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1 Introduction

Decomposition1 of energy use, energy intensity and pollution to identify dif-
ferent drivers for their evolution provides important information for policy
makers. Total industrial CO2 emissions C, for example, can be written as
the following sum of (trivial) products:

C =
∑
ij

Cij =
∑
ij

Q
Qi

Q

Ei

Qi

Eij

Ei

Cij

Eij

=
∑
ij

QSiIiMijUij, (1)

where Cij are the emissions from fuel j in sector i, Qi is the output of sector
i, total industrial output is Q :=

∑
i Qi, Eij is the consumption of fuel j and

Ei total fuel consumption in sector i, Si := Qi/Q is the output share and
Ii := Ei/Qi the energy intensity in sector i. Mij := Eij/Ei is the share of fuel
j in sector i and the sector- and fuel-wise emission factor is Uij := Cij/Eij.

Total emissions are thus expressed as a sum of products of factors referring
to size effects Q (total output), structural change Si (sector output share
in total output) and sector-wise technological progress Ii (energy use per
output), as well as the sector-wise fuel-structure Mij and sector- and fuel-
wise pollution intensity Uij. The main interest lies in the time development
of these different factors capturing the different driving forces, and in their
respective additive contribution to the evolution of total emissions. Formally,
the interest thus lies in the following type of decomposition of changes in C
between two time points t and t + 1: C(t + 1) − C(t) =

∑
ij(∆Q + ∆Si

+
∆Ii

+∆Mij
+∆Uij

), where the different deltas “∆” are the part of the change
in the total assigned to the variables indicated in subscripts.

The literature on the theoretical aspects of decomposition and on the
application to energy use and intensity and pollution still grows (e.g. Cole
et al. 2005, Boyd and Roop 2005, Choi and Ang 2003; for a survey, see
Ang 1995 and, most recently and encompassing, Liu and Ang 2007). Studies
comparing different decomposition methods find that results often depend
on the method chosen (e.g. Ang 1995, Greening et al. 1997, Ang 2004, Ang
and Liu 2007c). However, very similar results from different methods can
also occur. In some cases, this can be traced back to analytical equivalence
of the methods (e.g. Choi and Ang 2003, Ang and Liu 2007c).

Furtheron, decomposition methods often lead to a residual (the part of
the total energy use, intensity or pollution, which is not captured by the dif-
ferent terms in the decomposition) that remains seemingly unexplained. In

1In this paper, I primarily use the language and the methods of the so called Index
Decomposition Analysis (IDA). I link this to the Structural Decomposition Analysis (SDA)
and emphasise formal similarities in the last paragraph before section 2.2.
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addition, many methods are unable to properly deal with zero and negative
values in the data. New proposals for decomposition methods address these
issues and the performance of a method is often measured by the value of its
residual, ideally bringing this down to zero, and by the method’s convergence
properties under replacing zero-values with infinitesimal quantities and tak-
ing the limit to zero. Problems with negative values usually can easily be
resolved as they can be traced back to the treatment of positive and zero
values.

The literature on energy use and intensity and pollution emissions de-
composition recently identified the logarithmic mean Divisia index (LMDI)
approach as one of the most favorable (Ang 2004; Ang and Liu 2001, 2007a
and b, Liu and Ang 2007). This is based mainly on four features of the
method, namely its ability to handle zero and negative values, the absence
of any residual term and the ease of calculation. In addition, it is invariant
under time and factor reversal and fulfills aggregate consistency and propor-
tionality (these terms are explained in section 4 below).

However, several of these motivations actually have no basis as guidelines
for the quality of a decomposition method. First, the zero and negative value
problems of decomposition analysis stem from ill-defined operations during
the calculations and can be avoided. This will be elaborated in section 3
below.

The residual, on the other hand, reflects the fact that any such decom-
position is based on integral approximation (Trivedi 1981). This is due to
the fact that the functions involved in the decomposition are only known for
discrete points of time, e.g. annually. The residual thus cannot be argued
to necessarily be zero for an optimal decomposition approach. Forcing the
residual to be zero could in principle also involve mutually cancelling terms
of opposite sign in different parts of the decomposition (this is the case for
the Shapley-value decomposition with more than two factors, for example;
cf. Muller 2006). This could make the zero-residual decomposition even less
exact than a decomposition with some non-zero residual term based on a
good approximation. More on this is presented in section 4 below.

Nevertheless, the LMDI performs better regarding an exact decomposi-
tion of different classes of functions than other popular decomposition meth-
ods. This can be traced back to the LMDI being exact for a wide range of
functions assumed to generate the only discrete data to be decomposed. In
addition, an illustrative simulation, where known functions are decomposed
using different methods and results are compared to the exact decomposition
based on the calculation of the underlying integrals, shows that the LMDI
performs well. These claims will be addressed in section 5. It is this prop-
erty to provide exact decomposition for a wide range of functions that makes
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the LMDI a good method for decomposition rather than the four properties
referred to above that actually need not hold in the light of decomposition
as integral approximation.

From the following analysis, it will also become clear that it is not nec-
essary to treat the different variables involved in decomposition separately
(e.g. absolute values, intensities or relative intensities, etc.), as often done in
the literature (e.g. Ang 1995). The underlying formulae are the same for all
variables and although separate treatment sometimes may be illustrative, it
often makes the exposition somewhat lengthy and obfuscates the underlying
common formalism. I also want to emphasise that the discussion regarding
approximations is different from the discussion of approximate properties in
general index theory, as presented in Barnett and Choi (2006), for example.
There, the approximation is based on the distance between the discrete time
points becoming arbitrarily small, assuming full knowledge of the underlying
functions. Such a strategy is not possible here, as the functions are only
known for discrete points of time in fixed distance, e.g. annually.

In section 2, I introduce the basic formalism. Section 3 presents the
origin of the problems with zero and negative values and how these can
be avoided. In section 4, I discuss the residual and why its disappearance
cannot serve as a criterion to identify a good decomposition. I also clarify
the role of some further theoretical properties claimed to be necessary for
any good decomposition. In section 5, I derive for which type of functions
the LMDI and other decomposition methods are exact and discuss the role
of approximations and simulations for the assessment of the performance of
decomposition methods. Section 6 concludes.

2 Basic formalism, integral approximation and

weighted means

In this section, I introduce the basic formalism of decomposition analysis and
discuss the links to integral approximation.

2.1 Basic formalism

I introduce the formalism of decomposition using the example from Ang and
Liu (2007a). Referring equation (1) for CO2 emissions,

C =
∑
ij

Cij =
∑
ij

Q
Qi

Q

Ei

Qi

Eij

Ei

Cij

Eij

=
∑
ij

QSiIiMijUij, (2)
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the general formulae for decomposition of the change in emission level C from
time t to t+1 into the contributions of different key variables is given by the
following equation:

∆Ct+1,t := C(t + 1)− C(t) =

∫ t+1

t

dC

dτ
dτ

=
∑
ij

∫ t+1

t

(
SiIiMijUij

∂Q

∂τ
+ QIiMijUij

∂Si

∂τ
+

+QSiMijUij
∂Ii

∂τ
+ QSiIiUij

∂Mij

∂τ
+ QSiIiMij

∂Uij

∂τ

)
dτ

=
∑
ij

∫ t+1

t

QSiIiMijUij

( 1

Q

∂Q

∂τ
+

1

Si

∂Si

∂τ
+

1

Ii

∂Ii

∂τ
+ (3)

+
1

Mij

∂Mij

∂τ
+

1

Uij

∂Uij

∂τ

)
dτ.

The rationale to assign the contribution of each key variable to a sum-
mand in the second and third line is based on the following “infinitesimal
form” of the changes: dC

dτ
= SiIiMijUij

∂Q
∂τ

+ QIiMijUij
∂Si

∂τ
+ QSiMijUij

∂Ii

∂τ
+

QSiIiUij
∂Mij

∂τ
+ QSiIiMij

∂Uij

∂τ
. Here, each term captures the contribution of

the variable whereof the derivative is taken to the total infinitesimal change.
This motivates to assign contributions after the integration involved in (3)
in a similar way. This assignment fulfils the intuitive basic requirement as
formulated in Vogt (1978, referring to François Divisia), for example, namely
that for the contribution of a variable x, changes in the other variables should
not make a difference, given x does not change: here, the contribution from
Q is always zero in case ∂Q

∂τ
= 0, and the same is valid for the other variables.

Finally, equation (3) is often written as follows, employing d ln f
dx

= 1
f

df
dx

to
arrive at the “logarithmic form”:

∆Ct+1,t =
∑
ij

∫ t+1

t

QSiIiMijUij

(∂ ln Q

∂τ
+

∂ ln Si

∂τ
+

∂ ln Ii

∂τ
+

+
∂ ln Mij

∂τ
+

∂ ln Uij

∂τ

)
dτ. (4)

It can readily be seen from formulae (2) to (4) where potential problems
with zero or negative values might arise. First, expanding in equation (2)
causes a problem if a variable is equal to zero for some sectors, fuels or
periods, because in this case some of the factors on the right-hand side of

5



the equation contain ill-defined division by zero. I emphasize though, that
the whole term remains well-defined, as for each denominator equal to zero,
there is the corresponding numerator equal zero from the original expansion
in one of the other factors. The same problem arises in equations (3) and
(4), and the division by zero, resp. the logarithm of zero in the brackets
is still well-defined if combined with the corresponding factor equal to zero
in front of the brackets. In the logarithmic form, the additional problem of
ill-defined logarithms of negative values arises.

In the example, the change in emissions from t to t + 1 is decomposed
into five parts referring to overall industrial activity or size (the Q-term),
industrial structure (the S-term), energy intensity (the I-term), fuel-mix
(the M -term) and fuel emission factors (the U -term). Equation (3) is exact,
but the data to calculate the exact integrals is never available. Usually,
the quantities involved are only known for discrete points t and t + 1, e.g.
for subsequent years, while the exact shape of the function describing these
quantities between these points is unknown. The integrals in (3) have to be
approximated. This fact is well-known in the literature (Trivedi 1981; in the
energy context, see e.g. Liu et al. 1992). The consequences thereof, however,
are largely not acknowledged, as I elaborate below in the discussion of the
residual.

The basic task of decomposition is thus to approximate terms of the
following structure, where the integrand is only known for the boundary
values of the integration interval (referring the example above, we thus have
G = SiIiMijUij and H = Q; G = QIiMijUij and H = Si; etc.).

J :=

∫ t+1

t

G(τ)
∂H(τ)

∂τ
dτ =

∫ t+1

t

G(τ)H(τ)
( 1

H(τ)

∂H(τ)

∂τ

)
dτ =

=

∫ t+1

t

G(τ)H(τ)
(∂ ln H(τ)

∂τ

)
dτ. (5)

Having established the basic formalism, I make a short detour on the
difference between index and structural decomposition analysis (IDA, resp.
SDA) usually made in the literature (e.g. in Hoekstra and van der Bergh
2003). The main difference is in the variables a total is decomposed into -
which are based on the information from input-output tables in the case of
SDA and on more aggregate sector key variables in the case of IDA. Regarding
basic formulae, however, there is no difference. The problem is always to
decompose a change of a product into a sum of changes of the single factors
(see e.g. equations (3) ff in Hoekstra and van der Bergh 2003; (10) ff in
Dietzenbacher and Los 1998; (17) ff in Rose and Casler 1996). Thus, the
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same methods are in principle applicable. Such a translation of methods
is undertaken in Hoekstra and van der Bergh (2003) and this is needed for
SDA, as methods there are less elaborate than in IDA. Dietzenbacher and
Los (1998) point out the problem of the decomposition methods usually
used in SDA, namely their arbitrariness regarding combination of factors
evaluated at t and t + 1 that cannot be resolved on theoretical grounds and
that leads to a considerable range of differing results. The methods they
refer to are very similar to some methods used in poverty decomposition
(the Datt-Ravaillon approach), as discussed and criticised in Muller (2006).
In the light of this criticism and the discussion below, I suggest to refrain
from these Datt-Ravaillon type decomposition in SDA and to apply the more
refined methods used in IDA.

2.2 Integral approximation and weighted means

There are several methods to approximate the integrals - and derivatives -
given knowledge on the functions on the boundaries only. The most simple
integral approximation is based on Riemannian sums, i.e. on replacing the
integral by the value of the integrand at the right/left-hand-side boundary
multiplied with the difference in t between two subsequent data-points (which
equals 1 here and is thus dropped in the following):

J ≈ G(t + 1)
∂H(τ)

∂τ

∣∣∣
τ=t+1

and J ≈ G(t)
∂H(τ)

∂τ

∣∣∣
τ=t

(6)

A combination of the right/left-hand based approach is also common (the
so-called trapezoid method):

J ≈ 1

2

{
G(t + 1)

∂H(τ)

∂τ

∣∣∣
τ=t+1

+ G(t)
∂H(τ)

∂τ

∣∣∣
τ=t

}
(7)

In classical approximation with Riemannian sums, the limit ∆t → 0
would then be taken and all these approaches are equivalent and exact in the
limit. Here, however, where data is available for discrete points only, it is not
possible to proceed in this way. The results from the different approximations
thus usually differ and other approximation methods can also be employed
leading to potentially different results.

Based on first-order Taylor approximation, the most common approach
to approximate derivatives replaces them with the difference in the boundary
values divided by the difference in t (equalling 1, cf. above). Approximating
from the left/right, respectively, gives

∂H

∂τ
|τ=t ≈ [H(t)−H(t− 1)] resp. ≈ [H(t + 1)−H(t)]. (8)
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With the trapezoid method (7), i.e. approximating by a straight line
connecting the data, the choice of a right-hand derivative approximation at
the lower boundary and a left-hand at the upper may be motivated:

J ≈ 1

2

{
G(t + 1) + G(t)

}
[H(t + 1)−H(t)] (9)

This is not entirely consistent as an approximation procedure because it
treats the term involving derivatives differently from the other term by using
a right-hand side approximation for the left boundary and an approximation
from the left for the right boundary. It can nevertheless be defended as a
viable approach as it gives the same value for the derivative for the interval
(t, t + 1), i.e. the slope of the straight line joining the boundary points.

For both integral and derivative approximation, restricted data availabil-
ity makes it impossible to achieve increased accuracy by using higher-order
Taylor expansion terms and subsequently decreasing the time-differences to
reduce the higher-order errors.

Inspired by the trapezoid method, more general solutions that employ
some weighted combination of the values at the upper and lower bound-
ary are suggested (the trapezoid method weights them equal), at the same
time replacing the derivative with the difference of the boundary values of
the function the derivative is taken of (thus replacing the derivative at both
boundaries with the slope of the straight line joining those). These ap-
proaches usually are not systematically linked to the basis of decomposition
in approximations. If at all, reference to this background is only made in a
cursory fashion, not influencing subsequent argumentation. This has led to
some problems and confusion. Decomposition has become to be seen as a
problem of choosing the right weights for the two known endpoints in calcu-
lating the different contributions (cf. e.g. Liu et al. 1992). The following
expression (the so-called parametric Divisia Index) has thus been suggested
for the integral, replicating an approximation to the general Divisia index
(see e.g. Hulten 1973):[

G(t) + α
(
G(t + 1)−G(t)

)]
[H(t + 1)−H(t)], α ∈ [0, 1]. (10)

Choosing α = 0/1 gives the left/right-hand boundary approximation with
the mixed approximation for the derivative (replicating the Laspeyres and
Paasche Index), α = 1

2
gives the trapezoid approximation (the Marshall-

Edgeworth Index). Any value of α can be seen as a certain choice of weights
given to the left/right boundary in the integral approximation. This lacks
sound basis from integral and derivative approximation theory, though, espe-
cially as it is combined with unweighted approximations for the derivatives,
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although those are part of the integrand. Only if more information on the
underlying functions is available, some judgement if they are better captured
by a step function or the straight line or some other type of approximation
might be possible, thus suggesting a most adequate decomposition method
or choice of weights, respectively (see Fernandez and Fernandez (2007) for
a proposal on how such additional information could be used for parameter
specification).

The fundamental role of approximation is sometimes further obfuscated
by seeing decomposition as a problem of choosing different integration paths
between the known endpoints, without explicitly referring to the fact that
there is only one true, although unknown path underlying the data - that
could in principle been known given more detailed measurements (Liu et al.
1992, Balk 2005).

Against this background of perceiving the search for an optimal decompo-
sition rather as a problem of weights than of approximations, the development
of more flexible, “optimal” weighting schemes based on some basic principles
has been a natural path for improvements. The adaptive weighting (Liu et
al. 1992) for example builds on the claim that the original and the loga-
rithmic parametric Divisia approach to decomposition are mathematically
equivalent. This motivates setting equal the contributions calculated via the
original Divisia (eq. (10)) with those calculated via the corresponding loga-
rithmic Divisia approximations (eq. (4)), i.e.

[
G(t)H(t) + α

(
G(t + 1)H(t +

1)−G(t)H(t)
)]

ln(H(t+1)
H(t)

). This usually uniquely determines α. The mathe-
matical equivalence claimed here however does not hold for these equations
that are not exact any longer but approximations, as the derivatives have
been replaced by approximations. This method thus lacks sound theoretical
underpinning.

Another flexible weighting approach is the refined Divisia method from
Ang and Choi (1997), based on a specific choice of weights involving the
so-called “logarithmic mean function” L(x, y) := x−y

ln(x)−ln(y)
. There is no

motivation whatsoever from integral and derivative approximation to use
these weights, though. A big advantage, however, as the authors claim, is
that these weights solve the problem of zero-values and residuals, and this
is the main motivation to propose this particular weighting scheme. A zero
residual is also the main advantage claimed of Boyd and Roop (2005) for
their Fisher-Index based approach, which also forces the residual to be zero
by definition rather than by reference to exact approximation, though.

A further development of the refined Divisia method is the currently most
favourite “logarithmic-mean Divisia Index” LMDI (Ang 2004; Ang and Liu
2001, 2007a and b, Liu and Ang 2007). It is based on the logarithmic form
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of the decomposition (i.e. the right-hand expression in eq. (5)) and also
employs the “logarithmic mean”:

JLMDI := L(G(t + 1)H(t + 1), G(t)H(t)) ln(
H(t + 1)

H(t)
), (11)

The problem of zero or negative values as described above arises in this
form if H(t) or H(t + 1) is zero or negative. The presence of log-mean leads
to additional cases when zero or negative values can cause problems, namely
for G(t) or G(t + 1) being zero or negative. How to deal with these zero
values is the topic of the next section.

I link this exposition to the literature by pointing out that equation (11)
corresponds to the LMDI decomposition formulae (3) to (7) in Ang and Liu
(2007a). To see this, replace G and H with the appropriate variables, sum
over all sectors i and fuels j and equate t+1 = T , t = 0. Furthermore, equa-
tion (10) replicates the “additive parametric Divisia method 1” techniques
common in the literature, as presented in Ang (1995). Similar reasoning ap-
plies to the “parametric Divisia method 2” and the multiplicative approach
presented there, being the exponentiated form of the additive approach. The
preceding formalism illustrates that decomposition need not be discussed
separately for different combinations and types of the variables of interest as
it is often done in the literature (e.g. Ang 1995).

3 Zero and negative values

3.1 Zero values

There are basically two solutions suggested in the literature to deal with the
zero value problem: the “small-value” strategy and the “analytical limit”
(Ang et al. 1998; Wood and Lenzen 2006; Ang and Liu, 2007a). The
first strategy recommends to replace zero values by small numbers δ such as
10−20, 10−50, 10−100 and to rely on the convergence when δ becomes smaller
and smaller. This has the advantage that the general LMDI formulae need
not be changed after replacing all zero values in the data with such small
numbers. Wood and Lenzen (2006) observe that there are cases that are not
robust regarding different choices of δ. In addition, this approach is very
unsatisfactory from a mathematical point of view. Wood and Lenzen (2006)
are in favor of the “analytical limit”, which is also the mathematically correct
approach to such a situation involving divergent terms - taking the limit value
in an analytically correct way. Ang et al. (1998) show that these limits exist
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for the LMDI and that this thus converges to finite values. The disadvantage
is that some formulae where zero values occur have to be changed.

Although the analytical limits exist, the whole problem of zero values is
based on ill-defined operations such as divisions by zero that must be avoided
from the beginning in any correct formal reasoning. This motivates a third
- and the only truly consistent - approach to deal with or, rather, to avoid
the problem of zero values: As mentioned above, after equation (4), the
problem with zero values ultimately stems from the expansion in equation
(3). To avoid this ill-defined operation, the step from the second to the third
equation in (3) is not possible in case zero values are involved. Assuming that
any approximation of the integrals and derivatives involved will be based on
the known values at the end-points t and t + 1, a strategy relying on the
second rather than on the third equation in (3) or on the logarithmic form
in (4) has to be employed in case some of the variable equals zero for the
values t, t + 1 or both.

If one of the variables Q, Si, Ii, Mij or Uij is zero for both t and t + 1,
all terms in an approximation to (3) based on the boundary values at t and
t + 1 vanish (as also the derivative has to be approximated by such). If the
variable is zero only for one of the boundaries, again all terms referring to this
boundary vanish in the approximation, while in general all the terms from the
other boundary contribute, i.e. there is a contribution from each summand
in the integrand. This can also be seen in the more general equation (5),
where it is clear that the case G(t) = 0, G(t+1) 6= 0 need not lead to J = 0.

This differs from the results of the analytical limit approach to zero val-
ues in the LMDI. There, only the terms containing the derivative (i.e. the
logarithm in the LMDI approximation) of the variables with changes from/to
zero to/from positive values and not all the terms contribute to the overall
effect (cf. table 4 in Ang and Liu 2007a). This is rather counter-intuitive.
Ultimately, the following mechanism lies behind this property: a change from
zero to a finite value corresponds to an infinite percentage change and thus
dominates any change from a finite to another finite value if measured in
percentage changes. The following shows in detail how this result arises be-
cause of the properties of the log-mean function that mixes the values from
the two boundaries. In case H(t) = 0, H(t + 1) 6= 0, for example, we have
(for H(t + 1) 6= 0, G(t + 1) 6= 0, G(t) 6= 0)
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JLMDI =
G(t + 1)H(t + 1)−G(t)H(t)

ln[G(t + 1)H(t + 1)]− ln[G(t)H(t)]
ln(

H(t + 1)

H(t)
) =

=
(G(t + 1)H(t + 1)−G(t)H(t))( ln H(t+1)

ln H(t)
− 1)

ln G(t+1)
ln H(t)

+ ln H(t+1)
ln H(t)

− ln G(t)
ln H(t)

− 1
=

−→ G(t + 1)H(t + 1) for H(t) → 0. (12)

For one of the other variables being zero, i.e. G(t) = 0, G(t + 1) 6= 0, H(t) 6=
0, H(t + 1) 6= 0, for example,2 we have

JLMDI =
(G(t + 1)H(t + 1)−G(t)H(t))( ln H(t+1)

ln G(t)
− ln H(t)

ln G(t)
)

ln G(t+1)
ln G(t)

+ ln H(t+1)
ln G(t)

− 1− ln H(t)
ln G(t)

=

−→ 0 for G(t) → 0. (13)

Summarizing, to avoid the zero value problem in general, refrain from
using the manipulations that lead to the second or third term in (5) in case
zero values are present and base the decomposition on the first term in this
equation. This, however, does not in general provide a solution on how to
proceed from this first term.

In case of the LMDI, I thus recommend to treat zero values as follows: a)
if no zero values are involved - use the LMDI formulae; b) in case a variable
shows zero values for both t and t + 1 - drop the corresponding term from
the decomposition. This gives the same results as the “analytical limit” (cf.
table 4 in Ang and Liu 2007a); c) if a zero value is involved for t or t + 1
only, refrain from the manipulations that lead to the logarithmic form in
equation (5) and to the LMDI formula (11) and stick to the second equation
in (3), resp. the first in (5). Starting from this equation, any approximation
of the integrals given by some weighted combinations of the values at the
boundaries involves only one term because the other equals zero. But all
variables contribute, not only the term with the variable of interest in the
derivative as in the LMDI. This deviates from the LMDI “analytical limit”
prescription, because the operations that led to the LMDI formulae are ill
defined in this case: starting from the LMDI formulae (11), the analytical
limit is correct, but starting from the general decomposition formulae (3), the
LMDI formulae cannot be defined. Thus, directly taking the zero values into
account in the general decomposition leads to different results. In particular,

2This captures the other summands in (3) as the variable for which “H” stood above
is now part of “G”, i.e. the factor multiplying the derivative factor.
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the finding that each term involving zero values contributes equally to the
final result (Ang and Liu 2007a) and that the contributions of all the other
terms are zero cannot be justified.

The question on how to proceed from the second equation in (3) remains.
One approach would be to base strategies for zero values on the requirement
that they are exact for the types of functions the LMDI is exact for (see
section 5 below). This however fails for the exactness conditions for the
LMDI established below in equation (20). There, H = 0 implies G = 0 and
vice versa, which is a special case of the zero value problem only.

For the LMDI, I thus propose to search for solutions to the zero value
problem using the other strategies for the assessment of the performance
of decomposition methods presented in section 5, namely simulations and
identification of types of functions for which the LMDI is a good approxima-
tion. I am aware that I am short in offering solutions here, but I think it is
important to present in detail the problems behind zero values in decompo-
sition and currently proposed solutions and to show potential paths to new
solutions although such are not yet found. Depending on the results of this
exercise, it can well be that some other decomposition approach emerges as
optimal with zero values. The treatment of zero values should then be based
on this and not on the LMDI, which is not directly applicable for zero values,
as elaborated above.

3.2 Negative values

The problem of negative values arises from the general logarithmic form of
decomposition in case H < 0 (cf. eq. (5)). It is thus clear that this problem
does not arise in the form without logarithms and that it can thus always
be avoided from the beginning for any decomposition method not involving
logarithms.

Specifically in the LMDI, the problem with negative values arises from
the definition of the log-mean, involving logarithms of the total Cij in (2) to
(4) (i.e. “GH” in the general formulae) that is negative if an impair number
of factors is negative, and from the logarithms of H(t + 1) and H(t) in case
one of these is negative.

Ang and Liu (2007b) suggest to treat the problem of negative values in
the LMDI approach by replacing them by the corresponding positive values
in the logarithms if a change from a negative to a negative value from t to
t + 1 is involved3. If changes from/to a negative value to/from zero or a

3They do not make this substitution in the linear numerator of the logarithmic mean
L; they do not explicitly state this, but replacing all negative values with their positive
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positive value are involved, they suggest to trace it back to the treatment of
zero-values as described above and in Ang and Liu (2007a) and at the end
of the following paragraph, respectively. The remedy for negative values in
the LMDI is consistent in case of a change from negative to negative values,
as it is, as just mentioned, only an expansion by (−1). The treatment in the
other cases is inconsistent, though, as it involves the treatment of zero values
as described and criticized above.

Referring to the general case, i.e. the logarithmic form of decomposition
equation (5) in case H < 0, it can be seen that the principle of the remedy
suggested by Ang and Liu applies in general as well: If H < 0 for the whole
range of integration, the problem can be resolved for the logarithmic form
by replacing the negative value in the logarithm by the same but positive
value: 1

H
∂H
∂τ

= 1
−H

∂(−H)
∂τ

= ∂ ln(−H)
∂τ

, where −H is positive and thus all the
expressions are well-defined. Doing this, it is important to pay attention not
to replace the H multiplying the derivative-term in eq. (5) with −H. Again,
the remedy is thus actually not a general replacement of H by −H, but
an expansion of H by (−1)(−1) that cancels directly for the H multiplying
the derivative term and leads to replacement of H with −H (and the other
factors ‘−1’ cancel) in the logarithm. If H < 0 only for parts of the range of
integration, we may split this range into the parts where H ≥ 0 and where
H ≤ 0. The former can then be treated as the general zero value problem,
and the latter can be transformed to such by applying the manipulation to
replace H with −H as described before.

4 The residual in decomposition

As already mentioned above, the main step in decomposition is to approxi-
mate integrals and derivatives such as in equation (3) or, more general, (5),
where the integrand is only known at the endpoints t and t + 1. I also men-
tioned that there are several approaches to integral approximation in the
decomposition context. These approaches differ in the weights they give to
the right or left boundary or how they combine these boundary values and in
how they approximate the derivative in the integrand. One conclusion is that
the choice of a certain method cannot be motivated unless more information
on the underlying functions is directly available, or without information on

values and adding an overall factor −1 just amounts to this (cf. their formulae (4) to (6)).
Thus, the strategy is actually not a substitution of the negative values by their positive
but rather an expansion of all negative values by (−1)(−1), which is, in contrast to the
substitution with negative values, a well-founded approach, as it is based on mathematical
equivalence.
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which weights or combinations lead to an exact decomposition or a good ap-
proximation for a wide range of functions, where the true unknown function
can reasonably be assumed to fall under.

Many authors search for an optimal decomposition method: Besides the
LMDI and earlier attempts by Ang et al. (e.g. the refined Divisia Index
described in Ang and Choi 1997), see, for example, the mean rate-of-change
index of Chung and Rhee (2001) or the method proposed by Sun (1998).
The various suggestions however never strive for optimality based on addi-
tional knowledge on the underlying functions but rather on some theoretical
properties seen as desirable, foremost on a zero residual (equivalent to the so-
called factor-reversal property from general index number theory), on being
consistent in aggregation4, and on being easy to understand and to calculate.
The last two reasons need not much discussion - but the first two do.

The residual is the difference between the change in the total emission
as they are measured, i.e. ∆Ct+1,t and the value the various integrals on
the right-hand side of equation (3) sum up to after approximation. Due to
the integral approximations being involved, it is only natural to expect some
residual different from zero. The residual only reflects the lack of knowledge
on the underlying functions. A zero residual thus rather reflects the fact
that any error in approximation has implicitly been distributed among the
various terms5. This bears the danger that the single terms in the decom-
position might even be less exact for a method with zero residual than for
another method with some residual, as mutually cancelling contributions of
any magnitude can have been attributed to the different terms.

Consequently, the often produced argument that the presence of a residual
leads to problems in interpretation of the result is not convincing. The
residual only reflects the approximate character of the whole decomposition
exercise. In this light, rather a zero residual is difficult to interpret, as there
is no clue on how much of the approximation error has been attributed to
which term. Clearly, a big residual results in a poor explanatory power of
the decomposition as a big part correspondingly remains unexplained. But

4This is the property that a certain decomposition approach applied on some intermedi-
ate disaggregate level and then using the same method to calculate the effects for the total
based on this intermediate results leads to the same result as the direct decomposition of
the total effect.

5Sun (1998) proceeds like this, explicitly assigning the residual to the different terms
in the decomposition, based on equal treatment of all factors. This attribution of the
residual to the different contributions has no further theoretical foundation. Ang et al.
(2003) observe that the decomposition proposed in Sun (1998) is equivalent to the Shapley-
value decomposition. The lack of foundation in assigning the residual thus applies to the
latter as well. More on the Shapley-value, how it relates to other decomposition methods
and what is problematic with it can be found in Muller (2006) and references therein.
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this should be corrected for by striving for better approximations of the
underlying integrals - which automatically leads to smaller residual terms
-, rather than by the criterion of striving for a zero residual, irrespective of
how this is achieved and of how good the strategy is as an approximation
strategy.

Some illustration for this might be given by referring to regression anal-
ysis, where a correct estimation of the various coefficients is much more
important than a high coefficient of determination R2 in total (i.e. than to
have a high proportion of the variance explained). Striving for high R2 can
corrupt results as too many or too few variables may be included, and as
collinearity problems can obscure the identification of the effects of single
variables. This latter point is analogous to what can happen if the residual
is forced to be zero and thus might be assigned to the different contributions
without possibility to judge how this might happened.

A similar critique as against the zero residual can be put forward for the
criterion of consistency in aggregation (cf. footnote 4), as e.g. framed in Ang
and Liu (2001), where a first aggregation is made for subgroups k = 1, ..., k0

with nk sectors each. Thus, the following equation should hold:

k0∑
k=1

w̃k

nk∑
i

∑
j

w̃k
ij ln

(Sij(t + 1)

Sij(t)

)
=

∑
ij

wij ln
(Sij(t + 1)

Sij(t)

)
. (14)

This equation is valid if the sufficient (but not necessary condition) w̃kw̃
k
ij =

wij is met, for example. This is the case for the LMDI as can be shown by
inserting the corresponding log-mean expression for the weights w. Seeing the
weighted sums as integral approximations, this condition need not be met, as
the different error terms from the different levels usually will disrupt its exact
validity also in case the approximations are good. A mismatch in aggregation
only reflects the lack of knowledge on different levels of aggregation. As with
the residual, however, a decomposition resulting in a too large deviation from
the criterion being met might be judged to perform badly.

Time-reversal (the criterion that the parts in the decomposition switch
sign if t is replaced by −t) and proportionality (homogeneity of degree one)
are two further theoretical criteria judged important by Ang (2004). Again,
referring to the approximate quality of all formulae involved, strict validity
of these criteria need not be granted.

Besides the inconsistencies related to the treatment of zero and negative
values in the LMDI, the reservations towards a zero residual and consistency
in aggregation are additional reasons that challenge the LMDI as the default
best method for decomposition. These properties are among the main the-
oretical arguments for the LMDI approach given in the literature (Ang and
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Liu 2001, Ang 2004). As they fail due to the very quality of decomposition
as an approximation to unknown integrals, reference to them is actually no
valid motivation to use the LMDI for the integral approximation.

5 Determining the performance of decompo-

sition methods

In the previous sections, I motivated that general properties such as a zero
residual are not a valid criterion to identify an optimal decomposition method.
To nevertheless arrive at a judgement on which method is best without re-
ferring to additional information on the underlying function - as such is not
likely to be available6 - I suggest to investigate the performance of the dif-
ferent decomposition methods regarding different broad types of functions G
and H. This discussion can be based on three strategies. First, taking the
formulae of a decomposition method, it can be assessed for which type of
functions the method is exact, i.e. when it is equal to the true value of the
integral that it tries to approximate. Similarly, it can be identified, for which
type of functions a given method is a good approximation, leading to only
minor errors. Finally, simulations can be employed to further illustrate how
different decomposition methods perform, comparing their results to the ex-
act solutions known due to the known functions underlying the data used in
the simulations. Ideally, these strategies would allow to identify the classes of
functions for which a certain decomposition method is optimal, viz exact or
leading to only minor errors compared to the exact solution. I illustrate these
strategies primarily by application to the LMDI and focusing on exactness
conditions.

Establishing exactness for the LMDI is identical to finding conditions for

∫ t+1

t

G
∂H

∂τ
dτ =

G(t + 1)H(t + 1)−G(t)H(t)

ln
(G(t+1)H(t+1)

G(t)H(t)

) ln
(H(t + 1)

H(t)

)
. (15)

The left-hand-side is an additive combination of terms only dependent on
t + 1 or t,

∫ t+1

t
G∂H

∂τ
dτ = F (t + 1)− F (t), for the antiderivative F , while on

6Fernandez and Fernandez (2007) present a detailed proposal on how to incorporate
additional information for some variables in decomposition analysis. They base their
exposition on an extension of Sun’s (1998) Shapley value decomposition. This leads to
improvements given more information is available, but does not solve the problems of the
Shapley value for the variables where such is not available (cf. footnote 5). It is, however,
a strategy that could in principle be adapted to other decomposition methods as well to
incorporate additional information on some variables.
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the right-hand-side, dependence on t + 1 and t is mixed. The equation can
thus only hold in case the whole expression equals zero or the terms causing
the mixing on the right-hand-side cancel. This implies the necessary but not
sufficient conditions

H(t + 1) = H(t) or G(t + 1)H(t + 1) = G(t)H(t) or: (16)

ln(H(t + 1))− ln(H(t))

ln(H(t + 1)G(t + 1))− ln(H(t)G(t))
= c = constant, (17)

where we assume c 6= 1. The case c = 1 is treated below. Equation (17) leads
to ln(H(t+1))−ln(H(t)) = c[ln(H(t+1))+ln(G(t+1))−ln(H(t))−ln(G(t))].
Taking derivatives with respect to the lower boundary t gives (an equivalent
derivation can be done taking derivatives with respect to t + 1)

∂

∂t
ln(H(t)) =

c

1− c

∂

∂t
ln(G(t)). (18)

Integrating and exponentiating yields

H(t) = e−KG(t)
c

1−c , (19)

where K is the constant from the integration. Equation (19) is thus a general
necessary condition that the LMDI decomposition approach is exactly true
in case (16) does not hold.

The special case c = 1 is equivalent to G(t + 1) = G(t) and the LMDI

then is correct in case
∫ t+1

t
G∂H

∂τ
dτ = G(t+1)(H(t+1)−H(t)). Using partial

integration, this is equivalent to
∫ t+1

t
H ∂G

∂τ
dτ = 0, which is valid only for spe-

cial cases of G and H, e.g. for the case when G is a constant. It goes without
saying that H(t + 1) = H(t) or G(t + 1)H(t + 1) = G(t)H(t) also are valid
in special cases only. Equation (19), however, is of considerable generality.
Written differently, and after establishing sufficiency for this condition by
inserting it into the original equation (15), it follows that the LMDI is exact
for all

H(t) = κG(t)γ, where κ, γ ∈ R. (20)

Other conditions for G and H could be derived for the case when (16)
or (17) with c = 1 hold (c = 1 corresponds to the boundary cases γ = ±∞
in (20)): the LMDI is for example exact for all G if H is constant and
for all H if G is constant - these are trivial cases, though. I restrict the
discussion to the case (20), which is not trivial and shows that the LMDI is
exact for a wide range of possible underlying functions. Choose, for example,
G(t) = a(t + b)d, a, b, d ∈ R. Among many other paths, this allows a wide
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range of both concave or convex but always monotone paths joining the
endpoints at t and t + 1 that thus cover a class of potential true underlying
functions that are much more general than the step-function or the straight
line at the base of the Paasche-, Laspeyres or Divisia-Index. Choosing higher
polynomials or periodic functions for G allows for a wide range of functions
with local extrema as well - as they may occur in reality due to seasonal
patterns. Clearly, H is related to G by only two additional parameters, but
the possibility to take arbitrary powers of G makes this very flexible. A
drawback of equation (20) is only, that, due to its functional form, G = 0
implies H = 0 and vice versa. It thus does not inform on how to treat zero
values (cf. section 3.1 above).

The exactness for a wide range of functional forms is the main reason
why I suggest the LMDI as a currently most reliable method. Furthermore,
proceeding similarly leads to the result that both the original and logarithmic
parametric Divisia are exact for a much more restricted set of functional
forms only. This is an additional reason to suggest the LMDI as the method
currently to be preferred. The Divisia-Index with α = 1

2
, for example, is

exact in case
∫ t+1

t
G∂H

∂τ
dτ = 1

2
{G(t+1)+G(t)}[H(t+1)−H(t)]. Arguing as

above that no terms with both arguments t+1 and t must occur on the right
hand side, necessary conditions are either G(t+1) = G(t) or G(t)H(t+1) =
G(t + 1)H(t). This leads to G being a constant, which is also sufficient, or
to H = κG for κ ∈ R, which is more general, but by far not as general a
condition as the one established for the LMDI. Similarly, the conditions for
other decomposition methods can be investigated. The logarithmic Divisia-
Index with α = 1

2
, for example, is exact only for the trivial cases G = 0

or H = constant and the Laspeyres- and Paasche-Indices are exact for G =
constant only.

I emphasize that the derivation above establishes exactness of the LMDI
for a wide range of functions without knowing more details on concrete pa-
rameter values. This contrasts with Fernandez and Fernandez (2007), whose
method is also exact for a wide range of functions (parametrized by one pa-
rameter), but the knowledge of the true value of the parameter is necessary
and exactness can thus only be established given additional information (cf.
footnote 6).

Besides establishing conditions for exactness of a certain decomposition
method, additional information on their performance can be gained via inves-
tigation of conditions under which decomposition methods are good approx-
imations. First, the exactness conditions for decomposition methods such as
established above can be used to assess for which type of functional forms the
respective method may not be exact but a good approximation. Second, in
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case of small relative changes of the variables over one period, one could as-
sess how well the different methods perform if applied to polynomial or other
expansions of the underlying functions. Given the similarities in results for
some methods in application to real data and in simulations (see below), this
may not add much additional insight though. In addition, situations with
small changes in all the variables involved are not of prime interest.

Finally, additional information can be gained via simulations, where the
exact result is known due to knowledge of the underlying simulated functions.
This allows a detailed comparison between the exact decomposition and any
decomposition method for the specific case the simulation is based on.

Simulations might best be undertaken on a systematic basis, e.g. for
types of functions that have some potential to capture essential features of
the true underlying functions. Examples could be functional forms gained
by moving averages or moving aggregations, as the true functions G and H
have these properties: being reported as annual values, for each time τ , they
actually refer to the average value of the variable of interest back over the
time-length of a period (i.e. over [τ−1, τ ]) or the sum over this time-interval.

To address simulations systematically would be subject to future research.
Here, I provide the results from a simulation for illustrative reasons only (see
Appendix A for details). This simulation shows that the LMDI performs
quite well and considerably better than other methods such as the original
or logarithmic parametric Divisia indices with α = 1

2
, especially for large

time-intervals.
Besides these strategies to assess the performance of single decomposi-

tion methods, it is interesting to compare results of several methods when
applied to the same data. Quite a number of such studies are available in
the literature (see Liu and Ang 2007 for a recent and encompassing review).
Generally, they find that indices based on the Laspeyres-Index differ con-
siderably from various types of Divisia-Indices, which are more similar and
sometimes even equal among themselves (Ang 1994, Ang et al. 1998, Choi
and Ang 2003, Greening et al. 1997, Ang 2004, Ang and Liu 2007c). Only
Greening et al. (1997) report that one of the Divisia-Indices chosen differs
sometimes significantly from other Divisia-Index based methods. Ang (1995)
looks at a Paasche-type index as well and finds that this is different from a
Laspeyres- and Divisia-based index. I have calculated some further compar-
isons and find that for the data employed in Hammar and Löfgren (2001)
and the data from in Chung and Rhee (2001) the several terms of the decom-
position using the logarithmic Divisia-Index with α = 1

2
, the Divisia-related

decomposition method used in Hammar and Löfgren (2001) and the LMDI
were almost identical. This is in line with the findings from the literature,
that the various Divisia-Indices usually give similar results.
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The fact that the LMDI performed better than other methods in the il-
lustrative simulation for larger time intervals (cf. Appendix A) suggests that
the similar performance of the logarithmic Divisia-Index with α = 1

2
with

real data might depend on the availability of relatively short time-intervals.
The differing results from the Laspeyres- and Paasche-Indices with respect to
Divisia-based indices may be linked to the fact that the former two are only
exact for the trivial case that G = constant. It is then intuitive that they
perform worse than the Divisia-Indices. These points should however be sys-
tematically addressed in future research on optimal decomposition methods.

6 Conclusion

In this paper, I provided a firm footing for decomposition based on approx-
imation of integrals and derivatives. This adds to the ongoing discussion of
optimal decomposition methods by clarifying the underlying formalism. In
consequence, the absence of a residual term and the ability to treat zero and
negative values, which are the main arguments produced in favour of optimal
decomposition methods, are seen in a new light. A non-zero residual term
is a consequence of the (unavoidable) errors due to the underlying approx-
imations and the problems of zero and negative values can be avoided by
refraining from undertaking ill-defined operations.

This criticism also applies to the LMDI method currently favored in the
literature. Both analytical treatment and a simulation comparing the LMDI
to exactly known integrals and their decomposition show how its property of
zero residual cannot be defended on sound formal grounds. In addition, the
treatment of zero and negative values by the LMDI leads to wrong results.

Nevertheless, the analytical treatment and an illustrative simulation show
that the LMDI often performs well and that it is exact for a wide range of
functions. This makes the LMDI a favourable decomposition method. This
is however no reason to apply the LMDI uncritically - still often lacking a
sound basis, its adequacy has to be assured in each situation anew. But its
exactness for a wide range of functions increases chances for the LMDI to be
adequate. Furthermore, it is exact for a wider range of functions than other
decomposition methods and it performs better in the simulation I undertook.
Whether it performs better in simulations in general is, however, an open
question to be addressed in future research. On the basis of its exactness
properties I expect it to perform reasonably well in many simulations, though.

A drawback on the LMDI is the erroneous treatment of zero and negative
values that can in principle be corrected, but for which I cannot yet provide a
reliable solution. Paths on how to pursue possible solutions can be indicated,
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namely to look for zero value treatment that performs similar as the LMDI in
simulations and under approximation. The strategy to identify optimal zero
value treatment based on exactness conditions however fails for the LMDI.

More generally, to establish a sounder basis for the choice of optimal
decomposition methods, I propose to refrain from the criteria emphasised
in the literature such as a zero residual and suggest to pursue three strate-
gies, namely assessment of conditions under which the methods proposed are
exact, under which they provide good approximations and how they per-
form under simulations. This should be systematically addressed in future
research. New decomposition methods could even be designed on the base
of exactness or approximation criteria for a particularly wide range of func-
tions or for certain types of functions that are particularly important for
decomposition, such as moving averages or moving aggregates of functions
with seasonal periodicity, for example. This could also provide guidance for
treatment of potential problems with zero values for certain decomposition
methods, if not avoided from the beginning by avoiding ill-defined opera-
tions. While exactness and approximation properties thus may be first in
assessing the performance of different methods, simulations provide valuable
additional insight, especially if based on types of functions that cannot be
treated analytically.

In this light, it would be ideal to find decomposition methods with some
linearity properties, such that the decomposition of linear combinations of
functions could be traced back to the decomposition of the single terms. In
this case, methods optimal for exact decomposition of certain sets of ba-
sis functions that span the complete space of functions one is interested in
could be sought. Examples of such basis functions would be trigonometric
functions, Legendre-polynomials, and others. I suspect, however, that such
linearity constraints would be too strong in restraining potential forms of
decomposition methods, such that this path may not lead to better methods
- but also this should be assessed systematically.

A further strategy to get more information on the various decomposition
methods is to systematically collect data sets and to compare the results of
different decomposition methods on those - not only by comparing published
studies, which is very informative (Liu and Ang 2007), but also by redoing
calculations employing the same decomposition methods to all the different
data, thus increasing comparability. It may turn out that differences are not
that big for some classes of methods (such as those based on the Divisia-
Index). This may help to assess how much effort to find better methods is
adequate from a practitioners point of view. The LMDI may be good enough
for most cases, for example. Furthermore, such systematic comparison can
reveal additional information for which type of data which methods might
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be similar or differ. This could also inform the search for types of functions
where certain methods are particularly adequate.

Appendix

A An illustrative simulation

In this appendix, I present an illustrative, albeit somewhat arbitrary exam-
ple of a simulation to compare the performance of different decomposition
methods. For time t, I assume the following:

E =
10

t + 1
, Y =

t + 2

20
⇒ I :=

E

Y
=

200

(t + 1)(t + 2)
. (21)

∂

∂t
E = − 10

(t + 1)2
,

∂

∂t
Y =

1

20
,

∂

∂t
I = − 200(2t + 3)

(t + 1)2(t + 2)2
. (22)

where E is the total energy consumption, Y the total output and I is the
energy intensity. Employing equations (5), this gives

−10∆T

(T + ∆T + 1)(T + 1)
− 10 ln

((T + ∆T + 1)(T + 2)

(T + ∆T + 2)(T + 1)

)
and 10 ln

((T + ∆T + 1)(T + 2)

(T + ∆T + 2)(T + 1)

)
(23)

for the exact intensity- (G is Y and H is I) and size (total output)-term (G
is I and H is Y ) in the decomposition, where ∆T is the difference between
subsequent periods, above usually chosen to equal 1. Using (11) it leads to

−10∆T ln( (T+1)(T+2)
(T+∆T+1)(T+∆T+2)

)

(T + ∆T + 1)(T + 1) ln( T+1
T+∆T+1

)

and
−10∆T ln(T+∆T+2

T+2
)

(T + ∆T + 1)(T + 1) ln( T+1
T+∆T+1

)
(24)

for the LMDI-intensity- and -size-contribution. It can readily be seen that
this does not coincide in general, i.e. that the LMDI although exhibiting a
zero residual does not lead to the true decomposition (cf. section 5 for the
conditions for the LMDI to equal the exact decomposition - they are not
met here). If this is calculated for some range of t, say, from 1 to 30, with
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∆T = 1, the LMDI is almost equal to the exact decomposition and deviations
lie below 1 percent. The same is true for the Divisia decompositions with
α = 1

2
, for example. If, however, the change between the single periods is

bigger, e.g. reflected by choosing ∆T = 29, differences become significant
and the LMDI deviates from the exact values by 5 to 10 percent. In this
case, the LMDI performs much better than the Divisia-Indices, though.
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