of sub-system SafetyHandler in logical view and identifying and

approving the removal of VehicleManagement sub-system, we

should look at the effects of these changes to the ECUs in the

pre-deployment view. Figure 13 and Figure 14 show the

complexity and coupling change of all ECUs in the system.

High complexity and coupling increase in SafetyMaster ECU is

expected, due to new SafetyManager software component

13This is the consequence of new functionalities added so that

drivers and other road users can receive sound and visual

information when the safety system is activated (auto-brake).

 17

assigned to it. The same stands for ControlMaster ECU, just this

time due to the removal of VehicleManagement sub-system

which increases the number of requests received by software

components pre-deployed to ControlMaster ECU (signals can

now be received from anywhere, not just from the software

components inside VehicleManagement sub-system). As a

consequence of this, the complexity and coupling of

VehicleMaster ECU is decreased since not so many signals are

sent to VehicleManagement sub-system anymore. In order to

approve these changes for realization, it is necessary to verify

that SafetyMaster and ControlMaster ECUs can handle the new

functionalities and signals on the buses from the hardware’s

perspective (CPU, memory, buses etc.).

As you can see from this brief demonstration of the

measurements' results interpretation, the knowledge about the

system and experience of the interpreters are very important for

making correct conclusions. Still, the real causes for all changes

which are making a substantial increase in complexity and

coupling of particular sub-system/ECU should be investigated in

order to secure the system quality.

8. VALIDATION OF THE METRICS

8.1 Theoretical Validation
In Section 2, two different metrics were proposed: the

complexity metric and the coupling metric. In this section, we

provide their theoretical validation according to the complexity

and coupling properties defined by Briand et al. [31].

The complexity metric holds all five properties of a complexity

metric defined in [31]:

1. Non-negativity: The complexity of a system is not negative

- the results of both formulas (3a) and (3b) for calculating

the CSM fields are non-negative values. In formulas (5)

and (6) for calculating complexity, these values are first

summed and then multiplied resulting in a non-negative

value.

2. Null value: The complexity of a system is 0 if there are no

relations between its modules - in case of no signals

exchanged between modules in the system, corresponding

values of the CSM fields are 0, according to formulas (3a)

and (3b), resulting in a zero complexity value after

applying formulas (5) and (6).

3. Symmetry: The complexity of a system does not depend on

the representation of its arcs - changing the direction of all

signals in the system results in a transposed CSM, where

the sum of all values in column j corresponds to the sum of

all values in row i of the CSM, and vice versa. This does

not affect the multiplication in formula (5) for calculating

complexity.

4. Module monotonicity: The complexity of a system is not

less than the sum of complexities of its unrelated modules -

the complexity of a system is calculated as a sum of all

modules' complexities, according to formula (6), and as

such can not be less than the sum of its unrelated modules.

5. Disjoint module additivity: The complexity of a system is

equal to the sum of complexities of its disjoint modules -

the same explanation as for "Module monotonicity" (4).

The coupling metric holds all five properties of a coupling

metric defined by Briand et al. [8]:

1. Non-negativity: The coupling of a system is not negative -

the results of both formulas (3a) and (3b) for calculating

the CSM fields are non-negative values. In formula (9) for

calculating coupling, these values are summed resulting in

a non-negative value.

2. Null value: The coupling of a system is 0 if there are no

relations between its modules - in case of no signals

exchanged between modules in the system, the

corresponding values of the CSM fields are 0, according to

formulas (3a) and (3b), resulting in a zero coupling value

after applying formula (9).

3. Monotonicity: The coupling of a system does not decrease

with addition of new inter-module relations - new inter-

module relation increases the coupling in the system if the

two modules belong to different packages. Otherwise, there

will be no change according to formula (9), which validates

that it can not decrease.

4. Merging of modules: The coupling of a system does not

increase when merging two or more of its modules - when

two or more modules in the system are merged, the

coupling will decrease if modules are related and belong to

different packages. Otherwise, it will stay the same

according to formula (9), validating that it can not increase.

5. Disjoint module additivity: The coupling of a system after

merging two or more unrelated modules does not change -

the same explanation as for "Merging of modules" (4).

8.2 Empirical Validation
Throughout the entire research, regular meetings were held at

VCC on a weekly basis in order to discuss our findings, where

system architects, designers and testers from Volvo actively

participated. All conclusions were validated with them.

In order to validate the results of our metrics based on the

complexity and coupling increase in the system through

different releases, a software tool has been implemented. The

tool is able to extract from the VCC internal database the

structural data about the logical software components and sub-

systems in the logical view, and the pre-deployed software

components and ECUs in pre-deployment view, for the chosen

platform. The data is stored internally in order to easily apply

the complexity and coupling metrics later14. The tool is also able

to present the measurement results, as explained in Section 6.

After extracting the data from several software platforms and

applying the metrics based on two different releases, the results

were presented to the experts in the area of software

architecture, design and testing from VCC. First, it was

concluded that the complexity and coupling metrics can be

applied early in the development process before the realization

of changes, and that they are able to identify the most complex

parts of the system. Second, it was concluded that the metrics

are able to measure the size and locate the origin of the most

severe architectural changes in the system and present the

14Note that logical domains are not considered in the tool, but

they can be approached in the same way as sub-systems.

 18

results in an understandable way. Finally, it was concluded that

the suggested interpretation of measurement results can lead to

conclusions which can be used to reduce the risk of deteriorated

quality, and reduce the development cost by identifying parts of

the system which should be tested more.

The tool will continue to be used as a part of the verification

process at VCC in order to verify quality strategies related to the

complexity of automotive software systems.

9. CONCLUSIONS
In this paper, we tried to emphasize the importance of the

change management process in the development of automotive

software systems, especially regarding the architecturally

significant changes. In order to improve the quality of the

system (maintainability, robustness, reliability, etc.), we

suggested the use of two quality metrics which are able to

measure the size and impact of changes to the complexity and

coupling properties of the system. Both metrics are based on

already existing and theoretically and empirically validated

complexity and coupling measures defined in [23] and [24],

respectively, but modified in order to suite hierarchical

organization of automotive software systems (seen from two

different views –logical view and pre-deployment view) as

shown in Section 5. Also, they are designed to support early

stages of the development process in order to reduce the number

of costly and time consuming late changes.

Apart from the description of the measures, we focused on the

presentation and interpretation of their results, as equally

important segments in the decision making process. We

suggested graphical representation of measurement results based

on the increase/decrease in the complexity and coupling through

different system releases. We also argued that apart from

looking at the results separately for each hierarchical level, they

should be compared between different levels in the same system

release. Based on the measurements' results, future steps

towards securing the quality requirements of the system might

involve architectural recomposition inside the system or more

thorough testing of the parts affected by changes. Finally, we

stressed that despite the entirely automated process of

measurements and results presentation, human knowledge about

the system and experience play a major role in their

interpretation. Common automotive system organization,

complexity and coupling measures, measurement process and

their results presentation and interpretation are all demonstrated

in Section 7, based on the example specially designed for the

purpose of this paper.

The presented metrics are theoretically validated according to

the complexity and coupling properties defined in [31]. Both

metrics and the significance of their results have been

empirically validated on the software systems used at Volvo

cars with the help of software architects, designers and testers

from Volvo Car Corporation [1]. However, it is possible that the

metrics are applicable to a wider range of software systems

which rely on communication between different modules over

multiplex buses.

There is still a lot of space for future research in the area of

architectural changes in the automotive software industry. For

example, it could be valuable to measure the architectural

distance between releases as defined in [9], based on the

structural properties presented in this paper (the number of

signals exchanged, signal type, signal MaxAge, etc.). Then, it

would be interesting to test the applicability of the hierarchical

analysis presented in [32] on Complexity Structure Matrix

(CSM) used in this paper. Finally, including the behavioral

aspects of the automotive software system15 into the account

opens a whole new area for more profound change impact

analyses.

Since our metrics are based on the structural system properties,

it would be interesting to compare their results with the results

of Function Point Analysis (FPA) [16], because both metrics can

be applied early in the development process based on the system

requirements. Additionally, apart from measuring the

complexity and coupling of components as explained in this

paper, it could also be useful to measure their cohesion, based

on the dependencies between software components inside the

same module. These results could be used in order to make an

additional validation of the conclusions made after the

interpretation of the complexity and coupling metrics.

REFERENCES
[1] "Volvo Car Corporation", www.volvocars.com, 2011

[2] A. Pretschner, M. Broy, I. H. Kruger, T. Stauner, "Software

Engineering for Automotive Systems: A Roadmap",

Proceedings of the FOSE'07 Conference on Future of

Software Engineering, pp. 55-71, 2007

[3] M. Broy, I. H. Kruger, A. Pretschner and C. Salzmann,

"Engineering Automotive Software", Proceedings of the

Conference on IEEE, vol. 95(2), pp. 356-373, 2007

[4] D. Durisic, M. Staron, M. Nilsson, “Measuring the Size of

Changes in Automotive Software Systems and their Impact

on Product Quality”, Proceedings of the PROFES'11 12th

International Conference on Product Software

Development and Process Improvement, vol. 2, 2011

[5] "Volvo Car Safety Technology - Pedestrian Detection",

https://www.media.volvocars.com/us/enhanced/en-

us/Media/Preview.aspx?mediaid=31773, 2010

[6] B. J. Williams, J. C. Carver, "Characterizing Software

Architecture Changes: A Systematic Review", Journal of

Information and Software Technology, vol. 52(1), pp. 31-

51, 2010

[7] L. Li, A. J. Offutt, "Algorithmic Analysis of the Impact of

Changes to Object-Oriented Software", Proceedings of the

ICSM'96 International Conference on Software

Maintenance, pp. 171-184, 1996

[8] L. C. Briand, J. Wuest, H. Lounis, "Using Coupling

Measurement for Impact Analysis in Object-Oriented

Systems", Proceedings of the ICSM'99 International

Conference on Software Maintenance, pp. 475, 1999

[9] T. Nakamura, V. R. Basili, "Metrics of Software

Architecture Changes Based on Structural Distance",

Proceedings of the METRICS'05 11th IEEE International

Software Metrics Symposium, pp. 8, 2005

[10] J. Zhao, H. Yang, L. Xiang, B. Xu, "Change Impact

Analysis to Support Architectural Evolution", Journal of

15For example, which parts of the system work together in order

to fulfill one system functionality?

http://www.volvocars.com/
http://portal.acm.org/author_page.cfm?id=81100463107&coll=DL&dl=ACM&trk=0&cfid=10984995&cftoken=35413585
http://portal.acm.org/author_page.cfm?id=81100226420&coll=DL&dl=ACM&trk=0&cfid=10984995&cftoken=35413585
http://portal.acm.org/author_page.cfm?id=81100607065&coll=DL&dl=ACM&trk=0&cfid=10984995&cftoken=35413585
http://portal.acm.org/author_page.cfm?id=81100073762&coll=DL&dl=ACM&trk=0&cfid=10984995&cftoken=35413585
https://www.media.volvocars.com/us/enhanced/en-us/Media/Preview.aspx?mediaid=31773
https://www.media.volvocars.com/us/enhanced/en-us/Media/Preview.aspx?mediaid=31773

 19

Software Maintenance: Research and Practice - Special

Issue: Separation of Concerns for Software Evolution, vol.

14(5), pp. 317-333, 2002

[11] J. A. Stafford, D. J. Richardson, A. L. Wolf, "Aladdin: A

Tool for Architecture-Level Dependence Analysis of

Software Systems", Department of Computer Science,

University of Colorado, Boulder, 1998.

[12] S. H. Kan, "Metrics and Models in Software Quality

Engineering", 2nd edition, Addison Wesley, 2002

[13] M. H. Halstead, "Elements of Software Science (Operating

and Programming Systems Series)", Elsevier Science, 1977

[14] T. J. McCabe, "A Complexity Measure", Proceedings of

the ICSE'76 2nd International Conference on Software

Engineering, pp. 407, 1976

[15] L. H. Binder, J. H. Poore, " Field experiments with local

software quality metrics ", Journal of Software: Practice &

Experience, vol. 22 (7), pp. 631-647, 1990

[16] C. Jones, “Estimating Software Costs: Bringing Realism to

Estimating”, 2nd edition, McGraw-Hill, 2007

[17] V. P. Stevens, G. J. Myers, L. L. Constantine, "Structured

Design", IBM Systems Journal, vol. 13(2), pp. 115-139,

1974

[18] C. L. McClure, "A Model for Program Complexity

Analysis", Proceedings of the ICSE'78 3rd International

Conference on Software Engineering, pp. 149-157, 1978

[19] L.A. Belady, C.J. Evangelisti, "System Partitioning and its

Measure", Journal of Systems and Software, vol. 2, pp. 23-

29, 1981

[20] S. S. Yau, J. S. Collofello, "Some Stability Measures for

Software Maintenance", Journal of IEEE Transactions on

Software Engineering, vol. 6(6), pp. 545-552, 1990

[21] D. N. Card, R. L. Glass, " Measuring Software Design

Quality ", Prentice-Hall, 1990

[22] W. Li, S. Henry, "Object Oriented Metrics Which Predict

Maintainability", Journal of Systems and Software -

Special Issue on Object-Oriented Software, vol. 23(2), pp

111-122, 1993

[23] S. Henry, D. Kafura, "Software Structure Metrics Based on

Information Flow", Journal of IEEE Transactions on

Software Engineering, vol. 7(5), pp. 510-518, 1981

[24] V. Gupta, J. K. Chhabra, "Package Coupling Measurement

in Object-Oriented Software", Journal of Computer

Science and Technology, vol. 24(2), pp. 273-283, 2009

[25] “AUTOSAR”, www.autosar.org, 2011

[26] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B.

Regnell, A. Wesslen, “Experimentation in Software

Engineering: An Introduction”, Kluwer Academic

Publishers, 2000

[27] R. Glass, "The Software Research Crisis", Journal of IEEE

Software, vol. 11(6), pp. 42-47, 1994

[28] B. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones,

D. C. Hoaglin, K. E. Emam, J. Rosenberg, "Preliminary

Guidelines for Empirical Research in Software

Engineering", Journal of IEEE Transactions on Software

Engineering, vol. 28 (8), pp. 721-734, 2002

[29] J. W. Creswell, "Research Design", "Qualitative and

Quantitative Approaches", Sage, 1994

[30] P. Runeson, M. Höst, "Guidelines for Conducting and

Reporting Case Study Research in Software Engineering",

Journal of Empirical software Engineering, vol. 14 (2), pp.

137-164, 2009

[31] L. C. Briand, S. Morasca, V. R. Basili, "Property-Based

Software Engineering Measurement", Journal of IEEE

Transactions on Software Engineering, vol. 22(1), pp. 68-

86, 1996

[32] N. Sangal, E. Jordan, V. Sinha, D. Jackson, "Using

Dependency Models to Manage Complex Software

Architecture", Proceedings of OOPSLA’05 20th Annual

ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications, vol.

40(10), pp. 167-176, 2005

http://www.autosar.org/

