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1  Introduction 

Individuals who have experienced unemployment are more likely to experience same event 

in the future. Heckman (1981) shows two explanation of this serial persistence. The first 

one is “true state dependence” in which current participation depends on past participation. 

And the second is “spurious state dependence” in which an individual component 

determines current participation irrespective of past participation. However, these two 

sources of persistence in individual participation decisions have very different implications, 

for example, in evaluating the effect of economic policies that aim to alleviate short-term 

unemployment (e.g., Phelps 1972), or the effect of training programs on the future 

employment of trainees (e.g., Card and Sullivan 1988).  

  

Hyslop (1999) interprets these serial persistence from the standpoint of the job-search 

uncertainty, and estimated these effects (he calls “State dependence”, “unobserved 

heterogeneity”, “serially correlated transitory error” respectively) empirically. He proposes 

a very general probit model with correlated random effects, auto correlated error terms and 

state dependence and compare the results obtained adopting different levels of generality in 

the specifications. Hyslop (1999), using U.S. panel data (PSID), shows that “state 

dependence” and “unobserved heterogeneity” have strong effect for the married women’s 

participation decision. Hyslop also shows that both state dependence and unobserved 

heterogeneity play an important role in shaping participation decisions and improves 

substantially the predictive performance of the model. The analysis rejects the exogeneity 

of fertility to participation decision in static model; however, exogeneity hypothesis is not 

rejected when the dynamics are modeled.  
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The objective of this study is to examine the dynamic discrete choice labor supply model 

that allows unobserved heterogeneity, first order state dependence and serial correlation in 

the error components. In particular, the study examines the relationships between 

participation decisions and both the fertility decision and women’s non-labor income. The 

study is essentially a replication of what Hyslop (1999) did with US data on Swedish data. 

We follow an alternative approach proposed by Heckman and Singer (1984) and assume 

that the probability distribution of unobserved heterogeneity can be approximated by a 

discrete distribution with a finite number of support points.. For models with general 

correlated disturbances, we use simulation based estimation methods (MSL) proposed by 

Lerman and Manski (1981), McFadden (1989), and Pakes and Pollard (1989), among 

others.   

The results show that there is a negative fertility effect on participation propensities. Similar 

to Hyslop (1999), substantial unobserved heterogeneity is found in the participation 

decision. However, contrary to Hyslop (1999), negative state dependence and positive 

serial correlation in the transitory errors is found in women’s participation decision.  

 

The paper is organised as follows; Section 2 compares the data set used in the analysis with 

the U.S. data used by Hyslop (1999). Section 3 presents the model and empirical 

specification while the empirical and simulation results are discussed in Section 4. Section 

5 summarizes and draws conclusions.  
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2 Data  

An important feature of the data is the persistence in women’s participation decision.1 

Table 1a presents the observed frequency distribution of the numbers of years worked and 

the associated participation sequences. It appears that there is significant persistency in the 

observed annual participation decision. For instance, if individual participation outcomes 

are independent draw from a binomial distribution with fixed probability of 0.84 (the 

average participation rate during the ten years), then about 17 percent of the sample would 

be expected to work each year, and almost no one (0.000000011) would not work at all. 

But in fact 59% work every year, while 5% do not work at all. However, this observed 

persistence in annual participation can be the result of women’s observable characteristics, 

unobserved heterogeneity or true state dependence.  

 

Table-1a>>> 

 

Table 1b and Table I (in the appendix) compare the women’s observable characteristics 

between the sample used here and the sample used by Hyslop (1999) for U.S. data.2 In 

Table 1b for Swedish data, women who always work are better educated (36% women have 

                                                 
1 The data used in the analysis are drawn from the Swedish Longitudinal Individual Data (LINDA). LINDA, a 
joint endeavor between the Department of Economics at Uppsala University, The National Social Insurance 
Board (RFV), Statistics Sweden (the main administrator), and the Ministries of Finance and Labor, is a 
register based data set consisting of a large panel of individuals, and their household members. The sampling 
procedure ensures that each annual cross section is representative for the population that year. The sample 
consists of 236,740 married couples, aged 20 to 60 in 1992-2001. 
 
2 The data used by Hyslop (1999) are from the 1986 panel study of income dynamics (PSID) and pertain to 
the seven calendar years 1979-85, corresponding to waves 12-19 of the PSID and the sample consists of 1812 
continuously married couples, aged between 18 and 60 in 1980. Sample characteristics are included in the 
Appendix (Hyslop Table I).  
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University education) than those who never work (9% women have University education). 

In Table I for US data, women who always work are also better educated (average years of 

education is 13.26) than those who never work (average years of education is 11.86).  

 

Table-1b>>> 

 

In Table 1b, women who always work have fewer dependent children and their husband’s 

earnings are considerably higher than those who never work. On the other hand, in Table I, 

women who always work have fewer dependent children but their husband’s earnings are 

lower than those who never work. 

 

Swedish women who experience a single transition from work are older and have fewer 

infant children aged 0-2. However Swedish women who experience a single transition to 

work or who experience multiple transitions are younger than average, and have 

considerably more dependent children. Their husband’s earnings are slightly bellow 

average. The U.S. women who experiences a single transition to work are younger than 

average while their husband’s earnings is higher than average. The U.S. women who 

experiences multiple transitions are also younger than average but their husband’s earnings 

is lower than average. The differences in the total number of dependent children between 

the first four columns and the last two for both countries (especially Sweden) correspond 

with age differences. The presence of dependent children, together perhaps with lower than 

average husband’s earnings, may increase the probability of frequent employment 
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transitions, especially in Sweden which has more widely available childcare than in the 

U.S.  

 

In order to see the effect of observable characteristics on participation decisions, we 

analyzed the following variables: 

 

Employment status: There are two different labor market states. An individual is defined as 

a participant if they report both positive annual hours worked and annual earnings3.  

 

Age: Married couples aged 20 to 60 in 1992 are included in the sample.  

 

Education: Educational attainment is included since there may be different participation 

behavior among different educational groups. Three dummy variables for educational 

attainment are used: one for women who have at most finished Grundskola degree (9 years 

education); one for women who have Gymnasium degree (more than 9 but less than 12 

years of education); and one for women who have education beyond Gymnasium (high 

school).  

Fertility variables: Number of children aged 0-2, 3-5 and 6-7 are defined as fertility 

variables. 

Place of birth: In the sample it is observed that Swedish born women (93%, who work all 

ten years) work more than the foreign born women (85%, who never work). A dummy 

                                                 
3 To avoid part-time earnings and earnings from short unemployment, the individuals with earnings lower 
than a threshold level are considered as non participant. 
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variable for place of birth is included to see if there is any difference in the participation pattern 

between Swedish born and foreign born individuals. This dummy variable indicates the 

immigration status of the individual, where 1 refers to native born and 0 otherwise. 

 

Husband’s earning: Husband’s earning is used as a proxy for non-labor income. The time 

average ( .iy ) of husband’s earnings is used as permanent income (ymp); while the 

deviations from the time average ( .iy ) is transitory income (ymt). Annual earnings are 

expressed in constant (2001) SEK4, computed as nominal earnings deflated by the 

consumer price index.  

 

Future birth: An indicator variable for whether a birth occurs next period is also included.  

 

3  The Empirical model 

The empirical model used here is, similar to that used by Hyslop (1999). The model is a 

simple dynamic programming model of search behavior under uncertainty, in which search-

costs associated with labor market entry and labor market opportunities differ according to 

the individual’s participation state.  

 

 

 

 

                                                 
41 US Dollar = 10.7962 Swedish Kroner (2000-06-01).  
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The model can defined as - 

11( 0) ( 1, ..., ; 0,1,...., )it it it ith h X u i N t Tγ β−= + + > = =                                    (1)                       

itiitu εα +=  

where ith  is the observable indicator of participation;  and itX is a vector of explanatory 

variables, including time dummies, age, years of education, number of children, husband’s 

annual earnings. True state dependence is captured by the parameter γ. β  is a set of 

associated parameters to be estimated. It is assumed that the error term, itu , is  composed of 

two terms: First, iα  captures time invariant unobserved human capital and taste factors 

which may be correlated with observed fertility and/or income; Second, εit represents error 

which is independent of Xit. 

  

Along with Hyslop (1999), we estimate dynamic participation decision of married women 

using (1) linear probability models and (2) probit models.  

 

3.1 Linear probability models   

Let consider first linear participation model in level specification  

itiititit Xhh εαβγ +++= −
'

1           ( 1,...; ; 0,1,..., )i N t T= = .                                              (2)      

If εit is not serially correlated, then equation (2) can be consistently estimated using 1−∆ ith  

or previous lag as instruments for 1−ith . 

The equation (2) in first difference can be written as: 

'
1it it it ith h Xγ β ε−∆ = ∆ + ∆ + ∆ .                                                                                                (3) 
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If εit is not serially correlated, then equation (3) can be consistently estimated using 2−ith  or 

previous lags and non-contemporaneous realizations of the covariates as instrument 

for 1−∆ ith .  

Even if itε  is serially correlated, it can be consistently estimated by two-step procedure 

using 2−ith  as instrument for 1−∆ ith  However if itε  follows an AR(1) process: 

ititit v+= −1ρεε , where -1< ρ <1,  ),0(~ 2σitv , we can eliminate the serial correlation in the 

errors as :  

 itiititititit vXXhhh +−+−+−+= −−− αρρββργγρ )1()( 1
'

21 .                                                (4) 

Then equation (4) can be consistently estimated by instrumenting for 1−ith  and 2−ith  using 

1−∆ ith  and 2−∆ ith . Alternatively, first-difference of (4) gives the equation:  

itititititit vXXhhh ∆+∆−∆+∆−∆+=∆ −−− ρββργγρ 1
'

21)( .                                                     (5) 

In this case, 2−ith  is a valid instrument for 1−∆ ith 5.  

 

3.2 Non-linear models 

11( 0)it it it i ith h Xγ β α ε−= + + + >                                                                                       (6) 

itiitu εα +=  and ),0(~ 2
εσε Nit                                 ( 1,...; ; 1,..., )i N t T= =  

where ith is the indicator variable for participation and itX is a vector of explanatory 

variables, including time dummies, age, years of education, number of children, husband’s 

annual earnings. The subscript i indexes individuals and the subscripts t indexes time 

                                                 
5 For more details see, Hyslop (1999). 
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periods. The parameter γ represents true state dependence whereby an individual’s 

propensity to participate is changed because of past participation. iα represents for all 

unobserved determinants (such as taste for work,  intelligence, ability, motivation or 

general attitude of individuals) of participation that are time invariant for an individual i. 

And finally itε  represents the idiosyncratic error term.  

The equation (6) can be estimated by random effect probit model using MLE. The standard 

(uncorrelated) random effect model assumes that iα is uncorrelated with itX . But if the 

number of children and/or income is correlated with unobserved tastes, as expected in this 

paper, then iα will be correlated with itX . Hence we consider the correlated random effects 

model (CRE) which is based on the following relationship between iα and the observed 

characteristics6:  

1 2 3
1

4
1

( (# 0 2) (# 3 5) (# 6 17) )
T

i s is s is s is
s

T

s mis i
s

Kids Kids Kids

y

α δ δ δ

δ η

=

=

= − + − + −

+ +

∑

∑
 

        Thus the model (6) can be written as: 

( )1 1
`

1( 0)it it t it s is i it
s t

h h X Xγ β δ δ η ε−
≠

= + + + + + >∑                                                             (7) 

it i itv η ε= +                                            ( 1,...; ; 1,..., )i N t T= =  

where ),0(~ 2
ηση iidNit  and independent of itX and i tε  for all i, t.  

 

                                                 
6 There is substantial literature concerned with this issue. See for example Mundlak (1978), Chamberlain 
(1984).     
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 The initial condition in dynamic probit model with unobserved effects complicates 

estimation considerably. Estimation requires an assumption about the relationship between 

the initial observations, 0ih , and iη .We consider the approach to the initial conditions 

problem proposed by Heckman (1981b). The model specifies a linearized reduced form 

equation for the initial period as: 

       ( )´
0 0 0 0 01 0i i ih zβ η ε= + + >                                                                                                 (8) 

where 2
0 0~ (0, )iidN ηη σ and independent of 0iz  and 0iε . 0iz  includes the variables for 

initial period ( 0iX ) and other exogenous variables.  It is also assumed that the error term 

0iε satisfies the same distributional assumptions as itε for t ≥ 1. For normalization we 

assume 2 1εσ = . 

 

For a random sample of individuals the likelihood to be maximized is then given by   

                          

( ) ( ){ } ( ) ( ) ( )´
0 0 0 0 1 1

`1 1

2 1 2 1
N T

i i it t it s is i it
s ti t

L z h h X X h dF
η

β η γ β δ δ η η−
≠= =

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎡ ⎤= Φ + − Φ + + + + −⎨ ⎬⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭
∑∏ ∏∫            (9)           

                             

where F is the distribution function of η (consisting of 0η and iη ). However, as η  is not 

observed, we have to integrate out this term from the above likelihood to obtain the 

unconditional likelihood function. To do this, we need to specify a distribution for η . If η  

is taken to be normally distributed, the integral over η  can be evaluated using Gaussian—

Hermite quadrature (Butler and Moffitt, 1982). In this paper, we follow an alternative 
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approach proposed by Heckman and Singer (1984), and assume that the probability 

distribution of η  can be approximated by a discrete distribution with a finite number (J) of 

support points. In this specification the distribution of η is taken to have mass points 

( )jη (j=1,2,...,J) with corresponding probabilities jπ satisfying 0 1jπ≤ ≤  ∀ j and  

1
1J

jj
π

=
=∑ . To be specific, we assume that there are J types of individuals and that each 

individual is endowed with a set of unobserved characteristics, ( )jη  (j=1,2,...,J).  We report 

estimates based on this models where J=3. 

 

The likelihood is then:  

 ( )( ){ } ( ) ( )´
0 0 0 0 1 1

1 `1 1

2 1 2 1
N TJ

j i i it t it s is i it
j s ti t

L z h h X X hπ β η γ β δ δ η−
= ≠= =

⎧ ⎫⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪ ⎪⎪⎡ ⎤= Φ + − Φ + + + + −⎨ ⎨ ⎬⎬⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭
∑ ∑∏ ∏             (10) 

 

This specification, controlling for endogenous initial condition, also allow arbitrary 

correlation between unobserved effect ( 0η ) of initial period and unobserved effects ( iη ) of 

other periods with the probability distribution of initial and other period support points. 

 

Autocorrelation in the itε , perhaps reflecting correlation between transitory shocks, which 

is also complicates estimation considerably. For the models with 

autocorrelation ititit v+= −1ρεε , ),0(~ 2
vit Nv σ ; the Heckman estimator requires the 

evaluation of T-dimensional integrals of Normal densities. Simulation estimators provide a 

feasible way to address this problem. A Maximum Simulated Likelihood (MSL) estimator 
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(see for example Gourieroux and Monfort, 1996, and Cameron and Trivedi, 2005), based 

on the GHK algorithm of Geweke, Hajivassiliou and Keane (see for example Keane, 1994) 

can be used. The above model and estimator are discussed in Lee (1997) in more details. 

Following Lee (1997) first we generate 1 2, ,..., Tu u u independent uniform [0, 1] random 

variables. Then with given initial condition the truncated random variables 1 2, ,..., Tw w w  

for GHK simulator can be generated recursively from the following steps, from t=1….,T:   

 

 (1) Calculate     ( ) ( ) ( )1
1 1 1

`
2 1 2 1t it t it it t it s is i it

s t
w h u h h X Xγ β δ δ η ρε−

− −
≠

⎡ ⎤⎛ ⎞⎛ ⎞= − − Φ Φ − + + + + +⎢ ⎥⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠⎣ ⎦

∑ .  

 

(2) Update the disturbances process 1t it itwε ρε −= +  

 

For each i, with R independently generated vectors from random draws the simulated 

likelihood is 

 

( ) ( ){ } ( ) ( )´
0 0 0 0 1 1 , 1

1 1 `1 1

1 2 1 2 1
N TR J

r
j i i it t it s is i i t it

r j s ti t

L w z h h X X h
R

β η γ β δ δ η ρε− −
= = ≠= =

⎡ ⎤⎧ ⎫⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪ ⎪⎪⎡ ⎤= Φ + − Φ + + + + + −⎢ ⎥⎨ ⎨ ⎬⎬⎢ ⎥⎜ ⎟⎣ ⎦ ⎝ ⎠⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪⎩ ⎭⎩ ⎭⎣ ⎦
∑ ∑ ∑∏ ∏            (11) 
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4 Results  

This section reports and compares the results with the results of Hyslop (1999) for various 

linear probability models and probit models. The results for all specifications are reported 

based on 10% (random draw) sub-sample. 7 

 

4.1 Linear Probability Models 

Various dynamic linear probability specifications corresponding to equation (2) and (3) 

have been estimated both in levels and in first difference specification, just as Hyslop 

(1999) did. Table 2 shows the results for seven years data. In row 1, the GLS estimate of 

lagged dependent variable for first difference is -0.31 which is downwards biased due to 

negative correlation between 1−∆ ith  and the error due to first differencing. While the 

estimate obtained from level specification is 0.73 which is upwards biased because of 

unobserved heterogeneity. These findings are very close to Hyslop’s GLS findings for 

lagged dependent variables. The estimates for first difference and level specifications in 

Hyslop (1999) are -0.35 and 0.67 respectively (See appendix row 1 Table II).  

 

Row (2) shows the results using out-of-period realizations of the covariates as instruments 

for the lagged dependent variable. If the regressors are exogenous with respect to the 

transitory error component, these instruments are valid instruments and enable consistent 

estimates of the effects of lagged dependent variable. Estimated coefficients in first 

difference and level specification are: -0.10 and 0.35 respectively. These coefficients are 

close to zero than the GLS estimates. 
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If it is assumed that there is no serial correlation in the transitory errors then lagged values 

of h would be valid instruments for 1−∆ ith , and lagged values of h∆ would be valid 

instruments for 1−ith . In row 3, 2−ith  is added to the vector of instruments for 1−∆ ith , and 

1−∆ ith  to the vector of instruments for 1−ith . The estimates of the lagged dependent variable 

coefficients obtained from the first difference and level specification are now 0.22 and 0.34 

respectively. The F-statistics indicate that these instruments have substantial explanatory 

power. In row 4, the regressors have been dropped form the instrument sets. The 

coefficients of lagged dependent variable are 0.32 to 0.26. Row (5) shows the specifications 

based on Arellano and Bond (1991), which include all valid lagged participation effects in 

the instrument sets. The estimated coefficients for first-differences and levels are very 

close, -0.24 and -0.27, respectively. Finally row (6) presents the specification which relaxes 

the assumption that the transitory errors are uncorrelated, and allows the errors to follow a 

stationary AR(1) process. Two-step GMM estimation shows that the coefficients of lagged 

dependent variable in both first difference and level specification decreased dramatically to 

-0.05 and -0.006 respectively. On the other hand, the estimates of the AR(1) serial 

correlation parameter are positive and quite similar: 0,32and 0.28 respectively. 

Interestingly, the results of GMM contrast sharply with Hyslop(1999). In Hyslop(1999), the 

effects of lagged dependent variable are positive, while AR(1) coefficients are negative. We 

will check these contrasts by another specification.   

 

Table-2>>> 
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Table 3 shows the estimated regressor coefficients from the specifications presented in 

rows (4)-(6) of Table 2. Like Hyslop’s findings (See appendix Table III), the results show 

that pre-school children have substantially stronger effects on participation outcomes than 

school-aged children. The results also show that permanent non-labor income effect (ymp) is 

positive and significant.  

 

Table-3>>> 

     

 

4.2 Static probit models 

Table 4 shows the results for the static probit specifications focusing on demographic and 

other characteristics of married women in Sweden. Here, the model is estimated for the 

sample over the ten year period (1992-2001). Column 1 contains the results of simple 

probit model where each of the fertility variables has significantly negative effect on 

women’s participation decisions. The younger children have stronger effects than older. An 

additional child aged 0-2 reduces the probability of participation by 18 percent (marginal 

effect). The permanent non-labor income effect is significantly positive which may reflect 

the predominant dual income family structure in Sweden.  

 

Table -4>>> 

Column 2 contains the results of random effects probit model estimated by MLE using 

Gaussian quadrature. The result indicates that 77 percent of the latent error variance is due 

to unobserved heterogeneity. Compared to simple probit model, the estimated effects of 
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young children aged 0-2 increase by 53 percent while that of children aged 6-17 increases 

by 62 percent. The random effect probit model is re-estimated considering two different 

types of distribution of unobserved heterogeneity. In column 3 the heterogeneity is assumed 

to be normally distributed whereas in column 4 it is assumed that the heterogeneity have a 

common discrete distribution with a finite number of mass points (Heckman and Singer 

approach). The estimates of these models are broadly similar.   

 

The estimated support points and accompanying probabilities for the model in column 4 

indicate unobserved heterogeneity in individuals’ preferences. The first estimated support 

point ( 1θ  = -3.15) and the corresponding probability ( 1π  = 0.761) indicate a relatively 

strong preference for work by 76% of the sample (compared to the sample information that 

58% actually work all 10 years of the study period). The second estimated-support point 

( 2θ = -4.88) and the corresponding probability ( 2π  = 0.156) indicates flexible preference 

for work by 16%. The third estimated support point ( 3θ  = -6.86) and the corresponding 

probability ( 3π  = 0.083) indicates low preference for work by 8% (compared to the sample 

information that 5% don’t work at all during the study period).   

 

It has been assumed that the fertility and/or income variables are independent of 

unobserved heterogeneity. If these assumptions are incorrect, the resulting coefficient 

estimates will be biased and inconsistent. For this reason the correlated random effects 

(CRE) specification for iα , given in equation (7) is estimated in column 5. A likelihood 

ratio test (not reported) of simple versus correlated random effects models gives no support 
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for rejecting the simple model (LR statistic = 14.97). Moreover, separate Wald–statistics 

for the correlation between unobserved heterogeneity and three fertility variables provide 

evidence in favor of exogeneity hypothesis in each case. These findings sharply contradict 

Hyslop (1999) finding in static case, who rejects the hypothesis that fertility decisions are 

exogenous to women’s participation decisions. 

 

 

4.3 Dynamic probit models 

Table 5 shows the results of inter-temporal participation decisions of married women. A 

latent class ( model is used in the dynamic probit model with unobserved individual 

specific effect. Column 1 contain the results for the specification which allows first order 

autoregressive error AR(1).The results show that the addition of a transitory component of 

error has significant effect on the model and the estimated coefficient is 0.81. The 

percentage of the women of strong preference for work is now increased to 13%. 

 

Column 2 contains the results for the specification which allows first order state 

dependence SD(1). This specification allows arbitrary correlation between the initial and 

other periods with the same probability of initial and other periods support points. The 

results show a large first order state dependence effect and the coefficient is 1.28.    

 

 Column 3 shows the results for the random effects specifications with a first order 

autoregressive error component AR(1) and first order state dependence SD(1). The model 

is estimated using simulated maximum likelihood (MSL) estimation method and based on 
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two support points.7 For simulation I use standard approach to random draws from the 

specified distribution. The results show that including state dependence has a little effect on 

the distribution of unobserved heterogeneity and serial correlation parameter in the model. 

The AR(1) coefficient is now 0.86.  

 

 

4.4 Simulated responses to “fertility” and to changes in “non-labor” Income 

Figure 1 shows simulated responses to a birth in year 1 for the simple probit model, random 

effects MSL probit model, AR(1) probit model, and dynamic probit with first order state 

dependence model. The effect of an additional child aged 0-2 is -0.18 in simple probit, -

0.21 in RE MSL, -0.19 in AR (1), and -0.16 in dynamic probit. The difference between 

simple probit and RE-MSL shows the bias due to unobserved heterogeneity. However, the 

distance between RE-MSL and dynamic probit shows the bias that arises from not 

controlling for state dependence. The simulated responses decline initially as the child ages, 

and are nearly indistinguishable when the age is 3. The simulation patterns explain that the 

women leave the labor force to have children and return as the children age beyond infancy. 

The return of Swedish women to work is quicker than the US women (See Hyslop 1999). 

This indicates that Sweden has more widely available childcare system than the U.S.  

 

                                                 
7 The model is also estimated with three support points and found that the model is fitted well with two 
support points (for this and other results concerning this issue, see Hansen and Lofstrom 2001, Cameron and 
Heckman 2001, Stevens 1999, Ham and Lalonde 1996, Eberwein, Ham and Lalonde 1997). This issue is also 
discussed in Heckman and Singer.  
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Figure 2 shows the simulated effects of ten percent increase in permanent non-labor 

income. Ten percent increase in permanent non-labor income increases women’s 

participation in the first year by 0.08 in simple-probit, 0.16 in RE-MSL, and 0.10 in 

dynamic probit. The figure suggests that there is a positive income effect of husbands’ 

earnings on wives’ participation decision.  

 

Figure 3 shows the dynamic probit model responses to a birth during first year for middle 

educated (Gymnasium) and highly educated (University) women. The results show that the 

effect of one birth during first year for middle educated women is stronger than those of 

highly educated. Figure 4 shows broadly similar responses of immigrant and native born 

women. Figure 5 presents the dynamic probit model responses of 10 percent increase in 

permanent non-labor income for middle educated (Gymnasium) and highly educated 

(University) women. The response of dynamic probit model for middle educated women is 

stronger than those of highly educated. Figure 6 shows quite similar responses of 

immigrant and native born women.  

 

 

5 Summary and Conclusions   

The purpose of this study is to analyze the inter-temporal labor force participation         

behavior of married women in Sweden, using a ten year sample from Longitudinal 

Individual Data (LINDA). We estimated linear probability models and dynamic probit 

models with a variety of specifications. Both linear probability and probit results suggest  

that the inter-temporal participation decisions are characterized by a substantial amount of 
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unobserved heterogeneity. In the specification which allows first order state dependence 

and serial correlation in the transitory errors components, it is found that almost no true 

state dependence in individual propensities to women participation.  However the estimated 

first order AR(1) component has a large and significant effect in both linear probability 

model and dynamic probit model. The findings indicate serial persistence on participation 

decisions due to persistent individual heterogeneity   
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Table 1a: Distribution of Number of Years Worked   
Number of 

years worked  
Full sample 

 
 

(1) 

Employed 
all 10 years 

 
(2) 

Employed 
0 years 

 
(3) 

Single 
transition 
from work 

(4) 

Single 
transition 
to work 

(5) 

Multiple 
transitions 

 
(6) 

Zero 4.67 - 100 - - - 
One 1.49 - - 10.48 4.17 2.42 
Two 1.56 - - 7.06 4.80 3.37 
Three 1.74 - - 6.68 5.53 3.92 
Four 2.16 - - 6.53 5.63 5.87 
Five 2.41 - - 7.06 4.56 7.27 
Six 3.46 - - 8.73 7.47 10.43 
Seven 4.36 - - 10.86 10.62 12.68 
Eight 6.97 - - 15.03 16.83 20.93 
Nine 12.45 - - 27.56 40.40 33.13 
Ten 58.73 100 - - - - 
Column percentages. 
 
Table 1b: Sample Characteristics 

 Full sample 
 

(1) 

Employed 
all 10 years 

(2) 

Employed 
0 years 

 
(3) 

Single 
transition 
from work 

(4) 

Single 
transition 
to work 

(5) 

Multiple 
transitions 

 
(6) 

Age(1992) 42.92 
(8.15) 

45.03 
(7.12) 

45.73 
(7.84) 

46.04 
(8.02) 

37.98 
(7.25) 

37.94 
(8.05) 

Education( a) 
(Primary) 

0.18 
(0.38) 

0.16 
(0.37) 

0.44 
(0.50) 

0.29 
(0.45) 

0.16 
(0.37) 

0.16 
(0.36) 

Education( a) 
(High-school) 

0.50 
(0.50) 

0.48 
(0.50) 

0.47 
(0.50) 

0.51 
(0.50) 

0.54 
(0.50) 

0.56 
(0.50) 

Education( a) 
(Universitet) 

0.32 
(0.47) 

0.36 
(0.48) 

0.09 
(0.28) 

0.20 
(0.40) 

0.29 
(0.46) 

0.29 
(0.45) 

Place of birth 
(Born in 
Sweden=1) 

0.92 
(0.27) 

0.93 
(0.26) 

0.85 
(0.36) 

0.89 
(0.31) 

0.91 
(0.29) 

0.91 
(0.29) 

No. of children 
aged 0-2 years 

0.13 
(0.37) 

0.05 
(0.23) 

0.09 
(0.32) 

0.06 
(0.28) 

0.25 
(0.50) 

0.31 
(0.53) 

No. of children 
aged 3-5 years 

0.20 
(0.45) 

0.10 
(0.33) 

0.14 
(0.39) 

0.10 
(0.34) 

0.40 
(0.59) 

0.40 
(0.58) 

No. of children 
aged 6-17 
years 

0.95 
(1.01) 

0.89 
(0.96) 

0.82 
(1.04) 

0.67 
(0.90) 

1.38 
(1.11) 

1.04 
(1.05) 

Husband’s 
Earnings 
(SEK 100,000) 

2.67 
(1.73) 

2.78 
(1.78) 

2.23 
(1.63) 

2.64 
(1.90) 

2.54 
(1.51) 

2.52 
(1.60) 

Participation 0.84 
(0.37) 

1.00 0.00 0.60 
(0.49) 

0.69 
(0.46) 

0.70 
(0.46) 

Sample size 236,740 139,030 11,070 13,170 20,620 52,850 
Note: Standard errors in parentheses. Sample selection criteria: continuously married couples, aged 20-60 in 
1992 with positive husband’s annual earnings and hours worked each year. 
(a)  Three dummy variables for educational attainment are used: One for women who have at most finished 
Grundskola degree (9 years education); One for women who have Gymnasium degree (more than 9 but less 
than 12 years of education); and one for women who have education beyond Gymnasium (high school).  
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Table 2: Linear Probability Models of Married Women's Participation 
  

First Difference Specification 
  

  
Levels Specification 

  

 Instruments γ  ρ  
Test 

statistic Instruments γ  ρ  
Test 

statistic 

(1) - 
-0,314 
(0.002) - - - 

0,725 
(0.005) - - 

(2) isX∆ , s∀  
-0,099 
(0.013) - 

232.40(a) 
(0.00) isX , s∀  

0,353 
(0.036) - 

102.29(a) 
(0.00) 

(3) 
isX∆ , s∀  

2−ith  
0,221 

(0.006) - 
322.08(a) 

(0.00) 
isX , s∀  

1−∆ ith  
0,336 

(0.015) - 
121.37(a) 

(0.00) 

(4) 2−ith  
0,326 

(0.007) - - 1−∆ ith  
0,264 

(0.012) - - 

(5) sith − , 1>∀s  
-0,246 
(0.003) - 

2535.68 
(b) (0.00) sith −∆ , 0>∀s  

-0,270 
(0.009) - 

3409.39 
(b) (0.00) 

(6) 2−ith  
-0,049 
(0.014) 

0,317 
(0.020)

3.48(c) 

(0.00) 1−∆ ith , 2−∆ ith  
-0,006 
(0.061) 

0,282 
(0.071)  

Note: Standard errors in parentheses except F Statistics with p values. All specifications include time 
dummies, age, age-squared , educational status, number of kids aged 0-2, 3-5, and 6-17, permanent non 
labor income, transitory non labor income,  place of birth, and a variable for a birth next year 
a) F test statistics for the explanatory power of the instruments  
b) Sargan over identification statistics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 27

 
Table 3: Linear Probability Models of Married Women's Participation 

  

  
First Difference Specification 
  

  
Levels Specification 
  

 (1) (2) (3) (4) (5) (6) 
Permanent non-labor  
income (ymp) - - - 

0,011 
(0.006) - - 

Transitory  
income (ymt) 

-0,001 
(0.001) 

-0,001 
(0.001) 

-0,001 
(0.008)

-0,005 
(0.002) 

-0,009 
(0.003) 

-0,005 
(0.004) 

No. Children 
aged 0-2 years 

-0,033 
(0.005) 

-0,015 
(0.005) 

-0,014 
(0.008)

-0,127 
(0.009) 

-0,160 
(0.014) 

-0,080 
(0.022) 

No. Children 
aged 3-5 years   

-0,060 
(0.004) 

-0,012 
(0.004) 

-0,047 
(0.005)

-0,018 
(0.007) 

-0,004 
(0.011) 

-0,004 
(0.013) 

No. Children 
aged 6-17 years 

-0,024 
(0.003) 

-0,003 
(0.003) 

-0,025 
(0.003)

-0,014 
(0.004) 

0,019 
(0.008) 

-0,004 
(0.007) 

Birtht+1 
 

0,089 
(0.004) 

0,073 
(0.005) 

0,064 
(0.007)

0,029 
(0.011) 

-0,007 
(0.013) 

0,014 
(0.072) 

Lagged dependent  (ht-1) 
 

0,326 
(0.007) 

-0,246 
(0.003) 

-0,049 
(0.014)

0,264 
(0.012) 

-0,270 
(0.009) 

-0,006 
(0.061) 

AR(1) Coefficient (ρ) 
 - - 

0,317 
(0.020) - - 

0,282 
(0.061) 

Instruments 
 

2−ith  
 

sith − , 1>∀s
 

2−ith  
 

1−∆ ith  
 

sith − , 0>∀s
 

1−∆ ith  

2−∆ ith  
Note. Estimated standard errors are in parenthesis.  All specifications include time 
dummies, age, age-squared , educational status, number of kids aged 0-2, 3-5, and 6-17, permanent non 
labor income, transitory non labor income,  place of birth, and a variable for a birth next year 
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Table 4: Static Probit Models of Married Women’s Participation Outcomes 
 Simple- 

Probit 
Effect 

(1) 

Random-
effect 
Probit 

(2) 

Random-
effect 
(MSL) 

(3) 

Random-effect 
(Heckman and 

Singer) 
(4) 

Correlated 
Random-effect 

(MSL) 
(5) 

Permanent non-labor 
income (ymp) 

0.062 
(0.008) 

0.123 
(0.025) 

0.06 
(0.006) 

0.042 
(0.009) 

0.160 
(0.008) 

Transitory income (ymt) -0.005 
(0.009) 

-0.029 
(0.016) 

-0.029 
(0.008) 

-0.016 
(0.015) 

-0.019 
(0.009) 

No. of children 
aged 0-2 years(#kid0-
2) 

-0.779 
(0.028) 

-1.197 
(0.044) 

-1.169 
(0.02) 

-1.079 
(0.038) 

-1.110 
(0.024) 

No. of children 
aged 3-5 years(#kid3-
5) 

-0.220 
(0.018) 

-0.309 
(0.034) 

-0.285 
(0.016) 

-0.264 
(0.034) 

-0.210 
(0.019) 

No. of children 
aged 6-17 years(#kid6-
17) 

-0.127 
(0.012) 

-0.207 
(0.022) 

-0.183 
(0.009) 

-0.151 
(0.015) 

-0.120 
 (0.015) 

Var(ηi)(a) - 0.774 
(0.008) 

0.650 
(0.050) 

- 0.660 
(0.021) 

Log-likelihood 10100.41 6359.59 6381.36 6294.80 6352.14 
First support point ( 1θ ) - - - -3.15 

(0.01) 
- 

Second support point 
( 2θ ) 

- - - -4.88 
(0.01) 

- 

Third support point 
( 3θ ) 

- - - -6.86 
(0.01) 

- 

Probability ( 1π ) - - - 0.761 - 

Probability ( 2π ) - - - 0.16 - 

Probability ( 3π ) - - - 0.08 - 

Wald statistic for 
H0:CRE=0 

     

Transitory income (ymt) - - - - 18.52 
(0.00) 

No. of children 
aged 0-2 years(#kid0-
2) 

- - - - 0.26 
(0.61) 

No. of children 
aged 3-5 years(#kid3-
5) 

- - - - 0.19 
(0.66) 

No. of children 
aged 6-17 years(#kid6-
17) 

- - - - 0.01 
(0.91) 

Notes: Estimated standard errors in parentheses. . All specifications include time dummies, age, age-
squared , educational status, number of kids aged 0-2, 3-5, and 6-17, permanent non labor income, transitory 
non labor income,  place of birth, and a variable for a birth next year. 
Var (ηi) is expressed as a fraction of the total error variance. 
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Table 5: Dynamic Probit Models (Heckman and Singer approach) of Married Women’s 
Participation Outcomes 
 Random effect with 

AR(1) 
  

() 
 

(1) 

Random effect  with   
SD(1) 

(endogenous  initial    
condition) 

  
 

(2) 

Random effect  with   
AR(1)+ 
   SD(1) 

(endogenous  initial      
condition) 

  
 

(3) 
Permanent non-labor income 
(ymp) 

0.057 
(0.131) 

0.040 
(0.016) 

0.080 
(0.009) 

Transitory income (ymt) -0.009 
(0.062) 

-0.021 
(0.024) 

-0.004 
(0.011) 

No. of children 
aged 0-2 years(#kid0-2) 

-1.139 
(0.085) 

-0.799 
(0.064) 

-1.144 
(0.049) 

No. of children 
aged 3-5 years(#kid3-5) 

-0.444 
(0.191) 

-0.208 
(0.051) 

-0.439 
(0.038) 

No. of children 
aged 6-17 years(#kid6-17) 

-0.183 
(0.140) 

-0.115 
(0.031) 

-0.142 
(0.012) 

Lagged dependent (ht-1) - 1.280 
(0.042) 

-0.040 
(0.008) 

AR(1) Coeff.(ρ) 0.812 
(0.018) 

- 0.855 
(0.013) 

First support-point ( 1θ ) -5.176 
(1.912) 

0.451 
(0.007) 

-5.36 
(0.210) 

Second support- point ( 2θ ) -7.596 
(1.980) 

-0.673 
(0.005) 

-9.65 
(0.281) 

Third support- point ( 3θ ) -11.678 
(2.340) 

-2.224 
(0.006) 

- 

First support- point  for initial- 
period  ( 11θ ) 

- -3.007 
(1.059) 

-2.46 
(0.167) 

Second support-  point for initial 
period  ( 22θ ) 

- -4.279 
(1.063) 

-5.06 
(0.208) 

Third support-  point for initial 
period  ( 33θ ) 

- -5.950 
(1.071) 

- 

Probability ( 1π ) 0.83 0.74 0.90 

Probability ( 2π ) 0.13 0.19 0.10 

Probability ( 3π ) 0.04 0.07 - 

Notes: Estimated standard errors in parentheses. All specifications include time dummies, age, age-
squared , educational status, number of kids aged 0-2, 3-5, and 6-17, permanent non labor income, transitory 
non labor income,  place of birth, and a variable for a birth next year 
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               Figure1: Response to a birth in year 1, various models. 
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            Figure2: Response to a 10% increase in permanent income in year 1, various models. 
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       Figure 3: Dynamic probit response to a birth in year 1, by education level. 
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   Figure 4: Dynamic probit response to a birth in year 1, by immigration-status. 
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    Figure 5: Dynamic probit response to a 10% increase in permanent income in year 1, by  
    education level. 
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   Figure 6: Dynamic probit response to a10% increase in permanent income in year 1, by  
   immigration-status. 
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           Appendix: The following tables are taken from Hyslop (1999) for US data 

  



 34

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 35

  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 


