Dynamic labor force participation of married women in Sweden

Nizamul Islam*

Abstract

This paper analyzes the inter-temporal labor force participation behavior of married women in Sweden. A dynamic probit model is applied, controlling for endogenous initial condition and unobserved heterogeneity, using longitudinal data to allow for a rich dynamic structure. Significant unobserved heterogeneity is found, along with serial correlation in the error components, and negative state dependence. The findings may indicate serial persistence due to persistent individual heterogeneity.

Keywords: Inter-temporal labor force participation, state dependence, heterogeneity.
JEL: J22, C23, C25

[^0]
1 Introduction

Individuals who have experienced unemployment are more likely to experience same event in the future. Heckman (1981) shows two explanation of this serial persistence. The first one is "true state dependence" in which current participation depends on past participation. And the second is "spurious state dependence" in which an individual component determines current participation irrespective of past participation. However, these two sources of persistence in individual participation decisions have very different implications, for example, in evaluating the effect of economic policies that aim to alleviate short-term unemployment (e.g., Phelps 1972), or the effect of training programs on the future employment of trainees (e.g., Card and Sullivan 1988).

Hyslop (1999) interprets these serial persistence from the standpoint of the job-search uncertainty, and estimated these effects (he calls "State dependence", "unobserved heterogeneity", "serially correlated transitory error" respectively) empirically. He proposes a very general probit model with correlated random effects, auto correlated error terms and state dependence and compare the results obtained adopting different levels of generality in the specifications. Hyslop (1999), using U.S. panel data (PSID), shows that "state dependence" and "unobserved heterogeneity" have strong effect for the married women's participation decision. Hyslop also shows that both state dependence and unobserved heterogeneity play an important role in shaping participation decisions and improves substantially the predictive performance of the model. The analysis rejects the exogeneity of fertility to participation decision in static model; however, exogeneity hypothesis is not rejected when the dynamics are modeled.

The objective of this study is to examine the dynamic discrete choice labor supply model that allows unobserved heterogeneity, first order state dependence and serial correlation in the error components. In particular, the study examines the relationships between participation decisions and both the fertility decision and women's non-labor income. The study is essentially a replication of what Hyslop (1999) did with US data on Swedish data. We follow an alternative approach proposed by Heckman and Singer (1984) and assume that the probability distribution of unobserved heterogeneity can be approximated by a discrete distribution with a finite number of support points.. For models with general correlated disturbances, we use simulation based estimation methods (MSL) proposed by Lerman and Manski (1981), McFadden (1989), and Pakes and Pollard (1989), among others.

The results show that there is a negative fertility effect on participation propensities. Similar to Hyslop (1999), substantial unobserved heterogeneity is found in the participation decision. However, contrary to Hyslop (1999), negative state dependence and positive serial correlation in the transitory errors is found in women's participation decision.

The paper is organised as follows; Section 2 compares the data set used in the analysis with the U.S. data used by Hyslop (1999). Section 3 presents the model and empirical specification while the empirical and simulation results are discussed in Section 4. Section 5 summarizes and draws conclusions.

2 Data

An important feature of the data is the persistence in women's participation decision. ${ }^{1}$ Table 1a presents the observed frequency distribution of the numbers of years worked and the associated participation sequences. It appears that there is significant persistency in the observed annual participation decision. For instance, if individual participation outcomes are independent draw from a binomial distribution with fixed probability of 0.84 (the average participation rate during the ten years), then about 17 percent of the sample would be expected to work each year, and almost no one (0.000000011) would not work at all. But in fact 59% work every year, while 5% do not work at all. However, this observed persistence in annual participation can be the result of women's observable characteristics, unobserved heterogeneity or true state dependence.

Table-1a>>>

Table 1b and Table I (in the appendix) compare the women's observable characteristics between the sample used here and the sample used by Hyslop (1999) for U.S. data. ${ }^{2}$ In Table 1b for Swedish data, women who always work are better educated (36% women have

[^1]University education) than those who never work (9% women have University education). In Table I for US data, women who always work are also better educated (average years of education is 13.26) than those who never work (average years of education is 11.86).

Table-1b>>>

In Table 1b, women who always work have fewer dependent children and their husband's earnings are considerably higher than those who never work. On the other hand, in Table I, women who always work have fewer dependent children but their husband's earnings are lower than those who never work.

Swedish women who experience a single transition from work are older and have fewer infant children aged 0-2. However Swedish women who experience a single transition to work or who experience multiple transitions are younger than average, and have considerably more dependent children. Their husband's earnings are slightly bellow average. The U.S. women who experiences a single transition to work are younger than average while their husband's earnings is higher than average. The U.S. women who experiences multiple transitions are also younger than average but their husband's earnings is lower than average. The differences in the total number of dependent children between the first four columns and the last two for both countries (especially Sweden) correspond with age differences. The presence of dependent children, together perhaps with lower than average husband's earnings, may increase the probability of frequent employment
transitions, especially in Sweden which has more widely available childcare than in the U.S.

In order to see the effect of observable characteristics on participation decisions, we analyzed the following variables:

Employment status: There are two different labor market states. An individual is defined as a participant if they report both positive annual hours worked and annual earnings ${ }^{3}$.

Age: Married couples aged 20 to 60 in 1992 are included in the sample.

Education: Educational attainment is included since there may be different participation behavior among different educational groups. Three dummy variables for educational attainment are used: one for women who have at most finished Grundskola degree (9 years education); one for women who have Gymnasium degree (more than 9 but less than 12 years of education); and one for women who have education beyond Gymnasium (high school).

Fertility variables: Number of children aged $0-2,3-5$ and 6-7 are defined as fertility variables.

Place of birth: In the sample it is observed that Swedish born women (93\%, who work all ten years) work more than the foreign born women (85%, who never work). A dummy

[^2]variable for place of birth is included to see if there is any difference in the participation pattern between Swedish born and foreign born individuals. This dummy variable indicates the immigration status of the individual, where 1 refers to native born and 0 otherwise.

Husband's earning: Husband's earning is used as a proxy for non-labor income. The time average ($\bar{y}_{i .}$) of husband's earnings is used as permanent income (y_{mp}); while the deviations from the time average $\left(\bar{y}_{i .}\right)$ is transitory income $\left(y_{m t}\right)$. Annual earnings are expressed in constant (2001) SEK^{4}, computed as nominal earnings deflated by the consumer price index.

Future birth: An indicator variable for whether a birth occurs next period is also included.

3 The Empirical model

The empirical model used here is, similar to that used by Hyslop (1999). The model is a simple dynamic programming model of search behavior under uncertainty, in which searchcosts associated with labor market entry and labor market opportunities differ according to the individual's participation state.

[^3]The model can defined as -
$h_{i t}=1\left(\gamma h_{i t-1}+\beta X_{i t}+u_{i t}>0\right) \quad(i=1, \ldots, N ; t=0,1, \ldots ., T)$
$u_{i t}=\alpha_{i}+\varepsilon_{i t}$
where $h_{i t}$ is the observable indicator of participation; and $X_{i t}$ is a vector of explanatory variables, including time dummies, age, years of education, number of children, husband's annual earnings. True state dependence is captured by the parameter $\gamma . \beta$ is a set of associated parameters to be estimated. It is assumed that the error term, $u_{i t}$, is composed of two terms: First, α_{i} captures time invariant unobserved human capital and taste factors which may be correlated with observed fertility and/or income; Second, $\varepsilon_{\text {it }}$ represents error which is independent of X_{it}.

Along with Hyslop (1999), we estimate dynamic participation decision of married women using (1) linear probability models and (2) probit models.

3.1 Linear probability models

Let consider first linear participation model in level specification

$$
\begin{equation*}
h_{i t}=\gamma h_{i t-1}+X_{i t}^{\prime} \beta+\alpha_{i}+\varepsilon_{i t} \quad(i=1, \ldots ; N ; t=0,1, \ldots, T) . \tag{2}
\end{equation*}
$$

If $\varepsilon_{\mathrm{it}}$ is not serially correlated, then equation (2) can be consistently estimated using $\Delta h_{i t-1}$ or previous lag as instruments for $h_{i t-1}$.

The equation (2) in first difference can be written as:

$$
\begin{equation*}
\Delta h_{i t}=\gamma \Delta h_{i t-1}+\Delta X_{i t}^{\prime} \beta+\Delta \varepsilon_{i t} . \tag{3}
\end{equation*}
$$

If $\varepsilon_{\mathrm{it}}$ is not serially correlated, then equation (3) can be consistently estimated using $h_{i t-2}$ or previous lags and non-contemporaneous realizations of the covariates as instrument for $\Delta h_{i t-1}$.

Even if $\varepsilon_{i t}$ is serially correlated, it can be consistently estimated by two-step procedure using $h_{i t-2}$ as instrument for $\Delta h_{i t-1}$ However if $\varepsilon_{i t}$ follows an $\operatorname{AR}(1)$ process: $\varepsilon_{i t}=\rho \varepsilon_{i t-1}+v_{i t}$, where $-1<\rho<1, \quad v_{i t} \sim\left(0, \sigma^{2}\right)$, we can eliminate the serial correlation in the errors as :

$$
\begin{equation*}
h_{i t}=(\rho+\gamma) h_{i t-1}-\rho \gamma h_{i t-2}+X_{i t}^{\prime} \beta-X_{i t-1} \rho \beta+(1-\rho) \alpha_{i}+v_{i t} . \tag{4}
\end{equation*}
$$

Then equation (4) can be consistently estimated by instrumenting for $h_{i t-1}$ and $h_{i t-2}$ using $\Delta h_{i t-1}$ and $\Delta h_{i t-2}$. Alternatively, first-difference of (4) gives the equation:
$\Delta h_{i t}=(\rho+\gamma) \Delta h_{i t-1}-\rho \gamma \Delta h_{i t-2}+\Delta X_{i t}^{\prime} \beta-\Delta X_{i t-1} \rho \beta+\Delta v_{i t}$.
In this case, $h_{i t-2}$ is a valid instrument for $\Delta h_{i t-1}{ }^{5}$.

3.2 Non-linear models

$h_{i t}=1\left(\gamma h_{i t-1}+\beta X_{i t}+\alpha_{i}+\varepsilon_{i t}>0\right)$
$u_{i t}=\alpha_{i}+\varepsilon_{i t}$ and $\varepsilon_{i t} \sim N\left(0, \sigma_{\varepsilon}^{2}\right)$

$$
(i=1, \ldots ; N ; t=1, \ldots, T)
$$

where $h_{i t}$ is the indicator variable for participation and $X_{i t}$ is a vector of explanatory variables, including time dummies, age, years of education, number of children, husband's annual earnings. The subscript i indexes individuals and the subscripts t indexes. time

[^4]periods. The parameter γ represents true state dependence whereby an individual's propensity to participate is changed because of past participation. α_{i} represents for all unobserved determinants (such as taste for work, intelligence, ability, motivation or general attitude of individuals) of participation that are time invariant for an individual i . And finally $\varepsilon_{i t}$ represents the idiosyncratic error term.

The equation (6) can be estimated by random effect probit model using MLE. The standard (uncorrelated) random effect model assumes that α_{i} is uncorrelated with $X_{i t}$. But if the number of children and/or income is correlated with unobserved tastes, as expected in this paper, then α_{i} will be correlated with $X_{i t}$. Hence we consider the correlated random effects model (CRE) which is based on the following relationship between α_{i} and the observed characteristics ${ }^{6}$:
$\alpha_{i}=\sum_{s=1}^{T}\left(\delta_{1 s}(\# \text { Kids } 0-2)_{i s}+\delta_{2 s}(\# \text { Kids } 3-5)_{i s}+\delta_{3 s}(\# \text { Kids } 6-17)_{i s}\right)$ $+\sum_{s=1}^{T} \delta_{4 s} y_{m i s}+\eta_{i}$

Thus the model (6) can be written as:
$h_{i t}=1\left(\gamma h_{i t-1}+\left(\beta+\delta_{1 t}\right) X_{i t}+\sum_{s \neq t} \delta_{s} X_{i s}+\eta_{i}+\varepsilon_{i t}>0\right)$
$v_{i t}=\eta_{i}+\varepsilon_{i t} \quad(i=1, \ldots ; N ; t=1, \ldots, T)$
where $\eta_{i t} \sim i i d N\left(0, \sigma_{\eta}^{2}\right)$ and independent of $X_{i t}$ and $\varepsilon_{i t}$ for all i, t.

[^5]The initial condition in dynamic probit model with unobserved effects complicates estimation considerably. Estimation requires an assumption about the relationship between the initial observations, $h_{i 0}$, and η_{i}. We consider the approach to the initial conditions problem proposed by Heckman (1981b). The model specifies a linearized reduced form equation for the initial period as:

$$
\begin{equation*}
h_{i 0}=1\left(\beta_{0} z_{i 0}^{\prime}+\eta_{0}+\varepsilon_{i 0}>0\right) \tag{8}
\end{equation*}
$$

where $\eta_{0} \sim \operatorname{iid} N\left(0, \sigma_{\eta 0}^{2}\right)$ and independent of $z_{i 0}$. and $\varepsilon_{i 0} . z_{i 0}$ includes the variables for initial period ($X_{i 0}$) and other exogenous variables. It is also assumed that the error term $\varepsilon_{i 0}$ satisfies the same distributional assumptions as $\varepsilon_{i t}$ for $\mathrm{t} \geq 1$. For normalization we assume $\sigma_{\varepsilon}^{2}=1$.

For a random sample of individuals the likelihood to be maximized is then given by

$$
\begin{equation*}
L=\prod_{i=1}^{N} \int_{\eta}\left\{\Phi\left[\left(\beta_{0} z_{i 0}+\eta_{0}\right)\left(2 h_{i 0}-1\right)\right]\right\}\left\{\prod_{t=1}^{T} \Phi\left[\left(\gamma h_{i t-1}+\left(\beta+\delta_{i t}\right) X_{i t}+\sum_{s \neq t} \delta_{s} X_{i s}+\eta_{i}\right)\left(2 h_{i t}-1\right)\right]\right\} d F(\eta) \tag{9}
\end{equation*}
$$

where F . is the distribution function of η (consisting of η_{0} and η_{i}). However, as η is not observed, we have to integrate out this term from the above likelihood to obtain the unconditional likelihood function. To do this, we need to specify a distribution for η. If η is taken to be normally distributed, the integral over η can be evaluated using GaussianHermite quadrature (Butler and Moffitt, 1982). In this paper, we follow an alternative
approach proposed by Heckman and Singer (1984), and assume that the probability distribution of η can be approximated by a discrete distribution with a finite number (J) of support points. In this specification the distribution of η. is taken to have mass points $\eta^{(j)}(\mathrm{j}=1,2, \ldots, \mathrm{~J})$ with corresponding probabilities π_{j} satisfying $0 \leq \pi_{j} \leq 1 . \forall \mathrm{j}$ and $\sum_{j=1}^{J} \pi_{j}=1$. To be specific, we assume that there are J types of individuals and that each individual is endowed with a set of unobserved characteristics, $\eta^{(j)}(\mathrm{j}=1,2, \ldots, \mathrm{~J})$. We report estimates based on this models where $J=3$.

The likelihood is then:

$$
\begin{equation*}
L=\prod_{i=1}^{N}\left\{\sum_{j=1}^{J} \pi_{j}\left\{\Phi\left[\left(\beta_{0} z_{i 0}^{\prime}+\eta_{0}\right)\left(2 h_{i 0}-1\right)\right]\right\}\left\{\prod_{t=1}^{T} \Phi\left[\left(\gamma h_{i t-1}+\left(\beta+\delta_{1 t}\right) X_{i t}+\sum_{s \neq t} \delta_{s} X_{i s}+\eta_{i}\right)\left(2 h_{i t}-1\right)\right]\right\}\right\} \tag{10}
\end{equation*}
$$

This specification, controlling for endogenous initial condition, also allow arbitrary correlation between unobserved effect $\left(\eta_{0}\right)$ of initial period and unobserved effects $\left(\eta_{i}\right)$ of other periods with the probability distribution of initial and other period support points.

Autocorrelation in the $\varepsilon_{i t}$, perhaps reflecting correlation between transitory shocks, which is also complicates estimation considerably. For the models with autocorrelation $\varepsilon_{i t}=\rho \varepsilon_{i t-1}+v_{i t}, \quad v_{i t} \sim N\left(0, \sigma_{v}^{2}\right)$; the Heckman estimator requires the evaluation of T-dimensional integrals of Normal densities. Simulation estimators provide a feasible way to address this problem. A Maximum Simulated Likelihood (MSL) estimator
(see for example Gourieroux and Monfort, 1996, and Cameron and Trivedi, 2005), based on the GHK algorithm of Geweke, Hajivassiliou and Keane (see for example Keane, 1994) can be used. The above model and estimator are discussed in Lee (1997) in more details. Following Lee (1997) first we generate $u_{1}, u_{2}, \ldots, u_{T}$ independent uniform [0, 1] random variables. Then with given initial condition the truncated random variables $w_{1}, w_{2}, \ldots, w_{T}$ for GHK simulator can be generated recursively from the following steps, from $\mathrm{t}=1 \ldots, \mathrm{~T}$:
(1) Calculate $\quad w_{t}=-\left(2 h_{i t}-1\right) \Phi^{-1}\left[u_{t} \Phi\left(\left(2 h_{i t}-1\right)\left(\gamma h_{i t-1}+\left(\beta+\delta_{1 t}\right) X_{i t}+\sum_{s \neq t} \delta_{s} X_{i s}+\eta_{i}+\rho \varepsilon_{i t-1}\right)\right)\right]$.
(2) Update the disturbances process $\varepsilon_{t}=\rho \varepsilon_{i t-1}+w_{i t}$

For each i, with R independently generated vectors from random draws the simulated likelihood is
$\left.L=\prod_{i=1}^{N}\left[\frac{1}{R} \sum_{r=1}^{R}\left\{\sum_{j=1}^{J} w_{j}\left\{\Phi\left[\left(\beta_{0} z_{i 0}+\eta_{0}\right)\left(2 h_{i 0}-1\right)\right]\right\}\left\{\prod_{t=1}^{T} \Phi\left[\left(\gamma h_{t-1}+\left(\beta+\delta_{t h}\right) X_{i t}+\sum_{s \neq i} \delta_{s} X_{i s t}+\eta_{i}+\rho \varepsilon_{i, t-1}^{r}\right)\left(2 h_{t}-1\right)\right]\right\}\right\}\right]\right\}$

4 Results

This section reports and compares the results with the results of Hyslop (1999) for various linear probability models and probit models. The results for all specifications are reported based on 10% (random draw) sub-sample. ${ }^{7}$

4.1 Linear Probability Models

Various dynamic linear probability specifications corresponding to equation (2) and (3) have been estimated both in levels and in first difference specification, just as Hyslop (1999) did. Table 2 shows the results for seven years data. In row 1, the GLS estimate of lagged dependent variable for first difference is -0.31 which is downwards biased due to negative correlation between $\Delta h_{i t-1}$ and the error due to first differencing. While the estimate obtained from level specification is 0.73 which is upwards biased because of unobserved heterogeneity. These findings are very close to Hyslop's GLS findings for lagged dependent variables. The estimates for first difference and level specifications in Hyslop (1999) are -0.35 and 0.67 respectively (See appendix row 1 Table II).

Row (2) shows the results using out-of-period realizations of the covariates as instruments for the lagged dependent variable. If the regressors are exogenous with respect to the transitory error component, these instruments are valid instruments and enable consistent estimates of the effects of lagged dependent variable. Estimated coefficients in first difference and level specification are: -0.10 and 0.35 respectively. These coefficients are close to zero than the GLS estimates.

If it is assumed that there is no serial correlation in the transitory errors then lagged values of h would be valid instruments for $\Delta h_{i t-1}$, and lagged values of Δh would be valid instruments for $h_{i t-1}$. In row $3, h_{i t-2}$ is added to the vector of instruments for $\Delta h_{i t-1}$, and $\Delta h_{i t-1}$ to the vector of instruments for $h_{i t-1}$. The estimates of the lagged dependent variable coefficients obtained from the first difference and level specification are now 0.22 and 0.34 respectively. The F-statistics indicate that these instruments have substantial explanatory power. In row 4, the regressors have been dropped form the instrument sets. The coefficients of lagged dependent variable are 0.32 to 0.26 . Row (5) shows the specifications based on Arellano and Bond (1991), which include all valid lagged participation effects in the instrument sets. The estimated coefficients for first-differences and levels are very close, -0.24 and -0.27 , respectively. Finally row (6) presents the specification which relaxes the assumption that the transitory errors are uncorrelated, and allows the errors to follow a stationary AR(1) process. Two-step GMM estimation shows that the coefficients of lagged dependent variable in both first difference and level specification decreased dramatically to -0.05 and -0.006 respectively. On the other hand, the estimates of the $\operatorname{AR}(1)$ serial correlation parameter are positive and quite similar: 0,32and 0.28 respectively. Interestingly, the results of GMM contrast sharply with Hyslop(1999). In Hyslop(1999), the effects of lagged dependent variable are positive, while $\operatorname{AR}(1)$ coefficients are negative. We will check these contrasts by another specification.

Table-2>>>

Table 3 shows the estimated regressor coefficients from the specifications presented in rows (4)-(6) of Table 2. Like Hyslop's findings (See appendix Table III), the results show that pre-school children have substantially stronger effects on participation outcomes than school-aged children. The results also show that permanent non-labor income effect $\left(y_{m p}\right)$ is positive and significant.

Table-3>>>

4.2 Static probit models

Table 4 shows the results for the static probit specifications focusing on demographic and other characteristics of married women in Sweden. Here, the model is estimated for the sample over the ten year period (1992-2001). Column 1 contains the results of simple probit model where each of the fertility variables has significantly negative effect on women's participation decisions. The younger children have stronger effects than older. An additional child aged $0-2$ reduces the probability of participation by 18 percent (marginal effect). The permanent non-labor income effect is significantly positive which may reflect the predominant dual income family structure in Sweden.

Table -4>>>
Column 2 contains the results of random effects probit model estimated by MLE using Gaussian quadrature. The result indicates that 77 percent of the latent error variance is due to unobserved heterogeneity. Compared to simple probit model, the estimated effects of
young children aged 0-2 increase by 53 percent while that of children aged 6-17 increases by 62 percent. The random effect probit model is re-estimated considering two different types of distribution of unobserved heterogeneity. In column 3 the heterogeneity is assumed to be normally distributed whereas in column 4 it is assumed that the heterogeneity have a common discrete distribution with a finite number of mass points (Heckman and Singer approach). The estimates of these models are broadly similar.

The estimated support points and accompanying probabilities for the model in column 4 indicate unobserved heterogeneity in individuals' preferences. The first estimated support point ($\theta_{1}=-3.15$) and the corresponding probability ($\pi_{1}=0.761$) indicate a relatively strong preference for work by 76% of the sample (compared to the sample information that 58% actually work all 10 years of the study period). The second estimated-support point ($\left.\theta_{2}=-4.88\right)$ and the corresponding probability $\left(\pi_{2}=0.156\right)$ indicates flexible preference for work by 16%. The third estimated support point $\left(\theta_{3}=-6.86\right)$ and the corresponding probability $\left(\pi_{3}=0.083\right)$ indicates low preference for work by 8% (compared to the sample information that 5% don't work at all during the study period).

It has been assumed that the fertility and/or income variables are independent of unobserved heterogeneity. If these assumptions are incorrect, the resulting coefficient estimates will be biased and inconsistent. For this reason the correlated random effects (CRE) specification for α_{i}, given in equation (7) is estimated in column 5. A likelihood ratio test (not reported) of simple versus correlated random effects models gives no support
for rejecting the simple model (LR statistic $=14.97$). Moreover, separate Wald-statistics for the correlation between unobserved heterogeneity and three fertility variables provide evidence in favor of exogeneity hypothesis in each case. These findings sharply contradict Hyslop (1999) finding in static case, who rejects the hypothesis that fertility decisions are exogenous to women's participation decisions.

4.3 Dynamic probit models

Table 5 shows the results of inter-temporal participation decisions of married women. A latent class (model is used in the dynamic probit model with unobserved individual specific effect. Column 1 contain the results for the specification which allows first order autoregressive error $\operatorname{AR}(1)$.The results show that the addition of a transitory component of error has significant effect on the model and the estimated coefficient is 0.81 . The percentage of the women of strong preference for work is now increased to 13%.

Column 2 contains the results for the specification which allows first order state dependence $\operatorname{SD}(1)$. This specification allows arbitrary correlation between the initial and other periods with the same probability of initial and other periods support points. The results show a large first order state dependence effect and the coefficient is 1.28 .

Column 3 shows the results for the random effects specifications with a first order autoregressive error component $\operatorname{AR}(1)$ and first order state dependence $\operatorname{SD}(1)$. The model is estimated using simulated maximum likelihood (MSL) estimation method and based on
two support points. ${ }^{7}$ For simulation I use standard approach to random draws from the specified distribution. The results show that including state dependence has a little effect on the distribution of unobserved heterogeneity and serial correlation parameter in the model. The $\operatorname{AR}(1)$ coefficient is now 0.86 .

4.4 Simulated responses to "fertility" and to changes in "non-labor" Income

Figure 1 shows simulated responses to a birth in year 1 for the simple probit model, random effects MSL probit model, AR(1) probit model, and dynamic probit with first order state dependence model. The effect of an additional child aged $0-2$ is -0.18 in simple probit, 0.21 in RE MSL, -0.19 in AR (1), and -0.16 in dynamic probit. The difference between simple probit and RE-MSL shows the bias due to unobserved heterogeneity. However, the distance between RE-MSL and dynamic probit shows the bias that arises from not controlling for state dependence. The simulated responses decline initially as the child ages, and are nearly indistinguishable when the age is 3 . The simulation patterns explain that the women leave the labor force to have children and return as the children age beyond infancy. The return of Swedish women to work is quicker than the US women (See Hyslop 1999). This indicates that Sweden has more widely available childcare system than the U.S.

[^6]Figure 2 shows the simulated effects of ten percent increase in permanent non-labor income. Ten percent increase in permanent non-labor income increases women's participation in the first year by 0.08 in simple-probit, 0.16 in RE-MSL, and 0.10 in dynamic probit. The figure suggests that there is a positive income effect of husbands' earnings on wives' participation decision.

Figure 3 shows the dynamic probit model responses to a birth during first year for middle educated (Gymnasium) and highly educated (University) women. The results show that the effect of one birth during first year for middle educated women is stronger than those of highly educated. Figure 4 shows broadly similar responses of immigrant and native born women. Figure 5 presents the dynamic probit model responses of 10 percent increase in permanent non-labor income for middle educated (Gymnasium) and highly educated (University) women. The response of dynamic probit model for middle educated women is stronger than those of highly educated. Figure 6 shows quite similar responses of immigrant and native born women.

5 Summary and Conclusions

The purpose of this study is to analyze the inter-temporal labor force participation behavior of married women in Sweden, using a ten year sample from Longitudinal Individual Data (LINDA). We estimated linear probability models and dynamic probit models with a variety of specifications. Both linear probability and probit results suggest that the inter-temporal participation decisions are characterized by a substantial amount of
unobserved heterogeneity. In the specification which allows first order state dependence and serial correlation in the transitory errors components, it is found that almost no true state dependence in individual propensities to women participation. However the estimated first order $\operatorname{AR}(1)$ component has a large and significant effect in both linear probability model and dynamic probit model. The findings indicate serial persistence on participation decisions due to persistent individual heterogeneity

References

Arellano, M., and S. Bond (1991), "Some Tests of the Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations", Review of Economic Studies, 58,277-297.

Butler, J.S., and R. Moffitt (1982), "A Computationally Efficient Quadrature Procedure for the One Factor Multinomial Probit Model", Econometrica, 50, 761-764.

Cameron, S., and J.J. Heckman (2001), "The Dynamics of Educational Attainment for Black, Hispanic, and White Males," Journal of Political Economy 109(3):455-499.

Cameron A. Colin and Pravin K. Trivedi (2005) Microeconometrics : Methods and Applications, Cambridge University Press.

Card, D., and D. Sullivan (1988), "Measuring the Effect of Subsidized Training Programs on Movements In and Out of Employment", Econometrica, 56, 497-530.

Chamberlain G. (1984) "Panel Data", in Handbook of Econometrics, ed. By Z. Griliches and M. Intrilligator, Amsterdam: North -Holland.

Eberwein, C., J. Ham, and R. Lalonde (1997), "The Impact of Being Offered and Receiving Classroom Training on the Employment Histories of Disadvantaged Women: Evidence from Experimental Data," Review of Economic Studies 64(4):655-682.

Gourieroux, C. and A. Monfort (1996) Simulation-Based Econometric Method, Oxford University Press.

Ham, J., and R. Lalonde (1996), "The Effect of Sample Selection and Initial Conditions in Duration Models: Evidence from Experimental Data on Training," Econometrica 64(1):175-205.

Hansen, J., and M. Lofstrom (2001), "The Dynamics of Immigrant Welfare and Labor Market Behavior," IZA Discussion Paper, No. 360, Institute for Study of Labor, Bonn.

Heckman, J. J. (1981a), "Statistical Models for Discrete Panel Data", Chapter 3 in Manski, Charles and Daniel McFadden (eds.), Structural Analysis of Discrete Data, MIT Press, Cambridge, MA.

Heckman, J. J. (1981b), "The Incidental Parameters Problem and the Problem of Initial Conditions in Estimating a Discrete Time-Discrete Data Stochastic Process", Chapter 4 in Manski, Charles and Daniel McFadden (eds.), Structural Analysis of Discrete Data, MIT Press, Cambridge, MA.

Heckman, J. J. (1981c), "Heterogeneity and State Dependence", in Rosen, Sherwin (ed.) Studies in Labor Markets, University of Chicago Press.

Heckman, J.,J. and B. L. Singer (1984), "A Method for Minimizing the Distributional Assumptions in Econometric Models for Duration Data", Econometrica, 52, 271-320.

Hyslop, D. R. (1999), "State dependence, serial correlation and heterogeneity in inter temporal labor force participation of married women", Econometrica, 67, 1255-1294.

Keane, M. P. (1993), "Simulation Estimation for Panel Data Models with Limited Dependent Variables", Ch. 20 in Handbook of Statistics, Vol. 11, G.S. Maddala, C.R. Rao, and H.D. Vinod (eds.). Amsterdam: Elsevier Science Publishers.

Keane, M. P. (1994), "A computationally Practical Simulation Estimator for Panel Data", Econometrica, 62, 95-116.

Lee, L.F. (1997), "Simulated Maximum Likelihood Estimation of Dynamic Discrete Choice Statistical Models Some Monte Carlo Results", Journal of Econometrics, 82, 1-35.

Lerman, S. R., and C. F. Manski (1981), "On the Use of Simulated Frequencies to Approximate Choice Probabilities", Ch. 7 in Structural Analysis of Discrete Data, Charles Manski and Daniel Mc Fadden (eds.). Cambridge, MA, MIT Press.

McFadden, D. (1989), "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration", Econometrica, 57, 995-1026.

Mundlak Y. (1978) "On the Pooling of Time Series and Cross Section Data", Econometrica, 46, pp.69-85.

Pakes, A. and D. Pollard (1989), "Simulation and Asymptotic of Optimization Estimators", Econometrica, 57, 1027-1057.

Phelps, E. (1972), "Inflation Policy and Unemployment Theory", New York: Norton.

Stevens, A. (1999) "Climbing Out of Poverty, Falling Back In," Journal of Human Resources 34(3):557-588.

Table 1a: Distribution of Number of Years Worked

Number of years worked	Full sample	Employed all 10 years (1)	Employed 0 years (2)	Single transition from work (4)	Single transition to work (5)	Multiple transitions
(3)	-100	-	-	-		
Zero	4.67	-	-	10.48	4.17	2.42
One	1.49	-	-	7.06	4.80	3.37
Two	1.56	-	-	6.68	5.53	3.92
Three	1.74	-	-	6.53	5.63	5.87
Four	2.16	-	-	7.06	4.56	7.27
Five	2.41	-	-	8.73	7.47	10.43
Six	3.46	-	-	10.86	10.62	12.68
Seven	4.36	-	-	15.03	16.83	20.93
Eight	6.97	-	-	27.56	40.40	33.13
Nine	12.45	-	-	-	-	-
Ten	58.73	100	-			

Column percentages.
Table 1b: Sample Characteristics

	Full sample (1)	Employed all 10 years (2)	Employed 0 years (3)	Single transition from work (4)	Single transition to work (5)	Multiple transitions (6)
$\mathrm{Age}_{(1992)}$	$\begin{aligned} & \hline 42.92 \\ & (8.15) \end{aligned}$	$\begin{aligned} & 45.03 \\ & (7.12) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 45.73 \\ & (7.84) \end{aligned}$	$\begin{aligned} & \hline 46.04 \\ & (8.02) \end{aligned}$	$\begin{aligned} & 37.98 \\ & (7.25) \\ & \hline \end{aligned}$	$\begin{aligned} & 37.94 \\ & (8.05) \\ & \hline \end{aligned}$
$\begin{aligned} & \text { Education }^{(a)} \\ & \text { (Primary) } \end{aligned}$	$\begin{gathered} \hline 0.18 \\ (0.38) \\ \hline \end{gathered}$	$\begin{gathered} 0.16 \\ (0.37) \\ \hline \end{gathered}$	$\begin{gathered} 0.44 \\ (0.50) \\ \hline \end{gathered}$	$\begin{gathered} 0.29 \\ (0.45) \\ \hline \end{gathered}$	$\begin{array}{r} 0.16 \\ (0.37) \\ \hline \end{array}$	$\begin{array}{r} 0.16 \\ (0.36) \\ \hline \end{array}$
$\begin{aligned} & \text { Education }^{(\mathrm{a})} \\ & \text { (High-school) } \end{aligned}$	$\begin{aligned} & 0.50 \\ & (0.50) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.48 \\ & (0.50) \\ & \hline \end{aligned}$	$\begin{gathered} 0.47 \\ (0.50) \\ \hline \end{gathered}$	$\begin{gathered} 0.51 \\ (0.50) \\ \hline \end{gathered}$	$\begin{aligned} & 0.54 \\ & 0.0 .50) \\ & \hline \end{aligned}$	$\begin{gathered} 0.56 \\ (0.50) \\ \hline \end{gathered}$
Education ${ }^{(a)}$ (Universitet)	$\begin{gathered} 0.32 \\ (0.47) \\ \hline \end{gathered}$	$\begin{gathered} 0.36 \\ (0.48) \\ \hline \end{gathered}$	$\begin{gathered} 0.09 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 0.20 \\ (0.40) \\ \hline \end{gathered}$	$\begin{gathered} 0.29 \\ (0.46) \\ \hline \end{gathered}$	$\begin{gathered} 0.29 \\ (0.45) \\ \hline \end{gathered}$
Place of birth (Born in Sweden=1)	$\begin{gathered} \hline 0.92 \\ (0.27) \end{gathered}$	$\begin{gathered} \hline 0.93 \\ (0.26) \end{gathered}$	$\begin{gathered} \hline 0.85 \\ (0.36) \end{gathered}$	$\begin{gathered} \hline 0.89 \\ (0.31) \end{gathered}$	$\begin{gathered} \hline 0.91 \\ (0.29) \end{gathered}$	$\begin{gathered} \hline 0.91 \\ (0.29) \end{gathered}$
No. of children aged 0-2 years	$\begin{gathered} 0.13 \\ (0.37) \\ \hline \end{gathered}$	$\begin{gathered} 0.05 \\ (0.23) \\ \hline \end{gathered}$	$\begin{gathered} 0.09 \\ (0.32) \\ \hline \end{gathered}$	$\begin{gathered} 0.06 \\ (0.28) \\ \hline \end{gathered}$	$\begin{gathered} 0.25 \\ (0.50) \\ \hline \end{gathered}$	$\begin{gathered} 0.31 \\ (0.53) \\ \hline \end{gathered}$
No. of children aged 3-5 years	$\begin{gathered} 0.20 \\ (0.45) \\ \hline \end{gathered}$	$\begin{gathered} 0.10 \\ (0.33) \\ \hline \end{gathered}$	$\begin{gathered} 0.14 \\ (0.39) \\ \hline \end{gathered}$	$\begin{gathered} 0.10 \\ (0.34) \\ \hline \end{gathered}$	$\begin{gathered} 0.40 \\ (0.59) \\ \hline \end{gathered}$	$\begin{gathered} 0.40 \\ (0.58) \\ \hline \end{gathered}$
No. of children aged 6-17 years	$\begin{gathered} \hline 0.95 \\ (1.01) \end{gathered}$	$\begin{gathered} \hline 0.89 \\ (0.96) \end{gathered}$	$\begin{gathered} \hline 0.82 \\ (1.04) \end{gathered}$	$\begin{gathered} \hline 0.67 \\ (0.90) \end{gathered}$	$\begin{aligned} & 1.38 \\ & (1.11) \end{aligned}$	$\begin{aligned} & 1.04 \\ & (1.05) \end{aligned}$
Husband's Earnings (SEK 100,000)	$\begin{gathered} 2.67 \\ (1.73) \end{gathered}$	$\begin{gathered} 2.78 \\ (1.78) \end{gathered}$	$\begin{gathered} 2.23 \\ (1.63) \end{gathered}$	$\begin{gathered} \hline 2.64 \\ (1.90) \end{gathered}$	$\begin{gathered} \hline 2.54 \\ (1.51) \end{gathered}$	$\begin{gathered} 2.52 \\ (1.60) \end{gathered}$
Participation	$\begin{gathered} \hline 0.84 \\ (0.37) \\ \hline \end{gathered}$	1.00	0.00	$\begin{gathered} \hline 0.60 \\ (0.49) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.69 \\ (0.46) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.70 \\ (0.46) \\ \hline \end{gathered}$
Sample size	236,740	139,030	11,070	13,170	20,620	52,850

Note: Standard errors in parentheses. Sample selection criteria: continuously married couples, aged 20-60 in 1992 with positive husband's annual earnings and hours worked each year.
(a) Three dummy variables for educational attainment are used: One for women who have at most finished Grundskola degree (9 years education); One for women who have Gymnasium degree (more than 9 but less than 12 years of education); and one for women who have education beyond Gymnasium (high school).

Table 2: Linear Probability Models of Married Women's Participation
First Difference Specification
Levels Specification

	Instruments	γ	ρ	Test statistic	Instruments	γ	ρ	Test statistic
		-0,314				0,725		
(1)	-	(0.002)	-	-	-	(0.005)	-	-
		-0,099		$232.40{ }^{(a)}$		0,353		$102.29{ }^{\text {(a) }}$
(2)	$\Delta X_{i s}, \forall s$	(0.013)	-	(0.00)	$X_{i s}, \forall s$	(0.036)	-	(0.00)
	$\Delta X_{i s}, \forall s$	0,221		$322.08^{(a)}$	$X_{i s}, \forall s$	0,336		$121.37{ }^{\text {(a) }}$
(3)	$h_{i t-2}$	(0.006)	-	(0.00)	$\Delta h_{i t-1}$	(0.015)	-	(0.00)
(4)	$h_{i t-2}$	$\begin{gathered} 0,326 \\ (0.007) \end{gathered}$	-	-	$\Delta h_{i t-1}$	0,264 (0.012)	-	-
		-0,246		2535.68		-0,270		3409.39
(5)	$h_{i t-s}, \forall s>1$	(0.003)	-	${ }^{\text {(b) }}$ (0.00)	$\Delta h_{i t-s}, \forall s>0$	(0.009)	-	${ }^{\text {(b) }}$ (0.00)
(6)	$h_{i t-2}$	$-0,049$ (0.014)	$0,317$ (0.020)	$3.48^{(\mathrm{c})}$ (0.00)	$\Delta h_{i t-1}, \Delta h_{i t-2}$	$-0,006$	$0,282$	

Note: Standard errors in parentheses except F Statistics with p values. All specifications include time dummies, age, age-squared, educational status, number of kids aged $0-2,3-5$, and $6-17$, permanent non labor income, transitory non labor income, place of birth, and a variable for a birth next year
a) F test statistics for the explanatory power of the instruments
b) Sargan over identification statistics

Table 3: Linear Probability Models of Married Women's Participation
First Difference Specification Levels Specification

	(1)	(2)	(3)	(4)	(5)	(6)
Permanent non-labor income (y_{mp})	-	-	-	$\begin{aligned} & 0,011 \\ & (0.006) \end{aligned}$	-	-
Transitory income (y_{mt})	$\begin{aligned} & -0,001 \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0,001 \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0,001 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0,005 \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0,009 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0,005 \\ & (0.004) \end{aligned}$
No. Children aged 0-2 years	$\begin{aligned} & -0,033 \\ & (0.005) \end{aligned}$	$\begin{aligned} & -0,015 \\ & (0.005) \end{aligned}$	$\begin{aligned} & -0,014 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0,127 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0,160 \\ & (0.014) \end{aligned}$	$\begin{aligned} & -0,080 \\ & (0.022) \end{aligned}$
No. Children aged 3-5 years	$\begin{aligned} & -0,060 \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0,012 \\ & (0.004) \end{aligned}$	$\begin{aligned} & -0,047 \\ & (0.005) \end{aligned}$	$\begin{aligned} & -0,018 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0,004 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0,004 \\ & (0.013) \end{aligned}$
No. Children aged 6-17 years	$\begin{aligned} & -0,024 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0,003 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0,025 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0,014 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0,019 \\ & (0.008) \end{aligned}$	$\begin{aligned} & -0,004 \\ & (0.007) \end{aligned}$
Birth ${ }_{\text {t+1 }}$	$\begin{aligned} & 0,089 \\ & (0.004) \end{aligned}$	$\begin{aligned} & 0,073 \\ & (0.005) \end{aligned}$	$\begin{aligned} & 0,064 \\ & (0.007) \end{aligned}$	$\begin{aligned} & 0,029 \\ & (0.011) \end{aligned}$	$\begin{aligned} & -0,007 \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0,014 \\ & (0.072) \end{aligned}$
Lagged dependent ($\mathrm{h}_{\mathrm{t}-1}$)	$\begin{aligned} & 0,326 \\ & (0.007) \end{aligned}$	$\begin{aligned} & -0,246 \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0,049 \\ & (0.014) \end{aligned}$	$\begin{aligned} & 0,264 \\ & (0.012) \end{aligned}$	$\begin{aligned} & -0,270 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0,006 \\ & (0.061) \end{aligned}$
AR(1) Coefficient (ρ)	-	-	$\begin{aligned} & 0,317 \\ & (0.020) \end{aligned}$	-	-	$\begin{aligned} & 0,282 \\ & (0.061) \end{aligned}$
Instruments	$h_{i t-2}$	$h_{i t-s}, \forall s>1$	$h_{i t-2}$	$\Delta h_{i t-1}$	$h_{i t-s}, \forall s>0$	$\begin{aligned} & \Delta h_{i t-1} \\ & \Delta h_{i t-2} \end{aligned}$

Note. Estimated standard errors are in parenthesis. All specifications include time dummies, age, age-squared, educational status, number of kids aged $0-2,3-5$, and $6-17$, permanent non labor income, transitory non labor income, place of birth, and a variable for a birth next year

Table 4: Static Probit Models of Married Women's Participation Outcomes

	Simple- Probit Effect (1)	Randomeffect Probit (2)	Randomeffect (MSL) (3)	Random-effect (Heckman and Singer) (4)	Correlated Random-effect (MSL) (5)
Permanent non-labor income (y_{mp})	$\begin{gathered} 0.062 \\ (0.008) \\ \hline \end{gathered}$	$\begin{gathered} 0.123 \\ (0.025) \\ \hline \end{gathered}$	$\begin{gathered} 0.06 \\ (0.006) \\ \hline \end{gathered}$	$\begin{gathered} 0.042 \\ (0.009) \\ \hline \end{gathered}$	$\begin{gathered} 0.160 \\ (0.008) \\ \hline \end{gathered}$
Transitory income ($\mathrm{ymt}^{\text {m }}$)	$\begin{aligned} & \hline-0.005 \\ & (0.009) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.029 \\ (0.016) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.029 \\ (0.008) \\ \hline \end{gathered}$	$\begin{array}{r} \hline-0.016 \\ (0.015) \\ \hline \end{array}$	$\begin{array}{r} \hline-0.019 \\ (0.009) \\ \hline \end{array}$
No. of children aged 0-2 years(\#kid02)	$\begin{aligned} & \hline-0.779 \\ & (0.028) \end{aligned}$	$\begin{aligned} & \hline-1.197 \\ & (0.044) \end{aligned}$	$\begin{gathered} -1.169 \\ (0.02) \end{gathered}$	$\begin{aligned} & \hline-1.079 \\ & (0.038) \end{aligned}$	$\begin{aligned} & \hline-1.110 \\ & (0.024) \end{aligned}$
No. of children aged 3-5 years(\#kid35)	$\begin{gathered} \hline-0.220 \\ (0.018) \end{gathered}$	$\begin{gathered} \hline-0.309 \\ (0.034) \end{gathered}$	$\begin{aligned} & \hline-0.285 \\ & (0.016) \end{aligned}$	$\begin{aligned} & \hline-0.264 \\ & (0.034) \end{aligned}$	$\begin{gathered} \hline-0.210 \\ (0.019) \end{gathered}$
No. of children aged 6-17 years(\#kid617)	$\begin{aligned} & -0.127 \\ & (0.012) \end{aligned}$	$\begin{gathered} -0.207 \\ (0.022) \end{gathered}$	$\begin{gathered} -0.183 \\ (0.009) \end{gathered}$	$\begin{gathered} -0.151 \\ (0.015) \end{gathered}$	$\begin{aligned} & -0.120 \\ & (0.015) \end{aligned}$
$\operatorname{Var}\left(\eta_{\mathrm{i}}\right)^{(\mathrm{a})}$	-	$\begin{gathered} 0.774 \\ (0.008) \end{gathered}$	$\begin{gathered} 0.650 \\ (0.050) \end{gathered}$	-	$\begin{gathered} 0.660 \\ (0.021) \end{gathered}$
Log-likelihood	10100.41	6359.59	6381.36	6294.80	6352.14
First support point (θ_{1})	-	-	-	$\begin{gathered} -3.15 \\ (0.01) \\ \hline \end{gathered}$	-
Second support point $\left(\theta_{2}\right)$	-	-	-	$\begin{aligned} & \hline-4.88 \\ & (0.01) \end{aligned}$	-
Third support point $\left(\theta_{3}\right)$	-	-	-	$\begin{aligned} & \hline-6.86 \\ & (0.01) \end{aligned}$	-
Probability (π_{1})	-	-	-	0.761	-
Probability (π_{2})	-	-	-	0.16	-
Probability (π_{3})	-	-	-	0.08	-
Wald statistic for H_{0} :CRE=0					
Transitory income ($\mathrm{ym}_{\mathrm{mt}}$)	-	-	-	-	$\begin{aligned} & \hline 18.52 \\ & (0.00) \\ & \hline \end{aligned}$
No. of children aged 0-2 years(\#kid02)	-	-	-	-	$\begin{gathered} 0.26 \\ (0.61) \end{gathered}$
No. of children aged 3-5 years(\#kid35)	-	-	-	-	$\begin{gathered} 0.19 \\ (0.66) \end{gathered}$
No. of children aged 6-17 years(\#kid617)	-	-	-	-	$\begin{gathered} 0.01 \\ (0.91) \end{gathered}$

Notes: Estimated standard errors in parentheses. . All specifications include time dummies, age, agesquared, educational status, number of kids aged $0-2,3-5$, and $6-17$, permanent non labor income, transitory non labor income, place of birth, and a variable for a birth next year.
$\operatorname{Var}\left(\eta_{\mathrm{i}}\right)$ is expressed as a fraction of the total error variance.

Table 5: Dynamic Probit Models (Heckman and Singer approach) of Married Women's Participation Outcomes

	Random effect with AR(1) () (1)	Random effect with SD(1) (endogenous initial condition) (2)	Random effect with AR(1)+ SD(1) (endogenous initial condition)
Permanent non-labor income ($\mathrm{ymp}_{\mathrm{mp}}$)	$\begin{gathered} \hline 0.057 \\ (0.131) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.040 \\ (0.016) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.080 \\ (0.009) \end{gathered}$
Transitory income (y_{mt})	$\begin{gathered} -0.009 \\ (0.062) \\ \hline \end{gathered}$	$\begin{gathered} -0.021 \\ (0.024) \\ \hline \end{gathered}$	$\begin{array}{r} -0.004 \\ (0.011) \\ \hline \end{array}$
No. of children aged 0-2 years(\#kid0-2)	$\begin{gathered} \hline-1.139 \\ (0.085) \\ \hline \end{gathered}$	$\begin{gathered} \hline-0.799 \\ (0.064) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-1.144 \\ & (0.049) \\ & \hline \end{aligned}$
No. of children aged 3-5 years(\#kid3-5)	$\begin{gathered} \hline-0.444 \\ (0.191) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.208 \\ & (0.051) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.439 \\ (0.038) \\ \hline \end{gathered}$
No. of children aged 6-17 years(\#kid6-17)	$\begin{gathered} \hline-0.183 \\ (0.140) \\ \hline \end{gathered}$	$\begin{aligned} & \hline-0.115 \\ & (0.031) \\ & \hline \end{aligned}$	$\begin{gathered} \hline-0.142 \\ (0.012) \\ \hline \end{gathered}$
Lagged dependent ($\mathrm{h}_{\mathrm{t}-1}$)		$\begin{gathered} 1.280 \\ (0.042) \end{gathered}$	$\begin{gathered} \hline-0.040 \\ (0.008) \\ \hline \end{gathered}$
AR(1) Coeff. (ρ)	$\begin{gathered} 0.812 \\ (0.018) \\ \hline \end{gathered}$	-	$\begin{gathered} 0.855 \\ (0.013) \\ \hline \end{gathered}$
First support-point (θ_{1})	$\begin{aligned} & \hline-5.176 \\ & (1.912) \end{aligned}$	$\begin{gathered} \hline 0.451 \\ (0.007) \end{gathered}$	$\begin{gathered} \hline-5.36 \\ (0.210) \end{gathered}$
Second support- point (θ_{2})	$\begin{aligned} & \hline-7.596 \\ & (1.980) \\ & \hline \end{aligned}$	$\begin{gathered} -0.673 \\ (0.005) \\ \hline \end{gathered}$	$\begin{gathered} -9.65 \\ (0.281) \\ \hline \end{gathered}$
Third support- point (θ_{3})	$\begin{aligned} & -11.678 \\ & (2.340) \\ & \hline \end{aligned}$	$\begin{gathered} -2.224 \\ (0.006) \\ \hline \end{gathered}$	-
First support- point for initialperiod (θ_{11})	-	$\begin{gathered} \hline-3.007 \\ (1.059) \end{gathered}$	$\begin{gathered} \hline-2.46 \\ (0.167) \end{gathered}$
Second support- point for initial period (θ_{22})	-	$\begin{gathered} -4.279 \\ (1.063) \end{gathered}$	$\begin{gathered} -5.06 \\ (0.208) \end{gathered}$
Third support- point for initial period (θ_{33})	-	$\begin{gathered} \hline-5.950 \\ (1.071) \end{gathered}$	-
Probability (π_{1})	0.83	0.74	0.90
Probability $\left(\pi_{2}\right)$	0.13	0.19	0.10
Probability (π_{3})	0.04	0.07	-

Notes: Estimated standard errors in parentheses. All specifications include time dummies, age, agesquared , educational status, number of kids aged $0-2,3-5$, and $6-17$, permanent non labor income, transitory non labor income, place of birth, and a variable for a birth next year

Figure1: Response to a birth in year 1, various models.

Figure2: Response to a 10% increase in permanent income in year 1, various models.

Figure 3: Dynamic probit response to a birth in year 1, by education level.

Figure 4: Dynamic probit response to a birth in year 1, by immigration-status.

Figure 5: Dynamic probit response to a 10% increase in permanent income in year 1, by education level.

Figure 6: Dynamic probit response to a 10% increase in permanent income in year 1, by immigration-status.

Appendix: The following tables are taken from Hyslop (1999) for US data
TABLE I
SAMPLE CHARACTERISTICS

	$\underset{\text { Fample }}{\text { Full }}$ (1)	Employed 7 Years (2)	Employed 0 Yeats (3)	Single Transition from Work (4)	Single Transition. to Work (5)	Multiple Transitions (6)
Age	34.34	34.52	39.66	34.35	33.12	32.08
(1980)	(.23)	(.31)	(.81)	(.89)	(67)	(.44)
Education ${ }^{(a)}$	12.90	13.26	11.86	12.85	12.90	12.67
	(.05)	(.08)	(.17)	(.21)	(.16)	(.11)
Race (1 an Black)	0.22	0.25	0.24	0.16	0.15	0.20
	(.01)	(.01)	(.03)	(.03)	(.03)	(.02)
No. Children ${ }^{(b)}$ aged $0-2$ years	0.25	0.20	0.23	0.33	0.25	0.32
	(.01)	(.01)	(.02)	(.03)	(.02)	(.02)
No. Children ${ }^{\text {(b) }}$ aged 3-5 years	0.30	0.24	0.26	0.28	0.41	0.40
	(.01)	(.01)	(.03)	(.03)	(.03)	(.02)
No. Children ${ }^{(b)}$ aged 6-17 years	1.00	0.96	0.97	0.60	1.32	1.08
	(.02)	(,03)	(.07)	(.08)	(.07)	(.05)
Husband's Earnings ${ }^{\text {(b) }}$$(1987 \$ 1000)$	29.59	27.90	35.17	31.46	33.64	28.22
	(.47)	(.64)	(1.93)	(1.56)	(1.97)	(.72)
Participation ${ }^{(6)}$	0.70	1	10	0.46	0.55	0.57
	(.01)			(.02)	(.02)	(.01)
No. years worked ${ }^{(c)}$						
zero	10.6	-	100	-	-	-
one	6.1	-	-	24.7	15.3	11.1
two	5.4	-	-	19.2	14.8	10.4
three	5.7	-	-	14.4	12.5	14.1
four	6.7	-	-	9.6	12.5	20.0
five	8.8	-	-	13.0	19.3	24.9
six	8.6	-	-	19.2	25.6	19.5
seven	48.2	100	-	-	-	-
Sample size	1812	873	192	146	176	425

[^7]TABLE II
Linear Probabllity Models of Married Women’s Participation

Notes: All specifications include unrestricted time effests, a quadratic in age, race, years of education, permaneat and transitory nonlabor income, current realizations of the number of children aged $0-2,3-5$, ard $6-17$, lagged realizations of the number of children aged $0-2$, and a dummy variable for a birth next year. Arbitrary cross-equaticn correlation and cross-sectional heterocoedasticity-sorrected estimated standard crrors are in parentheses, except p-values for test statistics. The mode! is:

$$
h_{i}=\gamma h_{i t-1}+X_{i,}^{\prime} \beta+\alpha_{\mathrm{i}}+\varepsilon_{i j}
$$

Specificetions in rovs (1)-(5) assume $\varepsilon_{i f}$ is serially uncorrelated; specifications in row (6) assume $\varepsilon_{i l}-\rho \varepsilon_{i l-1}+v_{i}$, The estimates in row (6) are based on 2 -step minimum distance estimation, using unestricted first stage coofficient estimates.
${ }^{(2)}$ First-stage F statstic for the explanatory power of tie instruments, conditicnal on the included exogenous varables; averaged over the period equations.
${ }^{\text {(b) }}$ Sargan over-identification statistic, with 3 degrees of freedom.
${ }^{\text {(c) }}$ Second-stage goodness-of-fit statistic, with 5 degrees of freedom.

TABLE III
Linear Probability Modees of Married Women's Partictpation

	First-Differences			Levels		
	(1)	(2)	(3)	(4)	(5)	(6)
$y_{r n p}$	-	-	-	$\begin{array}{r} -0.076 \\ (.01) \end{array}$	$\begin{array}{r} -0.068 \\ (.01) \end{array}$	$\begin{array}{r} -0.064 \\ (.01) \end{array}$
$y_{m u}$	$\begin{array}{r} -0.034 \\ (.01) \end{array}$	$\begin{array}{r} -0.026 \\ (.01) \end{array}$	$\begin{array}{r} -0.030 \\ (.01) \end{array}$	$\begin{array}{r} -0.021 \\ (.01) \end{array}$	$\begin{array}{r} -0.024 \\ (.01) \end{array}$	$\begin{array}{r} -0.023 \\ (.01) \end{array}$
\#Kids0-2 $\mathbf{2}_{\text {L= }}$	$\begin{array}{r} -0.044 \\ (.01) \end{array}$	$\begin{array}{r} -0.050 \\ (.01) \end{array}$	$\begin{array}{r} -0.028 \\ (.02) \end{array}$	$\begin{array}{r} -0.048 \\ (.01) \end{array}$	$\begin{array}{r} -0.045 \\ (.01) \end{array}$	$\begin{array}{r} -0.034 \\ (.02) \end{array}$
\#Kids0-2,	$\begin{array}{r} -0.034 \\ (.02) \end{array}$	$\begin{array}{r} -0.034 \\ (.02) \end{array}$	$\begin{array}{r} -0.047 \\ (.02) \end{array}$	$\begin{array}{r} -0.077 \\ (.01) \end{array}$	$\begin{array}{r} -0.070 \\ (.01) \end{array}$	$\begin{array}{r} -0.055 \\ (.01) \end{array}$
\#Kids3-5,	$\begin{array}{r} -0.031 \\ (.02) \end{array}$	$\begin{array}{r} -0.040 \\ (.02) \end{array}$	$\begin{array}{r} -0.024 \\ (.02) \end{array}$	$\begin{array}{r} -0.062 \\ (.01) \end{array}$	$\begin{array}{r} -0.053 \\ (.01) \end{array}$	$\begin{array}{r} -0.022 \\ (.01) \end{array}$
\#Kids6-17 ${ }_{\text {s }}$	$\begin{array}{r} -0.010 \\ (.01) \end{array}$	$\begin{array}{r} -0.008 \\ (.01) \end{array}$	$\begin{array}{r} -0.027 \\ (.01) \end{array}$	$\begin{array}{r} -0.010 \\ (.01) \end{array}$	$\begin{array}{r} 0.010 \\ (.01) \end{array}$	$\begin{array}{r} -0.005 \\ (.004) \end{array}$
Birth ${ }_{\boldsymbol{r}+1}$	$\begin{gathered} 0.038 \\ (.02) \end{gathered}$	$\begin{array}{r} 0.045 \\ (.02) \end{array}$	$\begin{gathered} 0.030 \\ (.02) \end{gathered}$	$\begin{array}{r} 0.004 \\ (.02) \end{array}$	$\begin{array}{r} 0.010 \\ (.02) \end{array}$	$\begin{array}{r} 0.003 \\ (.02) \end{array}$
h_{x-1}	$\begin{gathered} 0.274 \\ (.03) \end{gathered}$	$\begin{gathered} 0.338 \\ (.03) \end{gathered}$	$\begin{gathered} 0.647 \\ (.09) \end{gathered}$	$\begin{gathered} 0.306 \\ (.03) \end{gathered}$	$\begin{array}{r} 0.399 \\ (.03) \end{array}$	$\begin{gathered} 0.563 \\ (.13) \end{gathered}$
ρ	-	-	$\begin{array}{r} -0.194 \\ (.04) \end{array}$	-	-	$\begin{array}{r} -0.166 \\ (.10) \end{array}$
Instruments	$h_{i t-2}$	$\begin{gathered} h_{i t-s} \\ \forall s>1 \end{gathered}$	$h_{i s-2}$	$\Delta h_{i c-1}$	$\begin{aligned} & \Delta h_{i r-s} \\ & \forall s>0 \end{aligned}$	$\begin{aligned} & \Delta h_{i t-1} \\ & \Delta h_{i t-2} \end{aligned}$

Notes: All specifications also include unrestricted time effects, a quadratic in age, race, and years of education. Arbitrary cross-equation correlation and cross-sectional heteroscedasticity-corrected estimated standard errors are in parentheses. The model is:

$$
h_{i \mathrm{r}}-\gamma h_{i \mathrm{r}-1}+X_{i f}^{r} \beta+\alpha_{i}+\varepsilon_{i l}
$$

Columns (1), (2), (4), and (5) assume $\varepsilon_{i 5}$ is serially uncorrelated.
Columns (3) and (6) assume $\varepsilon_{i f}=\rho s_{i l+1}+v_{i i^{*}}$

[^0]: * Department of Economics, Göteborg University, Sweden

 E-mail: Nizamul.Islam@economics.gu.se
 February 18, 2005

[^1]: ${ }^{1}$ The data used in the analysis are drawn from the Swedish Longitudinal Individual Data (LINDA). LINDA, a joint endeavor between the Department of Economics at Uppsala University, The National Social Insurance Board (RFV), Statistics Sweden (the main administrator), and the Ministries of Finance and Labor, is a register based data set consisting of a large panel of individuals, and their household members. The sampling procedure ensures that each annual cross section is representative for the population that year. The sample consists of 236,740 married couples, aged 20 to 60 in 1992-2001.
 ${ }^{2}$ The data used by Hyslop (1999) are from the 1986 panel study of income dynamics (PSID) and pertain to the seven calendar years 1979-85, corresponding to waves 12-19 of the PSID and the sample consists of 1812 continuously married couples, aged between 18 and 60 in 1980. Sample characteristics are included in the Appendix (Hyslop Table I).

[^2]: ${ }^{3}$ To avoid part-time earnings and earnings from short unemployment, the individuals with earnings lower than a threshold level are considered as non participant.

[^3]: ${ }^{4} 1$ US Dollar $=10.7962$ Swedish Kroner (2000-06-01).

[^4]: ${ }^{5}$ For more details see, Hyslop (1999).

[^5]: ${ }^{6}$ There is substantial literature concerned with this issue. See for example Mundlak (1978), Chamberlain (1984).

[^6]: ${ }^{7}$ The model is also estimated with three support points and found that the model is fitted well with two support points (for this and other results concerning this issue, see Hansen and Lofstrom 2001, Cameron and Heckman 2001, Stevens 1999, Ham and Lalonde 1996, Eberwein, Ham and Lalonde 1997). This issue is also discussed in Heckman and Singer.

[^7]: Notes: Standard errors in parentheses. Sample selection criteria: continuously married couples, aged 18-60 in 1980, with positive husband's annoal earnings and hours worked each year.
 ${ }^{(a)}$ Years of Education are imputed from the following categorical scheme: $1={ }^{\prime} 0-5$ grades' (2.5 years); $2={ }^{\prime} 6-8^{\prime}$ (7 years); $3={ }^{*} 9-11^{\prime}$ (10 years); $4={ }^{\prime} 12^{\prime}$ (12 years); $5=' 12$ plus non-a cademic training' (13 years); $6=$ 'some college' (14 years); $7=$ 'college degree, not advanced' (16 years); $8=$ 'college advanced degree' (18 years). Education is measured as the highest level reported in the 1980-86 surveys.
 ${ }^{(b)}$ Sample Averages: child variables based on \mathbf{S} obse rvations; participation and male earnings based on 7 observations.
 ${ }^{\text {(c) }}$ Column percentages.

