
Volatility of the Stochastic Discount Factor, and the

Distinction between Risk-Neutral and

Objective Probability Measures

Gurdip Bakshi, Zhiwu Chen, Erik Hjalmarsson∗

October 5, 2004

∗Bakshi is at Department of Finance, Smith School of Business, University of Mary-
land, College Park, MD 20742, Tel: 301-405-2261, email: gbakshi@rhsmith.umd.edu, and web-
site: www.rhsmith.umd.edu/finance/gbakshi/; Chen at Yale School of Management, 135 Prospect
Street, New Haven, CT 06520, Tel: (203) 432-5948, email: zhiwu.chen@yale.edu and website:
www.som.yale.edu/faculty/zc2; and Hjalmarsson is at Department of Economics, Yale University, 28 Hill-
house, New Haven, CT 06510. We thank Steve Ross, Rene Stulz, Mark Lowenstein, Dilip Madan, and
Nengjiu Ju for conversations with them on this topic.



Volatility of the Stochastic Discount Factor, and the

Distinction between Risk-Neutral and Objective Probability

Measures

Abstract

This paper derives a measure that characterizes the distance between the risk-neutral

and the objective probability measures for any candidate asset pricing model. We

formally show that the distance metric is equal to the volatility of the stochastic

discount factor. This theoretical result gives an alternative interpretation to the

Hansen-Jagannathan bounds: they provide a lower bound for the distance between

the objective and the risk-neutral probability measures. Our empirical application

provides support for the notion that the crash of 1987 has widened the wedge between

the risk-neutral and the objective probability measures.
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1 Introduction

Risk-neutral probability measure and its objective counterpart share the same zero-probability

events and are mathematically equivalent. The equivalence restriction, however, tells the

financial economists little about how the risk-neutral and objective distributions are related

to one other. Consider a two-state economy in which the true probability is some small

η > 0 for the first state and 1 − η for the other. In this case, the risk-neutral measure

may assign a probability of 1 − η to the first state and η to the second. Even though

the risk-neutral and the objective probability measures are equivalent, the two measures

are probabilistically a world apart. Consequently, any conclusions drawn about the true

future distribution, but based on an estimated risk-neutral distribution, are bound to be

flawed. The work of Rubinstein (1994) and Jackwerth and Rubinstein (1996) shows, for in-

stance, that the market-index return distributions are far left-skewed under the risk-neutral

measure but essentially symmetric under the objective probability measure.

In theory, how different can a given risk-neutral distribution be from its objective coun-

terpart? How can one formally gauge their difference and what are the sources of the di-

chotomy? Given the increasingly popular use of risk-neutral distributions in financial mod-

eling, it is important to form a better understanding of the relationship between risk-neutral

and objective probability distributions. The intent of this paper is to provide guidance on

this issue under fairly general assumptions about the underlying economy. Specifically, we

propose an economically sensible and technically sound distance-metric that captures the

dichotomy between the risk-neutral and objective probability measures. Moreover, we show

that the derived metric has a natural interpretation in standard financial theory.

The starting point for our analysis relies on a result by Harrison and Kreps (1979) that,

absent of arbitrage opportunities, there is a one-to-one correspondence between risk-neutral

probability measures and positive stochastic discount factors. Thus, every admissible risk-

neutral probability measure is defined by a unique stochastic discount factor, and every

stochastic discount factor can be represented by a unique risk-neutral measure. Armed

with this result and the Radon-Nikodym theorem, we show that the mean-square distance

between the risk-neutral and the objective probability distribution, in a sense to be made

precise, is, in fact, equal to the volatility of the stochastic discount factor, up to a constant

of proportionality. This theoretical result shows how the distance between risk-neutral

and objective probabilities can be expressed in terms of the properties of the underlying
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valuation standards of the economy. It also gives us an alternative interpretation of the

Hansen and Jagannathan (1991) bounds, namely that they provide a lower bound for the

distance between the objective and the risk-neutral probability measures. Like Hansen and

Jagannathan (1991), we can estimate the volatility of the stochastic discount factor and the

distance between the risk-neutral and the objective probability distributions under plausible

parametric assumptions.

In an empirical exercise, we use the methods of Hansen and Jagannathan (1991) to infer

lower bounds, from observed security prices, on the volatility of the stochastic discount

factor or, equivalently, on the distance between the risk-neutral and the objective probability

distributions. Using data on monthly S&P 500 index returns from 1926-2003, our methods

find evidence that there is a significant increase in the distance between the risk-neutral and

the objective probability distributions after the crash in 1987. We also, however, find some

evidence that this effect is dissipating in recent years. The theoretical and empirical results

contribute to the existing literature on the market-index and the index option markets in

two novel ways. First, the methods employed in our paper are completely model-free in

the sense that they do not rely on any specific model for the price dynamics or investor

preferences, apart from the absence of arbitrage. Second, we appeal to a single return series,

rather than the cross-section of option prices, to demonstrate the dichotomy between risk-

neutral measures and its objective counterpart. The caveat is, of course, that we can only

estimate a lower bound on the distance, and not obtain a point estimate. In general, we

cannot establish whether the actual distance shifted when the lower bound shifted.

The rest of this paper is organized as follows. Section 2 formalizes the idea behind

the distance metric and derives the main theorem. Section 3 provides additional economic

interpretation and presents parametric examples. Section 4 is devoted to an empirical

illustration. The final section 5 concludes.

2 A Distance Metric for Arbitrage-Free Economies

Consider a frictionless economy endowed with a probability space (Ω,F,p), where Ω is

the state space, F the corresponding sigma-field, and p the associated true, or objective,

probability measure. Assume that this measure p is shared by all market participants. Asset

payoffs in this economy are modeled by the linear space L2 of square-integrable random
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variables. With this formal structure, we can measure differences between securities by the

standard mean-square norm:

‖ x ‖ ≡
√

E(x2) for any x ∈ L2, (1)

where E(·) is the expectation with respect to p.

To clarify the terminology, suppose that there is another probability measure p∗ defined

on (Ω,F). We say p∗ is probabilistically equivalent to p if p∗ and p share exactly the same

null events; that is, for any event A ∈ F, p∗(A) = 0 if and only if p(A) = 0. Two proba-

bility measures can therefore be equivalent and yet assign diametrically different (positive)

probability masses to the same events - as long as they agree on the zero-probability events.

Assume that there are N traded assets, with payoffs xn ∈ L2 and prices qn ∈ ℜ, for each

n = 1, . . . , N . These N securities can include stocks, bonds, equity options, and so on. For

convenience, let X = (x1, . . . , xN)′ and q = (q1, . . . , qN )′. In addition, assume that one of

the N assets is risk-free and offers an interest rate of r0. The existence of a risk-free asset

is not necessary for our results but provides for an easier interpretation and exposition.1

Given these securities, the set of all marketed payoffs is

M ≡ {x ∈ L2 : ∃α ∈ ℜN such that
N

∑

i=1

αi · xi = x}. (2)

The associated cost function π[x] for each marketed payoff x ∈ M is as follows:

π[x] ≡ min
α∈ℜN

α′q, subject to α′ X = x. (3)

That is, π[x] is the minimum cost of obtaining x. As is standard in the literature, we take

the security payoff-price pair (X, q) as given and characterize the pricing rules implied by

these securities.

The security market (M, π) is said to be free of arbitrage if, for every x ∈ M such

that x ≥ 0 with probability one and ‖x‖ > 0, π(x) > 0. Absent of arbitrage, therefore,

all non-negative payoffs, which are positive with positive probability, must have positive

1In our theoretical characterizations, we only rely on the fact that E (d∗) = 1

1+r0

, where d
∗ is the

stochastic discount factor (defined in theorem 1). In the absence of a risk-free asset, all our results carry
through by simply replacing 1

1+r0

by E (d∗) and a slight change in interpretation.

3



prices. The following well known result, due to Ross (1978) and Harrison and Kreps (1979),

forms the basis of our subsequent analysis:

Theorem 1 Suppose that in the frictionless economy there is at least one limited-liability

security x ∈ M such that x > 0 with positive probability. Then, the following statements

are equivalent:

1. The security market is free of arbitrage.

2. There exists a stochastic discount factor d∗ ∈ L2 such that d∗ > 0 with probability one

and

π [x] = E (xd∗) , for each x ∈ M. (4)

3. There exist an equivalent probability measure p∗ such that

π [x] =
1

1 + r0
E∗ (x) , for each x ∈ M, (5)

where E∗ (·) stands for the expectation with respect to measure p∗.

The stochastic discount factor d∗ satisfying (4) is also referred to as Arrow-Debreu state-

price density, or the pricing operator. It determines how the future state-by-state payoffs

are to be converted into today’s price. For convenience, let D∗ be the set of all d∗ satisfying

(4):

D∗ ≡ {d∗ ∈ L2 : d∗ > 0 almost surely and E(x d∗) = π[x] for each x ∈ M}. (6)

Equation (5) says that under the equivalent measure p∗ one can value all assets as if the

economy was risk-neutral. For this reason, we often refer to p∗ as a risk-neutral probability

measure. Let P ∗ collect all risk-neutral equivalent probability measures p∗ satisfying (5).

To introduce a standard distance metric for probability measures, assume first that Ω

is countable and let {Ai ∈ F : i = 1, 2, . . .} be a partition of Ω, such that (i) all events Ai

are disjoint, (ii)
⋃

i=1,2,... Ai = Ω, and (iii) for each i, Ai contains no subevent that is also

in F. In other words, {Ai ∈ F : i = 1, 2, . . .} represents the finest partition of Ω contained
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in F. Define the absolute distance between p and p∗ by

δ[p, p∗] ≡
∑

i=1,2,...

| p∗(Ai) − p(Ai) | , (7)

which equals zero if and only if p and p∗ assign the same probability mass to every given

event Ai ∈ F. If the risk-neutral and objective probability distributions are different,

δ[p, p∗] will simply gauge the closeness of the two probability functions. Alternatively, for

a continuous state space Ω, we define

δ[p, p∗] ≡
∫

Ω
| dp∗(x) − dp(x) | . (8)

In the analysis below, it will generally be advantageous to scale δ[p, p∗] by 1
(1+r0)

and to this

end define δ1[p, p
∗] ≡ 1

(1+r0)
δ[p, p∗].

The following Theorem makes clear the connection between the distance between p and

p∗, and the stochastic discount factor, d∗.

Theorem 2 In the arbitrage-free economy described above, the distance measure δ1[p, p
∗]

satisfies

δ1[p, p
∗] = E

∣

∣

∣

∣

d∗ −
1

1 + r0

∣

∣

∣

∣

(9)

≤ ‖ d∗ −
1

1 + r0
‖ ≡ δ2[p, p

∗]. (10)

Further, since E(d∗) = 1
1+r0

,

δ2[p, p
∗] = ‖ d∗ −

1

1 + r0

‖ (11)

= ‖ d∗ − E(d∗) ‖ (12)

= σ[d∗], (13)

where σ[d∗] stands for the standard deviation of the stochastic discount factor d∗.

Proof: Each stochastic discount factor d∗ ∈ D∗ corresponds to the Radon-Nikodym deriva-

tive which defines a risk-neutral measure p∗ ∈ P ∗. Furthermore, this is a unique one-to-one

correspondence between D∗ and P ∗. To see this, first suppose d∗ ∈ D∗. Let ρ ≡ d∗

E(d∗)
,
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which implies ρ > 0 almost surely, since d∗ > 0 almost surely. Next, define a measure p∗:

p∗(A) ≡ E(1A) =
∫

A
ρ d p, (14)

for every event A ∈ F, where 1A equals 1 if event A occurs and zero otherwise. This p∗ is

a valid probability measure because (i) E(ρ) = 1 and (ii) p∗(A) ≥ 0 for each A ∈ F. It is

equivalent to the objective probability p because ρ > 0 almost surely. Substituting ρ into

(4), we have

π[x] = E(x d∗) = E(d∗)
∫

Ω
x

d∗

E(d∗)
dp (15)

= E(d∗)
∫

Ω
x dp∗ =

1

1 + r0
E∗(x), (16)

which gives (5), where we used the fact that for the risk-free asset, E(d∗) = 1
1+r0

. Therefore,

d∗ defines a unique risk-neutral measure p∗.

Now suppose that p∗ is a risk-neutral measure satisfying (5). Then, by the Radon-

Nikodym theorem, there must exist some ρ ∈ L2 such that ρ > 0 almost surely and dp∗

dp
= ρ.

Consequently, rewrite (5) as follows:

π[x] =
1

1 + r0

∫

Ω
x dp∗ =

1

1 + r0

∫

Ω
x ρ dp = E(x d∗), (17)

where d∗ ≡ 1
1+r0

ρ and d∗ > 0 almost surely. This means that d∗ ∈ D∗. Thus, behind each

risk-neutral probability measure p∗ ∈ P ∗ there is a corresponding stochastic discount factor

d∗ ∈ D∗.

Fix a risk-neutral probability p∗ ∈ P ∗, and let d∗ ∈ D∗ be the corresponding stochastic

discount factor defining p∗. Then,

dp∗ =
d∗

E(d∗)
dp, (18)

as d∗

E(d∗)
is the Radon-Nikodym derivative of p∗ with respect to p. Substituting this into

(7), and realizing that any random variable defined in this economy takes the same value
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in every state contained in a given Ai defined above, we obtain

δ[p, p∗] = E

∣

∣

∣

∣

∣

d∗

E(d∗)
− 1

∣

∣

∣

∣

∣

= (1 + r0) E

∣

∣

∣

∣

d∗ −
1

1 + r0

∣

∣

∣

∣

, (19)

where we again relied on E(d∗) = 1
1+r0

. Since 1+r0 represents a scaling factor, the absolute

distance between p and p∗ is completely determined by the absolute distance between d∗

and 1
1+r0

,

δ1[p, p
∗] = E

∣

∣

∣

∣

d∗ −
1

1 + r0

∣

∣

∣

∣

. (20)

The results for continuous state spaces follow in the same manner. By Hölder’s inequality,

equation (20) implies

0 ≤ δ1[p, p
∗] ≤ ‖ d∗ −

1

1 + r0
‖ ≡ δ2[p, p

∗] (21)

which gives the desired result. 2

In a true risk-neutral economy (where every investor is risk-neutral under the objective

probability), 1
1+r0

is the corresponding discount factor, which is non-stochastic. Therefore,

one can think of δ1[p, p
∗] as measuring the absolute closeness of d∗ to the true risk-neutral

discount factor. The closer the valuation rule represented by d∗ is to true risk-neutral

valuation, the closer the risk-neutral probability p∗ is to its objective counterpart p.

Since both the absolute difference and the mean-square difference are valid distance

measures, δ1[p, p
∗] = δ2[p, p

∗] = 0 if and only if the stochastic discount factor d∗ equals the

true risk-neutral discount factor 1
1+r0

, which in turn holds if and only if the objective and the

risk-neutral probability measures, p and p∗, are identical (provided r0 > 0). Generally, when

p∗ differs from p, the mean-square distance δ2[p, p
∗] provides an upper bound on δ1[p, p

∗].

For most cases, the closeness rankings of a given set of equivalent probability measures

should be similar according to either δ1[p, p
∗] or δ2[p, p

∗].

The key theoretical result of the paper is the equivalence of δ2[p, p
∗] and σ[d∗]. It is thus

the volatility level of the defining stochastic discount factor that determines the distance

between a given risk-neutral distribution and its objective counterpart. This observation

yields another interpretation to the empirical asset pricing literature, where the search

has been for a sufficiently volatile intertemporal-marginal-rate-of-substitution model so as

to explain the high historical equity premium levels. From the angle just discussed, that
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search is effectively equivalent to looking for a risk-neutral distribution that is sufficiently

different from the underlying objective distribution.

In order to better understand the distance metric δ2 [p, p∗], it is useful to recast it in

fundamental economic terms. Pick any arbitrary d∗ ∈ D∗ and let π̄ be the extension of π to

all of L2. That is, for any x ∈ L2, π̄ [x] ≡ E (xd∗). Now, consider the pricing error incurred

by using the risk-neutral discount factor 1
1+r0

, rather than the risk adjusted d∗. We have,

for x ∈ L2,

∣

∣

∣

∣

π̄ [x] −
1

1 + r0
E (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

E (xd∗) −
1

1 + r0
E (x)

∣

∣

∣

∣

(22)

≤
∣

∣

∣

∣

∣

∣

∣

∣

d∗ −
1

1 + r0

∣

∣

∣

∣

∣

∣

∣

∣

| |x|| , (23)

by the Cauchy-Schwarz inequality. It immediately follows that

sup
x∈L2,||x||=1

∣

∣

∣

∣

π̄ [x] −
1

1 + r0
E (x)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

d∗ −
1

1 + r0

∣

∣

∣

∣

∣

∣

∣

∣

= δ2 [p, p∗] . (24)

The measure δ2 [p, p∗] can thus be interpreted as the supremum over all possible pricing

errors arising from using a naive risk-neutral valuation approach. The inequality in equation

(23) is satisfied with equality for x∗ ≡ (d∗−1/(1+r0))
||d∗−1/(1+r0)||

. Thus, if x∗ ∈ M the result in (24) would

hold for x ∈ M. Without further assumptions on d∗, however, there is no way to determine

whether or not x∗ ∈ M. Equation (24) does, however, hold for all d∗ ∈ D∗; we can therefore

state the following result:

sup
x∈M,||x||=1

∣

∣

∣

∣

π [x] −
1

1 + r0
E (x)

∣

∣

∣

∣

≤ min
d′∈D∗

∣

∣

∣

∣

∣

∣

∣

∣

d′ −
1

1 + r0

∣

∣

∣

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∣

∣

∣

d∗ −
1

1 + r0

∣

∣

∣

∣

∣

∣

∣

∣

. (25)

That is, the supremum of the observed pricing error, arising from using risk-neutral evalu-

ation, provides a lower bound for the distance between the risk-neutral and the objective

probability measures.

3 Examples and Economic Implications

In the examples below, we first use a finite-state-space case to illustrate the preceding discus-

sion about measuring differences between risk-neutral and objective probability measures,
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and then show the connection of this metric with some previous studies.

CASE 1 Consider an economy in which the set Ω contains S states of nature, each with a

positive probability of occurrence. Asset n’s payoff and price are respectively xn ∈ ℜS and

qn ∈ ℜ. Here, the s-th entry xn,s stands for the payoff to asset n if state s occurs in the

future. Let X be the S×N payoff matrix whose n-th column equals xn, and q = (q1, . . . , qN)′.

Then, there is no arbitrage if and only if there exists a discount factor vector d∗ ∈ ℜS

such that d∗ >> 0 and π[x] =
∑S

s=1 xs d∗
s ps for every x ∈ M, where d∗ >> 0 means

“d∗
s > 0 for every component s,” and π[x] and M are as defined before. In this case, letting

p∗s ≡
d∗sps

∑

S

s=1
d∗sps

gives

π[x] =
1

1 + r0

S
∑

s=1

xs p∗s. (26)

Therefore, this p∗ is the risk-neutral probability measure corresponding to d∗. The absolute

distance between this p∗ and the objective measure p is:

δ[p, p∗] =
S

∑

s=1

|p∗s − ps| (27)

= (1 + r0)
S

∑

s=1

∣

∣

∣

∣

d∗
s −

1

1 + r0

∣

∣

∣

∣

ps. (28)

In a true risk-neutral world, the state-s price would be d0
s ≡ 1

1+r0
, for every s. Thus,

δ1[p, p
∗] =

∑S
s=1

∣

∣

∣d∗
s −

1
1+r0

∣

∣

∣ ps reflects the average absolute state-price difference across the

states and between d∗ and d0. The mean-square metric δ2[p, p
∗] is similarly adapted. The

closer the observed economy is to true risk-neutral valuation, the smaller the distance be-

tween the risk-neutral measure and its objective counterpart according to either δ1[p, p
∗] or

δ2[p, p
∗].

CASE 2 The discussion can also be applied to give the mean-square distance measures in

Chen and Knez (1995) and Hansen and Jagannathan (1997) a different meaning. Take any

d1, d2 ∈ L2 such that d1 > 0 and d2 > 0 almost surely. Then, let p1 and p2 be, respectively,

the probability measures defined by the Radon-Nikodym derivatives d1

E(d1)
and d2

E(d2)
. Both p1

and p2 are equivalent to p, and to one another, because d1 and d2 are both positive almost

surely. Following the same sequence of steps as given above, we have the absolute distance
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between p1 and p2:

δ[p1, p2] ≡
∑

i=1,2,...

|p1(Ai) − p2(Ai)|

= E

∣

∣

∣

∣

∣

d1

E(d1)
−

d2

E(d2)

∣

∣

∣

∣

∣

≤
1

E(d1)
‖d1 − d2‖, (29)

provided E(d1) = E(d2). Thus, the mean-square distance metrics studied in Chen and Knez

(1995) and Hansen and Jagannathan (1997) also capture the closeness between the relevant

stochastic discount factors.

3.1 Relation with Hansen-Jagannathan Bounds

If any asset-pricing model is to explain the observed structure of asset returns, it is necessary,

according to Hansen and Jagannathan (1991), that the volatility of the stochastic discount

factor satisfy the following relation:

σ [d∗] ≥
(

(E (q) − E (d∗) E (X))′ Σ−1
x (E (q) − E (d∗) E (X))

)1/2
, (30)

where X and q are the N vector of included payoffs and prices respectively, and Σ−1
x is the

variance-covariance matrix of X. Multiplying by (1 + r0) on both sides of (30), we achieve

the bound on the distance between the risk-neutral and the objective probability measures,

as in:

(1 + r0) δ2 [p, p∗] = (1 + r0)σ [d∗] (31)

≥
(

(E (q) − E (d∗) E (X))′ Σ−1
x (E (q) − E (d∗) E (X))

)1/2
. (32)

An alternative interpretation of the Hansen-Jagannathan bound is thus that it is the min-

imum distance between the risk-neutral and the objective probability measures, which is

compatible with observed prices and returns.
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3.2 Equity Premium and the Distance Measure

Failure of the representative agent models to reconcile the per-capita consumption growth

and stock return correlation is well-documented in the equity premium puzzle literature

(Mehra and Prescott (1985, 2003) and Campbell (2003)). This framework nevertheless

serves as a useful benchmark to illustrate some of the main ideas of this paper. The first

order conditions of the model imply that the time-t asset price at time t must satisfy

πt [x] = Et

(

β
u′[ct+1]
u′[ct]

xt+1

)

, where ct is per-capita consumption at time t, β is a subjective

discount factor, and Et (·) is the expectations operator conditioning on the information

available at time t. The stochastic discount factor in this endowment economy is,

d∗
t+1 = β

u′ [ct+1]

u′ [ct]
. (33)

Suppose u [c] = 1
1−γ

c1−γ, and the objective density, p, for per-capita consumption growth is

gaussian, that is, Yt+1 ≡ log
(

ct+1

ct

)

= log(µc)−
1
2
σ2

c + ǫc,t+1, where ǫc,t+1 ∼ N (0, σ2
c ). Under

these assumptions, d∗
t+1[Y ] = β e−γYt+1, and therefore,

Vart

(

d∗
t+1

)

= β2 µ−2γ
c e(1+γ)γσ2

c

(

eγ2σ2
c − 1

)

, (34)

and, thus, the distance metric is:

δ2 [p, p∗] = σ [d∗] = β µ−γ
c e(1+γ)γσ2

c /2
√

eγ2σ2
c − 1. (35)

Furthermore, the risk-free return, r0, satisfies 1
1+r0

= Et

(

d∗
t+1

)

= β µ−γ
c e(1+γ)γσ2

c /2 and is

endogenous. Therefore, consider the transformed distance measure:

(1 + r0) δ2 [p, p∗] =
√

eγ2σ2
c − 1, (36)

which shows that the source of the dichotomy between the risk-neutral and objective prob-

ability measure is related to both the level of risk aversion, γ, and the variance of the

consumption-growth.

Figure 1 plots the distance between p and p∗ as a function of γ, for several different

values of σc. It is noteworthy that varying σc has a substantial impact on the distance

measure in (36). Thus, choosing a suitably volatile consumption-growth proxy can lead to
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a more reasonable estimate of γ and alleviate the equity premium puzzle, as also shown by

Äıt-Sahalia, Parker, and Yogo (2004).

In our gaussian setting, it is easy to see that the risk-neutral density, p∗, for Yt+1 inherits

the gaussian structure of p, but with a lower mean and the same variance σ2
c . Here a

more volatile stochastic discount factor produces more pronounced downward consumption

growth fears in the risk-neutral mean while leaving all remaining higher-moments intact.

Thus, in this economy, the source of the distance is risk-adjustment associated with the

first-moment of the pricing distribution. Although not shown here to preserve focus, for a

broader set of stochastic discount factors and/or p-distributions outside of the gaussian class

(say, in the family of Carr, Geman, Madan, and Yor (2002)), a more volatile d∗ may result

in p∗-distribution higher-moments that differ from the objective distribution counterparts.

Such asset pricing models are capable of generating left-skewed and peaked p∗-distributions

even though the p-distribution is symmetric. Economic models where higher volatility of

the stochastic discount factor can lead to conceptually distinct p∗ and p measures in the

tails are desirable for explaining options on the market-portfolio.

4 Measuring δ2 [p, p∗] Across Time

Having established a measure of the distance between the risk-neutral and the objective

probability measures, we now look for a way to estimate this distance. The metric we have

been considering is: δ2 [p, p∗] =
∥

∥

∥d∗ − 1
1+r0

∥

∥

∥ = σ [d∗]. Unfortunately, as is evident from

equation (25), we cannot in general obtain an estimate of δ2 [p, p∗], but only a lower bound.

Estimators of these lower bounds are, however, well-known and described in Hansen and

Jagannathan (1991).

Under the assumption that d∗ is an admissible discount factor, in the sense that π [x] =

E (xd∗) for all x ∈ M, we achieve the bound on σ [d∗] described in equation (30). We can

strengthen the bound further by restricting d∗ to be strictly positive. The procedure for

finding this bound is more complicated and detailed in Hansen and Jagannathan (1991).

Moving to our empirical application, there have been several studies recovering the risk-

neutral distribution implied by options on the S&P 500 index. One frequently highlighted

finding is that the risk-neutral distribution before and after the 1987 crash seems quite differ-

ent. On the other hand, there has been little evidence that the objective distribution of the
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index changed over the same period of time (see Rubinstein (1994), Jackwerth (2000) and

Äıt-Sahalia et al. (2001)). Thus, if these observations are indeed true, the distance between

the risk-neutral and the objective probability measures must have increased after 1987 for

the market-index. The general explanation of this phenomenon would be that investors’

risk-preferences changed with the crash in the market and the objective distributions have

become more fat-tailed (Bakshi, Kapadia, and Madan (2003)).

Recovering risk-neutral distribution from option prices requires fairly strong assumptions

on price dynamics and option pricing formulas. The approaches either use simple but

flexible (nonparametric) models (say, Jackwerth (2000) and Äıt-Sahalia et al. (2001)), or

more complex but also more parametrically restricted models (say, Engle and Rosenberg

(2002)). Since it has turned out to be a tough enterprise indeed to reconcile stock and

options data (see Pan (2002) and Eraker (2004) for recent attempts), it seems reasonable

to ask whether we can observe the same shift in the risk-neutral distribution using index

data alone, rather than relying on option prices. Äıt-Sahalia et al. (2001) do show how to

estimate the risk-neutral distribution using returns data. Their method, however, restricts

them to using a univariate diffusion model for the stock price dynamics.

In light of the above discussion, we therefore appeal to the measure of distance between

the risk-neutral and the objective distribution derived in this paper to add some new insight

to this question. The advantage of using our closeness measure, apart from the fact that

no option data is required, is that it is completely model-free, in that we need to make no

assumptions on returns distributions or the investors’ preferences. The downside is that

we can not actually get an estimate of the distance between the risk-neutral and objective

probability measures, but only an estimate of the lower bound on this distance. The results

should still be indicative, however.

In order to get an estimate of the lower bound of δ2 [p, p∗], using the S&P 500 index,

we use the bound defined by equation (32). While using the positivity constraint on the

discount factor could further strengthen this bound, previous results indicate that the effect

for stock data is small (see in particular, Hansen and Jagannathan (1991)). Monthly returns

for the S&P 500 index and 30-day Treasury bonds are used, where the 30-day Treasury bond

is considered as a proxy for the risk-free rate. The data span from 1926 to 2003, for a total

of 936 observations, and is obtained from the CRSP database.

To infer the lower bound displayed in equation (32), we calculate the sample mean of the

13



realized S&P 500 and Treasury bond returns for ten year periods and use these as estimates

of the expected return and the risk-free rate, respectively. The sample standard deviation of

the S&P 500 returns are likewise calculated for the same ten year periods. Using the whole

sample of 78 years, an average bound over the sample period is also calculated. Since the

risk-free rate is not constant over the whole sample period, we again multiply δ2 [p, p∗] by

the risk-free rate to estimates that are comparable across time (as we did when comparing

across different risk aversion parameters in Section 3.2). Since the data is on a monthly

basis, the resulting estimates give bounds on the monthly volatility of the discount factor,

and are thus not directly comparable to the results in Figure 1, which are based on annual

parameter values.

The results are shown in Figure 2. The top part of the figure shows estimates of the lower

bound on (1 + r0) δ2 for each ten year period from 1926 and onward. The last estimate is

calculated using eight years of data, between 1996 and 2003. We see that the bound moves

a fair amount over time and that there is some indication that the bound became greater

for the years after 1987, but the evidence is fairly weak.

In the middle graph, we explicitly take into consideration that there might have been

a large change in 1987. Ten year periods are again used from 1926 to 1975, but then the

next bound is based on eleven years of data between 1976 and 1986. The data from 1987 is

excluded, such that the subsequent bound is based on data from 1988-97. The last bound

is based on six years of data, between 1998 and 2003. The results are now more convincing,

with a big jump in the bound after the crash in 1987.

The bottom graph shows estimates of the lower bounds using ten year overlapping

estimates, from 1926 and onward. The last estimate is based on data for the years 1994-

2003. These estimates tell the same story as those in the middle graph. There is also some

evidence, both in the middle and bottom graphs, that the lower bound has decreased in the

last few years, though the big drop noted in the middle graph should be interpreted with

caution since it is based on only six years of data.

Since we can only obtain estimates of a lower bound on the distance between the risk-

neutral and objective probability measures, rather than an estimate of the actual distance,

we cannot say whether what we observe as shifts in the estimates, actually represents true

shifts in the actual distance, or not. Our results, however, do indicate that there might

have been a substantial increase in the distance between the risk-neutral and objective
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probability measures after 1987.

The possibility that the distance between the risk-neutral and objective probability

measures might have decreased again over the last few years is not something that has been

observed before. If this is indeed true, it might indicate that the crash fears, that most

likely caused a larger gap between the risk-neutral and objective distribution after 1987,

have evaporated over time.

There are a few other things to note about the results in Figure 2. First, we cannot see

a similar effect of the crash in 1929 as we do for the crash in 1987. Indeed, around 1930

we observe a very small lower bound. Second, there seems to be great changes in the lower

bound over time, with fairly long periods of small and large bounds alternating.

5 Conclusions

In this paper, we derive a theoretically sound and intuitively appealing measure of the

distance between the risk-neutral and the objective probability. The distance measure,

which is based on the mean-square norm for square integrable random variables, turns out

to be equivalent to the volatility of the stochastic discount factor. This follows directly

from the Radon-Nikodym derivative linking the objective and risk-neutral measures, and

its link to the stochastic discount factor.

The search in the equity premium literature for sufficiently volatile discount factors can

thus be equivalently interpreted as a search for a risk-neutral distribution that is sufficiently

different from its objective counterpart. Another implication of our results is that it provides

an alternative interpretation of the Hansen-Jagannathan bounds. Hansen and Jagannathan

(1991) show how to infer lower bounds on the volatility of the stochastic discount factor,

given observed asset prices. Our study shows that we can also interpret these bounds

as lower bounds on the distance between the risk-neutral and the objective probability

measures.

As in the literature dealing with the volatility of the stochastic discount factor, we

cannot directly estimate the distance measure, without any further assumptions about

returns distributions and investor preferences. However, using the Hansen-Jagannathan

bounds, we can provide lower bounds for our distance measure. Using this technique,

we consider monthly S&P 500 index returns from 1926 to 2003 and estimate, over 10
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year periods, lower bounds for the distance between the risk-neutral and the objective

probability measure. We find evidence of a relatively large change in this bound after the

crash in 1987, which is in line with the existing literature that has found similar evidence

using S&P 500 index options. There is some evidence that the bound has again decreased in

recent years, implying that investors might have overcome some of the crash fears that most

likely increased the distance between the risk-neutral and the objective probability measures

after 1987. This paper proposes a measure that characterizes the distance between the risk-

neutral and the objective probability measures for any candidate asset pricing model, and

then studies its behavior in the U.S. equity market.
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FIGURE 1: Distance Measure in Power Utility Economies
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Note to Figure 1: This figure plots the distance measure between p and p∗ in power utility
economies. We assume that the objective density, p, for per-capita consumption growth

is gaussian, that is, Yt+1 ≡ log
(

ct+1

ct

)

= log(µc) − 1
2
σ2

c + εc,t+1, where εc,t+1 ∼ N (0, σ2
c ).

Thus, d∗
t+1[Y ] = β e−γYt+1, and hence (1 + r0) δ2 [p, p∗] =

√
eγ2σ2

c − 1. The �-curve, ◦-curve,
�-curve, the �-curve, and +-curve respectively represent (1 + r0) δ2 [p, p∗] when σc takes a
value of 0.5%, 1%, 2%, 3%, and 4%.



Figure 2: Dynamic variation in (1 + r0) δ2 [p, p
∗].

Estimated bounds of the minimum distance between the risk-neutral and the objective
distribution, using monthly returns on the S&P 500 and 30 day Treasury bonds. Each estimate
is calculated using returns over the next ten years for a total of 120 observations. That is, the
estimate plotted for 1926 uses data for 1926-1935, and so forth. The dotted line in each graph
is the estimate of the average lower bound during the whole sample period, and the vertical line
indicates the crash year, 1987. Three different estimation schemes are considered. (1) The top
graph pays no special attention to the crash in 1987 and shows estimates for non-overlapping
ten year periods beginning in 1926. (2) The middle graph is based on the hypothesis that
investor behavior changed after the crash in 1987. As in the top graph, non-overlapping ten
year averages are calculated, starting in 1926, but to get an estimate of the bounds right before
and after 1987, an eleven year period from 1976 to 1986 is used, while the next bound is based
on data from 1988 to 1997. (3) The bottom graph shows estimates for ten year overlapping
periods, starting in 1926. In the top two graphs, the last estimate is based on less than ten
years of data; eight years in the top graph and six years in the middle graph.




