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Abstract: I discuss how poverty decomposition methods relate to integral

approximation, which is the foundation of decomposition of the temporal

change of a quantity into key drivers. This offers a common framework for

the different decomposition methods used in the literature, clarifies their of-

ten somewhat unclear theoretical underpinning and identifies the methods’

shortcomings. In light of integral approximation, many methods actually lack

a sound theoretical basis and they usually have an ad-hoc character in assign-

ing the residual terms to the different key effects. I illustrate these claims for

the Shapley-value decomposition and methods related to the Datt-Ravallion

approach and point out difficulties in axiomatic approaches to poverty decom-

position. Recent developments in energy and pollutant decomposition offer
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some promising methods, but ultimately, further development of poverty de-

composition should account for the basis in integral approximation.

Keywords: poverty analysis, poverty measures, decomposition, Shapley-

value, inequality

JEL: I32, C43

1 Introduction

Decomposing some key variable in several components to better understand

the key variable is a common exercise in many areas. Classical in poverty

analysis are the (static) identification of the contribution of different popu-

lation groups, population characteristics or income types to overall inequal-

ity at a given point of time (see e.g. Shorrocks 1982, Foster et al. 1984,

Shorrocks 1999, Morduch and Sicular 2002, Borooah 2005, Kolenikov and

Shorrocks 2005), the (dynamic) identification of the contributions of differ-

ent driving forces to the evolution of poverty and inequality measures over

time (e.g. Shorrocks 1999; Kakwani 2000; for a recent review, see Heshmati

2004) or the identification of contributions in a poverty measure referring to

transient and chronic poverty, respectively (e.g. Duclos et al. 2006; on these

three types of decomposition, see also Shorrocks 2008). Decomposition1 plays

1“Decomposition” refers to the particular type of methods to identify key drivers of

the evolution of some variable of interest that are the topic of this paper and will be

explained below. For completeness, I mention that regression analysis clearly also delivers

such identification. Even more, regression analysis, being a statistical technique, allows for

statistical inference. Decomposition, on the other hand, is purely descriptive. However, it

complements regression analysis, as it can give a detailed picture of past developments and

as it has much lower data requirements. It can, for example, help to identify structural
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an important role in many more areas besides poverty analysis. Examples

are the decomposition of the temporal evolution of energy use and pollutant

emissions into key drivers (e.g. Ang 1995, 2004; Bruvoll and Larsen 2004),

the so-called “growth accounting” to investigate economic growth (e.g. Barro

and Sala-I-Martin 2003) and the general index number theory as developed

for price and quantity indices (e.g. Diewert and Nakamura 1993).

In this paper, I am mainly concerned with “dynamic” decomposition, that

is the second type of decomposition mentioned above. A dynamic approach

can also be differentiated to account for the effects of group structures and

characteristics (see e.g. Ang 1995, 2004; see also footnote 3).2 Dynamic

decomposition is based on integral approximation and the price and quantity

index literature, for example, is partly aware of this (Trivedi 1981, Balk

2005). The awareness of this basis in integral approximation has, however,

been lost in the literature on poverty decomposition. Due to the lack of

this connection to the underlying basic formalism, current efforts to develop

optimal decomposition approaches often seem somewhat arbitrary. This is for

example the case for the often-used Shapley-value decomposition (Shorrocks

1999; Baye 2005).

Explicit reference to integral approximation as the underlying formal-

ism of decomposition offers a common framework for the decomposition ap-

proaches most frequently applied in the poverty and inequality context, i.e.

breaks or other patterns in the data that should be accounted for when setting up a

regression analysis.
2The “decomposability” of “decomposable” poverty indices refers to certain advan-

tageous criteria with respect to such group structure and the static decomposition into

contributions of different groups and is not linked to the dynamic decomposition I am

concerned with here.
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the Shapley-value based decomposition and the decomposition methods sim-

ilar to the one presented in Datt and Ravallion (1992). I will show that these

methods are special and not always consistent approaches to approximate the

underlying integrals. In general, appreciating this common ground in integral

approximation could help to develop improved decomposition methods.

Reference to the basis in integral approximation would also shed a new

light on the discussion of the residual in decomposition. The residual is

present in some classical approaches to poverty decomposition and usually

given the somewhat vague interpretation of interaction effects (e.g. Datt and

Ravallion 1992). This interpretation is often criticized and the absence of a

residual term in the newer approaches related to the Shapley-value is seen as

an advantage (Baye 2005). A zero residual is however not necessarily a good

criterion to identify optimal decomposition methods. If tied to the underlying

integral approximations, the presence of some residual due to approximation

errors is natural.

Section 2 introduces the general formalism of decomposition and illus-

trates how it is linked to integral approximation. Section 3 presents some of

the main methods of poverty decomposition currently applied and illustrates

how they relate to each other and to the general formalism based on integral

approximation. Section 4 concludes.

2 A General Formalism for Decomposition

The aim of dynamic decomposition analysis is to identify and assess the

(relative) magnitude of different variables driving the time development of

a key quantity. One example is how much changes in mean income and the
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income distribution contribute to changes in total poverty within a country.

I develop the following general formalism. I will show in section 3 how

the methods commonly used for poverty decomposition can be seen as spe-

cial cases of this general formalism. The key quantity of interest shall be

P (t) =P (x1(t), ..., xm(t)), e.g. a poverty measure (examples are the FGT

index, Foster et al. 1984, or the Watts index, Chakravarty et al. 2008),

depending on m time-dependent variables xi(t), i = 1, ...m, t ∈ [T0, Tn] (e.g.

the head-count or income-gap ratio, the poverty line, the mean and variance

of the income distribution, etc.).3

Considering this poverty measure, we have the change in P from t = T0

to Tn: ∆PT0,Tn := P (Tn) − P (T0). What we want to have is a formula

of the following form: ∆PT0,Tn =
∑m

i=1 fi(xi(Tn), xi(T0)), where the overall

temporal change in P is decomposed into a sum of contributions fi that

depend on the temporal changes in the respective driver variable xi only.

I make a short detour to illustrate the task at hand with a simple example:

consider a cuboid with sides x1, x2 and x3 that changes volume over time,

from V (T0) = x1(T0)x2(T0)x3(T0) at t = T0 to V (Tn) = x1(Tn)x2(Tn)x3(Tn)

at t = Tn. The task of decomposition is to assign the difference in volume

∆V = V (Tn) − V (T0) to differences ∆xi in the single edges x1, x2 and x3

(see figure 1).

3P can further be differentiated according to some group-structure of interest, i.e.

P =
∑G
g=1 P

g, where P g is the value for P referring to group g. Depending on the

decomposition method applied, effects of temporal changes in group composition and also

relative comparison of the development of different subgroups can be assessed. Much

on this can be found in energy and pollution decomposition analysis (see e.g. Ang 2004).

Including group structure does not change the general argument and I thus use the simpler

notation without this additional structure.
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Insert Figure 1 here

Figure 1: Illustration of the basic task in decomposition

It is natural to assign cuboid 1 to changes in x1 (while x2 and x3 stay

constant), cuboid 2 to changes in x2 (x1 and x3 staying constant) and cuboid

3 (not visible in the picture) to changes in x3 (x1 and x2 staying constant).

It is, however, not a priori clear how to assign cuboid 4 to changes in x1 and

x2 (while x3 stays constant), and correspondingly for cuboids 4 and 5. It is

neither clear how to assign cuboid 7 to changes in x1, x2 and x3.
4

I now come back to the general problem. A natural candidate for such

an assignment of driver-specific contributions (a decomposition into separate

contributions from each driver variable) is found by the following consid-

erations. First, consider infinitesimal changes of P , using the chain rule:

dP
dt

=
∑m

i=1
∂P
∂xi

∂xi

∂t
. If only xi′ changes with t and all other partial derivatives

4Setting P (x1(t), x2(t), x3(t)) = x1(t)x2(t)x3(t) ties this example to the general discus-

sion in this section.
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∂xi

∂t
for i 6= i′ are zero, we have dP

dt
= ∂P

∂xi′

∂xi′
∂t

. ∂P
∂xi′

∂xi′
∂t

thus captures the

contribution of changes in xi′ to changes in P when t changes infinitesimally,

assuming the other drivers xi 6=i′ do not change. It is thus natural to assign

the term ∂P
∂xi

∂xi

∂t
to the contribution of changes in xi to overall changes in P

when t changes infinitesimally.

We now consider non-infinitesimal changes in t, say from t = T0 to Tn.

∆PT0,Tn can by definition be written as the integral from t = T0 to t = Tn of

the derivative of P :

∆PT0,Tn := P (Tn)− P (T0) =

∫ Tn

T0

dP

dt
dt. (1)

Inserting dP
dt

=
∑m

i=1
∂P
∂xi

∂xi

∂t
in equation (1) gives

∆PT0,Tn =

∫ Tn

T0

dP

dt
dt =

∫ Tn

T0

( ∂P
∂x1

∂x1

∂t
+
∂P

∂x2

∂x2

∂t
+ ...+

∂P

∂xm

∂xm
∂t

)
dt =

=

∫ Tn

T0

∂P

∂x1

∂x1

∂t
dt+

∫ Tn

T0

∂P

∂x2

∂x2

∂t
dt+ ...+

∫ Tn

T0

∂P

∂xm

∂xm
∂t

dt. (2)

Again, ceteris paribus-assessment is illustrative: assuming that only xi′

changes with t, only the corresponding term ∆P
xi′
T0,Tn

:=
∫ Tn

T0

∂P
∂xi′

∂xi′
∂t

dt sur-

vives. Inspired by this and by the preceding discussion of infinitesimal

changes, the part containing the derivative with respect to xi′ , i.e. ∆P
xi′
T0,Tn

, is

then interpreted as the contribution from xi′ to changes in P when t changes

from T0 to Tn and all other driver variables xi, i 6= i′ are kept constant.

Usually, the functions involved are not known for all points t ∈ [T0, Tn],

but only for some discrete points of time, most often equally spaced (e.g. an-

nually): T0, T1, T2, ..., Tn−1, Tn. We can thus write ∆P xi
T0,Tn

:=
∫ Tn

T0

∂P
∂xi

∂xi

∂t
dt =∫ T1

T0

∂P
∂xi

∂xi

∂t
dt+

∫ T2

T1

∂P
∂xi

∂xi

∂t
dt+ ...+

∫ Tn

Tn−1

∂P
∂xi

∂xi

∂t
dt =

∑n
k=1 ∆P xi

Tk−1,Tk
.

Thus, to calculate the expressions for the contributions of the various

variables xi (i = 1, ...,m) in equation (2), integrals of the following form
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have to be calculated5:

∆P xi
T,T+1 =

∫ T+1

T

∂P (x1, ..., xm)

∂xi

∂xi
∂t

dt. (3)

Hereby, the integrands are basically known at the endpoints only.

Decomposing P thus boils down to solving such integrals. Because of the

lack of information, though, i.e. the lack of knowledge on the underlying

functions besides for the boundary values T and T + 1, this is essentially an

approximation problem. The integral has to be approximated by the values

of the integrand at the endpoints of the integration range. In addition,

the presence of derivatives cause problems, as for xi(t), i = 1, ...,m, only

the values of the functions but not of the derivatives are known for the

endpoints. In this case, some approximation of the derivatives is necessary

as well. As the poverty measure P is known as a function of its variables xi,

the derivatives of P with respect to xi are known. The integral can thus be

written as a function J or J̃ of the values at the end-points:6

5From now on, to keep notation simple, T stands for any value Tk, k = 1, ..., n− 1, and

T + 1 correspondingly stands for Tk+1.
6J includes the derivatives of xi directly, while they are approximated in J̃ . For J̃ , I

chose the general formulation including xi(T − 1) and xi(T + 2), as they may enter the

formula depending on how the derivatives are approximated. An approximation of the

derivative at T +1 from the right side, for example, usually depends on the value at T +2.
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∆P xi
T,T+1 ≈

≈ J
(
P (T ), xi(T ),

∂P

∂xi
(T ),

∂xi
∂t

(T ),

P (T + 1), xi(T + 1),
∂P

∂xi
(T + 1),

∂xi
∂t

(T + 1)
)
≈

≈ J̃
(
P (T ), xi(T ), P (T + 1), xi(T + 1),

∂P

∂xi
(T ),

∂P

∂xi
(T + 1), xi(T − 1), xi(T + 2)

)
, (4)

The simplest approximations of ∆P xi
T,T+1 are based on replacing the true

function by different types of step-functions. Thus, the integral is replaced

with the product of the value of the integrand at the upper or lower end-

point times the distance on the ordinate ∆T , in this case equaling one:

J = ∂P
∂x

∂x
∂t
|T+1 resp. T . A related approach is to replace the integral by the

trapezoid given by joining the upper and lower end-point with a straight

line (see figure 2). This corresponds to the average of the two previous ap-

proaches: J = [∂P
∂x

∂x
∂t

(T + 1) + ∂P
∂x

∂x
∂t

(T )]/2.7 These three approximations are

analogous to classical indices in the price/quantity context (the Laspeyres,

Paasche and Marshall-Edgeworth index8). Especially the first two have sev-

7 ∂x
∂t (T + 1) and ∂x

∂t (T ) are then usually approximated by the slope of the straight line

joining the endpoints, i.e. ∂x
∂t (T + 1) ≈ x(T + 1) − x(T ) ≈ ∂x

∂t (T ), thus giving the same

value and simplifying decomposition formulae. This strategy could be criticized because

of its inconsistency by taking the approximation from the right for the value at the left

boundary T and the value from the left at T +1. This leads to potentially different results

for ∂x
∂t (T ) depending on whether it is part of a term between T − 1 and T or between

T and T + 1. However, the strategy makes sense if seen in the context of replacing the

whole unknown function with straight lines joining the known values, as in the method

just mentioned.
8In the light of the illustrative example given in figure 1, the Laspeyres approach assigns
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eral disadvantages, though, such as a usually rather large residual term or

the asymmetry regarding the boundaries (Ang 2004).

Insert Figure 2 here

Figure 2: Step-functions for integral approximation. The grey rectangle is

the Paasche method, this plus the dashed rectangle give Laspeyres, the grey

rectangle and the dotted triangle Marshall-Edgeworth

cuboids 1, 4, 5 and 7 to changes in x1, 2, 4, 6 and 7 to changes in x2 and 3 (not visible), 5, 6

and 7 to changes in x3. This leads to a negative residual of −(1+2+3+2∗(4+5+6)+3∗7);

Paasche assigns cuboid 1 to changes in x1, 2 to changes in x2 and 3 (not visible) to changes

in x3, leading to a positive residual of 4 + 5 + 6 + 7; Marshall-Edgeworth assigns 1 and

half of (4 + 5) and a third of 7 to changes in x1 and correspondingly for x2 and x3. It thus

has a zero residual in this example.
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3 Poverty Decomposition

Poverty decomposition usually refers to decomposing some kind of poverty

measure P , often the classical measure introduced in Foster et al. (1984), into

parts corresponding to the effects of temporal changes in the mean income µ,

the income distribution L and the poverty line z: P = P (µ, L, z).9 This can

be normalized by z, i.e. the function to be investigated afterward depends

on only two instead of three variables: P̄ (µ
z
, L
z
).

There is a range of different methods for poverty decomposition. The

choice of a certain method is sometimes based on some formal symmetry

arguments or axioms (Shorrocks 1982; Tsui 1996; Kakwani 2000), but in

most cases it is rather ad-hoc. There is no awareness of the underlying

approximation problem, although the decomposition methods proposed can

be understood in this frame (see section 3.3 below). It follows from the

discussion above that the general decomposition of the poverty measure reads

∆PT,T+1 =

∫ T+1

T

∂P

∂µ

∂µ

∂t
dt+

∫ T+1

T

∂P

∂L

∂L

∂t
dt+

∫ T+1

T

∂P

∂z

∂z

∂t
dt, (5)

where the integrals involved have the same structure as discussed above and

similar problems related to their approximation arise.

In the following, I introduce the most common methods for decomposi-

tion of changes in poverty or inequality measures (the decompositions in the

spirit of Datt and Ravallion (1992), the Shapley-value decomposition and

9The income distribution can be characterized by one or more variables, most commonly

by its moments (mean, variance, skewness, kurtosis, etc.); in the following, I always use

one variable only to characterise it, L, as more variables can be treated analogously.
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some further related approaches) and show how they relate to the general

framework presented above.

3.1 Common Approaches to Poverty Decomposition

Most poverty decomposition approaches assume that the contribution of one

variable to total change in poverty can be separated if all other variables are

kept constant, i.e. if an unobserved “counterfactual situation” is correctly

constructed. In particular, the choice of the time period, in which to keep

the other variables constant, is crucial and various possibilities for this differ-

entiate the methods. This approach leads to decompositions such as (taking

the normalized form with µ̄ := µ
z

and L̄ := L
z
)

∆P̄T,T+1 = P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T )) = (6)

=
[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T + 1))

]
+

+
[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T + 1), L̄(T ))

]
+ R̄ =

= µ̄(i.e. growth)-effect + L̄(i.e. inequality)-effect + R̄,

where R̄ is the residual - also referred to as the interaction effect between

growth and changes in inequality, given by R̄ = P̄ (µ̄(T ), L̄(T +1))−P̄ (µ̄(T +

1), L̄(T +1))+ P̄ (µ̄(T +1), L̄(T ))− P̄ (µ̄(T ), L̄(T )) (Datt and Ravallion 1992;

Baye 2004).

The residual has a similar structure as the decomposition itself and the

whole formula has a rather ad-hoc character by adding and subtracting terms

to get the effects of interest and then correcting for this by collecting their

corresponding negatives in the residual, thus guaranteeing the validity of the
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formula. Datt and Ravallion (1992) also observe that this residual can be

quite large, thus invalidating the whole approach. Equation (6) also depends

on the period chosen as base period, as it is not symmetric in T and T + 1.

This method nevertheless is applied without discussion of potential problems,

e.g. in Grootaert (1995) or Kraay (2006).

A similar approach is proposed by Jain and Tendulkar (1990),

∆P̄T,T+1 =
[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T + 1))

]
+

+
[
P̄ (µ̄(T ), L̄(T + 1))− P̄ (µ̄(T ), L̄(T ))

]
, (7)

where the residual is zero, but the two effects are calculated with reference

to different base periods and the decomposition is again not symmetric in T

and T + 1. For completeness, I mention that also the (generalized) Oaxaca-

Blinder decomposition is of a similar spirit, as can be seen from equation (2)

in Yun (2004).

This situation led other authors (e.g. Kakwani 2000; Mazumdar and

Son 2001; Bhanumurthy and Mitra 2003; Son 2003) to suggest a symmetric

alternative of this decomposition by averaging the formulae with base periods

T and T + 1. Kakwani (2000) in particular motivates this by proposing a set

of axioms any poverty decomposition should fulfill (cf. footnote 14 below).

This leads to a symmetric decomposition without residual and the growth

and inequality effects have the same combination of mixed base periods:
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∆P̄T,T+1 =
1

2

[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T ), L̄(T + 1)) +

+P̄ (µ̄(T + 1), L̄(T ))− P̄ (µ̄(T ), L̄(T )
]

+

+
1

2

[
P̄ (µ̄(T + 1), L̄(T + 1))− P̄ (µ̄(T + 1), L̄(T )) +

+P̄ (µ̄(T ), L̄(T + 1))− P̄ (µ̄(T ), L̄(T ))
]
. (8)

3.2 Generalizations and Further Developments

Decomposition (8) can be generalized to any numbers of variables. Given a

poverty measure P depending on m variables x1, ..., xm, the contribution of

xi to changes in P can be defined to be a combination of all terms of the

following form,

∆P xi
T,T+1(πs−1,m−s) = [P (..., xi(T + 1), ...)− P (..., xi(T ), ...)], (9)

where all other variables than xi are evaluated at either T + 1 or T in both

terms to the right and xi is evaluated at T + 1 in the first and at T in the

second term. This is captured by πs−1,m−s, which is any m − 1-vector with

s− 1 entries T + 1 and m− s entries T . The elements of this vector indicate

at which time the variables other than xi, i.e. x1, ..., xi−1, xi+1, ..., xm, are

taken in both the terms on the right hand side in equation (9).10 For m

variables, a certain combination of s variables taken at T + 1 and m − s

10This is a type of ceteris paribus reasoning employing all combinations of how the other

variables can stay constant: each at T or at T + 1. For illustration, I give some of the

terms for i = 5: ∆P x1
T,T+1(T +1, T, T, T ) = [P (x1(T +1), x2(T +1), x3(T ), x4(T ), x5(T ))−

P (x1(T ), x2(T +1), x3(T ), x4(T ), x5(T ))]; ∆P x3
T,T+1(T, T +1, T, T +1) = [P (x1(T ), x2(T +

1), x3(T + 1), x4(T ), x5(T + 1))− P (x1(T ), x2(T + 1), x3(T ), x4(T ), x5(T + 1))].
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at T thus shows up in the final expression s times with a positive sign,

stemming from the positive part of equation (9), for each of the s variables

at T+1. And correspondingly, it shows up m−s times in the final expression

with a negative sign, stemming from the negative part, but referring to the

corresponding expression for s+ 1.11 The condition that in the end only the

original terms remain, i.e. ∆P̄T,T+1 = P̄ (x1(T + 1), ..., xi(T + 1), ..., xm(T +

1)) − P̄ (x1(T ), ..., xi(T ), ..., xm(T )), requires coefficients unequal 1 for the

various terms. In the simplest case, the coefficients of the positive terms can

be chosen to be 1
s

and for the negative ones 1
m−s , for s 6= 0 and s 6= m,

and 1
m−s = 1

m
for s = 0 while the positive part is absent, and 1

s
= 1

m
for

s = m, where the negative part is absent. This decomposition is symmetric

and residual-free.

A more general choice of the coefficients is then γ(m, s)1
s

and γ(m, s) 1
m−s

with γ(m, 0) = 1 = γ(m,m). Choosing γ(m, s) = s!(m−s)!
m!

then gives the

Shapley-value coefficients (see e.g. Baye (2005), taking s + 1 instead of s

for the negative terms) and the decomposition coincides with the Shapley-

value based poverty decomposition as introduced in Shorrocks (1999). For

two variables, this is equivalent to equation (8). The specific choice of coef-

ficients for the Shapley-value is motivated by symmetry arguments and the

Shapley-value has some distinct axiomatic background (symmetry, additiv-

ity, no distinguished variable), but I will show in the next subsection that

the Shapley-value is not optimal in the light of decomposition as integral

11πs−1,m−s gives s variables at T + 1 in the positive parts of ∆P xi

T,T+1(πs−1,m−s) and

s − 1 at T + 1 in the negative ones. Correspondingly, the term with s + 1 instead of

s, i.e. πs,m−s−1, gives s variables at T + 1 in the negative parts that combine with the

corresponding terms from the positive part with s.
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approximation, and that these axioms cannot be employed as a motivation

for the method’s optimality.

There are other approaches aiming at improving poverty decomposition.

For a recent review of methods, see e.g. Heshmati (2004). Here, I shortly

present some illustrative examples. Thorbecke and Jung (2006) base their

decomposition on the linkages captured in the Social Accounting Matrix (see

also references therein). Second, Fournier (2001) discusses an approach ex-

plicitly taking into account changes in the different underlying variables and

their correlations separately. This is, in fact, similar to taking some terms

of the Shapley-value approach into account and explaining part of the re-

maining residual by building counterfactuals based on the rank-correlation

structure. Usually, some residual remains. Thirdly, there are regression-

based approaches to decomposition (see e.g. Juhn et al. (1993), Borooah

(2005), Wan and Zhou (2005), Dercon (2006) or Wan and Zhang (2008)

and references therein). The regressions, however, refer to the definition,

choice, or identification of the variables the decomposition is based on or

the construction of the counterfactual case, while the decomposition itself

(i.e. the combination of the terms where only one variable changes) is again

made according to the common approaches as described in this or the pre-

vious subsection. Similarly, Di Nardo et al. (1996) discuss a kernel esti-

mation approach to construct counterfactuals needed for the decomposition

into changes attributable to single variables, while the decomposition itself

is again a variant of the approaches discussed above.
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3.3 Poverty Decomposition and Integral Approxima-

tion

In this subsection, I discuss the poverty decomposition approaches intro-

duced above in the light of general decomposition as integral approximation

as presented in section 2. This establishes a common basis for and a new

understanding of poverty decomposition methods.

3.3.1 Most Common Approaches and the Shapley-Value

Approximating the terms in equation (5) by their values at the upper bound-

ary leads to expressions such as J = ∂P
∂µ

∂µ
∂t
|T+1∆T , and approximating the

derivatives by the slope of the straight line joining the end-points as discussed

in footnote 7 gives12

J =
P (µ̄(T + 1), L̄(T + 1))− P (µ̄(T ), L̄(T + 1))

µ̄(T + 1)− µ̄(T )

µ̄(T + 1)− µ̄(T )

∆T
∆T,

(10)

which is the Laspeyres index. The corresponding expression can be calcu-

lated for the variable L̄ and both can also be evaluated at time T , thus

giving the Paasche index. The combination of the Laspeyres for both µ̄ and

L̄ gives the Datt-Ravallion decomposition equation (6), and the combination

of Laspeyres for µ̄ and Paasche for L̄ gives the Jain-Tendulkar formula (7).

Taking the average of the Laspeyres and Paasche indices gives the Marshall-

Edgeworth index. This, finally, is the same as the Shapley-value decomposi-

tion for two variables, equation (8).

12Here, the derivatives of P , ∂P
∂µ̄ and ∂P

∂L̄
, are approximated by the boundary values of

P , although these derivatives are known, as the functional form of P is known, cf. page 8.
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So far, I have shown how the basic poverty decomposition methods can

be seen as special cases of integral approximation. This is however not true

any longer for the generalised formulae used in the literature and presented

above, i.e. for the Shapley-value with more than two variables. One criticism

is that in the light of the equivalence of the Shapley-value decomposition and

the decomposition method introduced in Sun (1998) (Ang et al. 2003), the

various terms in the Shapley-value can be understood as an assignment of

the residual to the various effects based on some symmetry arguments but

without further basis in the properties of the underlying functions or integral

approximations. Thus, all variables are treated equally, irrespective of their

properties. I illustrate this for three variables and a total which is their

multiplication:

∆P = P (T )− P (0) = x1(T )x2(T )x3(T )− x1(0)x2(0)x3(0)

= ∆P1 + ∆P2 + ∆P3, (11)

where ∆Pi is the contribution of the variable xi to the decomposition of P .

Replacing xi(T ) with xi(0) + ∆xi, seeing ∆xi as the incremental change in

xi from period 0 to T , and symmetrically rearranging terms, we have
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∆P = (x1(0) + ∆x1)(x2(0) + ∆x2)(x3(0) + ∆x3)− x1(0)x2(0)x3(0) =

= ∆x1x2(0)x3(0) + ∆x2x1(0)x3(0) + ∆x3x1(0)x2(0) + (12)

+∆x1∆x2x3(0) + ∆x1∆x3x2(0) + ∆x2∆x3x1(0) + ∆x1∆x2∆x3 =

= ∆x1x2(0)x3(0) +
1

2
[∆x1∆x2x3(0) + ∆x1∆x3x2(0)] +

1

3
∆x1∆x2∆x3 +

+∆x2x1(0)x3(0) +
1

2
[∆x1∆x2x3(0) + ∆x2∆x3x1(0)] +

1

3
∆x1∆x2∆x3 +

+∆x3x1(0)x2(0) +
1

2
[∆x1∆x3x2(0) + ∆x2∆x3x1(0)] +

1

3
∆x1∆x2∆x3.

The three last lines are ∆P1, ∆P2 and ∆P3, respectively, and equal the

contributions of the three variables as identified in Sun (1998). As shown in

Ang et al. (2003), they are equal to the Shapley-value decomposition, as can

also be seen by further rearranging terms and comparing to the formulae for

the Shapley-value given above. As already indicated, the logic behind this

formula is to equally assign all the difference-terms involving ∆xi’s to the

contributions of the variables xi, i.e. a term involving s ∆-factors is divided

by s. An illustration for this simple example are the volumes of two cuboids

with edges xi(0) and xi(T ) = xi(0) + ∆xi (i = 1, 2, 3), respectively, and how

to assign the difference in volume between the two to each of the differences

in the single edges (cf. figure 1).

We are not primarily interested in ∆xi itself, but rather in ∆xi = xi(t+

∆t) − xi(t) as a function of t or, respectively, ∆t. In general, ∆xi will be

different functions of ∆t for different i, and imposing equal treatment of all

∆xi is thus adequate in certain special cases only. I illustrate this criticism

of the Shapley-value with a simulation based on some concrete choice of the

variables xi as functions of t: choose x1 = t, x2 = t2, x3 = t
4
. Inserting this
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in equation (2), where again P = x1x2x3, and solving the integrals gives

∆P = ∆P1 + ∆P2 + ∆P3 = T 4

4
and the following (exact) decomposition

∆P1 =

∫ T

0

∂x1

∂t
x2x3dt =

∫ T

0

t3

4
dt =

T 4

16
, ∆P2 =

T 4

8
,∆P3 =

T 4

16
. (13)

Using the Shapley-value equation (12), the result is different (but also exact),

which shows that the Shapley-value does not necessarily lead to the correct

decomposition13:

∆P1 = ∆P2 = ∆P3 =
T 4

12
. (14)

For further illustration, I also state the condition for the Shapley-value

for three variables to be exact as an integral approximation. It is, for the

contribution of the first variable, the requirement that

∫ T

0

∂x1(t)

∂t
x2(t)x3(t)dt

!
=

!
=

[
x1(T )− x1(0)

]
x2(0)x3(0) +

+
1

2

[
x1(T )− x1(0)

][
x2(T )− x2(0)

]
x3(0) +

+
1

2

[
x1(T )− x1(0)

][
x3(T )− x3(0)

]
x2(0) +

+
1

3

[
x1(T )− x1(0)

][
x2(T )− x2(0)

][
x3(T )− x3(0)

]
. (15)

Comparing this to integral approximation as discussed above shows that the

Shapley-value contains too many terms mixing values referring to the two

different boundaries. In correct integral approximation, for each additive

13Most terms are equal zero in this simple example, as xi(0) = 0 for i = 1, 2, 3, but this

special property is not crucial for the general argument.
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contribution, such mixture only occurs via the derivative-term, i.e. for one

variable only, while all the others are evaluated either at the upper or lower

boundary only (cf. page 9).

3.3.2 Axiomatic Decomposition

Here, I link the poverty decomposition method based on integral approxima-

tion as described above to some axiomatic approaches in the literature. A

recent example is Kakwani (2000), who sets up a system of 5 simple rather

intuitive axioms any poverty decomposition should fulfill14, discusses and

criticises existing decomposition methods in the light of these axioms and

proposes a new method that fulfills all 5 axioms. His discussion is framed

in a two-variable setting and the method he finally recommends is just the

Shapley-value for two variables.15 As can be seen from direct calculation,

due to the properties of integration, the basic formula for the decomposition

based on integration approximation, equation (3), fulfills the 5 axioms set up

by Kakwani (2000).

Other axiomatic systems are presented in Shorrocks (1982), Paul (2004)

and Tsui (1996), for example. The axiomatisation in Tsui, however, mainly

refers to the poverty measure itself and less to its decomposition, which is

14As usual, the change of a poverty measure P is decomposed into a growth and an

inequality component: ∆Pij = Gij + Iij for periods i and j. The axioms are 1) If Iij = 0

then ∆Pij = Gij and if Gij = 0 then ∆Pij = Iij ; 2) if Gij ≤ 0 and Iij ≤ 0 then

∆Pij ≤ 0 and if Gij ≥ 0 and Iij ≥ 0 then ∆Pij ≥ 0; 3) Gij = −Gji and Iij = −Iji; 4)

Gij = Gik +Gkj ; 5) Iij = Iik + Ikj for all periods i, j, k;
15He does not mention this, though - but the Shapley-value decomposition was also

introduced after this paper was originally written in 1997.
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basically the same as the one finally derived in Kakwani (2000).16

The axioms in Shorrocks (1982) and Paul (2004) primarily refer to the

static decomposition of (income) inequality into different income types.17

They are thus not of direct relevance for the dynamic decomposition consid-

ered here. Nevertheless, I point out that in these approaches, some symmetry

properties are important, which also play a role in Shorrocks (1999), but are

not reflected in the basic formula (3) of decomposition based on integral

approximation. This mismatch of symmetries in the Shapley-value and the

approach based on integral approximation has already been illustrated above.

Two conclusions from this discussion on axiomatic approaches may be

drawn. First, equation (3), the basic formula of decomposition based on in-

tegral approximation fulfills some set of axioms (e.g. Kakwani 2000) and can

thus be seen as one realization of an axiomatic approach. Second, when it

comes to concrete approximation, though, axioms should not be given too

much weight to. This is because of incomplete information on the develop-

ment of the variables decomposition is based upon. The concrete implemen-

tation of decomposition necessitates taking the limited information on the

variables involved into account, which is reflected in the necessity to under-

take approximations. During this step, from exact formulation via integrals

towards concrete calculations via approximation of integrals, some axiomatic

16I emphasize that axiomatic foundations of poverty measures and axiomatic foundations

of decomposition methods must not be confused. Here, I am concerned with the latter

only.
17Paul (2004) critizises Shorrocks (1982) for the lack of motivation for some of his

axioms. He retains three of Shorrocks’ axioms and adds two new ones. Fournier (2001)

also critizises Shorrocks’ axioms as being too restrictive and, being static, as not being of

primary interest — although static decomposition is applied frequently.
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properties may be lost. Concrete decomposition thus need not to exactly ful-

fill the axioms. Although axioms may inform the general structure of some

decomposition approach, due to the presence of incomplete information, they

can be violated in application.18

4 Conclusions

A wide range of methods for poverty or general inequality measure decom-

position is currently being applied. None of these methods, however, has a

sound basis, as none refers to integral approximation, which is the ultimate

starting point of any dynamic decomposition analysis. The Shapley-value,

for example, assigns the residual term in an inadequate manner to the dif-

ferent drivers behind changes in poverty. This does not mean that results

based on the Shapley-value are necessarily wrong - but it is difficult to as-

sess when it is adequate and how large potential errors may be. To assess

the adequacy of the methods most often applied in poverty decomposition,

such as the Shapley-value, comparison with methods more directly related

to integral approximation is necessary.

Muller (2007) provides some preliminary analysis of these issues in the

context of energy and pollutant decomposition, where similar problems are

encountered. There, the Logarithmic Mean Divisia Index LMDI (Ang 2004),

is identified as a method that performs reasonably well also in relation to in-

18However, being an approximation to formulae that fulfill axioms, a concrete decom-

position thus may be expected to also “approximately” fulfill the axioms, i.e. to not show

“too large deviations” from fulfillment. Thus, some non-zero residual is not problematic,

but if the residual dominates effects, the decomposition is not of much use.
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tegral approximation, although also lacking a sound theoretical basis related

to this. It is thus promising to also use the LMDI in poverty decomposition.

A more in-depth assessment is necessary, though.

Strategies to proceed with such - and with the assessment of the perfor-

mance of any decomposition method in relation to integral approximation

- are to investigate the performance of the method in simulations, where

the exact results are known (cf. the example on page 19), and to identify

classes of functions, for which the proposed method is exact or a good ap-

proximations if compared to the exact solution. This needs to be combined

with all knowledge available on the functions that are being decomposed.

The functional form of the poverty measure is, for example, known. The

functional form of Its derivatives thus need not be approximated. Further-

more, for short time intervals, for example, some linearity assumptions may

be reasonable (see Bresson (2008) for such a strategy applied to the Shapley

value in combination with integral approximation). There may also be some

information on seasonal or other patterns for the periods between the points

where the functions are known. Often, the functions involved will also be

based on one-period-back average or aggregate values (e.g. income at time

T is the aggregate annual income from T − 1 to T ), a property that may be

exploited.

Further research is also needed on how the decomposition based on in-

tegral approximation relates to certain types of static decomposition, e.g.

regarding different types of income sources. Given some time-development,

accounting for group structure and for different types of income is possible

without problems19, but within a truly static setting, some reformulation of

19For different income types, one could consider an inequality measure depending on
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this approach may be necessary. On the other hand, one may argue that a

static decomposition without time development is of secondary interest only.

Finally, reliance on axiomatic approaches is no solution to identify op-

timal methods. In the light of integral approximation, desirable properties

only need to be fulfilled approximately. The prime example for this is the

desirability of a zero residual, i.e. of a complete decomposition, which does

not need to hold for an approach based on approximations. It is only natural

to encounter some errors when approximating - which simply lies in the na-

ture of an approximation in comparison to an exact solution. A zero residual

thus bears the danger of having been forced to be zero by just randomly or

without strong basis apportioning it to the different parts of a decomposition.

A decomposition with zero residual thus needs not be superior to one with

a non-zero residual.
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Figure Captions

Figure 1: Illustration of the basic task in decomposition

Figure 2: Step-functions for integral approximation. The grey rectangle is

the Paasche method, this plus the dashed rectangle give Laspeyres, the grey
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rectangle and the dotted triangle Marshall-Edgeworth
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