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ABSTRACT 

BACKGROUND: In the past few decades, exponential increase 

in the amount of software used in cars has been recorded. 

Complex software is hard to maintain, especially due to constant 

changes which are essential in a car evolution process. To avoid 

the possible negative impact of changes on the system quality 

attributes, appropriate measurements of change are needed. 

METHOD: The research presented in this paper is based on the 

quantitative case study conducted together with our industrial 

partner Volvo Car Corporation (VCC) [1]. 

RESULTS: The structural complexity and coupling analysis of 

automotive software systems compared through different 

releases are applicable for measuring the size and locating the 

origin of the biggest and the most severe architectural changes. 

CONCLUSION: By applying the metrics after each significant 

change in the system, it is possible to verify that certain quality 

attributes have not decreased to an unsatisfactory level and to 

identify parts of the system which should be tested more. This 

increases the product quality and reduces its development cost. 

Keywords 

Automotive software, product quality, quality metrics, 

architectural change, maintainability, complexity, coupling. 

1. INTRODUCTION 
The amount of software in today's cars has reached one gigabyte 

of on board binary code (excluding the infotainment domain), 

and is constantly increasing [2]. Research shows that more than 

80% of innovations in cars are related to software and the 

majority of them are increasing the interaction between 

previously less dependent parts of the system [3]. At the same 

time, quality demands for safety, reliability and performance 

must remain high for the whole car product, including software 

[4]. Most of the quality attributes are improved with the use of 

software. A good example of this is "Pedestrian detection" 

technology, as a part of Volvo's safety system, which is able to 

prevent more than 50% of pedestrian-involved accidents [5]. 

However, huge binary code increases the probability of fault 

propagation in already complex automotive software systems1, 

resulting in significantly harder integration testing [4]. 

Additionally, constant changes in the development process may 

lead the actual implementation of the system away from its 

design and architectural decisions making validation of the 

quality attributes extremely difficult. 

                                                                 

1 Automotive software systems realize up to 2000 software-

based functions with more than 10% user functions [3]. 

Still, software changes are essential in a car evolution process 

and can take place in any stage of the platform's2 lifecycle [4]. 

An example of this has been presented in [4] using a car's 

headlights: the initial software version controlling this unit in a 

car was implemented just to turn the lights on and off, the 

second version was able to adjust manually the beam of light 

and turn it along the vertical axe, while the current version is 

able to turn the lights in both directions, horizontally and 

vertically, automatically following the car's movement in curves 

or when crossing a speed bump. Even in case of their high 

architectural significance, it would be very inefficient to wait for 

the new platform release to implement these types of changes 

[4]. On the other hand, a platforms' lifecycle is quite long today. 

Due to the high and relatively cheap competitors on the market, 

product quality is vital but not sufficient to sell the expensive 

product. For this reason, and implied by low production cost 

demand, one system platform should be designed to endure all 

changes and have a satisfying quality for at least 5-6 years. 

Under these circumstances, the platform's maintainability 

properties and the change management process play one of the 

most important roles. 

Apart from their frequency implying the risk of deteriorated 

quality, software changes in automotive systems can cause two 

additional problems: 

First, integration and regression testing is very hard since most 

of the software components are developed by different 

suppliers. Research shows that only 25% of functionalities are 

created inside car companies (Original Equipment 

Manufacturers - OEMs), while the rest is just integrated after the 

delivery from suppliers [3]. This way of working increases the 

quality of delivered components since suppliers get quite 

experienced while delivering similar components to different 

OEMs. However, it also increases the development cost since it 

most often requires modifications and upgrades of already 

implemented components. Such a distributed development 

makes communication between OEMs and suppliers extremely 

difficult, especially during the development process. 

Second, most of the changes in automotive software systems are 

either additions or improvements of the existing functionalities 

represented with new signals on the electronic busses [4]. As 

such, the majority of them is affecting the communication 

between different parts of the system and can be classified as 

architectural changes [6]. Architectural changes are more likely 

to cause scattering of functionalities through different sub-

systems potentially causing serious malfunctions in others [7]. 

                                                                 

2 Platform contains software and hardware infrastructure used in 

a particular car model(s). 
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For example, one of the most commonly known faults is a car's 

"no-start" problem when a driver is, for no specific reason, 

unable to start the engine of the car, doing it normally just a few 

seconds later. The explanation for this behavior most probably 

lies in the start-up process which initiates many different checks 

and at least one of them fails. The reason for this failure could 

be the existence of an error in one of the sub-systems which 

might have nothing to do with the engine, gear or other 

important start-up modules. Still, due to the high interaction 

between sub-systems, the error is able to propagate and create 

an incorrect state resulting in the abortion of the car's start-up 

process. This phenomenon known as the "ripple" effect3 [8] 

represents one of the biggest threats to software systems and it is 

significantly increased with the introduction of architectural 

changes. 

Having in mind the necessity and significance of changes from 

one side, potential problems they might provoke from the other, 

and constant demand for low cost, it is very hard to approach 

the quality issues in a good and systematic way. This is why 

measuring the size and potential impact of changes on other 

parts of the system could be the key for assuring robustness, 

reliability and other quality requirements. It is important to 

gather this information as soon as possible in the development 

process in order to reduce the number of late changes and lower 

the production cost. An example of this has been presented in 

[4]. It explains that being able to foresee the overload of specific 

electronic bus and deploying some of the software components 

to another place in the system before sending requirements to 

suppliers is much cheaper and efficient than sending a change 

request later. Additionally, applying the metrics which are able 

to localize the area that suffered most severe changes indicate 

parts of the system which should be tested more in order to 

eliminate potential "ripple effects" [4]. 

Several metrics able to provide useful results based on the 

structural system requirements can be applied before sending 

change requests to suppliers. In this paper, we present two most 

applicable ones to embedded automotive software systems – one 

based on modules’ complexity and one based on modules’ 

coupling. We also explain that the measurement results should 

be compared through different system releases (with focus on 

the difference between the current and future release) in order to 

be able to capture the size and potential impact of changes. 

Finally, we suggest how to interpret their results in order to 

come to the correct conclusion which should imply the future 

steps towards securing the desired quality. Since our metrics 

should be applied in the early stages of the development process 

(before sending change requests to suppliers) where not many 

behavioral properties of the system are known, they are mostly 

focused on structural system properties such as inter-module 

communication [4]. Still, they can identify early which parts of 

the system will be affected by changes which can significantly 

reduce the production cost as well [4]. 

The rest of the paper is organized as follows: Section 2 

describes the related work. Section 3 describes our research 

method. Section 4 describes the organization of the studied 

automotive software system at VCC. Section 5 describes the 

                                                                 

3 In this context, term “ripple effect” is used when a relatively 

small fault in one part of the system might manifest as a huge 

malfunction in another. 

quality metrics applicable to measure the complexity and 

coupling of automotive software systems. Section 6 describes 

the suggested way to present measurement results and how they 

should be interpreted. Section 7 describes the example of the 

automotive software system and demonstrates the use of 

presented metrics. Section 8 describes the theoretical and 

empirical validation of the metrics and Section 9 describes the 

conclusions and discusses the future work. 

2. RELATED WORK 
There have been several attempts to measure the size of 

architectural changes in software systems. One of the most 

interesting ones is described in [9] where authors try to measure 

the distance between architectures through different system 

releases, based on the chosen architectural properties. Also, 

several researches tried to perform change impact analysis on 

the architectural level based on the dependencies between 

architectural units, such as [10] and [11]. However, we are not 

aware of any attempts to approach change impact analyses from 

the architectural point of view, based on the complexity and 

coupling increase in the system through system releases. 

There are many different metrics used to measure the 

complexity and coupling in software systems. Generally, 

coupling metrics are based on inter-module relations, but 

complexity metrics can be based on either intra-module 

relations, inter-module relations (structural complexity), or both 

[12]. Since this paper observes automotive software systems 

from the perspective of OEMs4, it is not possible to apply most 

of the intra-module complexity metrics available today since 

they are based on a source code analyses (such as lines of code, 

the number of operators and operands [13], control graphs [14], 

syntactic constructs [15], etc. [12]). However, information about 

the modules and their communication interfaces is available 

very early (on a design level) and that is why we based our 

metrics mostly on these structural system properties. An 

alternative approach to this could be the use of FPA (Function 

Point Analysis) [16], where each function would be assigned to 

one or more system modules. Then, the complexity of one 

module can be calculated as a sum of complexities of all of the 

functions assigned to it. 

The original measure behind our metrics is the strength of 

module dependencies, as introduced by Stevens et al. [17]. 

Since then, many different metrics based on this have been 

introduced such as [18], [19], [20] and [21], especially with the 

evolution of object-oriented software systems [22]. Some of 

them rely on the data obtained from source code (such as the 

number of input-output (IO) variables and methods invoked). 

Other metrics more interesting for this research focus strictly on 

the dependences between modules and the information 

exchange between them - denoted as structural metrics [12]. 

Probably the most widely accepted structural metric is the one 

based on modules’ fan-in and fan-out introduced by Henry et al. 

[23], and it was our major inspiration for defining the 

complexity model. The coupling model was inspired by the 

Package Coupling Metrics (PCM) defined by Gupta et al. [24]. 

Despite the fact that there exist a lot of books and papers related 

to the complexity and coupling of software systems, we were 

                                                                 

4 Majority of modules are developed by suppliers and delivered 

to OEMs as a "black box" platform specific executable code. 
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unable to find many of these related to the automotive domain. 

This kind of specialized approach is important for several 

reasons such as hierarchical organization of automotive software 

architecture, distributed development of components, timing 

constraints in communication between components and 

prioritization of non-functional requirements where safety and 

cost have top priority. Most of the things we found related to the 

automotive domain were related to the AUTOSAR5 [25] and the 

principle of complex function decomposition using different 

software components. We also found many tools available to 

support the design, implementation and testing of components 

delivered by suppliers following the AUTOSAR standard, but 

we found no concrete measures for calculating the complexity 

and coupling between these components and/or between higher 

architectural units in the system. 

3. RESEARCH METHOD 
According to [26], the formal definition of our research goal is 

defined as: Analyze the automotive software system for the 

purpose of measuring the effect of changes to its architectural 

properties, with respect to maintainability, robustness, 

reliability and cost, from the point of view of the system 

architects, designers and testers and in the context of the 

software systems developed at Volvo Car Corporation. 

The research is conducted using the empirical research method 

[27] [28] based on the quantitative approach [29]. We first 

studied the organization of automotive software systems and 

development process used at VCC [1], with the aim to identify 

cause-effect relationships between the risk of deteriorated 

quality and architectural changes. Our hypothesis was based on 

the assumption that an early measurement of size and impact of 

changes (before their realization by suppliers) can be helpful in 

order to avoid potentially bad architectural and design decisions 

which could affect the product quality and thus reduce the 

production cost. 

After defining the research goal and hypothesis, we conducted a 

thorough case study analysis [30] and tested the applicability of 

several different metrics. We concluded, together with our 

industrial partners from Volvo, that metrics based on the 

structural complexity and coupling increase in the system are 

the most suitable ones6. In addition, since none of the existing 

ones were entirely applicable to the automotive domain or did 

not use the specific characteristics of automotive software 

systems in order to produce the most correct results, we had to 

modify the chosen metrics without changing their main logic 

explained by the authors. 

All data used in this study is provided by VCC and is based on 

the several software platforms deployed to different types of 

Volvo cars. In order to perform the measurements and present 

their results, a tool has been implemented which is able to apply 

the complexity and coupling metrics described in this paper. 

Apart from metrics' validation purposes, the tool will be used at 

Volvo regularly (before the realization of changes) in order to 

                                                                 

5 AUTOSAR - AUTomotive Open System Architecture is a 

standard developed by OEMs, suppliers and tool developers in 

order to improve the development process and system quality. 

6 One of the main reasons for focusing on the structural metrics 

is the necessity to apply them early. 

increase the efficiency of the software development process, 

improve the system quality and reduce the production cost. 

The theoretical validation of the measures is done according to 

the complexity and coupling properties defined by Briand et al. 

[31] (described more in Section 8.1). The empirical validation is 

done at VCC and it is based on the measurements' results 

provided by the implemented tool (described more in Section 

8.2). Throughout the entire research, many different workshops 

and interviews with system architects, software designers and 

component testers were held at VCC. At the beginning, their 

purpose was to get familiar with the automotive software 

development process, system organization and the problems 

arose from constant changes. Later, their purpose was to 

interpret the measurements' results and validate them. 

Apart from the metrics themselves, the focus of this research 

was placed on the presentation and interpretation of their results 

(described more in Section 6). This was also done with a great 

help of our industrial partners from Volvo. 

4. DESIGNING SOFTWARE SYSTEMS 

AT VCC 
Changes in the software systems often involve the introduction 

of new dependency requirements between two components. It is 

also possible to modify the existing dependency requirements, 

or remove some in case they are no longer needed. To better 

understand the need to measure the size and possible impact of 

these changes to automotive software systems, it is necessary 

first to understand their common hierarchical organization. This 

is important because changes in the higher architectural units 

and possible faults they might cause usually manifest as a more 

severe malfunctions in the system, harder to be removed. The 

studied system is developed at VCC and can be observed from 

two different views - logical view and pre-deployment view. 

4.1 Logical View 
The logical view represents a hierarchical organization of 

software components, sub-systems and domains (an example is 

shown in Figure 1). Software components are the smallest 

architectural units grouped into sub-systems mostly according to 

their functionalities and interaction between themselves [4]. In 

the logical view, they communicate by sending/receiving logical 

signals. At the top level, the automotive software system is 

usually divided into different domains clustered according to 

their application area and associated quality requirements [3]. 

Each domain contains number of sub-systems and it is possible 

to have different levels of sub-systems and software components 

as well. The following domains are the most common ones: 

1. Power train and chassis – contains the sub-systems 

responsible for controlling the engine, transmission, etc. 

2. Body – contains the sub-systems such as lights, locking, etc. 

3. Safety – contains the sub-systems responsible for active 

(cruising, auto-braking) and passive (air-bags, belts) safety. 

4. Management – contains the common vehicle sub-systems 

used by all domains such as settings, diagnostics, etc. 

5. Human-Machine Interface – contains the sub-systems 

responsible for interaction between users and the vehicle. 

6. Infotainment – contains the information and entertainment 

sub-systems such as navigation, telephone, etc. 
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Figure 1 shows an example of the logical view of one small part 

of the system containing one domain (SafetyControl), two sub-

systems (PedestrianDetection and SafetyHandler) and 3 

software components (PedestrianDetector, PedestrianManager 

and SafetyBrakeManager). Both PedestrianDetection and 

SafetyHandler sub-systems belong to SafetyControl domain. 

PedestrianDetector and PedestrianManager software 

components belong to PedestrianDetection sub-system, while 

SafetyBrakeManager software component belongs to 

SafetyHandler sub-system. The example is made for the 

purposes of this paper in order to explain better the common 

organization of automotive software systems and does not 

reflect a part of a real system used at VCC. 

 

Figure 1: Example of the logical view 

Considering the logical view organization of the automotive 

software system explained in this section, the following can be 

changed: The addition/removal of a signal between the existing 

logical software components, the addition/removal of a logical 

software component with its signals, the addition/removal of a 

sub-system with its components and the addition/removal of an 

entire domain7 with its sub-systems. Additionally, software 

components/sub-systems can be moved to other sub-

systems/domains, respectively. 

4.2 Pre-Deployment View 
The pre-deployment view has two purposes: First, to show the 

network topology of ECUs8 and second, to show the initial 

deployment of software components to particular ones. 

Different ECUs are connected via electronic system buses 

(mostly CAN, LIN, MOST and flex-ray), and they very often 

work together in order to accomplish one functionality [3]. 

Domain ECUs are connecting different logical domains and 

they usually exchange signals via one (backbone) flex-ray bus. 

ECUs inside one domain usually communicate via CAN or LIN 

                                                                 

7 Note that the addition/removal of domains is not very common 

during the life-span of one platform, but these changes are 

rather introduced with the release of the new one. 

8 ECU (Electronic Control Unit) represents embedded software 

system in charge of one or more electrical systems in a 

platform. Typically inside a car, there exist 70-100 ECUs. 

buses. MOST is used for the infotainment domain due to its high 

speed capabilities. 

Figure 2 shows an example of the network topology containing 

2 domain ECUs (SafetyMaster and InfotainmentMaster) and 5 

other ECUs (Radar, Camera, NightVision, TV and Radio). 

SafetyMaster and InfotainmentMaster, as domain ECUs, are 

connected via flex-ray electronic bus. Radar, Camera and 

NightVision ECUs belong to SafetyMaster domain. Radar and 

Camera are connected via CAN, while NightVision is connected 

to Camera via LIN bus. TV and Radio ECUs belong to the 

InfotainmentMaster domain, so they are connected via MOST. 

 

Figure 2: Example of the network topology 

Each software component in the logical view is pre-deployed to 

one ECU. Since suppliers may realize software components 

differently, the actual deployment can be seen only after they 

are delivered by suppliers and this is the reason for naming this 

view – "pre-deployment" view. Often, the decision where one 

component will be pre-deployed is not made according to their 

functionalities, but other reasons such as vicinity to hardware 

(sensors, actuators and buses) or bus load [4]. That is why 

logical software components from one sub-system may be 

deployed to different ECUs, and logical software components 

from different sub-systems may be deployed to the same ECU. 

Components pre-deployed to different ECUs communicate via 

ports by sending/receiving system signals. 

Figure 3 shows an example of the pre-deployment system view 

for the logical view shown in Figure 1. Logical software 

components PedestrianDetector, PedestrianManager and 

SafetyBrakeManager are mapped to the pre-deployed software 

components with the same names, and they are all pre-deployed 

to SafetyMaster ECU. 

 

Figure 3: Example of the pre-deployment view 



 8 

Considering the pre-deployment view organization of the 

automotive software system explained in this section, the 

following can be changed: The addition/removal of a signal 

between the existing pre-deployed software components, the 

addition/removal of a pre-deployed software component with its 

signals and the addition/removal of an ECU with its 

components. Additionally, software components can be moved 

to other ECUs. 

5. QUALITY METRICS 
When an architectural change occurs, it could be quite valuable 

to see how the level of complexity and coupling increases in the 

system, since it directly affects its maintainability attributes 

such as flexibility, extensibility and system life time. Indirectly, 

it affects other quality attributes as well as reliability (the risk of 

faults) and robustness (the risk of "ripple" effects). Having in 

mind the organization of automotive software systems described 

in Section 4, it is possible to measure structural complexity and 

coupling of modules based on the strength of their dependences, 

after each significant change in the system. Moreover, this 

process can be completely automated in case of unified 

approach used by OEMs to store dependency requirements. 

We define our complexity and coupling measures according to 

the properties of complexity and coupling measures defined in 

[31], as explained in Section 8. Generally, the complexity of one 

component captures the strength of its dependencies towards all 

other components in the system, regardless of the modules they 

belong to. On the other hand, the coupling of one component 

captures only the strength of its dependencies towards 

components which belong to different modules. 

Our quality metrics are based on the increase/decrease in the 

modules’ complexity and coupling through different system 

releases. Additionally, the comparison between the results of 

two metrics in the same release is also taken into consideration 

when defining the future strategies for securing the quality 

requirements of the system (explained more in Section 6). Since 

automotive software systems can be observed from two different 

views - the logical view and the pre-deployment view, both 

complexity and coupling measures can be applied to both views. 

This is why we divided our measures into the logical view 

measures and the pre-deployment view measures. We present in 

Section 5.1 the logic behind the logical view complexity 

measure defined in formulas (4) and (5) and coupling measure 

defined in formula (9). Due to their similarity, we present in 

Section 5.2 the necessary modifications in order to define the 

pre-deployment view complexity and coupling measures. 

5.1 Logical View Measures 
One of the best known structural complexity metrics focused on 

inter-module complexity is the one defined by Henry et al. 

based on modules’ fan-in and fan-out [23]. Fan-in represents the 

number of modules which are calling a given module, while fan-

out represents the number of modules which are called by the 

given module. Complexity of one module is defined as:  

(1a)  2iii foutfinC   [23] 

where fini represents fan-in of module i, fouti fan-out of module i 

and Ci its complexity. 

Since automotive software systems are distributed, it is not 

possible to call one module (in our case software component) 

from another, but rather send and receive signals containing 

information. Still, since the main logic based on the number of 

dependencies stays the same, fan-in can be defined as the 

number of received signals from other software components in 

the system (input complexity) and fan-out as the number of 

transmitted signals to other software components in the system 

(output complexity). Based on the logic of fin and fout, we can 

define cin and cout to be input and output complexities of one 

software component based on one or more complexity attributes 

(not just the number of sent/received signals) such as 

hierarchical level of signals, timing constraints, etc [4]. 

Additionally as explained in [4], we can omit the exponent 2 

from formula (1a) due to its unjustified amplification of 

measurement results. Now, we can calculate single component’s 

complexity in the following way: 

 (1b) iii coutcinC   [4] 

The overall sub-system, domain and system complexity can be 

defined as a sum of all components' complexities (Cn) in a sub-

system, domain or system, respectively, with n modules: 

(2) 



n

i

in CC
1

[4] 

Due to the size of automotive software systems, measuring the 

overall system complexity increase does not provide very useful 

results, since a small change in one part of the system will not 

affect the entire system much [4]. Imagine a change has been 

made and new signal has been introduced between two software 

components in the system. If those components previously had 

relatively low complexity, it might get noticeable higher now 

after the change is implemented. At the same time in case it was 

the only change in the system, overall system complexity will 

not change much. This is why another approach concerning 

specific inter-component and inter-sub-system dependences 

must be applied in order to produce valuable results. 

One of the solutions is to use Dependency Structure Matrix 

(DSM) [32] in order to present the relations between different 

components in the system. DSM was originally created to 

optimize product development process and show task 

dependencies, but it can also be applied to software architecture. 

It preserves components’ hierarchy and it is able to show inter-

module and intra-module dependencies in a visible way. 

Additionally, it can be used for other analyses such as 

identification of architectural patterns. Also, different tools can 

be found to support these analyses [32]. 

DSM is a square matrix where each component is assigned to 

one row and column with the same index. Each DSMi,j field in 

the matrix has value 1 if there is at least one signal sent from 

component assigned to row i to component assigned to column j 

of the DSM, or 0 otherwise. However, this value does not 

contain any quantitative (such as the number of exchanged 

signals) and/or qualitative (such as the hierarchical level of the 

signal) attributes which would more precisely estimate the 

strength of dependency between them. This is why we suggest 

the use of Complexity Structure Matrix (CSM) instead [4]. 

CSM is a square matrix where each software component (as the 

lowest hierarchical unit) in the system is assigned to one row 
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and column with the same index (like DSM), but its fields 

contain a value derived from a formula (CSM formula) 

calculating the strength of dependency between components [4]. 

The example is presented in [4]: Two software components 

which are exchanging multiple signals should have higher 

complexity value than the ones exchanging only one signal. For 

this reason, CSMi,j should contain a value derived from a 

formula (from now on referred to as the CSM formula) which 

calculates the number of sent signals from component assigned 

to row i to component assigned to column j of the CSM. Then, 

new dependency on higher hierarchical level (between domains) 

increases the complexity more than new dependency on lower 

hierarchical level (between sub-systems), and this should also be 

included into the CSM formula. Additionally, if other attributes 

such as signal timing properties (period, maximum travel time, 

etc.) are available, they can also be included into the formula. 

It stems from the previous discussion that the CSM formula can 

contain multiple attributes (the number of exchanged signals, 

their hierarchical level, timing properties, etc.). Since not all 

attributes have the same value range9, it is necessary to scale 

them to the desired range of values with lower limit set to one. 

This is important because in best scenario, they should not 

affect the complexity calculation but can never decrease it. On 

the other hand, the number of exchanged signals which is the 

main and as such mandatory attribute can have value zero, if 

there is no dependency between two software components. For 

some attributes without a range (such as type of signals), it is 

necessary to include the weight factor in the CSM formula 

(inter-sub-system signals weights more than intra-sub-system, 

etc.). In the logical view, we focus on the following two 

attributes: the number of exchanged signals between software 

components and their type (intra-sub-system, inter-sub-system 

or inter-domain), so the CSM formula looks as follows: 

 (3a) 



num

jik

ji ktypeCSM
,1

, )(  [4] 

where num represents the number of signals sent from software 

component assigned to row i to software component assigned to 

column j of the CSM and type(k) its weight factor depending on 

the signal type (intra-sub-system, inter-sub-system, inter-

domain). Based on the logic where higher structural units in the 

hierarchy should exchange less signals, we concluded, together 

with Volvo experts, that intra-sub-system signals should have 

weight factor 1, inter-sub-systems signals weight factor 1.3 and 

inter-domain signals weight factor 1.8 [4]. 

After creation of CSM, the rest of the complexity calculations 

can be done automatically. For example, the sum of all elements 

in column j (j i) represents input complexity of the software 

component assigned to column j of the CSM, while the sum of 

all elements in row i (i j) represents the output complexity of 

the software component assigned to row i of the CSM. 

(4) 



n

ijj

jii CSMcout
,1

, , 



n

jii

jij CSMcin
,1

,  [4] 

                                                                 

9 For example, the number of exchanged signals is usually 1-10, 

while the signal period is usually 1-1000 milliseconds. 

Incorporating formula (4) into formula (1b), a single software 

component's complexity (Cx) can be calculated as: 

(5) 



n

xii

xi

n

xjj

jxx CSMCSMC
,1

,

,1

,  

Incorporating formula (5) into formula (2), total complexity of a 

sub-system, domain or system containing n software 

components (Cn) can be calculated as: 

(6)  
 











n

x

n

xii

xi

n

xjj

jxn CSMCSMC
1 ,1

,

,1

,  

According to formula (6), the explained complexity model 

includes the internal dependencies between components inside 

the same sub-systems and domains when calculating their 

complexity. However, the measure excluding them could also 

be useful, especially in prediction of possible fault propagations 

in the system. For this purpose, Package Coupling Metrics 

(PCM) named and defined by Gupta et al. can be used to 

supplement the explained complexity measure [24]. According 

to them, the following formula can be used to calculate the 

coupling between two packages based on the number of 

dependencies between the software components contained 

inside of them (where one component belongs to one package, 

and the other component belong to the other package on the 

same hierarchical level): 

(7)     
 


n

i

m

ijj

l

j

l

i

l

b

l

a eerPPCoup
1 ,1

11,,  

  
 


m

j

n

jii

l

i

l

j eer
1 ,1

11,  [24] 

where Pa
l and Pb

l represent two packages on the hierarchical 

level l, r(ei
l+1,ej

l+1) the directed dependency between module ei 

and module ej on the hierarchical level l+1 (where eiPa
l and 

ejPb
l), and m and n their total number of components, 

respectively. 

Total coupling of a single package in the system containing t 

packages is calculated as: 

(8)    



t

abb

l

b

l

a

l

a PPCoupPPCM
1

,  [24] 

Applied to the automotive software systems logical view, CSM 

can be used as a source for obtaining strengths of dependencies 

between software components. In this case, based on formulas 

(7) and (8), the following formula can be used to calculate 

package coupling of a single sub-system/domain: 

(9)  
   

   








 

 
























t

abb
m

j

n

i
PindPind

n

i

m

j
PindPind

l

a

i
l

aj
l

b

j
l

bi
l

a

CSM

CSM

PPCM
1

1 1
,

1 1
,

 [4] 

where Pa
l
 and Pb

l
 represent two sub-systems/domains on the 

hierarchical level l, m and n the number of their components and 
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ind function which returns the CSM index assigned to the 

component inside particular package. 

The results of the complexity measures defined in formulas (5) 

and (6) and coupling measures defined in formula (9) should be 

compared and analyzed together, as explained in Section 6. The 

demonstration of the measurement process can be seen in the 

example provided in Section 7. 

5.2 Pre-Deployment View Measures 
When creating the requirements specification for suppliers in 

order to implement particular functionalities, information from 

the logical view is not sufficient. Suppliers need to know to 

which ECUs particular software components will be deployed 

as well. This is mostly due to the existence of several other 

external requirements such as hardware requirements (CPU 

frequency, memory consumption, etc.), necessary for suppliers 

to be aware of while implementing the components. For this 

reason, it is also important to estimate the potential impact of 

changes to the network topology in the pre-deployment view as 

well. This is done by measuring the complexity and coupling 

increase in the system in a similar way as it was presented for 

the logical view in Section 5.1. 

In the pre-deployment view, logical software components are 

mapped to pre-deployed software components and the ECUs 

can be considered as sub-systems containing the pre-deployed 

components. It stems from the previous that the pre-deployment 

system organization is very similar to the logical system 

organization, so both complexity and coupling measures defined 

for the logical view can be applied here as well. However, 

formula (3a) used for calculating the strength of dependencies 

between software components (the CSM formula) has to be 

modified for two reasons [4]: first, signal types can no longer be 

intra-sub-system, inter-sub-system or inter-domain, but intra-

ECU and inter-ECU instead. Second, additional timing 

constraint concerning the maximum allowed time for a signal to 

travel between ECUs (MaxAge) is available for the system 

signals (inter-ECU signals) and should also be included into the 

CSM formula. The lower the MaxAge value is, the more 

complex system we have since it is harder to satisfy all timing 

requirements. 

Based on a network topology where system signals and their 

timing constraints have strong impact on system performance, 

we concluded, together with Volvo experts, that intra-ECU 

signals should have weight factor 1, inter-ECU signals weight 

factor 1.5 and the weight factor for the MaxAge attribute should 

vary from [1-1.5), depending on its value [4]. Assuming that it 

ranges from [1-1000] milliseconds, new CSM formula looks as 

follows: 

(3b) 












num

jik

ji
ms

kMaxAge
ktypelCSM

,1

,
2000

)(
5,1*)(  [4] 

where num represents the number of signals sent from the ECU 

assigned to row i to the ECU assigned to column j of the CSM, 

type(k) the weight factor depending on the signal type (intra-

ECU, inter-ECU), and MaxAgei,j(k) its maximum allowed time 

to travel between the ECUs assigned to row i and column j of 

the CSM. MaxAge for intra-ECU signals is set to 1000 

milliseconds by default, so it does not affect the calculation. 

The rest of the pre-deployment view complexity and coupling 

measurements can be done in the same way as explained for the 

logical view, by applying formulas (5), (6) and (9). 

6. PRESENTATION AND 

INTERPRETATION OF RESULTS 

6.1 Presentation of Measurement Results 
Presentation and interpretation of measurement results is crucial 

for understanding the impact of changes and planning corrective 

actions in case they are needed. This is why it is important to 

present the results unambiguously so that conclusions can be 

made quickly. In order to achieve this, we suggest graphical 

representation of complexity and coupling increase/decrease in 

the system through different system releases using histograms. 

Despite the fact that the explained complexity and coupling 

measures produce numerical results, they do not represent a 

strong base for their interpretation. For example, if one sub-

system is exchanging 100 different signals with substantial 

number of other sub-systems, it indicates its very high 

complexity and coupling value. However, this does not 

necessarily have to be a sign of bad architecture because the 

purpose of this sub-system might be to conduct different signals 

towards destination sub-systems. This is why the presentation of 

complexity and coupling change through different releases 

compared with other modules in the system could be much more 

useful. This way system architects, designers and testers can use 

their knowledge about the system to compare the measurement 

results with their expectations. In order to maintain the quality 

of the system through releases, the explained measures should 

be applied after each architecturally significant change [4]. 

For presenting the level of complexity and coupling 

increase/decrease in each hierarchical level for both system 

views10, we suggest the use of histograms. Several histograms 

should be used for this purpose and most of them are 

demonstrated in the example presented in Section 7: 

1. Logical software components' complexity change – 

presents the change in the complexity of all logical 

software components in the system between previous and 

current system releases (Figure 8). 

2. Logical sub-systems' complexity change – presents the 

change in the complexity of all sub-systems in the system 

between previous and current system releases (Figure 9). 

3. Logical sub-systems' coupling change – presents the 

change in the coupling of all sub-systems in the system 

between previous and current system releases (Figure 10). 

4. Logical domains' complexity change – presents the change 

in the complexity of all domains in the system between 

previous and current system releases. 

5. Logical domains' coupling change – presents the change 

in the coupling of all domains in the system between 

previous and current system releases. 

                                                                 

10The logical system view has three hierarchical levels: logical 

software components, sub-systems and domains. The pre-

deployment system view has two hierarchical levels: pre-

deployed software components and ECUs. 
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6. Pre-deployment software components' complexity change 

– presents the change in the complexity of all pre-

deployed software components in the system between 

previous and current system releases (Figure 12). 

7. Pre-deployment ECUs' complexity change – presents the 

change in the complexity of all ECUs in the system 

between previous and current system releases (Figure 13). 

8. Pre-deployment ECUs' coupling change – presents the 

change in the coupling of all ECUs in the system between 

previous and current system releases (Figure 14). 

Note that it is not possible to measure coupling of logical and 

pre-deployed software components as the smallest architectural 

units, according to formula (9). In addition to the explained 

histograms which present complexity and coupling change 

between previous and current system releases, we suggest the 

use of Trend charts (Figures 11 and 15). Their purpose is to 

present the complexity and coupling change of a specific logical 

software component, sub-system or domain in the logical view, 

and the complexity and coupling change of a pre-deployed 

software component or ECU in the pre-deployment view, 

through all available system releases including the newest one. 

6.2 Interpretation of Measurement Results 
As a first step when interpreting measurement results, we 

suggest finding of sub-systems, as logical units, and ECUs, as 

physical units, which have suffered significant increase in their 

complexity and/or coupling. After identifying such sub-systems 

and ECUs, we can go one level lower and see which software 

components (logical in case of sub-systems and pre-deployment 

in case of ECUs) are mostly responsible for this increase. 

Apart from identifying sub-systems and ECUs which suffered 

most severe changes, our focus should be on the comparison 

between complexity and coupling measurement results. The 

following example illustrates why this is important: imagine that 

one sub-system has increased in complexity much more than it 

has increased in coupling. This indicates that changes 

introduced a lot of new functions assigned to this sub-system. 

However, they are localized and as such do not represent a huge 

threat to other parts of the system (not high risk of fault 

propagation and "ripple" effects). Still, this sub-system should 

clearly be tested more after the implementation of changes. On 

the other hand, if one sub-system has increased/decreased in 

coupling similarly as it has increased/decrease in complexity, 

this could indicate possible serious architectural changes that 

might affect many parts in the system. The reason and origin of 

these types of changes should be investigated further in order to 

foresee places in the system vulnerable to "ripple" effects. The 

same steps should be taken in case of removal of one sub-

system (or ECU in the pre-deployment view). In addition to this, 

every substantial increase in the coupling of domains could be a 

sign of bad architecture, since domains represent the highest 

logical units in the system which should not be tightly coupled.  

If complexity and/or coupling of one or more parts of the system 

indicated by measurement results have increased to an 

unsatisfactory level, it could affect the quality requirements of 

the entire system (such as maintainability, reliability and 

robustness). In that case, there are three possible steps that could 

be taken in order to minimize this risk: 

1. Immediate structural recomposition in parts of the system 

affected by changes before sending requirements for their 

realization to suppliers. The purpose of this is to balance 

the complexity and/or coupling in the system11. 

2. Proceeding with implementation of changes having in 

mind identified problems for future system releases or 

introduction of new software platform. 

3. Proceeding with implementation of changes having in 

mind sub-system with high complexity and coupling 

increase in integration and regression testing phases. This 

knowledge can also reduce the cost of testing. 

In addition to this, information about the most variable parts in 

the system could be used to point out functionally unstable sub-

systems that need special attention while tested and/or potential 

structural recomposition in future. 

7. EXAMPLE 
In this section, we demonstrate the complexity and coupling 

measurements and show how their results should be presented 

and interpreted in order to fully capture the impact of changes. 

We first describe the example system in Section 7.1, then we 

demonstrate the measurements and present their results in 

Section 7.2, and finally we discuss the results in Section 7.3. 

7.1 The Example System Description 
In this section, we show the example of the automotive software 

system from both logical and pre-deployment views. It is 

important to understand that despite the fact that it reflects the 

logic and organization of a real software system used in cars, it 

does not represent one (or part of it) and it is created for the 

purpose of understanding better the presented metrics. 

Figure 4 shows the logical view of the current system release 

before the realization of changes. The system is divided into two 

domains: SafetyControl and VehicleControl. Each domain 

contains two sub-systems with at least one software component. 

The purpose of this system is to realize the car’s "Auto-brake" 

feature when pedestrian is detected in front of the car. 

SafetyControl domain is responsible for passengers' safety in the 

car and contains two sub-systems: PedestrianDetection and 

SafetyHandler. PedestrianDetection sub-system is responsible 

for detecting the pedestrians on the car's track and issuing a 

request for braking to SafetyHandler sub-system, in case a 

driver did not react fast enough. SafetyHandler sub-system is 

responsible for transmitting all safety requests to VehicleControl 

domain, such as braking, release of the air-bags, etc. 

VehicleControl domain is responsible for controlling the vehicle 

and contains two sub-systems: BrakeControl and 

VehicleManagement. BrakeControl sub-system is responsible 

for braking and it periodically sends braking status to 

PedestrianDetection sub-system, so it can issue a brake request 

in case driver is not braking when pedestrian is detected. 

VehicleManagement sub-system is responsible for receiving all 

requests sent to VehicleControl domain, such as braking and 

transmission, and forwarding them to the responsible sub-

system inside VehicleControl domain. 

                                                                 

11For example, this could be done by introducing new software 

components which can take some of the functionalities [4]. 
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Figure 4: Logical view of the current system release 

 

Figure 5: Pre-deployment view of the current system release 

 

Figure 6: Logical view of the future system release 

 

Figure 7: Pre-deployment view of the future system release 
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Figure 5 shows the pre-deployment view of the current system 

release before the realization of changes. All software 

components from the logical view shown in Figure 4 are now 

pre-deployed to tree ECUs: SafetyMaster, VehicleMaster and 

ControlMaster. The number assigned to each inter-ECU signal 

(system signal) represents its maximum allowed time to travel 

between the two ECUs (MaxAge). 

Figure 6 shows the logical view of the future system release 

after the realization of changes. First, it has been concluded that 

VehicleManagement sub-system inside VehicleControl domain 

is no longer needed and requests for controlling the vehicle 

should be sent directly to the responsible sub-system (not via 

VehicleManagement as shown in Figure 4). Second, another 

software component (SafetyManager) has been introduced to 

SafetyHandler sub-system which is responsible for warning the 

passengers and other road users about the safety issues using 

sound, lights etc. 

Figure 7 shows the pre-deployment view of the future system 

release after the realization of changes. Software components 

from VehicleManagement sub-system are removed from 

VehicleMaster and ControlMaster ECUs, and new 

SafetyManager software component added to SafetyHandler 

sub-system is pre-deployed to SafetyMaster ECU. The number 

assigned to each inter-ECU signal represents its MaxAge. 

7.2 Measurements and Results Presentation 
In this section, we demonstrate the use and presentation of the 

results of the logical and pre-deployment view complexity and 

coupling metrics based on the example presented in Section 5.1. 

7.2.1 Logical View 
Before calculating the complexity and coupling of the logical 

view software components, sub-systems and domains, it is 

necessary to create CSM. Since we are applying the complexity 

and coupling measures in order to present their difference 

between two releases, two CSMs should be created: one for the 

system release before the realization of changes, and one for the 

system release after the realization of changes. 

CSM presented in Table 2 corresponds to the current system 

release shown in Figure 4, and each field in the CSM is 

calculated using formula (3a) and signal weights defined in 

Section 5.1. As explained in Section 5.1, each row and column 

in the matrix with the same index is assigned to one logical 

software component from the logical view. In this case, CSM 

indexes assigned to software components from Figure 4 are 

shown in Table 1 (PedestrianDetector software component is 

assigned to CSM row and column 1, PedestrianManager to 

CSM row and column 2, etc.). 

Table 1: CSM assignment of the current release SW components 

PedestrianDetector 1 

PedestrianManager 2 

SafetyBrakeManager 3 

BrakeStatInformator 4 

BrakeManager 5 

VehicleInfoCollector 6 

VehicleHandler 7 

Table 2: CSM for the logical view current system release 

 1 2 3 4 5 6 7 

1  1 0 0 0 0 0 

2 0  1,3 0 0 0 0 

3 0 0  0 0 1,8 0 

4 0 1,8 0  0 1,3 0 

5 0 0 0 1  0 0 

6 0 0 0 0 0  1 

7 0 0 0 0 1,3 0  

For example, software component PedestrianDetector with 

CSM index 1 is sending one intra-sub-system signal 

PedestrianDetected to software component PedestrianManager 

(Figure 4) with CSM index 2 (Table 1). According to formula 

(3a), this implies that CSM1,2 field in the matrix should contain 

value 1, as shown in Table 2. The rest of the CSM fields shown 

in Table 2 are calculated in the same way. 

CSM shown in Table 4 corresponds to the future system release 

shown in Figure 6. The values of its fields are calculated in the 

same way as the values of the CSM fields shown in Table 2 for 

the current system release. CSM indexes assigned to the future 

release software components are presented in Table 312. 

Table 3: CSM assignment of the future release SW components 

PedestrianDetector 1 

PedestrianManager 2 

SafetyManager 3 

SafetyBrakeManager 4 

BrakeStatInformator 5 

BrakeManager 6 

Table 4: CSM for the logical view future system release 

 1 2 3 4 5 6 

1  1 0 0 0 0 

2 0  0 1,3 0 0 

3 0 0  1 0 1,8 

4 0 0 2  1,8 0 

5 0 1,8 0 0  0 

6 0 0 0 0 1  

Applying formulas (5) and (6) described in Section 5.1 to CSMs 

shown in Tables 2 and 4, it is possible to calculate complexity 

of all logical software components, sub-systems and domains in 

both current and future system releases.  

Figure 8 shows the complexity difference between the current 

(in the charts referred to as Release 1) and future (in the charts 

referred to as Release 2) system releases for all logical software 

components. Components shown in the horizontal axis in the 

histogram are ordered by complexity difference between the two 

releases, where the ones with the highest difference are placed 

at the beginning in order to be easily noticed. 

                                                                 

12Note that the numbers assigned for the same logical software 

components in two releases differ between Tables 1 and 3.  
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Figure 8: Logical software components’ complexity change 

For example, according to formula (5) explained in Section 5.1, 

total complexity of BrakeManager software component with 

CSM index 5 in the current system release (Table 1) is equal to 

the multiplication of sums of all values in row 5 and column 5 

of the CSM shown in Table 2. Therefore, its total complexity 

equals (0 + 0 + 0 + 1 + 0 + 0) * (0 + 0 + 0 + 0 + 0 + 1.3) = 1.3, 

as shown in Figure 8. However, complexity of BrakeManager 

software component with CSM index 6 in the future system 

release (Table 3) is equal to the multiplication of sums of all 

values in row 6 and column 6 in the CSM shown in Table 4. 

Therefore, its total complexity equals 1 * 1.8 = 1.8, as shown in 

Figure 8. Finally, a visible increase of 1.8 - 1.3 = 0.5 of 

BrakeManager software component is also presented in the 

same figure. The rest of the calculations shown in Figure 8 are 

done in the same way. 

Figure 9 shows the complexity difference between the two 

releases for all sub-systems. The complexity change of each 

sub-system is calculated as a sum of complexities of all of its 

logical software components. For example, sub-system 

BrakeControl in the current system release contains two 

software components: BrakeManager and BrakeStatInformator, 

so its total complexity equals 3.1 + 1.3 = 4.4, as shown in Figure 

9. The same logic can be applied to BrakeControl sub-system in 

the future system release, where its total complexity equals 5.04 

+ 1.8 = 6.84, as shown in Figure 9. Finally, a visible complexity 

increase of 6.84 - 4.4 = 2.44 of BrakeControl sub-system is also 

presented in the same figure. The rest of the calculations shown 

in Figure 9 are done in the same way. Sub-systems shown in the 

horizontal axis in the histogram are ordered by complexity 

difference. 
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Figure 9: Logical sub-systems’ complexity change 

Calculating the complexity difference between the current and 

future system releases for all logical domains can be done in the 

same way as for the sub-systems. The complexity change of 

each domain is calculated as a sum of complexities of all of its 

components and should be presented in a histogram similar to 

the one shown in Figure 9. 

In the logical view, coupling measurements can only be applied 

to sub-systems and domains (according to formula (9) explained 

in Section 5.1 which requires a package of components). Figure 

10 shows the coupling change for all sub-systems between the 

current and future system releases, based on CSMs shown in 

Tables 2 and 4. Sub-systems shown in the horizontal axis in the 

histogram are ordered by complexity difference. 
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Figure 10: Logical sub-systems’ coupling change 

For example, sub-system BrakeControl in the current system 

release contains two software components: BrakeManager with 

CSM index 5 and BrakeStatInformator with CSM index 4 

(Table 1). Its total coupling is equal to the sum of all strengths 

of dependences between these two components and other 

components in the system, not counting the strength of 

dependency between them. In CSM shown in Table 2, the 

strength of dependency between components is shown in fields 

CSM4,2 (BrakeStatInformator  PedestrianManager), CSM4,6 

(BrakeStatInformator  VehicleInfoControl) and CSM7,5 

(VehicleHandler  BrakeManager). Therefore, its total 

coupling equals 1.8 + 1.3 + 1.3 = 4.4, as shown in Figure 10. 

After applying the same calculation for BrakeControl sub-

system in the future system release, its total coupling equals 1.8 

+ 1.8 + 1.8 = 5.4, as shown in Figure 10. Finally, a visible 

complexity increase of 5.4 - 4.4 = 1 of BrakeControl is also 

presented in the same figure. The rest of the calculations shown 

in Figure 10 are done in the same way. 

Similarly to this, we can present the coupling change of domains 

between the current and future system releases with histograms. 

The charts shown in Figures 8, 9 and 10 are used to present the 

complexity or coupling change of all software components, sub-

systems and domains between the current and future system 

releases. However, it could also be useful to see the complexity 

and coupling change of a specific software component, sub-

system or domain through all available releases. For this 

purpose, we suggest the use of Trend charts. An example is 

shown in Figure 11 for the complexity trend of sub-system 

BrakeControl in two releases (in reality, there should be more). 
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Figure 11: BrakeControl sub-system’s complexity trend 

7.2.2 Pre-deployment View 
Similarly to the logical view complexity and coupling change 

measurements, first step in measuring the pre-deployment 

complexity and coupling change between the two releases is to 

create two CSMs, one for the current system release and one for 

the future system release. Since each pre-deployed software 

component is mapped to a logical software component with the 

same name, we can use the CSM indexes assigned to logical 

software components for the pre-deployed software components 

as well. Therefore, based on the CSM indexes assigned to 

software components in Table 1, Table 5 shows CSM for the 

current system release in the pre-deployment view. Based on the 

CSM indexes assigned to software components in Table 3, 

Table 6 shows CSM for the future system release in the pre-

deployment view. Each field in the two CSMs is calculated 

using formula (3b) described in Section 5.2. 

Table 5: CSM for the pre-deploy. view current system release 

 1 2 3 4 5 6 7 

1  1 0 0 0 0 0 

2 0  1 0 0 0 0 

3 0 0  0 0 1,9 0 

4 0 1,9 0  0 1 0 

5 0 0 0 2,1  0 0 

6 0 0 0 0 0  2,1 

7 0 0 0 0 1 0  

For example, software component SafetyBrakeManager with 

CSM index 3 is sending one inter-ECU signal BrakeRequest1 

with MaxAge 500 milliseconds to software component 

VehicleInfoCollector (Figure 5) with CSM index 6 (Table 1). 

According to formula (3b), this implies that CSM3,6 field in the 

matrix should contain value 1.5 * (1.5 – 500 / 2000)  1.9, as 

shown in Table 5. The rest of the CSM fields shown in Table 5 

are calculated in the same way. 

The values of the CSM fields shown in Table 6 for the future 

system release in the pre-deployment view are calculated in the 

same way as the values of the CSM fields for the current system 

release shown in Table 5. Applying formulas (5) and (6) 

described in Section 5.1 to created CSMs shown in Tables 5 and 

6, it is possible to calculate complexity for all pre-deployed 

software components and ECUs in both current and future 

system releases.  

 

Table 6: CSM for the pre-deploy. view future system release 

 1 2 3 4 5 6 

1  1 0 0 0 0 

2 0  0 1 0 0 

3 0 0  2,1 0 1 

4 0 0 4,1  1,9 0 

5 0 1,9 0 0  0 

6 0 0 0 0 1,5  

Figure 12 shows the complexity difference between the two 

releases of all pre-deployed software components. Components 

shown in the horizontal axis in the histogram are ordered by 

complexity difference between the two releases, where the ones 

with the highest difference are placed at the beginning. 
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Figure 12: Pre-deployment SW components’ complexity change 

For example, according to formula (5) explained in Section 5.1, 

total complexity of BrakeManager software component with 

CSM index 5 in the current system release (Table 1) is equal to 

the multiplication of sums of all values in row 5 and column 5 

of the CSM shown in Table 5. Therefore, its total complexity 

equals (0 + 0 + 0 + 2.1 + 0 + 0) * (0 + 0 + 0 + 0 + 0 + 1) = 2.1, 

as shown in Figure 12. However, complexity of BrakeManager 

software component with CSM index 6 in the future system 

release (Table 3) is equal to the multiplication of sums of all 

values in row 6 and column 6 in the CSM shown in Table 6. 

Therefore, its total complexity equals 1 * 1.5 = 1.5, as shown in 

Figure 12. Finally, a visible increase of 2.1 - 1.5 = 0.6 of 

BrakeManager software component is also presented in the 

same figure. The rest of the complexity calculations between the 

releases shown in Figure 12 are done in the same way. 

Figure 13 shows the complexity difference between the two 

releases for all ECUs. The complexity change of each ECU is 

calculated as a sum of complexities of all of its pre-deployed 

software components. For example, ControlMaster ECU in the 

current system release contains two software components: 

BrakeManager and VehicleHandler, so its total complexity 

equals 2.1 + 2.1 = 4.2, as shown in Figure 13. The same logic 

can be applied to ControlMaster ECU in the future system 

release, where its total complexity equals 12.6 + 1.5 = 14.1, as 

shown in Figure 13. Finally, a visible complexity increase of 

14.1 - 4.2 = 9.9 of ControlMaster ECU is also presented in the 

same figure. The rest of the calculations shown in Figure 13 are 
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done in the same way. ECUs shown in the horizontal axis in the 

histogram are ordered by complexity difference. 

 

Figure 13: Pre-deployment ECUs’ complexity change 

In the pre-deployment, coupling measurements can only be 

applied to ECUs (according to formula (9) explained in Section 

5.1 which requires a package of components). Figure 14 shows 

the coupling change for all ECUs between the current and future 

system releases, based on CSMs shown in Tables 5 and 6. ECUs 

shown in the horizontal axis in the histogram are ordered by 

complexity difference. 

 

Figure 14: Pre-deployment ECUs’ coupling change 

For example, ControlMaster ECU in the current system release 

contains two software components: BrakeManager with CSM 

index 5 and VehicleHandler with CSM index 7 (Table 1). Its 

total coupling is equal to the sum of all strengths of dependences 

between these two components and other components in the 

system, not counting the strength of dependency between them. 

In CSM shown in Table 4, the strength of dependency between 

components is shown in fields CSM5,4 (BrakeManager  

BrakeStatInformator) and CSM6,7 (VehicleInfoCollector  

VehicleHandler). Therefore, its total coupling equals 2.1 + 2.1 = 

4.2, as shown in Figure 14. After applying the same logic for 

ControlMaster ECU in the future system release, its total 

coupling equals 4.1 + 2.1 + 1.5 = 7.7, as shown in Figure 14. 

Finally, a visible complexity increase of 7.7 - 4.2 = 3.5 of 

ControlMaster ECU is also shown in the same figure. The rest 

of the calculations shown in Figure 14 are done similarly. 

Following the same logic as for the logical view, it is useful to 

see the complexity and coupling change of a specific software 

component or ECU through all system releases in the pre-

deployment view as well, using Trend charts. An example is 

shown in Figure 15 for the coupling trend of ECU 

ControlMaster in two releases (in reality, there should be more). 

 

Figure 15: ControlMaster ECU’s coupling trend 

7.3 Results Interpretation 
We start the analysis from the logical view. Figure 9 shows 

much higher increase in the complexity of sub-system 

SafetyHandler in comparison to its coupling increase shown in 

Figure 10. After looking at the logical software components' 

complexity change presented in Figure 8, it can be concluded 

that there are two main reasons for such a high complexity 

increase of SafetyHandler: the addition of new software 

component SafetyManager and the increase in complexity of 

software component SafetyBrakeManager13. From the logical 

point of view, these changes are not truly architectural and can 

be considered as upgrades of the existing system. This means 

that eventual faults created inside this sub-system are not very 

likely to affect the other parts of the system and overall system 

robustness, concerning the possibility of fault propagations. 

However, SafetyHandler sub-system should be thoroughly 

tested after the integration and possibly broken into smaller sub-

systems in future releases in order to reduce its complexity.  

The removal of VehicleManagement sub-system represents the 

opposite case. This is a high level architectural change since 

VehicleManagement sub-system was responsible for receiving 

all vehicle requests and transferring them to the right sub-system 

inside VehicleControl domain. Now after VehicleManagement 

sub-system is removed, the decision about which sub-system 

inside VehicleControl domain is responsible for receiving 

particular signal is transferred to the sender side. This change 

requires finding and testing of all parts of the system involved in 

the change, in case it is approved for realization. 

After determining the cause for substantial complexity increase 

of sub-system SafetyHandler in logical view and identifying and 

approving the removal of VehicleManagement sub-system, we 

should look at the effects of these changes to the ECUs in the 

pre-deployment view. Figure 13 and Figure 14 show the 

complexity and coupling change of all ECUs in the system. 

High complexity and coupling increase in SafetyMaster ECU is 

expected, due to new SafetyManager software component 

                                                                 

13This is the consequence of new functionalities added so that 

drivers and other road users can receive sound and visual 

information when the safety system is activated (auto-brake). 
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assigned to it. The same stands for ControlMaster ECU, just this 

time due to the removal of VehicleManagement sub-system 

which increases the number of requests received by software 

components pre-deployed to ControlMaster ECU (signals can 

now be received from anywhere, not just from the software 

components inside VehicleManagement sub-system). As a 

consequence of this, the complexity and coupling of 

VehicleMaster ECU is decreased since not so many signals are 

sent to VehicleManagement sub-system anymore. In order to 

approve these changes for realization, it is necessary to verify 

that SafetyMaster and ControlMaster ECUs can handle the new 

functionalities and signals on the buses from the hardware’s 

perspective (CPU, memory, buses etc.). 

As you can see from this brief demonstration of the 

measurements' results interpretation, the knowledge about the 

system and experience of the interpreters are very important for 

making correct conclusions. Still, the real causes for all changes 

which are making a substantial increase in complexity and 

coupling of particular sub-system/ECU should be investigated in 

order to secure the system quality. 

8. VALIDATION OF THE METRICS 

8.1 Theoretical Validation 
In Section 2, two different metrics were proposed: the 

complexity metric and the coupling metric. In this section, we 

provide their theoretical validation according to the complexity 

and coupling properties defined by Briand et al. [31]. 

The complexity metric holds all five properties of a complexity 

metric defined in [31]: 

1. Non-negativity: The complexity of a system is not negative 

- the results of both formulas (3a) and (3b) for calculating 

the CSM fields are non-negative values. In formulas (5) 

and (6) for calculating complexity, these values are first 

summed and then multiplied resulting in a non-negative 

value. 

2. Null value: The complexity of a system is 0 if there are no 

relations between its modules - in case of no signals 

exchanged between modules in the system, corresponding 

values of the CSM fields are 0, according to formulas (3a) 

and (3b), resulting in a zero complexity value after 

applying formulas (5) and (6). 

3. Symmetry: The complexity of a system does not depend on 

the representation of its arcs - changing the direction of all 

signals in the system results in a transposed CSM, where 

the sum of all values in column j corresponds to the sum of 

all values in row i of the CSM, and vice versa. This does 

not affect the multiplication in formula (5) for calculating 

complexity. 

4. Module monotonicity: The complexity of a system is not 

less than the sum of complexities of its unrelated modules - 

the complexity of a system is calculated as a sum of all 

modules' complexities, according to formula (6), and as 

such can not be less than the sum of its unrelated modules. 

5. Disjoint module additivity: The complexity of a system is 

equal to the sum of complexities of its disjoint modules - 

the same explanation as for "Module monotonicity" (4). 

The coupling metric holds all five properties of a coupling 

metric defined by Briand et al. [8]: 

1. Non-negativity: The coupling of a system is not negative - 

the results of both formulas (3a) and (3b) for calculating 

the CSM fields are non-negative values. In formula (9) for 

calculating coupling, these values are summed resulting in 

a non-negative value. 

2. Null value: The coupling of a system is 0 if there are no 

relations between its modules - in case of no signals 

exchanged between modules in the system, the 

corresponding values of the CSM fields are 0, according to 

formulas (3a) and (3b), resulting in a zero coupling value 

after applying formula (9). 

3. Monotonicity: The coupling of a system does not decrease 

with addition of new inter-module relations - new inter-

module relation increases the coupling in the system if the 

two modules belong to different packages. Otherwise, there 

will be no change according to formula (9), which validates 

that it can not decrease. 

4. Merging of modules: The coupling of a system does not 

increase when merging two or more of its modules - when 

two or more modules in the system are merged, the 

coupling will decrease if modules are related and belong to 

different packages. Otherwise, it will stay the same 

according to formula (9), validating that it can not increase. 

5. Disjoint module additivity: The coupling of a system after 

merging two or more unrelated modules does not change - 

the same explanation as for "Merging of modules" (4). 

8.2 Empirical Validation 
Throughout the entire research, regular meetings were held at 

VCC on a weekly basis in order to discuss our findings, where 

system architects, designers and testers from Volvo actively 

participated. All conclusions were validated with them. 

In order to validate the results of our metrics based on the 

complexity and coupling increase in the system through 

different releases, a software tool has been implemented. The 

tool is able to extract from the VCC internal database the 

structural data about the logical software components and sub-

systems in the logical view, and the pre-deployed software 

components and ECUs in pre-deployment view, for the chosen 

platform. The data is stored internally in order to easily apply 

the complexity and coupling metrics later14. The tool is also able 

to present the measurement results, as explained in Section 6. 

After extracting the data from several software platforms and 

applying the metrics based on two different releases, the results 

were presented to the experts in the area of software 

architecture, design and testing from VCC. First, it was 

concluded that the complexity and coupling metrics can be 

applied early in the development process before the realization 

of changes, and that they are able to identify the most complex 

parts of the system. Second, it was concluded that the metrics 

are able to measure the size and locate the origin of the most 

severe architectural changes in the system and present the 

                                                                 

14Note that logical domains are not considered in the tool, but 

they can be approached in the same way as sub-systems. 
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results in an understandable way. Finally, it was concluded that 

the suggested interpretation of measurement results can lead to 

conclusions which can be used to reduce the risk of deteriorated 

quality, and reduce the development cost by identifying parts of 

the system which should be tested more. 

The tool will continue to be used as a part of the verification 

process at VCC in order to verify quality strategies related to the 

complexity of automotive software systems. 

9. CONCLUSIONS 
In this paper, we tried to emphasize the importance of the 

change management process in the development of automotive 

software systems, especially regarding the architecturally 

significant changes. In order to improve the quality of the 

system (maintainability, robustness, reliability, etc.), we 

suggested the use of two quality metrics which are able to 

measure the size and impact of changes to the complexity and 

coupling properties of the system. Both metrics are based on 

already existing and theoretically and empirically validated 

complexity and coupling measures defined in [23] and [24], 

respectively, but modified in order to suite hierarchical 

organization of automotive software systems (seen from two 

different views –logical view and pre-deployment view) as 

shown in Section 5. Also, they are designed to support early 

stages of the development process in order to reduce the number 

of costly and time consuming late changes. 

Apart from the description of the measures, we focused on the 

presentation and interpretation of their results, as equally 

important segments in the decision making process. We 

suggested graphical representation of measurement results based 

on the increase/decrease in the complexity and coupling through 

different system releases. We also argued that apart from 

looking at the results separately for each hierarchical level, they 

should be compared between different levels in the same system 

release. Based on the measurements' results, future steps 

towards securing the quality requirements of the system might 

involve architectural recomposition inside the system or more 

thorough testing of the parts affected by changes. Finally, we 

stressed that despite the entirely automated process of 

measurements and results presentation, human knowledge about 

the system and experience play a major role in their 

interpretation. Common automotive system organization, 

complexity and coupling measures, measurement process and 

their results presentation and interpretation are all demonstrated 

in Section 7, based on the example specially designed for the 

purpose of this paper. 

The presented metrics are theoretically validated according to 

the complexity and coupling properties defined in [31]. Both 

metrics and the significance of their results have been 

empirically validated on the software systems used at Volvo 

cars with the help of software architects, designers and testers 

from Volvo Car Corporation [1]. However, it is possible that the 

metrics are applicable to a wider range of software systems 

which rely on communication between different modules over 

multiplex buses. 

There is still a lot of space for future research in the area of 

architectural changes in the automotive software industry. For 

example, it could be valuable to measure the architectural 

distance between releases as defined in [9], based on the 

structural properties presented in this paper (the number of 

signals exchanged, signal type, signal MaxAge, etc.). Then, it 

would be interesting to test the applicability of the hierarchical 

analysis presented in [32] on Complexity Structure Matrix 

(CSM) used in this paper. Finally, including the behavioral 

aspects of the automotive software system15 into the account 

opens a whole new area for more profound change impact 

analyses. 

Since our metrics are based on the structural system properties, 

it would be interesting to compare their results with the results 

of Function Point Analysis (FPA) [16], because both metrics can 

be applied early in the development process based on the system 

requirements. Additionally, apart from measuring the 

complexity and coupling of components as explained in this 

paper, it could also be useful to measure their cohesion, based 

on the dependencies between software components inside the 

same module. These results could be used in order to make an 

additional validation of the conclusions made after the 

interpretation of the complexity and coupling metrics. 
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