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Abstract

This thesis combines the study of asymptotic properties of percolation pro-
cesses with various dynamical concepts. First-passage percolation is a model
for the spatial propagation of a fluid on a discrete structure; the Shape Theo-
rem describes its almost sure convergence towards an asymptotic shape, when
considered on the square (or cubic) lattice. Asking how percolation structures
are affected by simple dynamics or small perturbations presents a dynamical
aspect. Such questions were previously studied for discrete processes; here,
sensitivity to noise is studied in continuum percolation.

Paper I studies first-passage percolation on certain 1-dimensional graphs.
It is found that when identifying a suitable renewal sequence, its asymptotic
behaviour is much better understood compared to higher dimensional cases.
Several analogues of classical 1-dimensional limit theorems are derived.

Paper II is dedicated to the Shape Theorem itself. It is shown that the con-
vergence, apart from holding almost surely and in L1, also holds completely.
In addition, inspired by dynamical percolation and dynamical versions of clas-
sical limit theorems, the almost sure convergence is proved to be dynamically
stable. Finally, a third generalization of the Shape Theorem shows that the
above conclusions also hold for first-passage percolation on certain cone-like
subgraphs of the lattice.

Paper III proves that percolation crossings in the Poisson Boolean model,
also known as the Gilbert disc model, are noise sensitive. The approach taken
generalizes a method introduced by Benjamini, Kalai and Schramm. A key
ingredient in the argument is an extremal result on arbitrary hypergraphs,
which is used to show that almost no information about the critical process is
obtained when conditioning on a denser Poisson process.

Keywords: First-passage percolation, noise sensitivity, continuum percola-
tion, Gilbert model, limit theorems, shape theorem, stopped random walks,
large deviations, dynamical percolation.
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This thesis consists on an introduction to some asymptotical and dynamical
aspects of percolation theory, followed by three research papers:
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influence on this thesis. He has been a constant source of inspiration, and has,
always open to my own ideas, guided me to and through my research. I would
further like to thank my co-supervisor and likewise co-author Erik Broman
for his advice and the great pleasure of working together. To my remaining
co-authors, Simon Griffiths and Rob Morris; I am very grateful for the friendly
reception you have given me while visiting IMPA and Rio de Janeiro. I have
loved working together with you. I have certainly learnt a lot from all of you,
and I hope for that to continue.

At the department in Gothenburg, I am grateful to everyone who has taken
part in my academic formation. In particular I thank Jeff Steif for his enthusi-
asm and the inspiring discussions we have had. My other colleagues and fellow
students, I likewise thank for their company and support. I am also very
pleased for the help I received at my visits to IMPA. In particular, I would like
to show my gratitude to Vladas Sidoravicius for greeting me with open arms.

My dear family and friends, although you have not had a direct impact on
this thesis, you have had a great influence on my life. You are always on my
mind. Mom and Dad, you have always supported every move I have made. To
you and my siblings, Lina and Marcus, thank you for your love and presence.
My gratitude goes to my many dear friends. Notably Anton, Björn, Giovanni,
Joel, Magnus, Ottmar. In particular, I am grateful to Tabatha, who has shared

ix



much of my joy, but also endured a lot of my frustration over the last few years.
Thank you, and thank you all!

Daniel Ahlberg
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Chapter 1

Introduction

The classical study of probability, before the 19th century, was limited to games
of chance. Studies concerned trials, or sequences of trials, which could result
in a finite number of equally probable outcomes. In the second half of the 19th
century, probabilistic statements found its way into physics. Heat as consisting
of molecular movements had recently become a leading theory. Ludwig Boltz-
mann’s and James Clerk Maxwell’s contributions resulted in the description of
molecular movements in a gas in terms of a probability distribution. This laid
the foundation of statistical mechanics.

As a part of classical physics, statistical mechanics aim to describe the
macroscopic behaviour of a large number of molecules or particles, based on
the properties on a microscopic level. Around the turn of the century, it be-
came apparent that classical physics was unable to explain several empirical
observations, such as heat radiation and radioactivity. Quantum mechanics
was introduced to explain interaction at atomic scales. The first step towards
a quantum theory was taken in 1900 by Max Planck when studying black-body
radiation. Further contributions were made a few years later by Albert Ein-
stein. A rapid development of quantum mechanics into an established theory
took place between 1925 and 1927. It was led by Max Born, Werner Heisenberg
and Erwin Schrödinger, and culminated with the derivation of Schrödinger’s
wave equation and Heisenberg’s uncertainty principle. Via the wave equation,
the position of a particle got a probabilistic interpretation.

The introduction of probabilistic statements as a mean to describe physical
processes was by many contemporary scientists seen as a consequence of our
ignorance, rather than as a belief of nature itself as being governed by chance.
In classical physics, motion and interaction are caused by known or unknown
forces. In quantum mechanics, however, the physical state of a system can only
be given probabilistically. In particular, as a consequence of the uncertainty
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principle, on a microscopic scale, there is a bound for the precision by which
the position and the motion of a particle can be determined simultaneously.
With the progress of quantum mechanics, the world unavoidably had to be
interpreted as indeterministic. At the same time, randomness and probability
obtained a definite position in our understanding of the physical world.

In his book, von Plato (1994) gives a careful account of the creation of
modern probability. The introduction of random processes in continuous time
by Boltzmann and Maxwell, as well as Einstein’s derivation of the mean dis-
placement law of Brownian particles in 1905, called for a more rigorous math-
ematical framework. Measure theory was developed by Borel and Lebesgue
around the turn of the century. Despite that, it would take until the early
1930’s before measure theory would turn probability into a well-founded the-
ory. von Plato explains further how the development of statistical mechanics,
together with the rapid conceptual change towards an indeterministic view of
the world, made important contributions for this change to take place.

Ever since probability theory received its position as a solid and respected
branch of mathematics, probabilists have in their turn sought inspiration and
motivation in various real-world phenomena. Inspiration was found in anything
from physics and biology to finance and social science. An area of probability
theory that has had a particularly fruitful exchange of ideas with, and motiva-
tion from, physics and physical phenomena is the area of percolation theory.
Percolation models are examples of random spatial processes which aim to
model physical phenomena via simple random rules. Common to percolation
models is that rules are defined on a local scale. The effect small local changes
have on the behaviour of the system on larges scales is thereafter studied. In
this sense, there are clear connections to statistical mechanics. Percolation
models generally allow many natural and intuitive problems to be posed with
low effort, whereas giving satisfactory solutions to the problems often turn
out far from trivial. This is of great appeal, since it often calls for creative
development of new techniques in order to gain deeper understanding of the
problem.

Before introducing the work of this thesis, I will first give a short introduc-
tion to percolation theory. I will begin with a rather informal description of a
few models and concepts to give the reader a flavour of the field. The informal
presentation will be sufficient to give a brief motivation behind, and description
of, the content of the current thesis. After that, a more detailed presentation
will be given of some relevant parts of the area, as well as a summary of the
papers that build up the thesis. During the informal desctiption I have pre-
ferred not to burden the text with references. The reader will instead find all
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relevant references in the more detailed presentation in subsequent sections.

1.1 Percolation theory

The bond percolation model is arguably the simplest and most classical among
percolation models. Simple here refers to the ease with which the model can
be described. However, many natural questions regarding its behaviour pose
great challenges and several of them remain unanswered until this day. Bond
percolation was motivated as a model to describe the seemingly random struc-
ture of a porous material. It is a discrete model, where the discrete structure
is provided by a suitably chosen graph. A graph consists of a set of vertices
and a set of bonds between pairs of vertices. Each bond, also referred to as an
edge, symbolizes a connection between the two vertices. The Zd lattice, or the
Zd nearest neighbour graph, for d ≥ 2, is the graph whose vertices are given by
the points in Zd, and where two vertices are connected by an edge if they are
at Euclidean distance one from each other.

The Zd lattice is an infinite graph, and is used as an approximation of a
large region. To obtain a random structure from the Zd lattice, we proceed as
follows. Go through each edge one by one, flip a coin, and decide to keep the
edge if the coin turns up heads and remove the edge if the coin turns up tails.
Thus, each edge is removed independently of all other edges. The resulting
structure can be viewed as a representation of a large piece porous material if
thinking of vertices as cells in the material, and edges symbolizing neighbouring
cells having a reasonably large passage between them (as to allow a fluid to
pass, say).

With this interpretation of the model, a fluid is able to flow from one cell
to another if there is a path, that is, a sequence of edges between neighbouring
cells, that connect the cells. To give a more specific definition of a path, a
path between two points u and v of a graph refers to an alternating sequence
of vertices and edges u = v0, e1, v1, . . . , en, vn = v, starting and ending with a
vertex, and such that the vertex vk is the endpoint of the edges ek and ek+1

preceding and succeeding vk.

Studying the random structure obtained through coin tossing leads to ques-
tions concerning the existence of paths in the random structure. In particular,
one may ask if the centre of a large piece of porous material will be wet when
submerged in the fluid? This corresponds to the question of how far a fluid
injected at the centre of the material will reach. Since the model is based on
an infinite graph, is it possible for a fluid injected at the centre (the origin of
the graph) to wet infinitely many cells? That the fluid will wet another cell
corresponds to the existence of a path from the origin to that cell. Cells that
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are connected by paths form components of interconnected cells. What can be
said about the size of these components?

In fact, the answers to these questions differs depending on the coin being
fair or being biased. Consider some fixed dimension d ≥ 2, and let p ∈ [0, 1]
denote the probability that the coin tossed turns up heads. Thus, p = 1/2
corresponds to the coin being fair, and p 6= 1/2 to the coin being biased.
For values of p close to 1, an infinite connected component of cells will exist,
whereas for values of p close to 0, all components will be finite. As p ranges
from 0 to 1, the system undergoes what physicists call a phase transition, that
is, a sudden change in the qualitative behaviour of the model. An example of
such a phenomena in nature is the structural transition that water experiences
as temperature increases, going from solid to liquid to gas. In the case of bond
percolation, the phase transition that occurs is that the random structure goes
from having no infinite connected component of cells when p is close to 0 and to
have one for p close to 1. In fact, there is a critical value pc(d) strictly between
0 and 1 such that for p < pc(d), there is no infinite connected component,
but for p > pc(d) an infinite connected component does exist. The existence
and non-existence of infinite components should be understood to hold with
probability 1, or almost surely. When an infinite component exists, there is
also positive probability for a fluid injected at the origin to reach infinitely far.

As a final remark, the restriction d ≥ 2 was imposed in the above discussion
to avoid the trivial case when d = 1. When d = 1 and p < 1, then only finite
components will remain after edges have been removed in accordance with the
result of the coin tosses. When p = 1, the graph will remain intact.

1.2 Alternative percolation models

It may seem naive to think that such a well structured graph as a lattice can
be suitable to describe the seemingly irregular structure of a porous material.
This is a relevant criticism. One should emphasise that from a probabilists
point of view, the intention of the model was never to achieve a model that
in a realistic way describes the local structure of the material. Rather, the
objective was to find a reasonable model which on a large scale is plausible to
have similar qualitative properties as the object it intends to describe. When a
large portion of the material is resembled by a very fine grid, it seems reasonable
to assume that the precise structure of the grid should have little influence on
the qualitative behaviour of the model. However, there have been various
reasons to introduce alternative models of similar flavour. Each model has its
own advantages. It can offer easier computations, more symmetry, or enhanced
generality. It is generally expected that small variations of a model on a local
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scale should not affect the global (qualitative) behaviour of the model. Morally,
similar observations should hold for similar models. As physicists phrase it,
models with similar behaviour belong to the same universality class.

As an alternative to bond percolation, site percolation is the model where
vertices, instead of edges, are being removed. In bond and site percolation, a
random structure is obtained form a fixed graph, such as a lattice. In order
to achieve models that are homogeneous in space, and does not depend on
an underlying discrete structure, certain continuum percolation models have
been introduced. Continuum percolations models (in two dimensions) essen-
tially amounts to constructing a random graph embedded in R2, which is ac-
complished in the following manner. A subset of points in R2 is chosen to
constitute the vertex set of the graph. Next, pairs of vertices are joined by an
edge depending on the local geometry around the two points. One such model
that is studied further in this thesis is the Poisson Boolean model, also known
as the Gilbert disc model. In this model, a Poisson point process with inten-
sity λ is chosen to constitute the vertex set, and thereafter any two points are
connected by an edge if their Euclidean distance is at most 2. An alternative
way to visualize this is to at each Poisson point centre a disc of radius 1. The
subset of the plane covered by the discs corresponds to the random graph. In
particular, collections of overlapping discs corresponds to connected compo-
nents in the graph. Questions such as size of connected components, existence
of infinite connected components, and uniqueness of such, are questions that
have similar qualitative answers as corresponding questions for bond percola-
tion. In particular, the existence of an infinite component of overlapping discs
depends on the intensity λ, for which there is a critical intensity λc ∈ (0,∞)
such that λ < λc implies non-existence of an infinite component, and λ > λc

implies existence, each with probability one.

1.3 A stochastic model for spatial growth

Another model that will be studied closer in this thesis is known by the name
first-passage percolation. Similar to bond percolation, the model is defined on
an underlying discrete structure, the typical such being the Zd lattice. In con-
trast, bonds are not removed in first-passage percolation, but assigned random
non-negative values according to some distribution. The values assigned to
edges could be thought of as times associated with the crossing of the edges.
In particular, if a fluid is injected at the origin, and is allowed to spread along
the edges of the graph, then the passage of an edge is delayed the time indi-
cated by its random value. With this picture in mind, one may ask how many
vertices will be wet by the fluid during a fixed time period, and more precisely,
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how does the region of wet vertices evolve over time?

First-passage percolation can be viewed as a dynamic version of bond per-
colation. If an infinite value assigned to an edge symbolizes its absence, then
the bond percolation model is retained in the case when edges are assigned
values either 1 or ∞ with probability p and 1 − p. However, first-passage per-
colation should not be thought of as a mere generalization of bond percolation.
Rather, it was introduced as a stochastic model for spatial growth, and the
questions of interest differ from the ones posed for bond percolation. Here, the
central object is not the component containing the origin, but the region of wet
nodes evolving in time. An object that can be studied more directly is the time
it takes the fluid to reach a distant vertex. Understanding such travel times
is the key to describe the behaviour of the wet region. Since the fluid may
advance along any path allowed by the underlying structure, the travel time to
a specific vertex is not obtained by simply summing up random contributions.
How does this influence the travel time? Is the time it takes the fluid to reach
vertices far away proportional to their distance from the origin? Given a path
from the origin to a vertex, the travel time to that vertex is at most the sum of
the random times associated to the edges of the path. This is referred to as a
subadditive behaviour, and led to the study of so called subadditive stochastic
sequences.

1.4 Concepts of sensitivity in random structures

As the research literature in the area has grown, the perspective has widened
to alternative questions and concepts. Investigations has concerned not only
the structure of percolation clusters themselves, but also the behaviour of ob-
jects such as random walks on infinite percolation clusters. Stochastic growth
models, such as first-passage percolation, have been employed to study the
evolution of various objects competing for space. Other recent development in
percolation theory have aimed to study how percolation models are affected by
introducing simple dynamics, or when exposed to small perturbations. Both
bond and site percolation are static models. A random structure is achieved
through independent coin tosses. Depending on the bias of the coin, the re-
sulting structure either contains or not an infinite connected component. Dy-
namical (bond) percolation is obtained when simple dynamics is introduced to
invoke life to the model. Assume that each edge is assigned a Poisson clock,
which is set independently of all other clocks. At each ring of the clock the
edge changes its state, i.e., from absent to present and vice versa. Hence, is an
edge was declared present from the start, then it will be removed at the first
ring, and reappear when the clock rings again. At each fixed time point, the
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random structure that we observe corresponds to a bond percolation configu-
ration obtained from independent coin flips. In particular, at each fixed time
point we will have the same probability to observe an infinite component, and
that probability is either 0 or 1. However, is it possible that there exists (ran-
dom) times at which the presence of an infinite component is changed? When
considering bond percolation away from criticality, the question can relatively
easily be answered no. But, for bond percolation on the Z2 lattice at the crit-
ical probability p = 1/2, highly non-trivial techniques were needed in order
to prove that, almost surely, there are exceptional times at which an infinite
component appears, although is has probability 0 to occur at any fixed time
point.

In the dynamical percolation model, an interesting question is how fast the
information given by the initial configuration is lost as time elapses. To be able
to quantify this in a suitable way, one investigate how a sequence of events of
interest defined on an increasing sequence of subgraphs of the lattice correlates.
The correlation is compared at time zero and at a small time δ. This correspond
to comparing how the sequence of events correlates for a configuration, and a
small perturbation of the same configuration. The perturbation is obtained by
independently for each edge flip its state with very small probability. If the
correlation of the sequence of events between the two configurations tends to
zero as the region of the graph increases, this indicates that the information
kept in the originating configuration is quickly lost. The sequence of events is
judged sensitive to noise.

The connection between dynamical percolation and sensitivity to noise is
apparent, but even more so, studying sensitivity of small perturbations of cer-
tain sequences of events renders the possibility to conclude that dynamical
percolation experiences exceptional events that has zero probability of occur-
ring at any fixed given time.

1.5 Thesis layout

The above rather loose introduction to percolation theory was meant to moti-
vate further study of the field. Both first-passage percolation and the Poisson
Boolean model are studied further in this thesis. A brief summary of the papers
in this thesis is given next.

Paper I The behaviour of first-passage percolation in two and higher di-
mensions is still not well understood. In Paper I, first-passage perco-
lation is considered on graphs that are essentially 1-dimensional. The
1-dimensional structure enables the analysis of the process to be simpli-
fied considerably, and its behaviour to be described more precisely.
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Paper II One of the main results on first-passage percolation is the Shape
Theorem. The result describes the almost sure evolution of the wet region
on the Zd lattice. Paper II generalizes this result to cone-like subgraphs
of the lattice, and in addition discusses a few other modes of convergence.
In particular, the effect of simple dynamics when introduced in a similar
manner as in dynamical percolation is studied.

Paper III The Poisson Boolean model is studied from a perspective of how
small perturbations affect the existence of connected components that
intersect the sides of large boxes. This essentially amounts to generaliz-
ing techniques used to study similar phenomena in discrete cases. The
perturbation that is intended can be visualized as follows. A configura-
tion of discs in the plane of a predetermined density is assumed present
before time is started. As time starts, new discs rain down from the sky,
at the same time as discs on the ground disappear after spending a ran-
dom time on the ground. The rate at which discs appear and disappear
is balanced so that the density of discs at the ground is kept constant.
Given the similarity between bond percolation and the Poisson Boolean
model, one may expect that also the Poisson Boolean model will be sen-
sitive to noise in the manner described above. That this is the case is
proven in Paper III.

To prepare the reader further for the research papers in this thesis, I will
dedicate the following pages to give a more detailed description of the per-
colation models already presented, those being bond percolation, the Poisson
Boolean model and first-passage percolation. In order to get a feeling for
what kind of means are taken to study percolation models, I will indicate, and
sometimes outline, the proof of certain results. First, bond percolation and
the Poisson Boolean model will be discussed. Thereafter, before proceeding
to first-passage percolation, a detour will be taken to discuss certain random
sequences. Although well-known objects to a probabilist, there are several
reasons for this. Familiarity with large scale behaviour of sums of random
variables builds up a pleasant framework to which more complicated systems,
such as first-passage percolation, can be compared. A few words will be said
about renewal sequences, since first-passage percolation can be thought of as
a graph theoretical generalization of such. Moreover, the identification of a
suitable 1-dimensional renewal sequence will in fact be the key to the analysis
carried out in Paper I. Also subadditive sequences, which were fundamental in
the early developments in first-passage percolation, will be discussed briefly.
In fact, the original study of subadditive stochastic sequences was motivated
by first-passage percolation. Several different aspects of first-passage perco-
lation will later be discussed. The focus will be on its large scale behaviour,
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which is further studied in Paper I and II. In particular, some limitations in
the understanding of the model in two and more dimensions will be indicated.
Sensitivity to noise and dynamics will be discussed quite closely. The model of
dynamical percolation will be introduced more formally as well as the concept
of noise sensitivity. The link between them will also be explained in greater
detail. The techniques used to study noise sensitivity are quite technical, and
some time is therefore spent on putting up the correct framework. An overview
of the already existing work on noise sensitivity and dynamical percolation is
then presented, since parts of that is what Paper III is built on.

After a shorter summary of the three papers, the second part of this thesis
follows, consisting of Paper I, II and III.
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Chapter 2

Random spatial structures

The bond percolation model was introduced by Broadbent and Hammersley
(1957). A brief description was given above, which I here will elaborate a
bit further. Above, the presentation was intentionally a bit informal, but I
will in what follows be more precise, with no intention of completeness. For
a comprehensive introduction, I refer to Grimmett (1999), or alternatively to
Bollobás and Riordan (2006). A more elementary source written in Swedish is
Häggström (2004).

2.1 Bond percolation

Bond percolation on the Zd lattice, where d ≥ 2, is obtained of going through
each edge of the graph and, independently of all other edges, declare it either
’open’ or ’closed’ with probability p and 1− p, respectively, for some p ∈ [0, 1].
The reason that d = 1 is excluded is that only trivial behaviour occurs. As a
probabilist one is interested in the qualitative behaviour of the resulting random
structure. A path between two vertices of the graph is, after the declaration of
edges as open or closed, referred to as open if all its edges are open. Any two
point in the graph are said to belong to the same open component if there is
an open path between them. Hence, the declaration of edges as open or closed
partitions the vertices of the graph into (connected) open components. Is it
possible that the random structure contains an infinite open component? How
many infinite components can there be?

Since the existence of an infinite open component cannot depend on the
state (open or closed) of finitely many edges, is follows immediately from Kol-
mogorov’s 0-1 law that for each p ∈ [0, 1], the probability that an infinite
component exists is either 0 or 1. When an infinite open component exists
we say the the system percolates at p. Let C denote the open component that
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contains the origin, or equivalently, the set of vertices that can be reached via
open paths from the origin. Define the percolation function as

θd(p) := Pp

(
|C| = ∞

)
,

where Pp denotes the probability measure that independently for each edge
declares it open or closed with probability p and 1 − p, respectively. Due to
lattice symmetry, there is no restriction in considering the open component at
the origin as opposed to an open component positioned at any other vertex.
Since each vertex of the graph is equally likely to be contained in an infinite
open component, the almost sure existence of such coincides with the θd(p)
being positive.

Given two values p1 < p2, can the system percolate at p1, but not at p2?
This is not the case, which can be seen via a simple coupling argument. Cou-
plings of random elements is a frequently used technique in the area. Coupling
two random elements amounts to defining them on the same probability space
in a way that their marginal distributions are unchanged, but enables them to
be favourably compared for each realization. The argument runs as follows.
Do not declare edges opened or closed, but assign to them independent uni-
formly distributed random variables on the interval [0, 1]. Let ξe denote the
variable assigned to the edge e. Declare the edge p-open if ξe ≤ p. Note that
the set of p-open edges corresponds to the set of open edges when each edge
independently has been declared open with probability p. Since each p1-open
edge also is p2-open, we can conclude that the if an infinite open component
exists almost surely at density p1, then the same holds at density p2. In fact,
the argument implies the stronger statement that θd(p) is non-decreasing.

As already mentioned, the almost sure existence of an infinite open com-
ponent coincides with the function θd(p) being positive. Clearly, θd(0) = 0
and θd(1) = 1. Since θd(p) was seen to be non-decreasing, there must exist a
threshold pc(d) ∈ [0, 1] such that, almost surely, for p < pc(d) no infinite open
component may exist, but for p > pc(d) it does. If pc(d) is either 0 or 1, then
nothing interesting really happens. This is the case when d = 1, but not in
higher dimensions.

Theorem 2.1. For each d ≥ 2, 0 < pc(d) < 1.

In addition, several infinite open components cannot coexist.

Theorem 2.2 (Aizenman, Kesten, and Newman (1987)). For any d ≥ 2 and
p ∈ [0, 1], the number of infinite open components is either 0 or 1, almost
surely.

Non-triviality of the percolation threshold is a central and simple result
in percolation theory, whose argument is instructive to see. There is a fairly
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elementary proof of the uniqueness of the infinite component which is due to
Burton and Keane (1989). Since the uniqueness is not essential for the thesis,
I omit the general proof, but will below present a short proof for d = 2 which
is due to Harris (1960).

Proof Theorem 2.1, lower bound. A lower bound on pc(d) is given rather easily
via a counting argument. Observe that if the open component at the origin
is infinite, then there has to be a path starting at the origin consisting of n
unique edges which are all open. There are at most 2d(2d− 1)n−1 such paths,
since from the origin we must take n steps, and cannot pass the same edge
twice. The probability that all edges in one such path are declared open is pn.
Hence, the probability that there exists a path from the origin that contains n
disjoint edges which are all open is at most 2d

2d−1 [(2d− 1)p]n. This holds for all

n ≥ 1. Hence, for all p < (2d− 1)−1

θd(p) ≤ 2d

2d− 1

[
(2d− 1)p

]n → 0, as n→ ∞.

Thus, θd(p) = 0 for small p > 0, which proves the lower bound in Theorem 2.1.

The Z2 lattice can be embedded in the Zd lattice, for any d ≥ 3. Hence,
via a coupling argument similar to the above one, if there exists an infinite
open component at p for d = 2, almost surely, then so must be the case for any
d ≥ 2. More than that,

pc(2) ≥ pc(3) ≥ pc(4) ≥ . . . .

Actually, the inequalities are strict, but that takes a greater effort to prove.

Since pc(d) ≤ pc(2) for all d ≥ 3, in order to prove that pc(d) < 1 for all
d ≥ 2, it suffices to do so for d = 2. To obtain an upper bound, a similar
counting argument as the above one is carried out, but this time counting sets
of closed edges blocking the existence of an infinite component at the origin.
Doing so, a central rôle is played by a spatial duality of the two-dimensional
lattice. This duality has far reaching consequences and has been of particular
importance in the study of two-dimensional percolation models. It is equally
important in discrete as in continuum percolation models, and will appear in
the study of the two-dimensional Poisson Boolean model in Paper III. This
calls for a proper presentation.

12



2.2 Duality of the square lattice and RSW tech-

niques

The dual graph of the Z2 lattice is the graph obtained when centring a node on
each facet of the lattice, and connecting each node with the nodes that belong
to the neighbouring four facets. Note that each edge in the dual graph crosses
precisely one edge in the original graph. Hence, the dual graph is identical to
the Z2 lattice, only shifted in space by 1/2 in each coordinate direction. Let
each bond in the dual lattice be declared open if the bond it crosses in the
original lattice is declared closed, and vice versa. Sets of closed edges in the
lattice that limit the open component at the origin corresponds to open paths
in the dual. In particular, it is easily realized that if there is an open circuit,
i.e., an open path with the same starting as endpoint, in the dual lattice that
surrounds the origin of the original lattice, then the open component at the
origin (of the lattice) can only consist of vertices on the inside of the dual
circuit. Hence, the open component is finite. Moreover, absence of an open
dual circuit surrounding the origin implies that the open component at the
origin is infinite.

Proof of Theorem 2.1, upper bound. To derive an upper bound on pc(d), one
can proceed as follows. Counting the number of dual circuits surrounding the
origin (there are at most n3n of length n; the factor n is the number of choices
of its rightmost point) one conclude that for p > 2/3 the expected number of
open circuits surrounding the origin (at most

∑
n≥1 n3n(1− p)n) is finite, and

can be made arbitrarily small by picking p larger. Thus, for p < 1 sufficiently
large the probability of an open dual circuit surrounding the origin is less than
1, which implies θ2(p) > 0.

In two dimensions, a more complete and balanced picture of the critical
phenomena is known. The duality is the key behind this.

Theorem 2.3 (Harris (1960) and Kesten (1980)). For d = 2,

Pp

(
∃ an infinite open component

)
=

{
1, for p > 1/2,

0, for p ≤ 1/2.

In particular, the result says that pc(2) = 1/2, and that at pc(2) all open
component are almost surely finite. That θ2(1/2) = 0 is intuitively reasonable
to believe, since the contrary would imply the coexistence of an infinite open
component in the lattice with one in its dual. Also in higher dimensions it
is believed that no infinite component should exist at the critical probability.
However, this is known only for d ≥ 19, due to Hara and Slade (1994). Which is
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the case for d = 3 is probably the most well-known open problem in percolation
theory.

That θ2(1/2) = 0 was proved by Harris, which implies that pc(2) ≥ 1/2.
Only much later could Kesten show that pc(2) ≤ 1/2 based on, at the time,
recent work of Russo (1978) and Seymore and Welsh (1978). The techniques
developed by Russo, Seymour and Welsh has proven to be a useful tool and
provides additional knowledge about the spatial structure of the infinite com-
ponent. In order to introduce parts of their work, I will turn attention to
crossings of rectangles by open paths.

Let Hm×n denote the event that there exists an horizontal open crossing of
the rectangle [0,m] × [0, n]. That is, Hm×n denotes the event that there is an
open path from some vertex in {0}× [0, n] to a vertex in {m}× [0, n], which is
contained in the restriction of the Z2 lattice to the rectangle [0,m] × [0, n]. In
addition, let V ∗

m×n denote the event that there is an open path in the dual lattice
crossing the rectangle [1/2,m−1/2]× [−1/2, n+1/2] vertically. An important
consequence of the duality is that Hm×n occurs if and only if V ∗

m×n does not
occur. In particular, an immediate consequence is that for any p ∈ [0, 1], and
integers m,n ≥ 1

Pp(Hm×n) + Pp(V
∗
m×n) = 1.

Furthermore, due to similarity between rectangles, and the fact that a bond
in the dual graph is open if and only if the corresponding bond in the original
graph is closed, one realizes that Pp(V

∗
m×n) = P1−p(H(n+1)×(m−1)). For p = 1/2

and m = n+ 1, it follows immediately that

P1/2

(
H(n+1)×n

)
= P1/2

(
V ∗

(n+1)×n

)
=

1

2
, for all n ≥ 1. (2.1)

This demonstrates the balance between the Z2 lattice and its dual at p = 1/2.
In fact, for any other value of p 6= 1/2, the probability of the event H(n+1)×n

tends to either 0 or 1 as n increases. The existence of crossings of arbitrarily
large boxes at p = 1/2 may seem surprising in the light of Harris’ result that
θ2(1/2) = 0. However, since the existence of dual crossings is likewise implied,
this is precisely what is needed to guarantee the existence of an open circuit
in the dual lattice limiting the open component at the origin. Such circuits
can be constructed based on the techniques due to Russo, Seymour and Welsh.
The principal result can be stated as follows.

Theorem 2.4 (RSW Theorem). For every δ > 0 there exists ǫ > 0 such that
for any p ∈ (0, 1) and n ≥ 1,

Pp(Hn×n) ≥ δ implies Pp(H3n×n) ≥ ǫ.
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Although it may seem easy to believe that having a reasonable probability
of crossing a square would imply a reasonable probability of a crossing of a
rectangle, the proof requires a fairly creative construction. For a proof, consult
either Grimmett (1999) or Bollobás and Riordan (2006). Theorem 2.4 is itself
not essential for the proof of Theorem 2.3 (see e.g. Grimmett (1999)). However,
I will present a proof of Harris’ part of Theorem 2.3 based thereon.

When p = 1/2, (2.1) and Theorem 2.4 implies that P1/2(H3n×n) ≥ c uni-
formly in n, for some c > 0. Let Cn denotes the event that there is an open
circuit contained in the annuli [−3n, 3n] \ [−n, n] that surrounds the origin.
Crossings of rectangles are positively correlated events, according to Harris’
inequality, also known as the FKG-inequality. In particular, this allows a lower
bound on the event Cn in terms of the simultaneous occurrence of crossings of
four rectangles. This is possible by tiling the annulus [−3n, 3n]2 \ [−n, n]2 by
two rectangles of dimension 3n×n, and two of dimension n× 3n. If each such
rectangle contains an open crossing between its shorter sides, then the annulus
contains an open circuit. Consequently, P1/2(Cn) ≥ c4 uniformly in n ≥ 1. Let
me sketch how θ2(1/2) = 0 can be obtained from this.

Proof of Theorem 2.3, part θ2(1/2) = 0. Choose a subsequence of the sequence
C1, C2, . . . of events which are mutually independent. This will be the case e.g.
when n = 3k for k = 1, 2, . . ., since then the events are defined on disjoint parts
of the lattice. Each event has the same (positive) probability to occur, so the
Borel-Cantelli lemma assures that there will be infinitely many open circuits
surrounding the origin, almost surely. This was in the original lattice. But, if
the same argument is run in the dual, the existence of an (and even infinitely
many) open dual circuit that surrounds the origin will follow analogously. This
proves that θ2(1/2) = 0.

As mentioned above, also Kesten’s part of the proof that pc(2) = 1/2 is
based on the work of Russo, Seymour and Welsh. However, the argument
is more involved and will not be presented here. Instead, observe that the
argument used to prove that θ2(1/2) = 0 has more to say about the random
structure at p = 1/2. It shows that around each point of the lattice there
will be a nested sequence of open paths in the original lattice and in the dual,
one containing the other. Moreover, each finite box centred at the origin will
be surrounded by open circuits in both the lattice and its dual. This is the
sufficient information we need in order to conclude uniqueness of the infinite
open component in two dimensions.

Proof of Theorem 2.2, for d = 2. Note that if each finite box has probability
one of being surrounded by an open circuit in the lattice at p = 1/2, then
the existence of such an open circuit has probability one for all p ≥ 1/2. For
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any x and y in Z2, let Λ(x,y) denote the smallest box that contains x and
y. Observe that x and y can pertain to different infinite open clusters only if
Λ(x,y) is not surrounded by an open circuit. As argued, this has probability
zero. Summing over all pair of vertices in Z2 gives that

Pp

(
more than 1 infinite open component

)
= 0, for all p ∈ [0, 1].

If a little more care is taken when carrying out the above argument used to
prove θ2(1/2) = 0, an upper bound on the so called ’one-arm’ event is obtained.
The one-arm event AEn is the event that there exists an open path connecting
the origin to the boundary of the box [−n, n]2, i.e., {z ∈ Zd : ‖z‖∞ = n}. Note
that AEn fails to occur if there is an open circuit in the dual, surrounding
the origin and contained entirely within [−n, n]2. In turn, this occurs if there
is an open dual circuit in an annuli of the form [−3k, 3k]2 \ [3k−1, 3k−1]2, for
some k ≥ 1 such that 3k ≤ n. There are about log n/ log 3 such annuli, each
of which, independently of the other, has probability at least c to contain an
open dual circuit (for some c > 0). Hence, if AEn occurs, then each of these
annuli has to fail to contain an open circuit. This leads to the upper bound

P1/2(AEn) ≤ (1 − c)log n/ log 3 = n−α, (2.2)

for some α > 0.

2.3 Poisson Boolean model

The Poisson Boolean model was introduced by Gilbert (1960) and can be seen
as a continuum analogue to the bond (or rather site) percolation model. The
behaviour of Gilbert’s model is qualitatively similar to its discrete relatives.
For this reason, I will keep the presentation concise and restricted to the two-
dimensional case. It is in two dimensions the Poisson Boolean model will be
studied in Paper III. In the two dimensional continuum model, R2 is partitioned
into ’occupied’ and ’vacant’ space by randomly placing unit discs in the plane.
Here, the randomness will come from the discs being placed in correspondance
with the points of a Poisson point process. Rather informally, a Poisson point
process η in R2 of intensity λ ≥ 0 is a random subset of R2 such that

a) for disjoint Borel sets B1, . . . , Bn ⊆ R2, then η ∩B1, . . . , η ∩Bn are inde-
pendent.

b) for every Borel set B ⊆ R2 with Lebesgue measure ν(B) <∞,

P
(
|η ∩B| = k

)
= e−λν(B)λ

kν(B)k

k!
, for k = 1, 2, 3, . . .
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Alternatively, one can construct a Poisson point process in R2 by partitioning
the plane into unit squares and, for each square independently, place a Poisson
distributed number of points uniformly.

Let η be a Poisson point process in R2 of intensity λ ≥ 0. Centre at each
Poisson point a unit disc. Let D(η) denote the union of these discs, that is

D(η) :=
{
x ∈ R2 : dist(x, η) ≤ 1

}
,

where dist(x,A) = infa∈A |x − a|. D(η) is referred to as the occupied region,
and the ”Swiss cheese” R2 \D(η) as the vacant region. Equivalently, at least
from a connectivity perspective, we can think of the occupied region as the
random graph embedded in R2, with vertex set given by the Poisson point
process and where any two vertices at distance at most 2 are joined by an
edge.

Both the occupied and the vacant region will consist of connected com-
ponents. Let D denote the connected component in the occupied region that
contains the origin. If the origin lies in the vacant region, then D = ∅. Define
the percolation function

θG(λ) := Pλ(D is unbounded).

Similar to the percolation function for bond percolation, also θG(λ) is seen
to be non-decreasing via a simple coupling argument. If λ1 < λ2, then the
conclusion is drawn from the comparison of a Poisson process of intensity λ1

with the super-positioning of that process with an independent Poisson process
of intensity λ2 − λ1. It is well-known that the super-positioned process has a
Poisson distribution of intensity λ2. The critical density λc is defined as

λc := inf{λ ≥ 0 : θG(λ) > 0}.

The critical density is known to be non-trivial, that is 0 < λc < ∞. The
upper bound on λc is easily obtained by comparing the continuum model to
site percolation on the Z2 lattice. Site percolation was not discussed in this
text, but behaves in a similar way as bond percolation. In particular, for p,
the probability of a site being open, close to 1, the existence of an infinite open
component of neighbouring sites has probability 1 to occur. Thus, to prove
that λc is finite, discretize the plane into a square grid of side length 1/

√
2.

Note that if a square of the grid contains a Poisson point, then the entire square
is contained in the occupied region. If the intensity of the Poisson process is
sufficiently large, then each square will, independently of one another, contain
a Poisson point with probability p = p(λ) close to 1. Hence, almost surely,
there exists an infinite component of neighbouring squares which each contain
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a Poisson point. But, the existence of such a component implies the existence
of an infinite sequence of overlapping discs. Hence, an unbounded occupied
component exists in the continuum model for sufficiently large λ.

To prove that for small λ the occupied component containing the origin is
finite almost surely can be seen via a comparison of the Poisson points in D
and a suitable branching process. The reader familiar with branching processes
can easily complete the argument.

In the Poisson Boolean model, vacant space serves as dual to occupied
space. Since the two regions have different geometry, the balance witnessed in
(2.1) for the bond model will not hold here. Other than that, the duality can
be used to derive a similar picture of the status of a possible infinite connected
region.

Theorem 2.5. The critical probability λc satisfies 0 < λc < ∞ and distin-
guishes three regimes.

a) In the subcritical regime λ < λc, there exists a unique unbounded vacant
component, but no unbounded occupied component, almost surely.

b) In the supercritical regime λ > λc, there exists no unbounded vacant com-
ponent, but a unique unbounded occupied component, almost surely.

c) At criticality, there is almost surely no unbounded occupied nor vacant
component.

This result summarizes the state of affairs and is due to work of Hall, Roy,
Meester and Alexander. Instead of presenting a full list of references, I refer to
the works of Meester and Roy (1996) and Alexander (1996). The techniques
used to prove this result are similar to those indicated above for percolation on
the lattice. However, additional difficulties arise due to the random positioning
of the vertices in the continuum. Further difficulties arise when considering
discs with random radii. I have here restricted attention to discs of fixed radii.
The more general case is treated in detail in the book by Meester and Roy
(1996).
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Chapter 3

Random sequences

Real-valued random sequences, and in particular sequences of i.i.d. random
variables, have been extensively studied during the 20th century. Let {Xk}k≥1

be a sequence of i.i.d. random variables, set S0 := 0 and denote its partial sums
by Sn := X1 +X2 + . . .+Xn, for n ≥ 1. The sequence {Sn}n≥0 of partial sums
is often referred to as a random walk. Certain special cases of random walks
are especially well known. A simple random walk is a random walk where the
increments Xk, for k ≥ 1, takes on the values −1 and 1 with equal probability.
If the increments are non-negative, then the random walk is known as a renewal
sequence. There are many classical results regarding random walks, and some
of the most well-known concern the asymptotic behaviour of the sequence of
partial sums. Let µ := E[Xk] and σ2 := Var(Xk).

Theorem 3.1 (Law of Large Numbers). If µ <∞, then

lim
n→∞

Sn

n
= µ, almost surely.

Theorem 3.2 (Central Limit Theorem). If σ2 <∞, then

Sn − µn

σ
√
n

d→ χ, in distribution,

as n→ ∞, where χ has a standard normal distribution.

Theorem 3.3 (Law of the Iterated Logarithm). If σ2 <∞, then

lim sup
n→∞

Sn − µn

σ
√

2 log log n
= 1, almost surely.

Loosely speaking, the Law of Large Numbers states that the average among
the n first increments Sn/n is close to the mean µ when n is large, whereas the
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Central Limit Theorem describes how Sn/n is distributed around the mean,
and the Law of the Iterated Logarithm the magnitude of the fluctuations of
Sn/n away from the mean. However, there are many situations in which it is
not the sequence of partial sums itself, but rather some quantities that can be
derived therefrom, that is the object of interest. A couple of such situations
will be described next.

In renewal theory, for k ≥ 1 the non-negative variables Xk are thought of
as lifetimes, and Sk is referred to as renewal times. The main object of interest
is the renewal counting process {N(t)}t≥0 where N(t) counts the number of
renewals in the interval (0, t], that is,

N(t) := max{n : Sn ≤ t}.

Renewal theory is concerned with the inverse problem of understanding the
number of occurrences of events during certain time intervals. If the renewal
sequence marks the arrival of customers to a queue, then N(t) counts the num-
ber of arrivals until time t. Note that for a renewal sequence with exponentially
distributed waiting times, the renewal counting process {N(t)}t≥0 is a Poisson
process on [0,∞).

Depending on the context, we may instead be interested in the position
(value) of a random walk, not at fixed time point, but at the occurrence of
certain events.

Example 3.4. To continue the example of customers in a queue, let {Xk}k≥1

denote the inter-arrival times between the customers, and let {Yk}k≥1 denote
their respective service times. For planing purposes, we may be interested in
the service time required to serve all customers arriving in the interval [0, t].
As N(t) counts the arrivals in the interval [0, t], the quantity of interest is
Y1 + Y2 + . . .+ YN(t).

As a second example, I will present a situation that will appear in Paper I
of this thesis.

Example 3.5. Imagine we are interested in the asymptotic behaviour of the
some random sequence {Tn}n≥1, but which is not of the simple form a random
walk is, i.e., does not have i.i.d. increments Tk − Tk−1. In some cases it is
possible to identify a random subsequence {ρn}n≥1 of the index set, for which
the distribution of {Tn+ρk

−Tρk
}n≥1 does not depend on k, and the increments

{Tρn+1 − Tρn}n≥1 are i.i.d. In this case, {Tρn}n≥1 is a random walk, and
{Tn}n≥1 is sometimes referred to as a regenerative sequence, as it starts anew
at certain instances. One way to obtain such a sequence is to associate the
sequence {ρn}n≥1 to the occurrence of a suitably chosen event. In order for the
identification of an embedded random walk to of any help, it has to provide
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information about the original sequence. In particular, if {Tn}n≥1 has non-
negative increments, then {Tρn}n≥1 is a renewal sequence, and for

ν(n) := min{k ≥ 1 : ρk ≥ n},

then Tρν(n)−1
≤ Tn ≤ Tρν(n)

.

In Paper I the approach in the above example is found favourable in the
application to first-passage percolation, where both sequences {ρn}n≥1 and
{Tρn}n≥1 will be renewal sequences.

In general, this leads to the question, given some asymptotic property of
a sequence {Yn}n≥1, what is required for {λn}n≥1 in order to say something
about {Yλn

}n≥1? This will be discussed next.

3.1 Stopped random walks

The asymptotic properties of i.i.d. sequences are particularly well documented,
and considerable efforts have been made to extend results concerning their
partial sums to random subsequences thereof (see e.g. Gut (2009)). As above,
let {Xk}k≥1 be a sequence of i.i.d. random variables, and let {Sn}n≥0 denote
its partial sums. Moreover, let {λn}n≥1 is a sequence of non-negative integer-
valued random variables. The sequence {Sλn

}n≥1 is referred to as a stopped
random walk, where the term ’stopped’ comes from the fact that λn often is a
stopping time, but this restriction is not necessary in general.

In some cases a result for stopped random walks is an easy consequences
of the corresponding result for the sequence of partial sums. Assume that
λn → ∞ as n → ∞ almost surely. Then, if {Yn}n≥1 is a sequence such that,
almost surely, Yn → Y as n→ ∞, then also Yλn

→ Y as n→ ∞. In particular,
as an immediate consequence of the Law of Large Numbers we obtain that

lim
n→∞

Sλn

λn
= µ, almost surely.

The Central Limit Theorem does not extend as easily to random subse-
quences. The difficulty can be illustrated as follows. Assume that {Sn}n≥1 is
a simple random walk and let {λn}n≥1 be the sequence of indices for which
the random walk takes negative values. Hence, Sλn

/σ
√
λn is negative for all

n, and cannot possibly converge to a normal distribution. Nevertheless, under
some additional assumption, the Central Limit Theorem does extend to what
is sometimes referred to as Anscombe’s theorem. For a proof of this theorem I
refer to either of two books by Gut (2005, 2009).
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Theorem 3.6 (Anscombe’s Theorem). Let {Xk}k≥1 be an i.i.d. sequence with
mean µ, finite variance σ2 and partial sums {Sn}n≥1. Assume further that as
n→ ∞

λn

n

p→ θ, in probability.

Then, as n→ ∞,

Sλn
− µλn

σ
√
λn

d→ χ, in distribution,

where χ has a standard normal distribution.

Also the Law of the Iterated Logarithm extends to a version for stopped
random walks. As above, if {Sn}n≥1 is a simple random walk and {Sλn

}n≥1

denotes the subsequence of which the partial sums are negative, then supe-
rior limit of Sλn

/σ
√

2n log log n cannot exceed 0. The necessary additional
condition is that limn→∞ λn/n ∈ R exists almost surely.

3.2 Subadditive sequences

When studying more complex random objects, such as the model for spatial
growth introduced earlier, one encounters situations where random sequences
of more complicated structure need to be understood. This led Hammersley
and Welsh (1965) to initiate the study of subadditive stochastic sequences.

Before I proceed, let me take a step back to consider real-valued sequences.
A real-valued sequence {an}n≥1 is called subadditive when

am+n ≤ am + an, for all m,n ≥ 1.

Convergence of real-valued subadditive sequences was discovered already by
Fekete (1923). In fact, given integers 1 ≤ m ≤ n, choose k ≥ 1 and 0 ≤ ℓ < m
such that n = km+ ℓ. It follows from the subadditive property that

inf
m≥1

am

m
≤ an

n
≤ k · am + aℓ

n
≤ am

m
+
aℓ

n
.

Sending n→ ∞, we immediately obtain that

∃ lim
n→∞

an

n
= inf

n≥1

an

n
. (3.1)

This result is commonly known as Fekete’s lemma.
A collection of random variables {Xm,n}0≤m<n is called subadditive if

Xℓ,n ≤ Xℓ,m +Xm,n, for all ℓ < m < n. (3.2)
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Do subadditive stochastic sequences converge in a similar manner as in (3.1)?
This question will be addressed shortly. First, I will present three examples
that are suitable to keep in mind for the following discussion.

Example 3.7. Let X be a random variable and define Xm,n := (n−m)X. Then
{Xm,n}0≤m<n is subadditive.

Example 3.8. Let {Yk}k≥1 be a sequence of i.i.d. random variables. Then
{Sm,n}0≤m<n is a subadditive sequence, where Sm,n denotes the partial sum
Sm,n := Ym+1 + Ym+2 + . . .+ Yn.

Example 3.9. In first-passage percolation on the Z2 lattice, each edge of the
graph is independently assigned a non-negative random variable. The variables
are interpreted as the time it takes a fluid to traverse the edges. Denote the
time it takes a fluid to reach the vertex (n, 0) when started at (m, 0) by Tm,n.
Then {Tm,n}0≤m<n is subadditive, since, intuitively, restricting the fluid to pass
the vertex (m, 0) on its way from (ℓ, 0) to (n, 0) can only increase its travel
time.

The first two examples are in fact additive, meaning that equality holds in
(3.2). The third example is the one that led Hammersley and Welsh to initiate
the study of subadditive stochastic sequences. In the second example, when
the sequence is assumed to have finite mean, the Law of Large Numbers implies
that limn→∞ S0,n/n exists almost surely. In fact, for the convergence to hold,
it suffices that the sequence {Yn}n≥1, instead of being i.i.d., is stationary in
the sense that the distribution of {Yn+k}n≥1 does not depend on k ≥ 0. This
is a consequence of Birkhoff’s more general Ergodic Theorem.

Under which additional assumptions does sequences satisfying (3.2) con-
verge in a similar manner as in (3.1)? Typically, independence is a too strong
assumption, and is not satisfied in Example 3.9. Stationarity is a more ade-
quate assumption. Hammersley and Welsh (1965) worked with the following
two additional assumptions.

The distribution of Xm,n depends only on the difference n−m. (3.3)

There exists c <∞ such that − cn ≤ E[X0,n] <∞, for all n ≥ 1. (3.4)

Each of the three examples presented above satisfy assumption (3.3) and (3.4),
given that finite mean are assumed. For now, let {Xm,n}0≤m<n be a sequence
satisfying (3.2), (3.3) and (3.4). Note that gn := E[X0,n] is subadditive, so
(3.1) directly gives that

∃ γ := lim
n→∞

E[X0,n]

n
.

Further Hammersley and Welsh (1965) showed that

P

(
lim sup

n→∞

X0,n

n
≤ γ

)
= 1 (3.5)
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is a sufficient condition to conclude that

lim sup
n→∞

X0,n

n
= γ almost surely, and lim

n→∞
X0,n

n
= γ in probability.

Moreover, they showed that (3.5) is satisfied if for each ǫ > 0 there exists k ∈ N

and an i.i.d. sequence {Yn}n≥1 such that E[Yn] ≤ k(γ + ǫ) and

X0,kn ≤ Y1 + Y2 + . . .+ Yn, for all n ≥ 1.

In Example 3.8 this condition is trivially met, and they managed to show that
it is also met in Example 3.9. In Example 3.7 condition (3.5), and the following
conclusions fail to hold, unless X is constant.

I will end this section with a comment on the fluctuations of a subadditive
sequence. In Example 3.7 Var(X0,n) = n2 Var(X), whereas in Example 3.8
Var(S0,n) = nVar(Y1). This indicates that the properties (3.2), (3.3) and (3.4)
allows for quite different behaviour to occur. When Xm,n is non-negative, and
E[X2

0,1] < ∞, then Var(X0,n) can easily be bounded from above by E[X2
0,1]n

2.
This is realized by squaring both sides and taking expectations in the inequality

X0,n ≤ X0,1 +X1,2 + . . . ,Xn−1,n.

In general, this cannot be improved significantly as Example 3.7 shows. Ham-
mersley and Welsh showed that Var(X0,n)/n2 vanishes as n → ∞, given that
the sequence {Xm,n}0≤m<n can be dominated by a certain less correlated se-
quence.

3.3 The Subadditive Ergodic Theorem

An important improvement upon the results of Hammersley and Welsh allows
for almost sure and in L1-convergence to be deduced. To obtain such a result
(3.3) is exchanged for a stronger stationarity assumption. The result is due to
Kingman (1968), also him motivated by first-passage percolation. Since then,
other situations have appeared in which subadditive sequences do not meet
Kingman’s assumptions. An alternative formulation with somewhat relaxed
conditions was later provided by Liggett (1985). Before presenting the precise
result, it is necessary to introduce a few additional concepts.

Let (Ω,F ,P) be a probability space, and let ϕk : RZ+ → RZ+ denote
the shift operator that maps (x1, x2, . . .) to (xk+1, xk+2, . . .). Recall that a
real-valued sequence of random variables Y = {Yn}n≥1 on (Ω,F ,P) is called
stationary if the distribution of ϕk(Y ) = {Yn+k}n≥1 does not depend on k ≥
0. It is immediate that an i.i.d. sequence is stationary. An event A ∈ F is
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invariant with respect to Y if there exists a Borel set B ⊆ RZ+ such that
A = {ω ∈ Ω : ϕk(Y ) ∈ B} for all k ≥ 0. Finally, a stationary sequence Y is
called ergodic if all invariant sets (with respect to Y ) has measure either 0 or
1.

Example 3.10. Again, an i.i.d. sequence is a simple example of an ergodic sta-
tionary sequence. To see this, note that if A is invariant, then A is determined
by ϕk(Y ) for each k ≥ 0, i.e., A ∈ σ(Yk+1, Yk+2, . . .) for each k ≥ 0. Hence,
Kolmogorov’s 0-1 law gives that A has measure either 0 or 1.

An easy way to generate further ergodic stationary sequences is to pick an
existing ergodic stationary sequence Y = {Yn}n≥1, and a measurable function
g : RZ+ → R; the sequence {Zn}n≥1 given by Zn := g

(
ϕn(Y )

)
is stationary

and ergodic. I will come back to this below. First, I present Liggett’s version
of Kingman’s Subadditive Ergodic Theorem.

Theorem 3.11 (Subadditive Ergodic Theorem). Let {Xm,n}0≤m<n be a col-
lection of random variables satisfying

a) X0,n ≤ X0,m +Xm,n, for all 0 < m < n.

b) The distribution of the sequence {Xm,m+k}k≥1 does not depend on m ≥ 0.

c) The sequence {Xkm,(k+1)m}k≥1 is stationary for each m ≥ 0.

d) For all n, E
[
|X0,n|

]
<∞ and E[X0,n] ≥ −cn, for some c <∞.

Then, the following conclusions hold

e) ∃ γ := limn→∞ 1
n E[X0,n] = infn≥1

1
n E[X0,n].

f) ∃ X := limn→∞
X0,n

n , almost surely and in L1, where E[X] = γ.

Moreover, if all sequences in c) are ergodic, then X = γ almost surely.

All three of Example 3.7 to 3.9 satisfy the conditions of the Subadditive
Ergodic Theorem. The first two are immediate. Also the third, to which
this theorem is of particular importance, is easily verified (see Proposition 4.1
below).

In percolation theory, one often deals with families of i.i.d. random variables
indexed by the vertices or edges of a lattice. This is the case in both bond
percolation and first-passage percolation. Arguments making use of ergodicity
are common. The concepts of stationarity, invariance and ergodicity extends
to families Y = {Yz}z∈Zd of random elements, in terms of the shift operator
ϕy that maps {xz}z∈Zd to {xy+z}z∈Zd , for y ∈ Zd. Of course, an i.i.d. family
is stationary, and can also be seen to be ergodic.
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Let {Ye}e∈E be a family of random variables indexed by the edges E of
the Zd lattice. Let Yz denote the d-dimensional random vector consisting
of the random variables associated with the d edges extending (in positive
direction) from the vertex z. In this way {Ye}e∈E corresponds to {Yz}z∈Zd ,
and it is possible to talk about stationarity and ergodicity of the former family
in terms of the latter. In particular, when the elements of {Ye}e∈E are i.i.d.,
also {Yz}z∈Zd is an i.i.d. family, and hence, both stationary and ergodic.

Example 3.12. Quite informally, an event A is invariant with respect to Y if
from a realization of Y it is possible to decide whether A occurs or not, without
knowing the position of the origin. In bond percolation, typical examples of
such events are:

a) Existence of an infinite open component.

b) Existence of precisely k ∈ N infinite open components.

By ergodicity, both these events has measure either 0 or 1.

Additional ergodic stationary families can be constructed from known ones,
as a consequence of the next simple result which is mentioned without proof.
Although stated for families of real-valued random variables, the result holds
also for more general random elements.

Proposition 3.13. If Y = {Yz}z∈Zd is stationary and ergodic, and g : RZ
d →

R measurable, then the family Z = {Zz}z∈Zd given by Zz := g
(
ϕz(Y )

)
is

stationary and ergodic.

Often, we are interested only in a sub-family of variables in of the family Z
obtained from Y . Of course, the sub-family will as well be stationary. However,
it is not necessarily ergodic. In the application of the Subadditive Ergodic
Theorem to first-passage percolation, stationary sequences arise in this way.
In this case, a more direct argument can be used to obtain ergodicity.
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Chapter 4

First-passage percolation

It is time to describe the stochastic growth model known as first-passage per-
colation in greater detail. Attention will be restricted to the lattice case, i.e.,
the case where the discrete structure is taken to be the Zd nearest neighbour
graph, for some d ≥ 2. This model has been extensively studied in the liter-
ature, and was introduced by Hammersley and Welsh (1965). Let E denote
the set of edges of the Zd lattice, and let {τe}e∈E denote a collection of i.i.d.
non-negative random variables associated with the edges, referred to as passage
times. Define the passage time of a path Γ as T (Γ) :=

∑
e∈Γ τe. (Here, and at

other places, a path is identified with its set of edges.) In particular, we are
interested in the travel time, also referred to as passage time or first-passage
time, between two vertices x and y in Zd, which is defined as

T (x,y) := inf
{
T (Γ) : Γ is a path from x to y

}
.

As mentioned before, first-passage percolation is often motivated as a model
for the spatial propagation of a fluid when injected at the origin of the lattice.
The term passage time reflects the interpretation of the random variables as
the time needed for a fluid to traverse the edge. Similarly, first-passage times
(between two points) are commonly interpreted as the time it would take a fluid
injected at one point to reach another. Relevant questions aim to understand
the spatial growth of the fluid injected at the origin of the lattice. How far will
the fluid reach in fixed time intervals? How does the number of wet sites grow
in time? What can be said about the shape of the region of wet vertices? All
these questions concern the central object defined as

Wt := {z ∈ Zd : T (0, z) ≤ t}, for t ≥ 0,

and interpreted as the wet region at time t.
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In renewal theory, the renewal counting process counts occurrences of the
associated renewal sequence. Analogously, the wet region is the corresponding
inverse quantity associated to the sequence of first-passage times

{
T (0, z)

}
z∈Zd .

In this sense, first-passage percolation can be seen as a generalization of a
renewal process to graphs. As in renewal theory, investigating how first-passage
times behave is essential in order to understand how the wet region evolves in
time. However, the known picture is still far from complete. My aim is to
give a short introduction that is relevant for the contributions made in this
thesis. A survey on the early developments in first-passage percolation is given
by Smythe and Wierman (1978). Another extensive presentation is given by
Kesten (1986), whereas a more recent reference is the survey by Howard (2004).

Particular efforts have been invested in studying the propagation of the fluid
in coordinate directions. If e1 ∈ Zd denotes the unit vector along the first coor-
dinate axis, this corresponds to studying the sequence

{
T (0, ne1)

}
n≥1

. Basic
questions about first-passage times were studied already in Hammersley and
Welsh (1965). Under which conditions, and in which sense does T (0, ne1)/n
converge as n → ∞? Is the expected travel time E

[
T (0, ne1)

]
increasing in

n? What can be said about Var
(
T (0, ne1)

)
? Does T (0, ne1) exhibit a central

limiting behaviour when scaled properly?
First-passage times have a considerably more complex dependence struc-

ture than renewal sequences. However, as defined they are easily seen to be
subadditive, i.e.,

T (x,y) ≤ T (x, z) + T (z,y), for any x,y, z ∈ Zd. (4.1)

Since the distribution of T (x,x + y) is independent of x ∈ Zd, it follows
immediately from Fekete’s lemma that

∃µZd := lim
n→∞

E
[
T (0, ne1)

]

n
.

As a consequence of their study of subadditive stochastic sequences, Hammer-
sley and Welsh (1965) were able to prove that whenever E[τe] <∞, then

lim sup
n→∞

T (0, ne1)

n
= µZd almost surely,

lim
n→∞

T (0, ne1)

n
= µZd in probability.

(4.2)

In order to prove this they showed that (3.5) holds by dominating T (ne1,me1)
by the passage time of paths between ne1 and me1 restricted to cylinders of
the form {z ∈ Zd : n < z1 ≤ m} (except for the first vertex of the path). An
important advancement came with Kingman’s already mentioned Subadditive
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Ergodic Theorem (Theorem 3.11). When applied to the sequence of first-
passage times

{
T (me1, ne1)

}
0≤m<n

, we obtain the following, where

Y := min(τ1, τ2, . . . , τ2d), (4.3)

and τ1, τ2, . . . , τ2d are independent and distributed as τe.

Proposition 4.1. Whenever E[Y ] <∞,

lim
n→∞

T (0, ne1)

n
= µZd , almost surely and in L1.

Proof. Conditions a), b) and c) of the Subadditive Ergodic Theorem are im-
mediate from (4.1) and translation invariance of the underlying i.i.d. structure
of the lattice. Alternatively, stationarity of the sequeces in c) can be obtained
as a consequence of Proposition 3.13, which gives that

{
T (y,y + z)

}
y∈Zd is

stationary and ergodic for every z ∈ Zd. (That T : RE → R is measurable is
easily seen; an argument was given by Hammersley and Welsh (1965).) How-
ever, this does not imply ergodicity of the sequences in c) directly. Instead, a
more direct argument will be presented below.

First, let us see that d) holds. It suffice to show that E
[
T (0, e1)

]
< ∞,

since 0 ≤ E
[
T (0, ne1)

]
≤ nE

[
T (0, e1)

]
, due to a) and b). Between 0 and e1

there are 2d disjoint paths of length at most 9. Let Γ denote the longest of
those paths. Then

P
(
T (0, e1) > s

)
≤ P

(
T (Γ) > s

)2d ≤ 92d P(τe > s/9)2d = 92d P(Y > s/9),

where the second inequality holds because if T (Γ) > s, then at least one of the
9 edges has τe > s/9. Since E[X] =

∫∞
0 P(X > x) dx for nonnegative random

variables, E
[
T (0, e1)

]
< ∞ holds. Hence, the conditions of the Subadditive

Ergodic Theorem are satisfied, and the limit limn→∞ T (0, ne1)/n exists almost
surely and in L1.

It remains to show that the limit is constant. Let Λk denote the box of
side length 2k centered at the origin. With a slight abuse of notation, let
T (Λk, ne1) := minz∈Λk

T (z, ne1). It is clear that

T (Λk, ne1) ≤ T (0, ne1) ≤ T (Λk, ne1) +
∑

e∈Λk

τe.

In particular, we conclude that for every k ≥ 0

∃ lim
n→∞

T (Λk, ne1)

n
= lim

n→∞
T (0, ne1)

n
, almost surely and in L1. (4.4)
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However, since T (Λk, ne1) does not depend on τe for e ∈ Λk, the limit in (4.4)
cannot either do so. This holds for all k ≥ 0, which shows that the limit
cannot depend on any finite collection of passage times. As a consequence of
Kolmogorov’s 0-1 law, it has to be constant.

From Proposition 4.1 we obtain the propagation of the fluid in coordinate
directions. Similarly, the Subadditive Ergodic Theorem applies to the sequence{
T (0, nz)

}
n≥1

for any z ∈ Zd. It is for practical purposes handy to extend the

the definition of passage times between vertices to pairs of points in Rd. For
x,y ∈ Rd, define T (x,y) = T (x∗,y∗) where x∗ and y∗ denotes the points in
Zd closest to x and y, respectively (choosing the points closest to the origin
in case of a tie, say). Whenever E[Y ] < ∞, it is in fact possible (although
not immediate from the Subadditive Ergodic Theorem) to show that for any
x ∈ R2

∃µZd(x) := lim
n→∞

T (0, nx)

n
, almost surely and in L1. (4.5)

The limit µZd(x) in (4.5) is referred to as the time constant.

Hammersley and Welsh (1965) further conjectured that the expected travel
time E

[
T (0, ne1)

]
is monotonic in n. Renewal sequences in the classical sense

are, but
{
T (0, ne1)

}
n≥1

is not a renewal sequence. Despite the intuitive appeal

the conjecture has, van den Berg (1983) constructed an example that essentially
shows that the conjecture is false for small n. It remains an open problem to
find out whether the expected travel time could be monotonic for sufficiently
large n.

4.1 The Shape Theorem

The convergence in (4.5) describes the spatial growth of the process in any
fixed direction. To understand the growth of the wet region, the convergence
in (4.5) need to be concluded in all directions simultaneously. This can be
obtained, and was first realized by Cox and Durrett (1981), inspired by a
result of Richardson (1973). In terms of first-passage times, their result can be
stated as whenever E[Y d] <∞

lim sup
z∈Zd

∣∣∣∣
T (0, z) − µZd(z)

|z|

∣∣∣∣ = 0, almost surely. (4.6)

(In fact, the convergence also holds in L1, as seen in Paper II, but I do not
want to focus on that here.) Equivalently, (4.6) can be stated in terms of the
wet region. Just as first-passage times were extended to pairs of points in Rd,
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it is convenient to replace Wt, which is a subset of Zd, with a corresponding
subset of Rd. Let

W̃t :=
{
x ∈ Rd : T (0,x) ≤ t

}
, for t ≥ 0.

Cox and Durrett’s result can then be described as how closely W̃t resembles
the set

W∗ :=
{
x ∈ Rd : µZd(x) ≤ 1

}
.

The geometric properties of the set W∗ can be divided into two regimes. As
will be seen shortly,

W∗ is compact, convex and has non-empty interior, when µZd(e1) > 0,
(4.7)

W∗ = Rd, when µZd(e1) = 0.
(4.8)

Formulated in terms of the wet region, (4.6) is known as the Shape Theorem
and this is indeed how it was first described by Cox and Durrett.

Theorem 4.2 (Shape Theorem). Consider first-passage percolation on the Zd

lattice with i.i.d. passage times such that E
[
Y d
]
< ∞, for Y defined as in

(4.3). If µZd(e1) > 0, then, for all ǫ > 0, almost surely,

(1 − ǫ)W∗ ⊂ 1

t
W̃t ⊂ (1 + ǫ)W∗, for t large enough. (4.9)

If µZd(e1) = 0, then for every compact set K in Rd, almost surely,

K ⊂ 1

t
W̃t, for t large enough.

In the regime µZd(e1) > 0 the Shape Theorem, in combination with (4.7),
states that the wet region grows with linear speed. It is clear that W∗ is
bounded and has non-empty interior is necessary for (4.9) to hold. Except for
convexity, it has turned out very hard to prove further characteristics of W∗

in the same regime. My next aim is to prove that (4.7) and (4.8) indeed hold.
After that, an argument showing that (4.6) implies the Shape Theorem will be
presented.

4.2 The time constant and asymptotic shape

As a start, one would like to characterize the two regimes in the Shape Theo-
rem, that is, when µZd(e1) > 0 and not. Kesten (1986) showed that µZd(e1) = 0
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if and only if P(τe = 0) ≥ pc(d), where pc(d) denotes the percolation threshold
for bond percolation on the Zd lattice. The precise geometry of the asymptotic
shape W∗ is not known. In addition to (4.7) and (4.8), it is easily seen that
W∗ has to be symmetric with respect to reflexion in coordinate axis, due to
the corresponding symmetry in the lattice. In the following paragraphs, I will
show how (4.7) and (4.8) can be obtained as a consequence of a few simple
properties of the time constant. The following properties of µZd(·) will be used:

µZd(ax) = aµZd(x), for all a ≥ 0 and x ∈ Rd, (4.10)

µZd(x + y) ≤ µZd(x) + µZd(y), for all x,y ∈ Rd, (4.11)
∣∣µZd(x) − µZd(y)

∣∣ ≤ dE
[
T (0, e1)

]
|x − y|, for all x,y ∈ Rd. (4.12)

These properties holds in either regime, and are only subject to the restriction
that E[Y ] < ∞, in order for µZd(·) to be well-defined. How these properties
can be derived will be indicated later.

Proof of (4.7). The asymptotic shape W∗ is convex in both regimes. To see
this, note that x is contained in W∗ if and only if µZd(x) ≤ 1. Thus, if x and
y belong to W∗, and λ ∈ (0, 1), then also λx + (1 − λ)y belongs to W∗, since
according to (4.10) and (4.11)

µZd

(
λx + (1 − λ)y

)
≤ λµZd(x) + (1 − λ)µZd(y) ≤ 1.

The remaining two properties of W∗ when µZd(e1) > 0 can be deduced with
help of the convexity. First, note that by (4.10), there are a > 0 and b <∞ such
that µZd(ae1) < 1 and µZd(be1) > 1. Together with convexity and reflexion
symmetry of W∗, the former implies that W∗ has non-empty interior, whereas
the latter that W∗ is bounded. To prove compactness, it remains to conclude
that W∗ is closed. However, that is immediate from the continuity of µZd(·) in
(4.12).

Proof of (4.8). To conclude that W∗ = Rd when µZd(e1) = 0, it suffice to
prove that either µZd(·) ≡ 0, or µZd(x) 6= 0 for all x 6= 0. Assume that the
latter is not the case. First, assume that µZd(e1) = 0, for which it follows that
µZd(ej) = 0 for each j = 1, 2, . . . , d by symmetry. That µZd(x) = 0 for all
x ∈ Rd is now immediate from (4.10) and (4.11). In general, if µZd(x) = 0 for
some x 6= 0, then we can in a similar fashion, via reflexion, obtain d vectors
x1,x2, . . . ,xd such that µZd(xj) = 0 for each j = 1, 2, . . . , d and which together
span Rd. Again, that µZd(x) = 0 for all x ∈ Rd is immediate from (4.10) and
(4.11).
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Hence, (4.7) and (4.8) have been deduced from (4.10), (4.11) and (4.12),
which remain to be justified. I will not present all details here, but only indicate
why the properties hold. For a ∈ N, (4.10) follows from (4.5) since

µZd(ax) = a lim
n→∞

E
[
T (0, anx)

]

an
= aµZd(x).

This extends to all a ≥ 0 via a comparison of E
[
T (0, anx)

]
and E

[
T (0, ⌊an⌋x)

]
,

where ⌊·⌋ denotes the integer part. The difference is easily seen to be bounded.

For x and y in Zd, (4.11) follow directly from (4.1) and (4.5), and a similar
comparison can be made to extend (4.11) to arbitrary x,y ∈ Rd. For the final
property (4.12), note that

∣∣∣∣∣
E
[
T (0, nx)

]

n
− E

[
T (0, ny)

]

n

∣∣∣∣∣ ≤
∣∣∣∣∣
E
[
T (nx, ny)

]

n

∣∣∣∣∣

≤ 1

n
E
[
T (0, e1)

] ∥∥(nx)∗ − (ny)∗
∥∥

1

≤ d

n
E
[
T (0, e1)

] ∣∣(nx)∗ − (ny)∗
∣∣.

Sending n to infinity, we are able to conclude that (4.12) holds.

I will next proceed with the equivalence between the Shape Theorem and
(4.6). The proof will for obvious reasons in addition depend on the properties
of µZd(·) demonstrated above. I will only prove that (4.6) implies the Shape
Theorem. This is the more relevant of the two implications, since Paper II
repeatedly deals with expressions of the form (4.6). That the Shape Theorem
implies (4.6) is easily deduced in a similar fashion.

Proposition 4.3. (4.6) implies Theorem 4.2.

Proof. Case µZd(e1) = 0. It suffices to show that for any M < ∞, almost
surely, all z ∈ Zd satisfying |z| ≤ tM are included in Wt, for sufficiently large
t. According to (4.6) (since µZd(·) ≡ 0) there is K = K(M) < ∞ such that
T (0, z) ≤ |z|/M for all |z| ≥ K, almost surely. Pick M and fix K accordingly.
By construction, T (0, z) ≤ t when K ≤ |z| ≤ tM . Since only finitely many
points in Zd have |z| < K, it is possible to choose t <∞ such that T (0, z) ≤ t
for all such points, almost surely.

Case µZd(e1) > 0. Pick ǫ > 0 and fix

δ = min

(
ǫ

sup
x∈W∗ |x| ,

ǫ

1 + ǫ
inf

x: |x|=1
µZd(x)

)
.
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Importantly, observe that δ > 0, since W∗ is bounded and µZd(·) is bounded
away from zero on the compact set |x| = 1. According to (4.6), choose K =
K(δ) <∞ such that for all |x| ≥ K

µZd(x) − δ|x| ≤ T (0,x) ≤ µZd(x) + δ|x|, almost surely.

It suffices to prove that for sufficiently large t

(1 − ǫ)tW∗ ⊆ W̃t ⊆ (1 + ǫ)tW∗, almost surely.

Let me begin with the lower inclusion, or more precisely, for x ∈ W∗, set
y = (1 − ǫ)tx and prove that T (0,y) ≤ t for sufficiently large t, almost surely.
For |y| ≥ K,

T (0,y) ≤ µZd(y) + δ|y| ≤ (1 − ǫ)t+ ǫt.

Since t0 := sup
y: |y|<K T (0,y) is in fact a maximum over finitely many points

in Zd, it is almost surely finite. Therefore, the lower inclusion holds for all
t ≥ t0, almost surely. For the upper inclusion, it suffices to show that for large
t, if y ∈ W̃t, then µZd(y) ≤ (1 + ǫ)t, almost surely. For |y| ≥ K,

1

1 + ǫ
µZd(y) = µZd(y)− ǫ

1 + ǫ
µZd

(
y

|y|

)
|y| ≤ µZd(y)−δ|y| ≤ T (0,y) ≤ t.

In addition, for |y| < K we will clearly have µZd(y) ≤ t for t large, due to
continuity of µZd(·). Therefore, also the upper inclusion holds for all large t,
almost surely.

As a final remark, let me say that in addition to (4.12), the time constant is
continuous also in other respects. Cox (1980) and Cox and Kesten (1981) have
showed that µZd(x) varies continuously, for each x ∈ Rd, with respect to weak
convergence of the passage time distribution. This result needs a greater effort
in order to deduce. Essentially, the approach is to compare time constants via
a coupling between different distributions. The same approach is used in Paper
I, where a similar result is proved in an easier setting.

4.3 Shape fluctuations

Complementing results to the Shape Theorem have so far not been obtained
with the same precision. While the expected travel time grows linearly with
the distance, the variance of the travel time is believed to have sub-linear
growth. The best available bounds on the variance of T (0, ne1) are still not
sharp. These bounds generally assume that E[τ2

e ] < ∞, but are individually
subject to additional restrictions. Recall that for a classical renewal sequence,
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the variance is a linear function in the number of waiting times. In contrast,
Hammersley and Welsh (1965) were able, from their early work on subadditive
sequences, to conclude that Var

(
T (0, ne1)

)
/n2 vanishes as n tends to infinity.

This was improved upon by Kesten (1993). He showed that for any d ≥ 2, if
in addition P(τe = 0) < pc(d), then there are constants C1 > 0 and C2 < ∞
such that

C1 ≤ Var
(
T (0, ne1)

)
≤ C2n, for all n ≥ 1. (4.13)

Considerable improvements of Kesten’s result have so far not been obtained,
except for in special cases. In two dimensions, physicists predict that the vari-
ance is of order n2/3. This is the same order of magnitude as other related
planar growth models. Based on this relation, there is even an indication of
which limiting distribution to expect when properly scaled. In higher dimen-
sions the picture is even less clear. Newman and Piza (1995) offer a short
summary of simulation studies, some of which suggest that the variance might
in fact be bounded in sufficiently high dimensions.

The best available bound for d = 2 essentially states that for some C1 > 0
and C2 <∞

C1 log n ≤ Var
(
T (0, ne1)

)
≤ C2

n

log n
, for all n ≥ 2.

The lower bound is due to Newman and Piza (1995) under the additional
assumption that the passage timed distribution does not have a too large point
mass at

λ := inf
{
x ≥ 0 : P(τe ∈ [0, x]) > 0

}
. (4.14)

For the exponential distribution the same bound was obtained simultaneously
and independently by Pemantle and Peres (1994). The upper bound is valid for
all d ≥ 2, and was first obtained in a paper by Benjamini, Kalai, and Schramm
(2003b) for {a, b}-valued passage times, where 0 < a < b < ∞. It was later
extended by Benäım and Rossignol (2008) to a larger class of passage time
distributions.

Both Kesten’s result and the result due to Newman and Piza are based
on a representation of first-passage times in terms of martingale differences.
Interestingly, the approach by Benjamini et al. is based on techniques used
to study Boolean functions, which have close connection to the study of noise
sensitivity (to be discussed in Section 5).

4.4 Minimizing paths

First-passage times between vertices are defined as the infimum of passage
times of an infinite number of paths. Given z ∈ Zd, it is therefore a justified
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question whether there always is a path γ between the origin and z such that
T (γ) = T (0, z). Such path is known to exist as long as the passage times are
not assigned according to a distribution with point mass at zero as large as
pc(d). This is easily verified for distributions concentrated to an interval [a, b]
for some 0 < a < b < ∞, since then only finitely many paths can come into
consideration. The minimizing path γ is commonly referred to as a geodesic
or a route.

Not much is known about the spatial properties of geodesics. A natural
property to study is the length of a geodesic compared to the distance between
its endpoints. Let N(x,y) denote the length of the geodesic between x and y in
Zd. The length is not well-defined if the geodesic is not unique. When several
geodesics between x and y exist, we let N(x,y) refer to the shortest such. The
sequence

{
N(0, ne1)

}
n≥1

is intimately related to the sequence
{
T (0, ne1)

}
n≥1

,
but does not benefit from a subadditive behaviour. Consequently, no precise
asymptotic behaviour of N(0, ne1)/n is known, except for in restricted cases.
One such case is when edges are given the values 1 or ∞ with probability p
and 1 − p for some p > pc(d). This case was previously related to the bond
percolation model, and indeed N(x,y) = T (x,y) here. Since p > pc(d) is
assumed, we know that there almost surely exists an infinite component of
edges assigned passage time 1. Assume that the origin is located in the unique
infinite cluster of 1-valued edges, and that {nk}k≥1 denotes the subsequence
of indices in N such that nke1 is contained in the infinite cluster. Garet and
Marchand (2004) proved that

∃ lim
k→∞

T (0, nke1)

nk
, almost surely.

Another case in which even more specific conclusions regarding the asymptotic
behaviour of length of geodesics is achievable is given in Paper I. The restriction
in Paper I is in the consideration of graphs that are essentially 1-dimensional.

Another related question asks how far away from the straight line segment
between the its two endpoints a geodesic wanders. This deviation can be
measured as the maximal distance a point in the geodesic is situated from
the straight line segment between its endpoints. As before, let dist(x,A) =
infa∈A |x − a|. The maximal distance of a point in B to the set A is then
given by dist(B,A) := supb∈B dist(b,A). Let γn denote the geodesic and let
ne1 denote the straight line segment between the origin and ne1. Hence, the
deviation of γn from ne1 can be measured as

ξ := inf
{
α ≥ 0 : lim

n→∞
P

(
dist(γn, ne1) ≤ nα

)
= 1
}
.

In two dimensions, there is a general belief that ξ = 2/3. Although this is
not known, upper and lower bounds on ξ that are valid in all dimensions are
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available, and say that
1

d+ 1
≤ ξ ≤ 3

4
. (4.15)

The upper bound on ξ is due to Newman and Piza (1995), under the condition
that E[Y d] < ∞, for Y defined as in (4.3), and the additional (and unproven)
assumption that the shape W∗ is not flat in the first coordinate direction. Not
being flat here refers to that it is possible to find an Euclidean ball B such
that W∗ ⊆ B and the point y = µZd(e1)

−1e1 that lies on the boundary of
W∗ (since µZd(y) = 1) also lies on the boundary of B. The lower bound on ξ
was deduced by Licea, Newman, and Piza (1996) under the assumption that
E[τ2

e ] <∞ and the point mass at λ, as defined in (4.14), is not too large.
Determining the variance of first-passage times relates to the problem of

describing the magnitude with which the wet region fluctuates around the
asymptotic shape. Although I will not do so here, these fluctuations can be
described by an exponent χ in a similar way as ξ describes the deviation of a
geodesic. The upper bound χ ≤ 1/2 has been obtained essentially as a conse-
quence of the upper bound in (4.13). Krug and Spohn (1991) have conjectured
the precise relation χ = 2ξ − 1 between the two exponents. In two dimensions
this corresponds to the belief that ξ = 2/3 and χ = 1/3. Only partial informa-
tion regarding this relation has been obtained. As a consequence, the bounds
on ξ in (4.15) follows from known bounds on χ.

First-passage percolation apparently presents a complicated structure that
is still poorly understood. The techniques available have so far not been suc-
cessful in pinning down other than the almost sure convergence to an asymp-
totic shape. It is therefore of great interest to develop new techniques that
are better suited for this aim. Moreover, it is of interest to obtain partial
results that point in the direction of the conjectured behaviour. In this direc-
tion, models similar to first-passage percolation have been introduced, at least
partly, with the hope to avoid certain difficulties. The survey of Howard (2004)
discusses this further.

First-passage percolation is the topic of the first two papers in this thesis.
First, Paper I gives a rather precise description of the asymptotic behaviour
of first-passage percolation when considered on graphs that are essentially 1-
dimensional. Secondly, the convergence of the wet region towards an asymp-
totic shape is investigated further in Paper II. The almost sure convergence
is extended to certain cone-like subgraphs of the Zd lattice. Also additional
modes of convergence are considered.

37



Chapter 5

Sensitivity to noise and

dynamics

Let me start with a simple example. Consider a Brownian motion {Bt}t≥1

in one dimension, started at the origin. P(Bt = 0) = 0 for each fixed t >
0. Moreover, the set of times at which Bt = 0 has Lebesgue measure zero.
However, Bt will almost surely hit 0 for some t > 0. This shows how the
occurance of an event may differ substantially when observed at fixed times,
and over a time interval. Although this example does not fit into the description
I will give next, it does illustrate the phenomena I would like to present.

Quite generally, the phenomena can be described in terms of Markov pro-
cesses. Let {Xt}t≥0 be a stationary continuous time Markov process. Let A be
a subset of its state space for which P(Xt ∈ A) = 1 for any t ≥ 0. Via Fubini’s
theorem, we may change the order of integration, and thus obtain

P
(
Xt ∈ A for Lebesgue almost every t ≥ 0

)
= 1.

The question is, can this be extended to hold for all t ≥ 0, or are there
exceptional times at which Xt avoids A. When extendible to all t ≥ 0, then
the event {Xt ∈ A}, considered over time, is said to be dynamically stable.

Only very specific dynamical processes will be considered in the following.
Time dynamics can be introduced also to a static system, in order to observe its
behaviour over time. In particular, I will focus on a dynamical version of bond
percolation. As will be emphasised, sensitivity in the dynamical percolation
model has a close relation to the concept of noise sensitivity. Noise sensitivity
is an interesting concept in its own right, and the connection to dynamical
percolation adds to the interest further. Existing techniques available when
studying noise sensitivity are further developed in Paper III. This motivates a
quite detailed introduction to the earlier work on the subject. For a further

38



account on dynamical percolation and noise sensitivity, see Steif (2009) and
Garban and Steif (2010).

5.1 Dynamical percolation

Häggström, Peres, and Steif (1997) introduced dynamical percolation. Let G
be a graph with vertex set V and edge set E , and declare each edge of the
graph independently open or closed with probability p and 1 − p. So far this
is solely the bond percolation model. Next, assign independent Poisson clocks
to the edges of the graph, and when the clock of an edge rings, let the edge
refresh its state, i.e., update its state as open or closed with probability p and
1 − p, respectively. Formally, the model can be defined as follows. For each

edge e ∈ E , let {τ (j)
e }j≥1 be an i.i.d. sequence of rate 1 exponentially distributed

random variables, and let {η(j)
e }j≥1 be i.i.d. random variables that indicates the

state open and closed with probability p or 1− p. For each edge the stationary
state process

{
ηe(t)

}
t≥0

is defined as

ηe(t) = η(j)
e , for τ (j−1)

e ≤ t < τ (j)
e ,

where τ
(0)
e = 0 for all e. Since edges are supposed to act independently, the

random element {ηe(t)}e∈E,t≥0, that describes the state of the dynamical per-
colation model over time, is obtained via product measure.

Fundamental to bond percolation is the existence of a critical probability
pc = pc(G) below which no infinite open component exists, and above which
one does exist. The natural question in dynamical percolation is whether there
exists exceptional times when the existence of an infinite open component is
changed. It is not hard to see that away from criticality, the existence of an
infinite open component is dynamically stable. That is, for p < pc there is
almost surely no infinite open component for any t ≥ 0, and for p > pc there is
almost surely an infinite open component for all t ≥ 0. This is seen from the
following argument given by Häggström et al.. Assume that p < pc. Observe
each edge under on the time interval [0, ǫ]. The probability that a given edge
will be open at some point in [0, ǫ] is at most p plus the probability of an update
in [0, ǫ]. If ǫ > 0 is sufficiently small, then this probability is still strictly smaller
than pc. Hence, on any sufficiently short time interval, no infinite component
can possibly exist, with probability one. Covering [0,∞) with countably many
intervals of length ǫ, then countable additivity gives the result. The case when
p > pc is similar. Hence, the only interesting case is at criticality.

At criticality, the situation is much more delicate. Häggström et al. con-
structed examples of graphs where the existence of an infinite open component
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exhibit exceptional times, and examples where the existence is dynamically
stable. These graphs were quite ad hoc, and it is of particular interest to
understand what happens for commonly considered graphs as the usual Zd

lattice. For d ≥ 19, Häggström et al. showed that there are no exceptional
times of percolation. Their proof was based on properties of the percolation
function θd(p) that are known not to hold for d = 2. In two dimensions the
task turned out to be truly challenging, and was only recently resolved in an
extensive work of Garban, Pete, and Schramm (2010). Among other things,
they proved that bond percolation on the Z2 lattice exhibits exceptional times
of percolation at criticality. Recall that for d = 3, 4, . . . , 18, an infinite open
component at the critical probability is believed not to exsist, but remains as
an open question.

The existence of an infinite open component is not the only almost sure
property in bond percolation. Another is uniqueness of the infinite component
in the supercritical regime. On the Zd lattice Peres and Steif (1998) proved
that for p > pc(d), there is a unique infinite component at all times. However,
the uniqueness of an infinite open component is not the same as excluding
the possibility of coexisting infinite open and closed components. Coexistence
is believed, but remains unknown, to occur at exceptional times for the Z2

lattice (at criticality). However, Garban et al. (2010) proved the existence of
exceptional times at which an infinite open and closed component coexist for
dynamical (site) percolation on the triangular lattice. The triangular lattice is
the graph obtained from the Z2 (square) lattice when adding an edge between
z and z + (1, 1) for any z ∈ Z2. The reason for the more precise results on the
triangular lattice is due to the recent development of SLE and its success in
determining critical exponents for percolation, which are known for the trian-
gular lattice but not for the square lattice (see e.g. Werner (2009)). Equivalent
results are expected also for the square lattice. In addition, the triangular
lattice is known to also exhibit exceptional times of percolation at criticality.
This was first proved by Schramm and Steif (2010), and later obtained also by
Garban et al. (2010).

When real-valued sequences of i.i.d. random variables are observed in a
dynamical perspective, similar phenomena occurs, as observed by Benjamini,
Häggström, Peres, and Steif (2003a). Dynamics is in this case introduced in
the analogous way by, at each position in the sequence, replacing the variable
by independent copies of itself according to a Poisson clock. This is done
independently for each position. In particular Benjamini et al. proved that
classical results such as the Law of Large Numbers and the Law of the Iterated
Logarithm are dynamically stable, whereas a simple random walks in 3 or 4
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dimensions exhibit exceptional times at which the random walk is recurrent.
Inspired by this work, a dynamically stable version of the Shape Theorem in
first-passage percolation is proved in Paper II.

5.2 Noise sensitivity

Noise sensitivity of Boolean functions was introduced by Benjamini, Kalai, and
Schramm (1999), motivated by the study of exceptional times in dynamical
percolation. Let fn : {0, 1}n → {0, 1} be a Boolean function, and let ω ∈
{0, 1}n be uniformly distributed. The function being Boolean simply refers to
the domain and range of the function, i.e., that given a Boolean sequence, the
function returns a Boolean output. Hence, a Boolean function can be thought
of as the indicator of a certain event. When 1 is interpreted as ’heads’ and 0
as ’tails’, ω can be thought of as the outcome of n independent (fair) coin flips.
Given the outcome of the coin flips, the outcome of a given event is known.
However, assume that we fail to correctly record the outcome of each coin flip
with very low probability. Based on this ’perturbed’ sequence of coin flips, can
we decide whether the event occurs? That is, is the outcome of the event for
the original sequence of coin flips highly or weakly correlated with the outcome
for the perturbed sequence?

Example 5.1 (Dictatorship). Let fn : {0, 1}n → {0, 1} be the indicator function
of the event that ’the first flip turns out heads’. Since the first flip alone decides
the outcome of the event, the information about the outcome of fn is lost only
when information about the outcome of the first flip is lost. But this has low
probability, so fn should not be sensitive to small perturbations.

Example 5.2 (Parity). Let fn : {0, 1}n → {0, 1} indicate whether ’the number
of heads is even’ or not. All information about the outcome of the event is lost
as soon as we are unsure about the outcome of a single flip. Since it is very
likely to be unsure about the outcome of some flip (when n is large), the event
will be sensitive to perturbations.

Here comes the formal definition. Let {fn}n≥1 be a sequence of Boolean
functions fn : {0, 1}n → {0, 1}, and let ω ∈ {0, 1}n be uniformly distributed.
Given ǫ ∈ (0, 1), resample each bit (coordinate) ωj with probability ǫ inde-
pendently of each other. Denote the resulting configuration ωǫ. Also ωǫ is
uniformly distributed in {0, 1}n.

Definition 5.3. The sequence {fn}n≥1 is said to be noise sensitive if for every
ǫ > 0

E
[
fn(ω)fn(ωǫ)

]
− E

[
fn(ω)

]2 → 0, as n→ ∞. (5.1)
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Direct calculations easily show that the sequence {fn}n≥1 is noise sensitive
when fn is as defined in Example 5.2, but is not when defined as in Example 5.1.
Another example of a sequence of functions that are not noise sensitive is
given next. To see this is also quite easy, however less direct than than in the
examples given above.

Example 5.4 (Majority). Let {fn}n≥1 be the sequence of functions where fn :
{0, 1}n → {0, 1} is the indicator function of the event ’more heads than tails’.

The dictator and majority functions are in fact noise stable. A sequence
{fn}n≥1 is said to be noise stable if

lim
ǫ→0

sup
n≥1

P
(
fn(ω) 6= fn(ωǫ)

)
= 0.

There exist sequences of Boolean functions that are neither noise stable nor
noise sensitive. In addition, there are sequences that are both noise sensitive
and noise stable. However, this can only happen for trivial reasons.

Proposition 5.5. The sequence {fn}n≥1 is noise sensitive and noise stable if
and only if Var(fn) → 0 as n→ ∞.

Proof. For the ’only if’ part, assume that {fn}n≥1 is both noise sensitive and
noise stable. In

Var(fn) = E
[
fn(ω)

(
fn(ω) − fn(ωǫ)

)]
+ E

[
fn(ω)fn(ωǫ)

]
− E

[
fn(ω)

]2
,

the first term in the right-hand side is at most P
(
fn(ω) 6= fn(ωǫ)

)
, which

due to noise stability can be made arbitrarily small by choosing ǫ small. The
remaining expression vanishes as n→ ∞, since the sequence is noise sensitive.
This shows that Var(fn) → 0 as n→ ∞.

Now, assume that Var(fn) → 0 as n → ∞. Clearly, the sequence is noise
sensitive since the covariance between fn(ω) and fn(ωǫ) is bounded by Var(fn),
via Cauchy-Schwartz’ inequality. Moreover, since Var(fn) = P(fn = 1)P(fn =
0), then

P
(
fn(ω) 6= fn(ωǫ)

)
= P

(
fn(ω) = 0, fn(ωǫ) = 1

)
+ P

(
fn(ω) = 1, fn(ωǫ) = 0

)

≤ 2min
(
P(fn = 1),P(fn = 0)

)

can be made arbitrarily small by choosing n large. Thus, the sequence is noise
stable since for each fixed N ∈ N

lim
ǫ→0

sup
n≤N

P
(
fn(ω) 6= fn(ωǫ)

)
≤ lim

ǫ→0
max
n≤N

P(ω 6= ωǫ) = 0.
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As previously mentioned, noise sensitivity is closely related to dynamical
percolation. To visualize this, consider dynamical percolation on the Z2 lattice
with p = 1/2. Recall that 1/2 corresponds to the critical probability, and
is therefore the interesting case. How does the bond configuration η(t) :=
{ηe(t)}e∈E at time t relate to the configuration at time zero? Well, ηe(0) =
ηe(t) if the Poisson clock assigned to e does not ring before time t. This
has probability e−t. On the event that the clock rings before time t, then
ηe(0) gives no information about ηe(t). Thus, η(0)ǫ denotes the configuration
obtained when each bit (edge) in η(0) is resampled, independently of other
bits, with probability ǫ, then

(
η(0), η(t)

) d
=
(
η(0), η(0)ǫ

)
, for ǫ = 1 − e−t,

where the superscript indicates that the equality holds in distribution. This
gives a clear relation between the dynamical percolation model and perturba-
tions of binary sequences. In particular, this allows for the correlation between
nearby time points in dynamical percolation to be understood through the
study of noise sensitivity of certain sequences of Boolean functions. This led
to study whether percolation crossings of (n+ 1)× n-boxes are noise sensitive
or not.

Example 5.6. Let En denote the set of edges of the square lattice contained
in [0, n + 1] × [0, n]. Identify ω ∈ {0, 1}En with a configuration of open and
closed edges in En by interpreting an edge e as open if ωe = 1 and closed
otherwise. Recall that H(n+1)×n denotes the event that there is an open path
crossing the rectangle [0, n+1]× [0, n] horizontally, and let fn be the indicator
function of H(n+1)×n. As already seen, P(fn = 1) = 1/2, and Var(fn) =
1/4. Thus, if {fn}n≥1 is noise sensitive, it will not be for the trivial resons of
Proposition 5.5.

The main part of the work of Benjamini et al. (1999) was carried out to
prove the following.

Theorem 5.7. The sequence {fn}n≥1, as defined in Example 5.6, is noise
sensitive.

The study of Boolean functions has had large benefit from discrete Fourier
analysis. Indeed, a large part of the noise sensitivity literature is based on
Fourier techniques. Other important ingredients are concepts like influences
and revealments more commonly found in theoretical computer science. In par-
ticular, in order to prove noise sensitivity of percolation crossings, Benjamini
et al. developed a quite general approach based on discrete Fourier analysis
and revealment of algorithms. An essential stepping-stone in this approach is

43



a result that links noise sensitivity to influences of bits. The influence of bit j
for fn is defined as

Infj(fn) := E
[∣∣fn(ω) − fn(σjω)

∣∣],

where σjω denotes the element obtained when ωj is replaced by 1 − ωj. The
result has come to be referred to as the BKS Theorem.

Theorem 5.8 (Benjamini et al. (1999)). Let {fn}n≥1 be a sequence of Boolean
functions fn : {0, 1}n → {0, 1}. If

lim
n→∞

n∑

j=1

Infj(fn)2 = 0,

then {fn}n≥1 is noise sensitive.

The proof of this theorem relies on discrete Fourier analysis. Although
these techniques only appears briefly in Paper III of this thesis, basic knowledge
thereof is essential when working with noise sensitivity of Boolean functions.

5.3 Fourier-Walsh representation and the spectral

measure

There is a natural basis for the space Hn of real-valued functions defined on
the hypercube {0, 1}n. For each S ⊆ [n] := {1, 2, . . . , n} and ω ∈ {0, 1}n, let

χS(ω) :=
∏

j∈S

(−1)ωj =

{
1, if the number of j ∈ S with ωj = 1 is even,

−1, if the number of j ∈ S with ωj = 1 is odd,

and χ∅ := 1. When {0, 1}n is equipped with uniform probability measure,
and inner product between two functions f and g in Hn is thus given by
〈f, g〉 := E

[
f(ω)g(ω)

]
, then {χS}S⊆[n] forms an orthonormal basis for the

2n-dimensional space Hn. To see this, note that E
[
χS(ω)

]
= 0 for S 6= ∅,

E
[
χS(ω)2

]
= 1, and that for disjoint sets S1 and S2 we have χS1∪S2 = χS1χS2.

Thus, for any two sets S1, S2 ⊆ [n]

E
[
χS1(ω)χS2(ω)

]
= E

[
χS1∩S2(ω)2χS1∆S2(ω)

]

= E
[
χS1∆S2(ω)

]
=

{
1, S1 = S2,

0, S1 6= S2,

44



where S1∆S2 denotes the symmetric difference (S1 \ S2) ∪ (S2 \ S1). We
conclude that {χS}S⊆[n] forms an orthonormal basis, and that each function
f : {0, 1}n → R can be expressed using Fourier-Walsh representation

f(ω) =
∑

S⊆[n]

f̂(S)χS(ω),

where f̂(S) := E
[
f(ω)χS(ω)

]
are the so-called Fourier coefficients. Observe

that

E[f ] = f̂(∅), E[f2] =
∑

S⊆[n]

f̂(S)2, Var(f) =
∑

S 6=∅
f̂(S)2.

The concept of noise sensitivity can be characterized in terms of the Fourier
coefficients. Given a function f : {0, 1}n → R, define a measure νf on the

collection of subsets of [n] by giving weight f̂(S)2 to S ⊆ [n]. This measure
will be referred to as the spectral measure or the Fourier spectrum of f . The
total weight of the spectral measure equals

∑

S⊆[n]

f̂(S)2 = E[f2],

and is thus a probability measure only when E[f2] = 1. However, I will let
Sf denote a subset of [n] choosen according to this measure and treat Sf as a
random variable even when the total weight is not equal to 1. In particular,
I will write P(Sf = S) for νf (S) = f̂(S)2 and E

[
g(Sf )

]
also for integral

νf (g) =
∑

S⊆[n] g(S)νf (S) =
∑

S⊆[n] g(S)f̂ (S)2 of a real-valued function g on
subsets of [n].

The link that allows noise sensitivity of a sequence of Boolean functions to
be characterized via the Fourier spectrum is given next.

Proposition 5.9. For f : {0, 1}n → R, then

E
[
f(ω)f(ωǫ)

]
− E

[
f(ω)

]2
=
∑

S 6=∅
f̂(S)2(1 − ǫ)|S| = E

[
(1 − ǫ)|Sf |1{Sf 6=∅}

]
.

Proof. Since bits at different positions are independent, E
[
χS1(ω)χS2(ω

ǫ)
]

= 0

whenever S1 6= S2. Thus expanding f =
∑

S f̂(S)χS , we obtain

E
[
f(ω)f(ωǫ)

]
− E

[
f(ω)

]2
=
∑

S 6=∅
f̂(S)2 E

[
χS(ω)χS(ωǫ)

]
.

Since ωj and ωǫ
j are independent whenever the jth bit is re-randomized, and

equal otherwise, E
[
χS(ω)χS(ωǫ)

]
equals the probability that no bit is S is

re-randomized. By independence, this probability equals (1 − ǫ)|S|.
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Several interesting observations can be made from Proposition 5.9. The
first one is that the correlation between f(ω) and f(ωǫ) is always positive and
decreasing in ǫ (unless f is constant). Another interesting observation is that
f(ω) and f(ωǫ) are more correlated when the Fourier spectrum is concentrated
on small sets, and less correlated when concentrated on large sets. This relation
can be made more precise.

Proposition 5.10. For a sequence {fn}n≥1 of functions fn : {0, 1}n → {0, 1}
the following are equivalent:

a) {fn}n≥1 is noise sensitive.

b) ∃ ǫ ∈ (0, 1) such that E
[
fn(ω)fn(ωǫ)

]
− E

[
fn(ω)

]2 → 0 as n→ ∞.

c) P
(
0 < |Sfn

| ≤ k
)
→ 0 as n→ ∞, for every k ∈ N.

Proof. Trivially, a) implies b). That b) implies c) is a consequence of Proposi-
tion 5.9, since for the given ǫ ∈ (0, 1) and each k ∈ N

0 = lim
n→∞

E

[
(1 − ǫ)|Sfn |1{Sfn 6=∅}

]
≥ (1 − ǫ)k lim

n→∞
P
(
0 < |Sfn

| ≤ k
)
.

Similarly, to see that c) implies a), take ǫ ∈ (0, 1) and note that for each k ∈ N

E
[
fn(ω)fn(ωǫ)

]
− E

[
fn(ω)

]2
= E

[
(1 − ǫ)|Sfn |1{Sfn 6=∅}

]

≤ (1 − ǫ)k + P
(
0 < |Sfn

| ≤ k
)
.

Sending n to infinity, lim supn→∞ E
[
fn(ω)fn(ωǫ)

]
− E

[
fn(ω)

]2
is found to be

at most (1 − ǫ)k. However, this holds for every k ∈ N, so the limit has to be
zero.

Also noise stability can be characterized in terms of the spectral measure.

Proposition 5.11. A sequence {fn}n≥1 of functions fn : {0, 1}n → {0, 1} is
noise stable if and only if the sequence

{
|Sfn

|
}

n≥1
is tight, i.e., for all δ > 0

there is M <∞ such that

P
(
|Sfn

| > M
)
≤ δ, for all n ∈ N.

5.4 Noise sensitivity of percolation crossings

The approach developed in Benjamini et al. (1999) can be distinguished into
parts. The first part, the BKS Theorem, relates noise sensitivity to influences
for any sequence of Boolean functions. It is an interesting fact that the sufficient
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condition in the theorem is also necessary for sequences of monotone Boolean
functions. A function f : {0, 1}n → R is called monotone if for any ω, ω′ ∈
{0, 1}n such that ωj ≤ ω′

j for any j ∈ [n], then f(ω) ≤ f(ω′).
The remaining part of the approach only applies to monotone functions, and

relates influences to the revealment of algorithms. A (deterministic) algorithm
refers here to a rule that describes which bit of ω ∈ {0, 1}n to query next, or
whether to stop, based on the outcome of the bits already seen. An algorithm
can decide to terminate at any point, and does not necessary query all bits.
The revealment of an algorithm A with respect to j ∈ [n] is the probability
that bit j is queried by the algorithm. Moreover, the revealment of A with
respect to the set K ⊆ [n] is defined as

δA(K) := max
j∈K

P(A queries bit j).

Given a function f : {0, 1}n → R, an algorithm is said to determine f if for
each ω ∈ {0, 1}n, the outcome of f(ω) is known at the end of the algorithm.

The approach introduced in Benjamini et al. (1999) could possibly be re-
ferred to as the deterministic algorithm approach, and, as pointed out to me
by Jeff Steif, can be summarized in the following quite general theorem.

Theorem 5.12. Let {fn}n≥1, where fn : {0, 1}n → {0, 1}, be a sequence of
monotone functions. Assume that there are C < ∞, α > 0 and an integer r,
such that for each n ≥ 1 there is a partition of [n] into K1,K2, . . . ,Kr, and
(deterministic) algorithms A1,A2, . . . ,Ar such that for any j = 1, 2, . . . , r

a) Aj determines fn,

b) δAj
(Kj)

(
log n

)6 → 0, as n→ ∞.

Then {fn}n≥1 is noise sensitive.

Noise sensitivity of percolation crossings (Theorem 5.7) can be deduced
from Theorem 5.12. Let me indicate how this is done. First, we need to define
a suitable algorithm. In fact, we shall need a pair of algorithms. Let KL

denote the subset of En of edges of the Z2 lattice that are contained in left half
of the rectangle [0, n + 1] × [0, n], and let KR denote the remaining edges in
[0, n+1]× [0, n], those on the right half. An algorithm, described in Benjamini
et al. (1999), that has low revealment with respect to bits in KR is described
next.

Algorithm. Let fn : {0, 1}En → {0, 1} be as in Example 5.6, let ω ∈ {0, 1}En ,
and set V0 = {0} × [n] to denote the set of vertices on the left side of the
rectangle [0, n + 1] × [0, n]. For each k ≥ 1, define the algorithm AR = AR(n)
and the set Vk inductively:
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1. Query all edges in En which has one endpoint in Vk−1 and one outside.

2. Let Uk denote the set of neighbouring points to Vk−1 that are endpoints to
an edge queried and found open in the previous step. Set Vk = Vk−1∪Uk.

3. Repeat the above steps until Vk = Vk−1. At this point fn(ω) is known.

It is easy to see that an edge in KR will be queried by AR if and only if
there is a path of open edges from V0 to one of the endpoints of the edge. Each
endpoint of an edge e ∈ KR lies in the right half of [0, n+1]× [0, n]. Hence, the
event that there is an open path from V0 to an endpoint of e is contained in the
event that there is an open path from that endpoint reaching the boundary of
a box of side length n/2, centred at the endpoint. This event is recognized as
the one-arm event AEn/2, which in (2.2) was seen to have probability at most
(n/2)−α to occur, for some α > 0 uniformly in n. Hence, for the revealment
of an edge in KR we have δAR

(KR) ≤ 21+αn−α. Likewise, interchanging left
and right, one obtains an algorithm AL that has low revealment with respect
to bits in KL. This shows that percolation crossings are noise sensitive, and
ends the outline of a proof of Theorem 5.7.

5.5 Exceptional times of percolation and noise sen-

sitivity

The main approach to show existence of exceptional times in dynamical per-
colation is via the second moment method. Above, I gave a short description
of how dynamical percolation is linked to perturbations of the edge config-
uration. I further claimed that correlations between nearby time points in
dynamical percolation can be understood via noise sensitivity. Here, I would
like to elaborate further on this connection to clearly point to the relevance
of the concept of noise sensitivity when deducing exceptional times of percola-
tion. I will present a rough sketch of this for dynamical bond percolation on
the Z2 lattice. I emphasize that the sketch will not argue for the existence of
exceptional times, but only indicate the approach.

In order to show that there at criticality exist exceptional times t ∈ [0, 1] at
which an infinite open component exists it suffices, according to Kolmogorov’s
0-1 law, to show that

P1/2

(
∃t ∈ [0, 1] : |C| = ∞ at time t

)
> 0. (5.2)

Let AEn(t) denote the one-arm event at time t, that is, the event that there
in the bond configuration at time t is an open path from the origin reaching
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the boundary of the box [−n, n]2. Let Xn denote the Lebesgue amount of time
during [0, 1] for which AEn(t) occurs. That is,

Xn =

∫ 1

0
1AEn(t) dt.

Fubini’s theorem gives that E[Xn] = P1/2(AEn). Employing the second mo-
ment method, the key passage is to show that for some c <∞

E[X2
n] ≤ cE[Xn]2, uniformly in n ≥ 1. (5.3)

When such an estimate is obtained, Cauchy-Schwartz inequality implies that

P(Xn > 0) ≥ E[Xn]2

E[X2
n]

≥ 1

c
, uniformly in n ≥ 1.

In particular, Xn > 0 implies that there exists t ∈ [0, 1] such that AEn(t)
occurs. Hence, countable additivity gives that

P


⋂

n≥1

{
∃ t ∈ [0, 1] : AEn(t) occurs

}

 ≥ 1

c
.

This would via a compactness argument easily give (5.2) if the set of times at
which AEn(t) occurs had been a closed set. It is not, by the fact that the set
of times an edge is open is not closed. This is however a minor problem, and
resolved by modifying the process such that an edge is open also at the instant
it flips. The existence of exceptional times follows for the modified process,
and it can easily be seen these times are exceptional times also for the original
process. Thus, (5.2) follows from (5.3).

The essential step is thus to show that (5.3) holds for some finite constant
c. Note that

E[X2
n] =

∫ 1

0

∫ 1

0
P1/2

(
AEn(s) ∩ AEn(t)

)
ds dt

≤ 2

∫ 1

0
P1/2

(
AEn(0) ∩ AEn(t)

)
dt.

If AEn(0) and AEn(t) would be uncorrelated, then E[X2
n] ≤ 2 P1/2(AEn)2 =

2 E[Xn]2. This is not the case, but we have a clear indication that correlation
between arm events plays an important rôle. In fact, it seems possible that
(5.3) holds if only the correlation between AEn(0) and AEn(t) is sufficiently
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weak. More precisely, if fn denotes the indicator function of the event AEn,
then, via Proposition 5.9 with ǫ = 1 − e−t,

P1/2

(
AEn(0)∩AEn(t)

)
= E

[
fn(ω)fn(ωǫ)

]
= P1/2(AEn)2 +

∑

S 6=∅
f̂n(S)2e−|S| t.

This motivates further study of the Fourier spectrum of Boolean functions.

5.6 Quantitative noise sensitivity

The proof of the BKS Theorem is based on Fourier techniques, and an essential
ingredient in the proof is a result on hypercontractivity, knows as the Bonami-
Beckner inequality. The concept comes from harmonic analysis, but was found
useful for the study of Boolean functions when used by Kahn, Kalai, and Linial
(1988) to prove a sharp lower bound on the maximal influence over the set of
bits. It was previously mentioned that the BKS Theorem gives a necessary
and sufficient condition for noise sensitivity for monotone functions. This may
give the impression that also this theorem is optimal. However, as will be
explained, there is room for improvements.

Noise sensitivity of a sequence {fn}n≥1 of Boolean functions is equivalent to
the corresponding Fourier spectrum to assign asymptotically vanishing weight
to fixed levels of the spectrum, i.e., P

(
|Sfn

| = k
)
→ 0 as n → ∞ for each

k ≥ 1. The approach of Benjamini et al. gives a slightly stronger conclusion.
Under the conditions of Theorem 5.12, or alternatively, under the assumption
that the sum of influences squared decays at inverse polynomial rate, then it
is possible to show that there is an a > 0 such that

P
(
0 < |Sfn

| ≤ a log n
)
→ 0, as n→ ∞.

This improvement gives additional information regarding the Fourier spectrum,
but it is not sufficient in order to conclude the existence of exceptional times
of percolation. The part the approach that relates revealment of algorithms
with influences of bits was proved in two stages. The first relating influences of
bits to correlation with majority functions (of similar form as in Example 5.4),
and the second relating correlation with majority functions with revealment
of algorithms. These two stages are explained in greater detail in Paper III,
where the approach is studied further.

Later, Schramm and Steif (2010) developed a method that directly relates
the Fourier coefficients of a function to the revealment of a randomized algo-
rithm that determines the function. A randomized algorithm differs from a
deterministic one in the way that the next bit queried is chosen at random ac-
cording to a distribution that is allowed to depend on the previous bits queried,
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as well as their values. The revealment of a randomized algorithm is defined
as δA := δA([n]), and is thus measured with respect to all bits. Note that if
A is deterministic, then δA = 1. We are interested in finding algorithms with
low revealment, from which we obtain the following information.

Theorem 5.13 (Schramm and Steif (2010)). Let f : {0, 1}n → R, and let A
be an algorithm that determines f . Then, for each k ∈ [n]

P
(
|Sf | = k

)
=

∑

|S|=k

f̂(S)2 ≤ k ‖f‖2
2 δA,

where ‖f‖2
2 = E

[
f2(ω)

]
.

An immediate corollary says that if {fn}n≥1 is a sequence of functions
fn : {0, 1}n → {0, 1}, and for each n ≥ 1 there is a (randomized) algorithm
An that determines fn and is such that δAn → 0 as n → ∞, then {fn}n≥1 is
noise sensitive. However, assume that the sequence of algorithms {An}n≥1 is
such that δAn ≤ Cn−α uniformly in n, for some C < ∞ and α > 0. Then
Theorem 5.13 gives that for any γ < α

P
(
0 < |Sfn

| ≤ nγ
)
→ 0, as n→ ∞. (5.4)

With this approach, Schramm and Steif got close to proving the existence of
exceptional times of percolation for dynamical percolation on the Z2 lattice,
later obtained by Garban et al. (2010). Instead, they did manage to prove the
existence of exceptional times for dynamical (site) percolation on the hexago-
nal lattice. Again, the reason for this is the very precise information available
due to SLE technology.

Given a noise sensitive sequence, which is the largest exponent γ for which
(5.4) holds? The same argument used to characterize noise sensitivity in terms
of the spectral measure (Proposition 5.10) shows that this corresponds to the
largest γ for which we in (5.1) can let ǫ decay as ǫn = n−γ , while the limit still
equals 0. For percolation crossings on the Z2 lattice, as defined in Example 5.6,
the approach in Schramm and Steif (2010) using randomized algorithms is
able to show that (5.4) holds for some γ > 0. For percolation crossings defined
similarly on the hexagonal lattice, the approach is able to show that (5.4) holds
for all γ < 1/8. Eventually, Garban et al. (2010) were able to show that on
the hexagonal lattice, for any ǫ > 0,

P
(
n3/4−ǫ < |Sfn

| < n3/4+ǫ
)
→ 1, as n→ ∞.

This very precise result was obtained from a geometric approach to study the
Fourier spectrum. It was with the same approach they were able to deduce the
existence of exceptional times for dynamical percolation on the Z2 lattice.
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Chapter 6

Summary of papers

6.1 Paper I:

Asymptotics of first-passage percolation on 1-

dimensional graphs

The first contribution of this thesis is in the study of first-passage percolation
on essentially 1-dimensional periodic graphs. Roughly speaking, the class of
graphs considered consists of all graphs that can be constructed from a finite
connected graph G0 as follows. Let {Gn}n∈Z be a sequence of identical copies of
G0. Construct the infinite graph G by deciding for, and performing, a fixed way
of connecting two consecutive copies in the sequence {Gn}n∈Z. An essentially
1-dimensional periodic graphs of specific interest is the Z×{0, 1, . . . ,K−1}d−1

nearest neighbour graph, for some K,d ≥ 2, referred to as the (K,d)-tube. The
specific interest in this graph lies in its resemblance with the Zd lattice, when
K is large, although its structure remains 1-dimensional.

As was argued for in Section 4, the asymptotic behaviour of first-passage
percolation in two or more dimensions is still poorly understood. It is therefore
of interest to investigate how, possibly simpler, but still similar models behave.
When studying first-passage percolation on the class of graphs described, I find
that the asymptotic behaviour is very much 1-dimensional. Pick a vertex v0 in
G0, and let vn denotes the vertex in Gn corresponding to v0. In addition to show-
ing that on the graph G, when E[τe] < ∞, then ∃µG := limn→∞ T (v0, vn)/n
almost surely and in L1, I prove that when E[τ2

e ] <∞, then for some σG <∞,
as n→ ∞,

T (v0, vn) − µGn
σG

√
n

d→ χ, in distribution, (6.1)
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where χ has a standard normal distribution, and that almost surely

lim sup
n→∞

T (v0, vn) − µGn
σ
√

2n log log n
= 1, and lim inf

n→∞
T (v0, vn) − µGn
σ
√

2n log log n
= −1.

I emphasize that this is the characteristics of a 1-dimensional behaviour that
is not expected in higher dimensions. In particular, as previously mentioned,
the correct normalizing factor in (6.1) when d = 2 is believed to be of order
n1/3. Let µK denote the time constant associated with the (K,d)-tube. That
this graphs comes to resemble the Zd lattice as K increases is reflected in the
fact that µK is decreasing in K, and

lim
K→∞

µK = µZd(e1),

where µZd denotes the time constant associated with the Zd lattice.

The key in capturing the 1-dimensional behaviour is by identifying a suit-
able renewal sequence and using stopped random walk techniques not avaliable
in higher dimensions. With the approximation of first-passage times with a re-
newal sequence I am able to derive certain result whose higher dimensional
analogues are also expected, but not known, to hold. In particular, I prove
that E

[
T (v0, vn)

]
is increasing in n, for large n, and that

∃αG := lim
n→∞

N(v0, vn)

n
, almost surely,

where N(v0, vn) denotes the length of the geodesic between v0 and vn on the
graph G. In addition, I prove that also Var

(
T (v0, vn)

)
is increasing in n,

when n is large, a result that is not simply a consequence of the 1-dimensional
behaviour, but also of the structure of the model in question. Essentially, the
sequence {N(v0, vn)}n≥1 is observed to exhibit the same asymptotic behaviour
as the sequence {T (v0, vn)}n≥1.

Finally, a coupling between two first-passage percolation processes at differ-
ent initial configurations is constructed, and it is used to derive a 0-1 law. As a
complement to the coupling and 0-1 law, an example is given that shows that
the corresponding results are not true for first-passage percolation considered
on the binary tree. Whether the corresponding results hold for first-passage
percolation on the Zd lattice for some d ≥ 2 is unknown.
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6.2 Paper II:

The asymptotic shape, large deviations and dy-

namical stability in first-passage percolation on

cones

The fact that the time constant of the (K,d)-tube approaches the time con-
stant of the Zd lattice as K increases is followed up in the second paper. An
immediate consequence thereof is the following. Let G denote the restriction of
the Zd lattice to the region obtained when a non-negative increasing function
r : [0,∞) → [0,∞) is rotated around the first coordinate axis. If r(a) → ∞ as
a→ ∞, then consequently on G

lim
n→∞

T (0, ne1)

n
= µZd(e1), almost surely and in L1.

This result states that no matter how slowly the function r increases, the
difference between the time it takes a fluid injected at the origin to wet the site
ne1 on the Zd lattice, compared with the graph G, grows as o(n). With a little
more work this extends to arbitrary directions x̂ ∈ Sd−1 := {x ∈ Rd : |x| = 1}.
For graphs of this form, a Shape Theorem analogue is proven. In the particular
case when G denotes the restriction of the Zd lattice to the region obtained when
the linear function r(a) = c · a, for some c ∈ R+, is rotated around the first
coordinate axis, a cone in the classical sense is obtained. One of the two main
results of the paper states that on G, the rescaled wet region converges almost
surely, in L1 and completely to the restriction of the asymptotic shape W∗ to
the obtained region.

The class of graphs can be described as restrictions of the Zd lattice to re-
gions obtained when a function is rotated around an axis. Alternatively, which
is the form adopted in the paper, such graphs can be described as subgraphs
of the Zd lattice induced by sets of the form

⋃

a≥0

B
(
ax̂, r(a)

)
,

where x̂ ∈ Sd−1, r : [0,∞) → [0,∞), and B(x, r) denotes the closed Euclidean
ball of radius r, centred at x. Here, a subgraph of the lattice induced by a set
V refers to the graph with set of vertices given by V ∩ Zd, and where any two
vertices are joined by an edge if and only if the were in the lattice, i.e., they
are at Euclidean distance 1.

Let x ∈ Sd−1 and let r : [0,∞) → [0,∞) be any convex or concave function
such that r(a) → ∞ as a → ∞. The following result is obtained, in which Y
is as defined in (4.3).

54



Theorem 6.1. For any d ≥ 2 there exists a universal constant Rd such that
for first-passage percolation on the subgraph G of the Zd lattice induced by⋃

a≥0B
(
ax̂, r(a) +Rd

)
, the following holds.

a) If E[τe] <∞, then lim sup
z∈G: |z|→∞

E

∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ = 0.

b) If E[Y d] <∞, then lim sup
z∈G: |z|→∞

∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ = 0,

almost surely.

c) If E[Y d+1] <∞, then
∑

z∈G
P

(∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ > ǫ

)
<∞,

for all ǫ > 0.

In view of the inversion argument carried out in Section 4 to show that
the Shape Theorem is a consequence of (4.6), then part b) of Theorem 6.1 is
a generalization of the Shape Theorem. In part a) the convergence is deduced
also in L1 sense, and part c) shows that the convergence also holds completely.
In order to deduce the convergence in part c), it is necessary to deduce some
large deviation bounds on first-passage times.

The second main result of the paper is a further generalization of part b) of
Theorem 6.1, and therefore also of the Shape Theorem. The result concerns the
dynamical version of first-passage percolation obtained when edges update their
values according to independent Poisson clocks, in analogy with dynamical
(bond) percolation. The introduction of dynamics gives rise to a second time
dimension, which is not to be confused with the time dimension in which the
fluid propagates. This is further emphasized in the paper.

Theorem 6.2. The almost sure convergence in part b) of Theorem 6.1 is
dynamically stable with respect to the dynamics described above.

Another observation made in the paper is the following. Let G denote
the restriction of the Z2 lattice to the region between the first coordinate
axis and the function f(a) = α log(1 + a), for a ≥ 0 and some α ∈ R+.
Grimmett (1983) proved that the critical probability for bond percolation on
G lies strictly between 1/2 and 1. When edges are assigned the values 0 and 1
with equal probability, although we for bond percolation encounter ourselves
in the subcritical regime, the time constant along the first coordinate axis
equals µZd(e1) = 0. This remains true if the edge distribution is given a slight
bias towards the value 0. In particular, I find that the subcritical regimes of
first-passage and bond percolation on G do not coincide, as they do on the Zd

lattice, for any d ≥ 1.
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6.3 Paper III:

Noise sensitivity in continuum percolation

In the final paper, coauthored with Erik Broman, Simon Griffiths and Robert
Morris, the concept of noise sensitivity is studied further. Noise sensitivity
was introduced as a concept for Boolean functions, and was in particular em-
ployed to study the effect of small perturbations of percolation configurations
on planar lattices. Subsequently, it is of interest to study similar effects on
other planar percolation models. In this paper, noise sensitivity is introduced
for continuum percolation, and more specifically so for the Poisson Boolean
model. Recall that given a Poisson point process η in R2 of density λ, then
space is partitioned into an occupied and a vacant region by placing a unit disc
at each Poisson point. The union of these discs, denoted by D(η), is referred
to as the occupied region.

In analogy to bond percolation on the Z2 lattice, we are interested in study-
ing the effect small perturbations of the disc configuration has on the sequence
{fn}n≥1, where fn(η) = 1 if there is a horizontal crossing of the square [0, n]2

contained in D(η) ∩ [0, n]2, and fn(η) = 0 otherwise. The function fn is not
Boolean, but a suitable extension of noise sensitivity to the Poisson Boolean
model is the following. Given ǫ ∈ (0, 1), let ηǫ be an ǫ-perturbation of η
obtained by removing each point in η independently with probability ǫ, and
adding an independent Poisson point process of density ǫλ. Observe that also
ηǫ is a Poisson process at density λ.

Definition 6.3. The Poisson Boolean model is said to be noise sensitive at
density λ, if for every ǫ > 0, the sequence {fn}n≥1 satisfies

lim
n→∞

E
[
fn(η)fn(ηǫ)

]
− E

[
fn(η)

]2
= 0.

As for perturbations of a bond percolation configuration, the ǫ-perturbation
of η can be seen as the configuration after a short time t (where ǫ = 1 − e−t)
of a dynamical version the Poisson Boolean model started in state η. In the
dynamical model, unit discs can be thought of as raining down from the sky,
and when landing in the plane, the stay, independently of each other, for
an exponentially distributed time. The density of discs in the plane is kept
constant by regulating the rate at which discs fall from the sky.

For λ 6= λc, the Poisson Boolean model is noise sensitive for trivial reasons,
as is also the case for percolation crossings on the square lattice. Thus, it is
only interesting to consider noise sensitivity for the model at criticality, that
is for λ = λc. Our main result is the following.

Theorem 6.4. The Poisson Boolean model is noise sensitive at criticality.
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The means employed to prove this result is by adapting the deterministic
algorithm approach due to Benjamini et al. (1999), and described in Section 5.
This is arguably the easiest approach to prove noise sensitivity. However, there
are several difficulties when carrying out the approach in the continuum. The
algorithm as such is a straightforward analogue of the algorithm described for
the lattice case. The difficulty lies in the continuum positioning of the Poisson
structure. Essentially we approach this problem as follows.

Although we are interested in the Poisson Boolean model at criticality,
first pick a Poisson point process η at intensity λc/p, where p ∈ (0, 1) is fixed.
Next, colour the points in the Poisson process independently either ’green’ or
’yellow’ with probability p and 1 − p, respectively. Note that the resulting set
ηG of green points constitutes a Poisson point process of density λc. When 1
is thought of as the colour green, and 0 as yellow, then (given η) the colouring
can be represented by an element ωC ∈ {0, 1}η . Thus, the information in
ηG is represented by the pair (η, ωG). Moreover, it is easy to see that an ǫ-
perturbation of ηG is given by (η, ωδ

C), where ωδ
C is the perturbation obtained

from ωC when re-randomizing each bit independently with probability δ =
ǫ/(1 − p), labeling it as a 1 with probability p. Thus, identifying fn(ηG) =
fn(η, ωC), to prove Theorem 6.4 it suffices to prove that for every ǫ ∈ (0, 1),

lim
n→∞

E
[
fn(η, ωC)fn(η, ωǫ

C)
]
− E

[
fn(η, ωC)

]2
= 0.

Expressing things in this way has the advantage that, conditioned on the Pois-
son configuration η, we can identify fn with the function fη

n : {0, 1}η → {0, 1},
via the the identity fη

n(ω) = fn(η, ω). Clearly, fn only depends on the points
in η that lies within distance one of the square [0, n]2. For each fixed η, the
domain of fn is therefore really finite dimensional.

Proving noise sensitivity of the Poisson Boolean model proceeds by showing
that the sequence {fη

n}n≥1 is noise sensitive, almost surely. For this to prove
Theorem 6.4, we also need to show that conditioning on the point configuration
η has almost no effect on the probability of having a crossing of green discs
after colouring. We prove this in much more general terms, obtaining a result
concerning hypergraphs. Since we only manage to prove that the effect of fixing
the point configuration is small when p is small, we are led to extending the
approach due to Benjamini et al. (1999), in particular the BKS Theorem and
Theorem 5.12, to handle the situation p 6= 1/2. An even more general version
of the BKS Theorem was recently proved by Keller and Kindler (2010). We
present an easy deduction of the BKS Theorem for p ∈ (0, 1) from the uniform
version. This is done via a simple and non-technical reduction from biased
product measure to uniform measure that does not seem to have been used in
this context before. We believe that several approaches presented in the paper
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can find use also in other contexts.
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Probab. Stat., 44:544–573, 2008.

I. Benjamini, G. Kalai, and O. Schramm. Noise sensitivity of Boolean functions
and applications to percolation. Inst. Hautes Études Sci. Publ. Math., 90:
5–43, 1999.
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Paper I





Asymptotics of first-passage

percolation on 1-dimensional

graphs

Daniel Ahlberg

Abstract

In this paper we consider standard first-passage percolation on cer-
tain 1-dimensional periodic graphs. One such graph of particular interest
is the Z × {0, 1, . . . ,K − 1}d−1 nearest neighbour graph for d,K ≥ 1.
Let T (u, v) denote the time it takes for an infection started at u to
reach v, and let N(u, v) denote the length of the geodesic (path with
minimal passage time) from u to v. We derive asymptotic results that
show how the behaviour of first-passage percolation on 1-dimensional
graphs differ from what is known or expected in higher dimensions. Let
n = (n, 0, . . . , 0). By subadditivity T (0,n)/n → µ for some µ > 0 as
n → ∞, almost surely and in L1. We show that for some σ > 0, as
n→ ∞,

(
T (0,n)−µn

)
/σ

√
n converges in distribution to a standard nor-

mal, and moreover, that lim supn→∞

(
T (0,n) − µn

)
/σ

√
2n log logn = 1,

almost surely. We further prove that E
[
T (0,n)

]
and Var

(
T (0,n)

)
are

monotonic in n, for large enough n. Results for N(0,n) corresponding to
the results mentioned for T (0,n) are also derived.

We also allow different sets of initially infected vertices, and construct
an exact coupling of two infections with different starting configurations.
Using this coupling we prove a 0–1 law.

1 Introduction

First-passage percolation was first considered by Hammersley and Welsh (1965).
It can be thought of as a model for the spread of an infection on a connected
graph with set of vertices V and set of edges E. Associate to the edges of
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the graph non-negative i.i.d. random variables {τe}e∈E, referred to as passage
times. We will denote the passage time distribution by Pτ ( · ) := P(τe ∈ · ). To
avoid trivialities, we assume throughout this paper that Pτ does not concen-
trate all mass at a single point. With the present interpretation of the model,
the passage time of an edge should be thought of as the random time it takes
for an infection to spread along the edge. Consider the process where we start
with a finite set I ⊂ V of infected vertices. As time starts, the infection spreads
to adjacent vertices with delays indicated by the passage times.

Let us by a path refer to an alternating sequence of vertices and edges;
v0, e1, v1, . . . , em, vm, beginning and ending with a vertex, such that vk is the
endpoint of the edges ek and ek+1 that precedes and follows vk. The vertices v0
and vm are referred to as endpoints of the path. A path with one endpoint in
U and the other in V , where U, V ⊂ V, will be referred to as a path from U to
V . We will repeatedly abuse notation and identify a path with its set of edges,
and occasionally with its set of vertices. For a path Γ, we define the passage
time of Γ as T (Γ) :=

∑
e∈Γ τe, and define the passage time, or first-passage

time, between two sets of vertices U, V ⊂ V as

T (U, V ) := inf
{
T (Γ) : Γ is a path from U to V

}
.

We are often interested in the case when U = {u} or V = {v}. We will in such
case simply write T (u, v) for T ({u}, {v}). The main features of first-passage
percolation are retained in

T (v) := T (I, v)

interpreted as the time it takes for the infection started in I to reach the vertex
v, and

Bt := {v ∈ V : T (v) ≤ t},
the set of infected vertices at time t.

A typical choice for the underlying graph is the usual Zd lattice, whose
vertices are the elements of Zd, and where two vertices are connected with an
edge if their Euclidean distance is one. In this paper, though, we will consider
first-passage percolation on 1-dimensional graphs. However, we begin with
a presentation of some of the results for first-passage percolation on the Zd

lattice. Thereafter, the motivation for considering 1-dimensional graphs, as
well as our results themselves, will be better understood. A more detailed
survey of first-passage percolation can be found in Howard (2004).

It is customary to consider first-passage percolation with a single initially
infected vertex at the origin. However, we have reasons to be interested in
different initial configurations of the infection. The results we are about to
review regarding the Zd lattice hold for any finite initially infected set.
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A challenging task, already considered by Hammersley and Welsh (1965), is
to describe the behaviour of T (v) when |v| is large. It follows from its definition
that T (u, v) is subadditive, i.e.,

T (u, v) ≤ T (u,w) + T (w, v)

for any vertices u, v and w in Zd. Let

Y = min (τ1, . . . , τ2d) , (1.1)

where τ1, . . . , τ2d are independent and distributed according to Pτ . Thus, if
E[Y ] < ∞, Kingman’s Subadditive Ergodic Theorem says that there is a con-
stant µ(e1), referred to as the time constant, such that

lim
n→∞

T (n)

n
= µ(e1), almost surely and in L1, (1.2)

where e1 = (1, 0, . . . , 0), and n = ne1. The same holds in every direction. Let
x̄ ∈ Rd be such that |x̄| = 1. If ⌊nx̄⌋ denotes the coordinate-wise integer part
of nx̄, then there is a µ(x̄) such that

lim
n→∞

T (⌊nx̄⌋)
n

= µ(x̄), almost surely and in L1.

In fact, one can say more about this asymptotic growth. If we consider Bt,
we can state results about the growth in all directions simultaneously. A first
such result was due to Richardson (1973). For convenience, we replace Bt by
the subset of Rd defined as

B̃t :=
{
x ∈ Rd : x ∈ v + [0, 1]d for some v ∈ Bt

}
, (1.3)

The following version of Richardson’s result is due to Cox and Durrett (1981),
and states that the set of infected vertices grows linearly with t and has a
nonrandom asymptotic shape.

Theorem 1.1 (Shape Theorem). Consider first-passage percolation on Zd with
i.i.d. passage times such that

E[Y d] <∞, (1.4)

for Y defined as in (1.1). If µ(e1) > 0, then there exists a nonrandom, compact,
convex subset B∗ in Rd with nonempty interior such that for all ǫ > 0, almost
surely,

(1 − ǫ)B∗ ⊂ 1

t
B̃t ⊂ (1 + ǫ)B∗, for t large enough.

If µ(e1) = 0, then for every compact set K in Rd, almost surely,

K ⊂ 1

t
B̃t, for t large enough.
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In addition, it was shown by Kesten (1986) that

µ(e1) = 0 if and only if Pτ ({0}) ≥ pc(d),

where pc(d) is the critical value for independent bond percolation on the Zd

lattice. An elementary argument shows that E[τ2
e ] < ∞ is sufficient for (1.4)

to hold.
As the Shape Theorem establishes a law of large numbers for the sequence

T (⌊nx̄⌋), it is natural to ask about the fluctuations of the same sequence. They
have turned out to be harder to understand, and depend on the dimension d.
For d = 1, T (n) reduces to a sum of i.i.d. random variables, from which it is
immediate that

Var
(
T (n)

)
= nVar(τe).

Kesten (1993) showed that for any d ≥ 1, if Pτ ({0}) < pc and E[τ2
e ] <∞, then

there are constants C1 > 0 and C2 <∞ such that

C1 ≤ Var
(
T (n)

)
≤ C2n, for all n ≥ 1.

More precise results have been few. Benjamini, Kalai and Schramm (2003) gave
an example which showed that for first-passage percolation on Zd for d ≥ 2,
with {a, b}-valued passage times, where 0 < a < b < ∞, there is a constant C
such that

Var
(
T (n)

)
≤ C

n

log n
, for all n ≥ 2. (1.5)

This result was later extended by Benäım and Rossignol (2006, 2008) to include
a wider class of passage time distributions. This is still far from what is believed
to be the precise growth rate of Var

(
T (n)

)
. For d = 2 it is believed that

Var
(
T (n)

)
is of the order n2/3, and it is not clear which behaviour to expect in

higher dimensions (see Newman and Piza (1995); Benjamini et al. (2003) for
short resumés). For d = 2 Newman and Piza (1995) have shown, additionally
assuming that the passage-time distribution does not have a too big point mass
at inf{x ≥ 0 : Pτ ([0, x]) > 0}, that there is a constant C > 0 such that

Var
(
T (n)

)
≥ C log n,

for all n ≥ 1. The same lower bound was found independently by Pemantle
and Peres (1994), in the case of exponential passage times.

1.1 Classical limit theorems on 1-dimensional graphs

In this paper we consider first-passage percolation on essentially 1-dimensional
periodic graphs defined as follows.
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Definition 1.2. The class of essentially 1-dimensional periodic graphs con-
sists of all connected graphs G that can be constructed in the following manner.
Let {Gn}n∈Z be a sequence of identical copies of some finite connected deter-
ministic graph, each with set of vertices VGn = {vn,1, . . . , vn,K} and set of edges
EGn = {en,1, . . . , en,l}. Fix a nonempty set J ⊆ {(i, j) : 1 ≤ i, j ≤ K}, and
connect Gn to Gn+1 for each n by adding an edge e(vn,i, vn+1,j) between vn,i and
vn+1,j, for each (i, j) ∈ J . Let G = (V,E) denote the resulting graph, where

V =
⋃

n∈Z

VGn and E =
⋃

n∈Z

(
EGn ∪ {e(vn,i, vn+1,j) : (i, j) ∈ J}

)
.

We will write E∗
Gn

for EGn ∪ {e(vn,i, vn+1,j) : (i, j) ∈ J}, and say that a vertex
v of G is at level n if v ∈ VGn .

An essentially 1-dimensional periodic graph of particular interest is the
Z×{0, 1, . . . ,K − 1}d−1 nearest neighbour graph, i.e., the sub-graph of the Zd

lattice which has set of vertices Z×{0, 1, . . . ,K−1}d−1 for some d,K ≥ 1, and
where any two vertices are connected by an edge if their Euclidean distance is
1. We will refer to this graph as the (K,d)-tube (cf. Figure 1). We can think

Figure 1: A part of the (3, 2)-tube.

of the (K,d)-tube as the essentially 1-dimensional periodic graph constructed
from a sequence of graphs with vertex set VGn = {n} × {0, 1, . . . ,K − 1}d−1

and where any two vertices at Euclidean distance one are joined by an edge.
With this construction, the vertices at level n are exactly the ones with first
coordinate n.

Because of the unspecified structure of the underlying graph, it is convenient
to consider

Tn := T (I,VGn), (1.6)

interpreted as the time until a vertex at level n is infected. To consider Tn

is natural, but is in no way necessary for the results we obtain. In fact, we
shall see that the asymptotic behaviour of the sequence {Tn}n≥1 is the same
as that for the sequence

{
maxv∈VGn

T (v)
}

n≥1
, and the sequence {T (vn)}n≥1,

where {vn}n≥1 is any sequence of vertices such that vn is at level n. We will
for that reason let {T̂n}n≥1 denote any of the three sequences above, and state
several of our results for T̂n. It will then be understood that the result holds
for any of the three sequences.
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Our main results concerns first-passage percolation on any essentially 1-
dimensional periodic graph G, with passage-time distribution that does not
concentrate all mass at a single point. We will prove that there are non-
negative, finite constants µ = µ(G) and σ = σ(G), such that the following
holds.

Theorem 1.3 (Law of Large Numbers). If E[τe] <∞, then

lim
n→∞

T̂n

n
= µ, almost surely. (1.7)

If E[τ r
e ] <∞ for some r ≥ 1, then

{(
T̂n/n

)r}
n≥1

is uniformly integrable,

and the convergence of (1.7) holds also in Lr.

Theorem 1.4 (Central Limit Theorem). If E[τ2
e ] <∞, then

T̂n − µn

σ
√
n

d→ χ, in distribution,

as n→ ∞, where χ has a standard normal distribution.

Let L({xn}n≥1) denote the set of limit points of a real-valued sequence
{xn}n≥1.

Theorem 1.5 (Law of the Iterated Logarithm). If E[τ2
e ] <∞, then

L



{

T̂n − µn

σ
√

2n log log n

}

n≥3


 = [−1, 1], almost surely.

In particular, almost surely,

lim sup
n→∞

T̂n − µn

σ
√

2n log log n
= 1, and lim inf

n→∞
T̂n − µn

σ
√

2n log log n
= −1.

Note that the almost sure and L1-convergence in Theorem 1.3 actually
follows from Kingman’s Subadditive Ergodic Theorem. However, it is for the
understanding of our approach instructive to state and reprove it, as we do.
As a consequence of the regenerative structure explored in Section 2, µ and σ
will be given by explicit formulas. For this reason, it will become clear that µ
and σ are non-negative, finite, and depend on the underlying graph G and the
passage time distribution, but do not depend on the set of initially infected
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vertices I, nor on which of the three sequences considered that {T̂n}n≥1 may
represent. We will see (in Proposition 5.7) that µ and σvaries continuously with
respect to Pτ . We preferred at this stage to give simple moment conditions in
Theorems 1.3, 1.4 and 1.5. But we will later point out that they may in fact
be relaxed somewhat (cf. Remark 3.4).

At a comparison with the asymptotic results in higher dimensions, Theo-
rem 1.3 is the 1-dimensional analogue to the Shape Theorem. Theorems 1.4
and 1.5 on the other hand, point out a 1-dimensional behaviour that is not
expected in higher dimensions. In particular, Var(Tn) grows linearly in n, in
contrast to the higher dimensional sub-diffusive behaviour in (1.5), pointed
out by Benjamini et al. (2003). However, we should also mention a result by
Kesten and Zhang (1997) when d = 2 and Pτ ({0}) = pc(2) = 1/2. They have
showed that T (n)−E[T (n)] converges to a standard normal distribution, when
scaled appropriately. This case is considered critical, and the scaling factor is
known to grow of order logn.

The classical Central Limit Theorem for i.i.d. sequences extends to a func-
tional central limit theorem, known as Donsker’s theorem. In contrast to the
classical Central Limit Theorem that treats weak convergence of real-valued
random variables, Donsker’s theorem treats weak convergence of real-valued
random functions. Theorem 1.4 also extends to a functional version, with the
same limiting distribution as the regular Donsker theorem, i.e., Wiener mea-
sure. For the precise statement and a proof, see Theorem 3.6.

We should at this point mention a related, but independent, work by Chat-
terjee and Dey (2009). They consider first-passage percolation on nearest
neighbour graphs of the form Z×{−K, . . . ,K}d−1. In our terminology, this is
precisely the (2K + 1, d)-tube. Introduce the notation an(K) for the passage
time T (0,n) between the origin and n on that graph. Their main result essen-
tially says that if E[τ r

e ] <∞ for some r > 2, then there exists α = α(d, r) such
that if Kn = o(nα), then

an(Kn) − E[an(Kn)]√
Var

(
an(Kn)

)
d→ χ, in distribution, (1.8)

as n → ∞, where χ has a standard normal distribution. When E[τ r
e ] < ∞

for all r ≥ 1, then α < 1/(d + 1) is sufficient for (1.8) to hold. This result is
similar to our Theorem 1.4, and applies to cases that Theorem 1.4 does not.
The method of proof used in Chatterjee and Dey (2009) is different from ours,
and we note that they require a slightly stronger moment condition than we
do with our techniques (see also Remark 3.4). In Chatterjee and Dey (2009),
(1.8) is also extended to hold for graphs of the form Z×G, which is a subclass
to the class of essentially 1-dimensional periodic graphs defined in Definition

7



1.2. Moreover, (1.8) extends to a functional central limit theorem similar to our
Theorem 3.6. Again here, Chatterjee and Dey require that E[τ r

e ] <∞ for some
r > 2 in order for the functional limit theorem to hold. We emphasise that
the present work was prepared simultaneously and independently of the work
by Chatterjee and Dey (2009) by methods distinct from those in their paper.
There seem to be advantages with the techniques used in this paper, as well as
with the techniques used by Chatterjee and Dey. To further exclude questions
of originality, we also mention that this paper is an extended version of the
earlier manuscript Ahlberg (2008), in which several of the results presented
here were included, among them Theorem 1.4. Theorem 1.4 was also proved
by Schlemm (2011) in the particular case of the (2, 2)-tube with exponential
passage times.

1.2 Monotonicity of mean and variance

It seems natural to believe that the mean and variance of T (u, v) increase with
the distance between u and v. We will prove two theorems concerning this.

Theorem 1.6. Let vn,i denote a specific vertex at level n. For all i = 1, . . . ,K,
if E[τe] <∞, then for some Ci ∈ R, as n→ ∞,

E[T (vn,i)] = µn+ Ci + o(1).

A direct consequence of this result is that

E[T (vn+1,i) − T (vn,i)] → µ, as n→ ∞.

Since µ > 0, this proves monotonicity of E[T (vn,i)], for large n. This question
dates back to Hammersley and Welsh (1965). That we have such monotonicity
on Z is completely trivial, but on Zd for d ≥ 2 it is still an open problem
to solve. A counterexample given by van den Berg (1983) shows that such
monotonicity result for the expected travel time from (0, 0) to (n, 0) on the
{0, 1, . . . , n} × Z nearest neighbour graph does not hold for every n. This
indicates that it might not be possible to extend Theorem 1.6 to say that the
mean travel time is monotonous for all n. The same remark should concern
also the following result which proves monotonicity of the variance of the travel
time for large n.

Theorem 1.7. Let vn,i denote a specific vertex at level n. For all i = 1, . . . ,K,
if E[τ2

e ] <∞, then for some Ci ∈ R, as n→ ∞,

Var
(
T (vn,i)

)
= σ2n+ Ci + o(1).
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1.3 Asymptotic behaviour of geodesics

First-passage percolation offers more than describing the behaviour of the pas-
sage time between vertices. One matter which has received a lot of attention
is along which edges (path) an infection travels from one vertex to another.
Do such paths exist, and if they do, how do they behave? On the Zd lattice
such minimising paths are known to exist for passage-time distributions with
not too big point mass at zero (see Howard (2004) for more precision of the
statement). A simple argument that shows that such paths exist on essentially
1-dimensional periodic graphs (for any passage-time distribution) is given in
Proposition 5.1. As customary, we will use the term geodesic to refer to a path
γ(u, v) attaining the minimal passage time, i.e., such that T (γ(u, v)) = T (u, v).
Geodesics are not necessarily unique when the passage-time distribution has
atoms (for continuous distributions they are; cf. Proposition 5.1). For this
reason, fix a deterministic rule to choose one when several are possible (e.g.
the shortest, with some additional rule for breaking ties).

Let Nn and N(v) denote the length of the geodesic realising Tn and T (v),
respectively. Let {N̂n}n≥1 denote either of the sequences

{
maxv∈VGn

N(v)
}

n≥1
,

{Nn}n≥1 and {N(vn)}n≥1, where {vn}n≥1 is any sequence of vertices such that
vn is at level n. We state here the following result, and refer the reader to
Section 5 and Theorem 5.2 and 5.3, for additional result concerning asymptotics
of length of geodesics.

Theorem 1.8. There is a finite constant α such that, for any r ≥ 1,

lim
n→∞

N̂n

n
= α, almost surely and in Lr.

On the Z2 lattice, Zhang and Zhang (1984) showed that a similar strong law,
as the one exhibited in the above theorem, holds for ”supercritical” passage-
time distributions, i.e., passage-time distributions such that Pτ ({0}) > 1/2.
Moreover, Garet and Marchand (2004, 2007) have considered the related case
of first-passage percolation on the Zd lattice with passage times distributed as
Pτ = pδ1 + (1 − p)δ∞, for some p > pc(d). In this situation the length of the
geodesic between two vertices equals the passage time between them (given
that it is finite). Assume that the origin lies in the unique infinite cluster, and
for z ∈ Zd let {un,z}n≥1 denotes the subsequence of {n}n≥1 such that un,zz lies
in the infinite cluster. They showed that, almost surely,

∃ lim
n→∞

T (0, un,zz)

un,z
, uniformly in z ∈ Zd.

They further prove exponential decay of deviations away from this limit. If the
same limiting behaviour, as in the above theorem, holds for general passage-
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time distributions on the Zd lattice is not known (see Howard (2004) for further
reference).

1.4 The (K, d)-tube case

First-passage percolation on (K,d)-tubes is of particular interest, since it can
be compared in a natural way to first-passage percolation on the Zd lattice.
As an example of such a comparison, we can see how Theorem 1.3 is a 1-
dimensional analogue to the Shape Theorem. Replace Bt with the set B̃t as
in (1.3). Let µK denote the time constant of Theorem 1.3 associated with the
(K,d)-tube, and set

B∗ = B∗(t) =
[
−µ−1

K , µ−1
K

]
× [0,K/t]d−1.

The almost sure convergence in Theorem 1.3 is then equivalent to that for all
ǫ > 0, almost surely,

(1 − ǫ)B∗ ⊂ 1

t
B̃t ⊂ (1 + ǫ)B∗, for large t. (1.9)

We can in fact allow ǫ to tend to zero with t. The precise size of the fluctuations
in (1.9) follows from Theorem 1.5. We refer the reader to Corollary 3.5 for the
precise statement.

Let µK denote the time constant associated with the (K,d)-tube (for fixed
d). A simple coupling argument shows that µK+1 ≤ µK . In fact strict inequal-
ity holds for all K ≥ 1 (cf. Proposition 5.10). Apart from being decreasing,
the sequence {µK}K≥1 is bounded below by µ(e1). Thus, the sequence is
convergent. In Proposition 5.11 we prove that

lim
K→∞

µK = µ(e1).

This shows that the rate of growth of an infection on the (K,d)-tube approaches
the rate of growth of an infection on the Zd lattice, as K increases. Does the
same monotonic behaviour hold for the constants σ2

K and αK , that appear in
Theorem 1.4 and 1.8, associated with the (K,d)-tube? There is no argument
known to us that implies monotonicity. In view of the belief of the fluctuations
in higher dimensions, and the sub-diffusive behaviour shown in (1.5), it seems
reasonable to believe that σ2

K tends to zero as K → ∞.

To compute the actual values of the constants µ and µK (for arbitrary K)
does not seem to be practically possible. However, a closed form expression was
obtained for the time constant for the (2, 2)-tube (that is µK with K = d = 2)
with exponential passage times by both Schlemm (2009) and Renlund (2010).
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1.5 Coupling and a 0–1 law

Another main part of this paper consists of the construction of a coupling of
two first-passage percolation infections. As an application of the coupling we
prove a 0–1 law. Define the σ-algebra Tt := σ({Bs}s≥t) and the tail σ-algebra
T := ∩t≥0Tt. We may think of Tt as the σ-algebra of events that do not depend
on the times at which vertices are infected before time t.

Theorem 1.9 (0–1 law). Consider first-passage percolation on an essentially
1-dimensional periodic graph G, with a finite set of initially infected vertices.
Assume that the passage time distribution has an absolutely continuous com-
ponent (with respect to Lebesgue measure). Then P(A) ∈ {0, 1}, for any event
A ∈ T .

The 0–1 law follows from an application of the following coupling.

Proposition 1.10 (Coupling). Let I and I ′ be finite subsets of the set of
vertices of an essentially 1-dimensional periodic graph G. Assume that the
passage time distribution Pτ has an absolutely continuous component (with
respect to Lebesgue measure). There exists a coupling of {τe}e∈E and {τ ′e}e∈E

such that {τe}e∈E and {τ ′e}e∈E form sequences of i.i.d. random variables with
distribution Pτ , and if first-passage percolation is performed with (I, {τe}e∈E)
and (I ′, {τ ′e}e∈E), respectively, then with probability one there exists Tc < ∞,
such that

Bt = B′
t, for all t ≥ Tc.

A similar coupling is presented also for discrete passage time distributions,
but then on the more restrictive class of (K,d)-tubes (cf. Proposition 6.2).
Theorem 1.9 is extended to include this case as well. Motivating examples
are given to show why it is not possible to make the coupling as general as
Proposition 1.10 also in the discrete case (cf. Remark 6.6 and 6.7).

The mild condition of an absolutely continuous component to be sufficient
for the 0–1 law on essentially 1-dimensional periodic graphs, opens up for a
discussion. We do not know on which other graphs this condition is sufficient.
But, we give an example showing that a 0–1 law analogous to Theorem 1.9
cannot hold on the binary tree T2. An interesting and challenging case to set-
tle would be on the Zd lattice.

The main results of this paper will be based on a “regenerative” nature
that arises for first-passage percolation on essentially 1-dimensional periodic
graphs. What we mean by a regenerative behaviour will be clarified in the
next section, where we also derive the properties of the regenerative structure
that will recur throughout this paper. As will become apparent, the idea
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is to identify a suitable regenerative sequence (cf. Definition 2.1). How the
regenerative behaviour arises naturally for exponentially distributed passage
times is illustrated in Section 2.1. The general case is thereafter treated in
detail in Section 2.2.

Once the regenerative behaviour is understood, some of the results we pro-
vide will follow, either from simple arguments or from already known results.
Other results that we provide do not follow as easily, and will require an es-
sential amount of additional work. This will be emphasised in connection with
their proofs. In Section 3, the regenerative behaviour is used to prove Theo-
rems 1.3, 1.4 and 1.5, among others. Monotonicity of mean and variance of
the travel time, i.e., Theorem 1.6 and 1.7, is proved in Section 4. Section 5 is
dedicated to study geodesics and properties of µ, σ and α. In the final Section
6 the coupling of Proposition 1.10 is constructed, in its continuous and its dis-
crete version. The 0–1 law Theorem 1.9 is also derived and the counterexample
to the 0–1 law on trees is presented at the very end.

2 Regenerative behaviour

Definition 2.1. We say that a sequence {Xk}k≥1 of random variables is a
regenerative sequence if there exists an increasing sequence of random variables
{λk}k≥0 such that

a) {λk − λk−1}k≥1 forms an i.i.d. sequence, and

b) {Xλk
−Xλk−1

}k≥1 forms a non-negative i.i.d. sequence.

We will refer to {λk}k≥0 as the sequence of regenerative levels.

Some readers may recognise the sub-sequence {Xλk
}k≥0 as a renewal se-

quence, and the sequence
{
(Xλk

, λk)
}

k≥0
as a 2-dimensional renewal sequence.

The idea of how to identify a suitable regenerative sequence arises naturally
for first-passage percolation with exponentially distributed passage times. We
begin with an illustration of this on the (2, 2)-tube. In Section 2.2 we will
generalise this idea to concern general passage time distributions, and any
essentially 1-dimensional periodic graph.

2.1 Exponential passage times

Let the edges of the (2, 2)-tube be equipped with i.i.d. exponential passage
times {τe}e∈E, and let both vertices at level zero be initially infected. At
any fixed time t, given the infected component Bt, each edge with exactly
one endpoint in the infected component is equally likely to be passed by the
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infection next. Thus, at each level, with probability at least 1/2, both vertices
will become infected before any vertex at the following level. It follows that
with probability one, at some level r, both vertices will become infected before
any vertex at level r+1. Denote by ρ the first level for which this happens, and
let τρ denote the time at which this happens. By the lack-of-memory property,
the time it takes for the infection from this moment to reach m levels further
has the same distribution as the time it would take to reach level m, i.e.,

Tρ+m − τρ
d
= Tm. (2.1)

In fact, at infinitely many levels, both vertices at that level will be infected
before any vertex at higher levels. If we repeat the argument, we generate a
sequence of (regenerative) levels {ρk}k≥1 (see Figure 2), with corresponding
sequence of instants {τρk

}k≥1, such that (2.1) holds. Since the passage times

level 0 ρ1 ρ2 ρ3

Figure 2: A realisation of the spread of an infection on the (2, 2)-tube.
The broken lines indicate levels at which both vertices will become
infected before any vertex ahead.

are i.i.d., the consecutive differences ρk+1 − ρk will be i.i.d., as well as the
differences τρk+1

− τρk
. It follows that

{
maxv∈VGn

T (v)
}

n≥1
is a regenerative

sequence.

The point of the regenerative sequence is the following. Note that the nth
(regenerative) level and the time at which it occurs may be written as sums of
i.i.d. random variables, i.e.,

ρn =

n−1∑

k=0

ρk+1 − ρk and τρn =

n−1∑

k=0

τρk+1
− τρk

,

where ρ0 = 0 and τρ0 = 0. It is easy to see that classical results, such as the Law
of Large Numbers, Central Limit Theorem and Law of the Iterated Logarithm,
applies to {(τρn , ρn)}n≥1, the passage time to the nth regeneration, with respect
to the level of the same regeneration. Such results can be expanded to include
the regenerative sequence in question. This will be further investigated in
Section 3.
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2.2 The general case

Let us now consider first-passage percolation with general passage time dis-
tribution on any essentially 1-dimensional periodic graph. When we refer to
an edge at some level n, we mean an edge in EGn . When we refer to an edge
between levels n and n+m, we mean any edge in E∗

Gn
∪ . . .∪E∗

Gn+m−1
∪EGn+m

.
Let M be a positive integer and denote the set of edges between level n and

n+2M by En. Fix a path γn of shortest length between VGn and VGn+2M
, i.e.,

between two vertices at level n and n+2M , respectively. Define the subset Ên

of En as
Ên := γn ∪ EGn ∪ EGn+2M

. (2.2)

Define
mτ := inf

{
x ≥ 0 : Pτ

(
[0, x]

)
> 0
}
,

Mτ := sup
{
x ≥ 0 : Pτ

(
[x,∞)

)
> 0
}
.

(2.3)

Note that 0 ≤ mτ < Mτ ≤ ∞, where the strict inequality holds since we
consider only passage-time distributions that do not concentrate all mass at a
single point. For constants t′ and t′′ such that mτ < t′ < t′′ < Mτ , define the
regenerative event

An :=
{
τe ≤ t′,∀e ∈ Ên

}
∩
{
τe ≥ t′′,∀e ∈ En \ Ên

}
. (2.4)

The event An is depicted in Figure 3. Trivially P(An) > 0. The vertex at

Gn

Vn

Gn+2M

Figure 3: The graph G between level n and n+2M . If An occurs, the
thick edges at level n, level n+ 2M and of the path γn are “quick”.

level n+M first reached via γn will be of particular interest, so we introduce
the following notation.

Definition 2.2. Let v̂n denote the vertex at level n first reached via γn−M .
That is, v̂n+M denotes the vertex at level n+M first reached via γn.

We will require to consider random variables conditioned on the occurrence
of events like An. We will therefore need a notion of conditional independence.
Two random variables X and Y are said to be conditionally independent given
A, if the random variables X conditioned on A, and Y conditioned on A, are
independent.
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Lemma 2.3. Let t′ and t′′ be constants such that mτ < t′ < t′′ < Mτ . Then
there exists M ∈ N, such that:

a) If An occurs, then for all u ∈ ⋃k≤n VGk
and v ∈ ⋃k≥n+2M VGk

T (u, v) = T (u, v̂n+M ) + T (v̂n+M , v) , (2.5)

and T (Γ) > T (u, v) for any path Γ between u and v that does not visit
v̂n+M .

b) T (u, v̂n+M ) and T (v̂n+M , v) are conditionally independent given An. In
addition, given An, T (u, v̂n+M ) is conditionally independent of the pas-
sage time of any edge beyond level n+ 2M , and T (v̂n+M , v) is condition-
ally independent of the passage time of any edge before level n.

Proof. It suffice to prove the lemma for u ∈ VGn and v ∈ VGn+2M
. For given t′

and t′′, choose

M >
|EGn |t′
t′′ − t′

,

where | · | denotes the cardinality of the set. Set β := dist(v̂n+M ,VGn+2M
),

where dist(v, V ) denotes the smallest number of edges one has to pass in order
to reach a vertex of V from v, and define (see Figure 3)

Vn :=



v ∈

n+2M⋃

j=n

VGj
: dist(v,VGn+2M

) = β



 .

We will prove that, given An,

T (u, v̂n+M ) < T (u,w) and T (v̂n+M , v) < T (w, v) (2.6)

for all w ∈ Vn \ {v̂n+M}. This proves that T (Γ) > T (u, v) for all paths Γ
between u and v that does not visit v̂n+M , since each path from u to v has
to pass some vertex in Vn. Thus, also (2.5) holds. That T (u, v̂n+M ) and
T (v̂n+M , v) are conditionally independent given An is easily seen from the
following observation. When An occurs, if follows from (2.6) that T (u, v̂n+M )
is the infimum of T (Γ) over all paths Γ from u to v̂n+M that intersects Vn only
in v̂n+M , whereas T (v̂n+M , v) is the infimum of T (Γ) over all paths Γ from
v̂n+M to v that intersects Vn only in v̂n+M . Hence, the infima of passage times
are taken over paths in disjoint parts of the graph. The remaining statement
in b) follows similarly.

To deduce (2.6), condition on An. By definition of γn and Vn,

T (w′, v̂n+M ) < T (w′, w)
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for any vertex w′ visited by γn, and w ∈ Vn \ {v̂n+M}. Let γ−n denote the part
of the path γn between VGn and v̂n+M . Let Γ be any path from u to Vn disjoint
from γ−n . Note that

T (u, v̂n+M ) ≤
(
|EGn | + |γ−n |

)
t′ and T (Γ) ≥ |γ−n |t′′.

(Here γ−n is identified with its set of edges.) By the choice of M ,

T (Γ) − T (u, v̂n+M ) ≥ (t′′ − t′)|γ−n | − |EGn |t′ ≥ (t′′ − t′)M − |EGn |t′ > 0.

This proves that T (u, v̂n+M ) < T (u,w) for all w ∈ Vn \ {v̂n+M}. The proof of
the remaining inequality in (2.6) is similar.

Assume from now on that t′, t′′ and M are chosen in accordance with
Lemma 2.3. We will next introduce an auxiliary random variable ∆. Through-
out this paper, ∆ will denote any bounded integer-valued random variable
independent of {τe}e∈E. The auxiliary random variable is not necessary in or-
der to derive the regenerative behaviour we do in this section. In fact, ∆ is of
no importance to most of our results in this paper. We will in Section 3 set
∆ ≡ 0. However, ∆ will play a rôle in Section 4, where we need to be more
careful to prove monotonicity of mean and variance. At this point we do not
specify its distribution further, other than having bounded support.

Let ρI := max{n ∈ Z : VGn ∩ I 6= ∅} denote the furthest initially infected
level. Define

nk := ρI + ∆ + k(2M + 1), for k ∈ Z,

and note that the sequence of events {Ank
}k∈Z is readily seen to be i.i.d. Let

κ = min{k ≥ 0 : Ank
occurs} and set ρ0 := nκ +M . Define further

ρk := M + min{nm : nm > ρk−1 and Anm occurs}, for k ≥ 1,

ρk := M + max{nm : nm +M < ρk−1 and Anm occurs}, for k ≤ −1.

Since {Ank
}k∈Z is i.i.d. and P (Ank

) > 0, the second Borel-Cantelli lemma gives
that

P (Ank
occurs for infinitely many k ≥ 0) = 1.

The same holds for k ≤ 0. This generates a sequence {ρk}k∈Z, where ρk is
almost surely finite.

Note that ρk ≥ ρI +M for k ≥ 0. Thus, for k ≥ 0, Lemma 2.3 says that
each path along which any vertex at level ρk +M and beyond is infected has
to pass the vertex v̂ρk

.

Definition 2.4. A vertex v̂n will be referred to as a regeneration point if
n = ρk for some k ≥ 0.
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For k ∈ Z, define

Sk := ρk − ρk−1, and τSk
:= T (v̂ρk−1

, v̂ρk
).

For k ≥ 1, Sk denotes the distance (measured in levels) between two regenera-
tion points, and τSk

denotes the passage time between two regeneration points.
By Lemma 2.3 we see that τSk

= T (v̂ρk
)− T (v̂ρk−1

) for k ≥ 1. With this nota-

ρkρk−1

Figure 4: A schematic picture of a graph, in which boxes indicate lo-
cations of the sequence {Ank

}k≥0, vertical lines indicate the sequence
{ρk}k≥0, and dots indicate {v̂nk

}k≥0. The distance between the two
vertical lines is Sk, and the thick curve indicates τSk

.

tion, we may for n ≥ 0 write the level of the nth regeneration, and the time it
takes for the infection to reach the nth regeneration, as

ρn = ρ0 +

n∑

k=1

Sk, and T (v̂ρn) = T (v̂ρ0) +

n∑

k=1

τSk
,

respectively.

Lemma 2.5. Assume that t′, t′′ and M are chosen in accordance with Lemma
2.3. Then, {(τSk

, Sk)}k∈Z forms a sequence of i.i.d. [0,∞)×Z+-valued random
variables.

Proof. That {Sk}k∈Z is an i.i.d. sequence of geometrically distributed random
variables, times a factor 2M + 1 can easily be seen, since the events Ank

are
pairwise independent with equal success probabilities.

Note that τSk
is a random variable of the form T (v̂ni+M , v̂nj+M ), for some

i < j, conditioned (in particular) on the occurrence of the events Ani
and Anj

.
Thus, independence of τSk

and τSl
for k 6= l follows from Lemma 2.3 part b).

That they are identically distributed is due to the events Ank
being pairwise

independent with equal success probabilities.

Proposition 2.6. The sequence {T (v̂n)}n≥1 is a regenerative sequence. More-
over, if t′, t′′ and M are chosen in accordance with Lemma 2.3, then {ρn}n≥0

is a sequence of regenerative levels for {T (v̂n)}n≥1, such that

T (vρn+m,i) − T (v̂ρn)
d
= T (vρ1+m,i) − T (v̂ρ1), for all m ≥M,n ≥ 1,
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where superscript d indicates that the equality holds in distribution.

Proof. That {T (v̂n)}n≥1 is a regenerative sequence with sequence of regenera-
tive levels {ρn}n≥0 follows from Lemma 2.5. By Lemma 2.3,

T (vρn+m,i) − T (v̂ρn) = T (v̂ρn , vρn+m,i)

for m ≥M , whose distribution is independent of n, by definition of An.

Let µτ := E[τSk
] and µS := E[Sk] denote the expected passage time and

distance between two regeneration points, respectively, and define

µ :=
µτ

µS
, and σ2 :=

Var(τSk
− µSk)

µS
. (2.7)

It is immediate from the construction that the distributions of Sk and τSk

(and therefore also µ and σ2) does not depend on the set of initially infected
vertices I, nor on ∆. We will in next section see that µ and σ2 appear as
the constants that figure in Theorem 1.3, 1.4 and 1.5. In order to state clear
moment conditions, we will also need to know how moments of τe relate to
moments of Sk and τSk

. This is given in the following proposition.

Proposition 2.7. Assume that the passage time distribution Pτ does not con-
centrate all mass in a single point. Then,

a) there exists an α > 0 such that E
[
eαSk

]
<∞.

Assume further that there are p ≥ 1 (edge) disjoint paths from v̂0 to v̂1. Let
Y = min(τ1, . . . , τp), where τ1, . . . , τp are independent and distributed as Pτ .
Then,

b) if E[Y α] <∞, for some α > 0, we have 0 < E
[
τα
Sk

]
<∞.

In particular, if E[τα
e ] < ∞, then E[τα

Sk
] < ∞, and if E[τα

Sk
] < ∞ for α = 1,

and α = 2 respectively, then

0 < µ <∞, and 0 < σ2 <∞.

Proof. a) Recall that if θ is geometrically distributed with parameter pA =

P(An), then Sk
d
= (2M + 1)θ. In particular, 0 < E[Sα

k ] < ∞ for α > 0.
Moreover,

E[eαSk ] =

∞∑

n=1

eα(2M+1)n(1 − pA)n−1pA

= eα(2M+1)pA

∞∑

n=1

(
eα(2M+1)(1 − pA)

)n−1
,
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which is finite if eα(2M+1)(1 − pA) < 1.

b) Let Γ
(1)
j , . . . ,Γ

(p)
j denote the p disjoint paths from v̂j−1 to v̂j. Note that

subadditivity gives

τSk
≤

ρk∑

j=ρk−1+1

T (v̂j−1, v̂j). (2.8)

For any edge e ∈ E we have

P(τe > t|An) ≤ P(An)−1P(τe > t),

P(τe > t|Ac
n) ≤ P(Ac

n)−1P(τe > t).
(2.9)

Set Λn := {Sk = (2M + 1)n}. Note that Λn is of the form
⋂

i∈I Ani

⋂
j∈J A

c
nj

for disjoint sets I, J ⊆ {l, l+ 1, . . . , l+n}, where l is such that nl = ρk−1 −M .

Hence, it follows from (2.9) that when e ∈ Γ
(i)
j for some i = 1, . . . , p and

j = ρk−1 + 1, . . . , ρk, then

P(τe > t|Λn) ≤ C1P(τe > t), (2.10)

where C1 = max
(
P(An)−1,P(Ac

n)−1
)
. We will next prove that

E
[
T (v̂j−1, v̂j)

α
∣∣Λn

]
≤ C2E[Y α], (2.11)

for j = ρk−1 + 1, . . . , ρk and some C2 < ∞. Let λ denote the length of the

longest of the paths Γ
(i)
j . Then (2.11) follows immediately from

P
(
T (v̂j−1, v̂j)

α > t
∣∣Λn

)
≤

p∏

i=1

P
(
T
(
Γ

(i)
j

)
> t1/α

∣∣∣Λn

)

≤
p∏

i=1



∑

e∈Γ
(i)
j

P
(
τe > t1/α/λ

∣∣Λn

)



≤ Cp
1λ

p P
(
τe > t1/α/λ

)p
= Cp

1λ
p P
(
Y α > t/λα

)
,

where the second inequality follows since T
(
Γ

(i)
j

)
≥ s implies that at least one

of the edges e ∈ Γ
(i)
j has τe > s/λ, and the third inequality follows from (2.10).
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Combining (2.8) and (2.11) we deduce that

E[τα
Sk

] ≤
∞∑

n=1

E






ρk∑

j=ρk−1+1

T (v̂j−1, v̂j)




α∣∣∣∣∣∣
Λn


P(Λn)

≤
∞∑

n=1

nα

ρk−1+n∑

j=ρk−1+1

E [T (v̂j−1, v̂j)
α|Λn] P(Λn)

≤ C2

∞∑

n=1

nα+1E [Y α] P(Λn) ≤ C2E [Y α] E
[
Sα+1

k

]
,

(2.12)

where the second inequality follows since for any non-negative numbers aj we
have 


n∑

j=1

aj




α

≤ (nmax
j
aj)

α ≤ nα
n∑

j=1

aα
j . (2.13)

Thus, E
[
τα
Sk

]
< ∞ from part a). We can conclude that E[τα

Sk
] > 0, since the

passage times of all edges connecting level ρk−1 + M and ρk−1 + M + 1 are
independent of Λn.

Remark 2.8. It is worth pointing out that the initially infected component does
not need to be finite. But, there needs to be a level m beyond which no vertex
is initially infected. Proposition 2.6 holds also in this case.

3 Asymptotics for first-passage percolation

In this section we will present some variants of classical results for i.i.d. se-
quences, but here for first-passage percolation considered on essentially 1-
dimensional periodic graphs. The fact that {T (v̂n)}n≥1 is a regenerative se-
quence, and in particular, that {τSk

}k≥1 and {Sk}k≥1 form i.i.d. sequences,
will play a central rôle. We will assume throughout this section that t′, t′′ and
M are chosen in accordance with Lemma 2.3, and that the auxiliary variable
∆ ≡ 0. In order to approximate T (v̂n), we will stop the sequence {T (v̂ρk

)}k≥0

in a suitable way. The asymptotic behaviour of stopped sums of this form,
so called stopped random walks, i.e., random walks stopped by some stopping
time, has been studied before. Gut (2009) treats this subject. Once the regen-
erative behaviour is known, results as Theorem 1.3 and 1.5 are easily obtained
from the classical Law of Large Numbers and Law of the Iterated Logarithm.
So, there is in these cases no need to refer to the theory for stopped sums.
However, Theorem 1.4 and 3.6 would require more work, and we will base
our proofs of these results on known results for stopped random walks. We
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should mention that apart from the results presented here, it is possible to de-
duce other results, such as stable laws, from known results for stopped random
walks.

We will without further comment use the fact that if Yn → Y and ηn → ∞
almost surely as n → ∞, then Yηn → Y almost surely as n → ∞. We also
remind the reader that for any i.i.d. sequence {Yn}n≥1, a simple application of
the Borel-Cantelli lemmas shows that

lim
n→∞

Y α
n

n
= 0, almost surely ⇔ E[|Y1|α] <∞. (3.1)

To see this, note that E[|Y1|α] <∞ is equivalent to

∞∑

n=1

P
(
|Yn|α > ǫn

)
<∞, for any ǫ > 0.

This is by the Borel-Cantelli lemmas equivalent to

lim
n→∞

|Yn|α
n

≤ ǫ,

and (3.1) follows.
In order to approximate T (v̂n), we will stop the regenerating sequence when

Ank
occurs for the least k such that nk ≥ n. In terms of the sequence of

regenerative levels, we define

ν(n) := min{m ≥ 0 : ρm ≥ n+M}.
Lemma 3.1. {ν(n)}n≥0 is a non-decreasing sequence such that

a) lim
n→∞

n

ν(n)
= µS, almost surely.

b) lim
n→∞

ρν(n)

n
= 1, almost surely.

Proof. It is clear that ν(n) ↑ ∞ as n → ∞. Lemma 2.5 and Proposition
2.7 assure that {Sk}k≥1 forms an i.i.d. sequence with finite mean. Since the
definition gives ρν(n)−1 < n+M ≤ ρν(n), we have

ρν(n)

ν(n)
−
Sν(n)

ν(n)
<

n+M

ν(n)
≤

ρν(n)

ν(n)
.

This, together with the classical Law of Large Numbers and (3.1) proves a).
Since

ρν(n)

n
=

ρν(n)

ν(n)

ν(n)

n
,

part b) follows from the Law of Large Numbers and part a).
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Recall that {T̂n}n≥1 denotes either of {Tn}n≥1, {maxv∈VGn
T (v)}n≥1 and

{T (vn)}n≥1, where {vn}n≥1 is any sequence of vertices such that vn is at level
n. When we prove Theorem 1.3, 1.4 and 1.5, we will first obtain the results for
the stopped sequence {T (v̂ρν(n)

)}n≥1. What we then need to finish the proofs
is summarized in the following lemma.

Lemma 3.2. Assume that there are p ≥ 1 (edge) disjoint paths from v̂0 to v̂1.
Let Y = min(τ1, . . . , τp), where τ1, . . . , τp are independent and distributed as
Pτ . Then, for any α > 0,

a) lim
n→∞

∣∣ρν(n) − n
∣∣α

n
= 0, almost surely.

b) if E[Y α] <∞, then lim
n→∞

∣∣T (v̂n) − T (v̂ρν(n)
)
∣∣α

n
= 0, almost surely.

c) if E[τα
e ] <∞, then lim

n→∞

∣∣T̂n − T (v̂n)
∣∣α

n
= 0, almost surely.

Proof. Since ρν(n) − n ≤ Sν(n) +M
d
= Sk +M , then a) follows from (3.1) and

part a) of Proposition 2.7. By subadditivity

∣∣∣T (v̂ρν(n)
) − T (v̂n)

∣∣∣ ≤
ρν(n)∑

j=n+1

T (v̂j−1, v̂j) ≤
ρν(n)∑

j=ρν(n)−1−M+1

T (v̂j−1, v̂j),

which in the proof of Proposition 2.7 was seen to have finite moment of the
same order as Y . Thus, also b) follows from (3.1). Finally, also c) follows from
(3.1). Note that

Tn ≤ T (vn) ≤ max
v∈VGn

T (v) ≤ Tn +
∑

e∈EGn

τe,

implies that
∣∣T̂n − T (v̂n)

∣∣ ≤∑e∈EGn
τe, which via (2.13) is easily seen to have

finite moment of same order as τe.

3.1 Proof of point-wise limit theorems

Proof of Theorem 1.3. Almost sure convergence. Lemma 2.5 and Proposi-
tion 2.7 gives that {τSk

}k≥1 is an i.i.d. sequence with finite mean. Thus, as
n→ ∞,

T (v̂ρν(n)
)

n
=

T (v̂ρ0) +
∑ν(n)

k=1 τSk

ν(n)

ν(n)

n
→ µτ

µS
, almost surely,
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according to the classical Law of Large Numbers and Lemma 3.1. We conclude
that, as n→ ∞,

T (v̂n)

n
=

T (v̂ρν(n)
)

n
+
T (v̂n) − T (v̂ρν(n)

)

n
→ µτ

µS
, almost surely,

by part b) of Lemma 3.2. The almost sure convergence of T̂n/n now follows
from part c) of the same lemma.

Uniform integrability. According to subadditivity and (2.13)

T̂ r
n ≤ 3r


T (v̂0)

r +




n∑

j=1

T (v̂j−1, v̂j)




r

+


 ∑

e∈EGn

τe




r
 .

By convexity of the function xr, we have

(
1

n

n∑

k=1

T (v̂j−1, v̂j)

)r

≤ 1

n

n∑

k=1

T (v̂j−1, v̂j)
r.

Note that the distribution of T (v̂0)
r and (

∑
e∈EGn

τe
)r

does not depend on n,

and, via (2.13), have finite mean when E[τ r
e ] is finite. Hence, {(T̂n/n)r}n≥1 is

uniformly integrable if only {∑n
k=1 T (v̂j−1, v̂j)

r/n}n≥1 is uniformly integrable.
However, that holds as soon as E

[
T (v̂j−1, v̂j)

r
]

is finite, which follows since
E[τ r

e ] is finite. (Note that the regenerative behaviour was not used.)
Lr-convergence. The Lr-convergence now follows from the almost sure con-

vergence and uniform integrability.

Theorem 1.4 will be deduced from the following result sometimes referred
to as Anscombe’s theorem. For a proof, we refer the reader to e.g. Gut (2009,
Theorem 1.3.1).

Theorem 3.3 (Anscombe’s theorem). Let {ξk}k≥1 be an i.i.d. sequence with
mean zero and variance σ2

ξ . Assume further that

η(n)

n

p→ θ, in probability,

as n→ ∞. Then, as n→ ∞,

∑η(n)
k=1 ξk

σξ

√
θn

d→ χ, in distribution,

where χ has a standard normal distribution.
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Proof of Theorem 1.4. It follows from Lemma 2.5 and Proposition 2.7 that
{τSk

−µSk}k≥1 is an i.i.d. sequence with zero mean and finite variance. An ap-
plication of Anscombe’s theorem, together with Lemma 3.1, gives convergence
in distribution of the former term in the right-hand side of

T (v̂n) − µn

σ
√
n

=
T (v̂ρν(n)

) − µρν(n)

σ
√
n

+
T (v̂n) − T (v̂ρν(n)

) − µ(n− ρν(n))

σ
√
n

,

to a standard normal distribution, as n → ∞. The latter term in the above
right-hand side vanishes according to part a) and b) of Lemma 3.2. The con-
vergence of T̂n now follows from part c) of the same lemma.

Theorem 1.5 will be proved from a version of the Law of the Iterated Log-
arithm for i.i.d. sequences that is more general than the classical one. The
classical version would suffice to prove the second statement in the theorem. A
proof of the more general version for i.i.d. sequences can be found in e.g. Gut
(2005).

Proof of Theorem 1.5. Recall that τSk
− µSk are i.i.d. for k ≥ 1, with zero

mean and finite variance, due to Lemma 2.5 and Proposition 2.7. Trivially

T (v̂n) − µn

σ
√

2n log log n
=

T (v̂ρν(n)
) − µρν(n)

σ
√
µS2ν(n) log log ν(n)

√
µS
ν(n)

n

√
log log ν(n)

log log n

+
T (v̂n) − T (v̂ρν(n)

) − µ(n− ρν(n))

σ
√

2n log log n
.

(3.2)

Since ν(n) is non-decreasing, and for each m ∈ Z+, there is an n ∈ Z+ such
that ν(n) = m, it follows from the extended version of the Law of the Iterated
Logarithm for i.i.d. sequences that

L



{

T (v̂ρν(n)
) − µρν(n)

σ
√
µS2ν(n) log log ν(n)

}

n:ν(n)≥3


 = [−1, 1], almost surely,

and, in particular, that almost surely

lim sup
n→∞

T (v̂ρν(n)
) − µρν(n)

σ
√
µS2ν log log ν

= 1, and lim inf
n→∞

T (v̂ρν(n)
) − µρν(n)

σ
√
µS2ν log log ν

= −1.

Lemma 3.1 gives that µSν(n)/n→ 1, almost surely, as n→ ∞, and we further
conclude that

lim
n→∞

log log ν(n)

log log n
= lim

n→∞

log
(
log n+ log ν(n)

n

)

log log n
= 1, almost surely.

An application of Lemma 3.2 now completes the proof.
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Remark 3.4. Say that we are interested in the sequence {T (v̂0, v̂n)}n≥1. A
closer look at the proofs of Theorem 1.3, 1.4 and 1.5 reveals that the only
moment condition required in order to prove the various modes of convergence
for {T (v̂0, v̂n)}n≥1 is not E[τα

e ] < ∞ for given values of α, but E
[
τα
Sk

]
< ∞,

for k ≥ 1 and corresponding α. According to Proposition 2.7, this holds when
E[Y α] < ∞, where Y denotes the minimum of p independent passage times,
and p is the number of disjoint paths from v̂0 to v̂1. As an example, on any
(K,d)-tube with K,d ≥ 2, the passage time distribution given by

P(τe > x) = x−α, for x > 1, (3.3)

for some α > 0, satisfies E[τα
e ] = ∞ but E[min(τ1, τ2)

α] <∞. Hence, Theorem
1.3, 1.4 and 1.5 holds in this example for the sequence {T (v̂0, v̂n)}n≥1 and
corresponding values of α, even though E[τα

e ] = ∞.

3.2 One dimensional shape theorem

Theorem 1.5 gives the precise rate of convergence towards the asymptotic shape
B∗ in the case of (K,d)-tubes. We will next rephrase this in terms of the set of
infected vertices. The following corollary gives the precise rate of fluctuations
of that set. Recall that B∗ = B∗(t) =

[
−µ−1

K , µ−1
K

]
× [0,K/t]d−1.

Corollary 3.5. Consider first-passage percolation on a (K,d)-tube, and as-
sume that E[τ2

e ] <∞. We have for all λ > σ
√

2/µK , almost surely, that

(
1 − λ

√
t−1 log log t

)
B∗ ⊂ 1

t
B̃t ⊂

(
1 + λ

√
t−1 log log t

)
B∗, (3.4)

for all t large enough. Moreover, for all λ < σ
√

2/µK and s ≥ 0, for either of
the inclusions in (3.4), there exists, almost surely, t ≥ s such that the inclusion
does not hold.

Proof. Fix ǫ > 0. By Theorem 1.5, there exists an almost surely finite N =
N(ǫ) such that

µKn− (1 + ǫ)σ
√

2n log log n < min(T−n, Tn),

for all n ≥ N . This implies that

B̃t ⊆ [−n, n] × [0,K]d−1,

for all

t ≤ µKn− (1 + ǫ)σ
√

2n log log n (3.5)
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and n ≥ N . Write nt for the least n such that (3.5) holds. By the choice of nt,

t

µK
≥ nt − 1 − 1 + ǫ

µK
σ
√

2(nt − 1) log log(nt − 1) = (nt − 1)g(nt),

for some increasing function g such that g(n) → 1 as n→ ∞. It follows that

nt − 1 ≤ 1

µK

(
t+ (1 + ǫ)σ

√
2t

µKg(nt)
log log

t

µKg(nt)

)

Since nt → ∞, also g(nt) → 1, as t → ∞. Since ǫ > 0 was arbitrary, we have
shown that for all ǫ > 0 there exists an almost surely finite T = T (ǫ) such that

B̃t ⊆
(
t+ (1 + ǫ)σ

√
2t

µK
log log t

)
B∗

for all t ≥ T . The proof of the lower inclusion in (3.4) follows in a similar way
from Theorem 1.5 applied to maxv∈VGn

T (v).
It remains to prove the second statement of the corollary. Fix ǫ > 0.

It follows from Theorem 1.5 that for all n ≥ 1 there exists, almost surely,
N = N(ǫ) ≥ n such that

TN ≤ µKN − (1 − ǫ)σ
√

2N log logN

In particular,
B̃tN 6⊆ [−N,N ] × [0,K]d−1

for tN := µKN − (1 − ǫ)σ
√

2N log logN . Since tN ≤ µKN , it follows that

B̃tN 6⊆
(
tN + (1 − ǫ)σ

√
2tN
µK

log log
tN
µK

)
B∗.

Since ǫ > 0 was arbitrary, we have shown that for any λ < σ
√

2/µK , ǫ > 0 and
s > 0, there exists, almost surely, t = t(ǫ) ≥ s such that the upper inclusion
in (3.4) cannot hold. The failure of the lower inclusion follows in a similar
way.

3.3 Functional Donsker theorem

Donsker’s theorem can be seen as a functional version of the Central Limit The-
orem. In contrast to the Central Limit Theorem that treats weak convergence
of real-valued random variables, Donsker’s theorem treats weak convergence
of sequences of real-valued random functions. Let D = D[0,∞) denote the
set of right-continuous functions with left-hand limits on [0,∞). Let D denote
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the σ-algebra generated by the open sets in D with Skorohod’s J1-topology,
defined by the following. Let Λ denote the set of strictly increasing, continuous
mappings of [0, b] onto itself. A sequence {fn}n≥1 of elements in D is said to
be J1-convergent to f if, for every b ≥ 0, there exists a sequence {λn}n≥1 in Λ
such that

sup
0≤t≤b

|λn(t) − t| → 0, and sup
0≤t≤b

|fn(λn(t)) − f(t)| → 0,

as n→ ∞. If {Pn}n≥1 is a sequence of probability measures on the measurable

space (D,D), then we say that Pn converge weakly to P , denoted Pn
J1⇒ P , if

∫

D
f dPn →

∫

D
f dP,

for all bounded, continuous f from D to R.

Let {ξk}k≥1 be an i.i.d. sequence of random variables with zero mean and
variance σ2

ξ <∞, set Sn =
∑n

k=1 ξk, and define

Xn(t) :=
1

σξ
√
n
S⌊nt⌋, for t ≥ 0.

Donsker’s theorem states that Xn
J1⇒W , as n→ ∞, where W denotes Wiener

measure. The following is a result in the same spirit, for our first-passage
percolation process.

Theorem 3.6 (Functional Donsker theorem). If E[τ2
e ] <∞, then

T̂⌊nt⌋ − µ⌊nt⌋
σ
√
n

J1⇒ W, as n→ ∞.

As for the point-wise Central Limit Theorem, there is an Anscombe version
of Donsker’s theorem. We will use it as a lemma to prove Theorem 3.6. Suppose
that {η(n)}n≥0 is a non-decreasing, right-continuous family of positive, integer
valued random variables such that η(n)/n → θ, almost surely, as n → ∞.
Define

Yn(t) :=
1

σξ
√
n
Sη(⌊nt⌋), for t ≥ 0.

An Anscombe-version of Donsker’s theorem states the following.

Lemma 3.7.

θ−1/2Yn
J1⇒W, as n→ ∞.
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We refer the reader to Gut (2009, Theorem 5.2.1) for a proof of Lemma
3.7. The lemma is of great interest in its own right, but we restate it here as a
lemma in order to maintain focus on our main aim. We will deduce Theorem
3.6 from Lemma 3.7.

Proof of Theorem 3.6. According to Lemma 2.5 and Proposition 2.7, the se-
quence {τSk

−µSk}k≥1 have i.i.d. elements with zero mean and finite variance.
From Lemma 3.7 it follows that

T (v̂ρν(⌊nt⌋)
) − µρν(⌊nt⌋)
σ
√
n

J1⇒W, as n→ ∞.

It remains to prove that, as n→ ∞,

sup
0≤t≤b

∣∣∣∣∣
T̂⌊nt⌋ − T (v̂ρν(⌊nt⌋)

) − µ(⌊nt⌋ − ρν(⌊nt⌋))

σ
√
n

∣∣∣∣∣→ 0, almost surely. (3.6)

According to Lemma 3.2, as n→ ∞,

∣∣∣∣∣
T̂n − T (v̂ρν(n)

) − µ(n− ρν(n))

σ
√
n

∣∣∣∣∣→ 0, almost surely. (3.7)

For any sequence of real numbers {xn}n≥1 it holds that

lim
n→∞

xn√
n

= 0 ⇒ lim
n→∞

maxk≤bn |xk|√
n

= 0. (3.8)

To see this, fix ǫ > 0, and choose N such that |xn|/
√
n ≤ ǫ for all n ≥ N . Then

the left-hand side in (3.8) can be made arbitrarily small for large n, since

maxk≤bn |xk|√
n

=
maxk<N |xk|√

n
+

maxN≤k≤bn |xk|√
n

≤ ǫ+ ǫ
√
b,

if n is chosen large enough.

In fact, (3.8) improves (3.7), and we get

maxk≤bn

∣∣∣T̂k − T (v̂ρν(k)
) − µ(k − ρν(k))

∣∣∣
σ
√
n

→ 0, almost surely,

as n→ ∞. But this is equivalent to (3.6).

Remark 3.8. Remark 3.4 applies also to Theorem 3.6.
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4 Monotonicity of mean and variance

In this section we will prove Theorem 1.6 and 1.7. This shows that mean and
variance of T (vn,i) are monotonous in n, if n is sufficiently large. The method
of proof will use the regenerative behaviour explored in Section 2. In this
section, the auxiliary random variable ∆ introduced in Section 2 will turn out
useful. Throughout this section, ∆ will be assumed uniformly distributed on
{0, 1, . . . , 2M}.

From what is known for stopped random walks (see e.g. Gut (2009, The-
orem 4.2.4)), it follows that E[T (v̂ρν(n)

)] = µn + C, for some constant C, and

Var(T (v̂ρν(n)
)) = σ2n + o(n), for large n. We will in this section need an es-

sential amount of extra work, in order to improve the latter statement and
prove that there is a constant C, such that Var(T (v̂ρν(n)

)) = σ2n + C. What
then remains in order to prove Theorem 1.6 and 1.7, is to show that the dif-
ferences between E[T (vn,i)] and E[T (v̂ρν(n)

)], and between Var(T (vn,i)) and
Var(T (v̂ρν(n)

)), converge as n→ ∞. We will present full proofs of Theorem 1.6
and 1.7 based on Wald’s lemma.

Lemma 4.1 (Wald’s lemma). Let ξ1, ξ2, . . . be i.i.d. random variables with
mean µξ, and set Sn =

∑n
k=1 ξk. Let N be a stopping time with E[N ] <∞.

a) E[SN ] = µξE[N ].

b) If σ2
ξ = Var(ξ1) <∞, then E

[
(SN − µξN)2

]
= σ2

ξE[N ].

c) If X is independent of ξ1, ξ2, . . ., then E[XSN ] = µξE[XN ].
In particular, Cov(X,SN ) = µξ Cov(X,N).

A proof of Wald’s lemma can be found e.g. in Gut (2009, Theorem 1.5.3).
The third part of the lemma is a slight extension of the first part, and proved
in an analogous way. If Fn = σ({(ρ0, T (v̂ρ0)), (S1, τS1), . . . , (Sn, τSn)}), then it
is immediate from the definition that ν(n) is a stopping time with respect to
the sequence of σ-algebras {Fn}n≥1.

The importance of the auxiliary variable ∆ is the following. A regeneration
point may only occur every 2M + 1 levels. However, introducing a shift uni-
formly distributed on {0, 1, . . . , 2M} allows every level equal probability to be
included in the subset of levels at which regeneration points may occur. This
is precisely the rôle of ∆. This allows the following lemma, as well as details
in the proof of Theorem 1.6 and 1.7, to become less messy.

Lemma 4.2. For n ≥ ρI ,

E
[
ν(n)

]
=

n− ρI

µS
.
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Proof. Assume that n ≥ ρI . We may interpret ν(n) as the number of regenera-
tion points before (but not including) level n+M . That is, the number of k ≥ 0
such that Ank

occurs for nk < n. Since n0 = ρI + ∆, this number is at most⌊
n+2M−ρI−∆

2M+1

⌋
. Since the shift ∆ is independent of {τe}e∈E, we can, conditioned

on ∆, think of ν(n) as the number of successes in
⌊

n+2M−ρI−∆
2M+1

⌋
independent

Bernoulli trials, each with success probability pA := P(Ank
). Conditioning on

∆, we see that

E
[
ν(n)

]
= pA E

[⌊
n+ 2M − ρI − ∆

2M + 1

⌋]
. (4.1)

If n− ρI = (2M + 1)k, for some k ≥ 0, one realise from (4.1) that

E
[
ν(n)

]
=

pA

2M + 1
(2M + 1)k =

n− ρI

µS
,

where the latter equality follows from the fact that Sk is geometrically dis-
tributed with parameter pA, times a factor 2M +1, that is, µS = (2M +1)/pA.
Again from (4.1), one realise that as n − ρI increase from (2M + 1)k to
(2M + 1)k + 2M , then E[ν(n)] will have to increase with pA/(2M + 1) for
each step.

We are now ready to prove Theorem 1.6 and 1.7.

Proof of Theorem 1.6. Wald’s lemma together with Lemma 4.2 gives that

E
[
T (v̂ρν(n)

)
]

= E


T (v̂ρ0) +

ν(n)∑

k=1

τSk


 = E

[
T (v̂ρ0)

]
+ µτE[ν(n)]

= E
[
T (v̂ρ0)

]
+ µn− µρI .

It remains to prove that there is a finite constant Ci such that

E
[
T (vn,i) − T (v̂ρν(n)

)
]
→ Ci, as n→ ∞. (4.2)

Arguments of the type we will use to prove (4.2) will be used repeatedly in
the proof of Theorem 1.7. For this reason, we present the argument in detail
here. To make the argument clear, we will define a random variable to which
T (vn,i) − T (v̂ρν(n)

) converges in distribution. The limit Ci will then be the
expectation of this random variable.

Recall that nk = ρI + ∆ + k(2M + 1), set mn,k := n− (2M + 1)k for k ≥ 1,
and set

r+ := M + min{nk ≥ 0 : Ank
occurs},

r0 := M + max{m0,k < 0 : Am0,k
occurs}.
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Observe that r+ denotes the first element of the sequence {ρk}k≥0 greater than
zero, whereas r0 is not defined along the same subsequence of the integers as
{ρk}k≥0. Define

Yk,i := T (v̂r0 , vk,i), and Y+ := T (v̂r0 , v̂r+),

and the events

DT,n := {Amn,k
occurs for some k such that ρI ≤ mn,k < n},

DY,n := {Am0,k
occurs for some k such that ρI ≤ m0,k + n < n}.

Clearly P(DT,n) = P(DY,n) → 1 as n→ ∞. Moreover,

{
T (vn,i) − T (v̂ρν(n)

) ≤ t
}
∩DT,n

d
= {Y0,i − Y+ ≤ t} ∩DY,n.

So, if we let HT,n = {T (vn,i) − T (v̂ρν(n)
) ≤ t} and HY = {Y0,i − Y+ ≤ t}, then

as n→ ∞,

P(HT,n) = P(HT,n ∩DT,n) + P(HT,n ∩Dc
T,n)

= P(HY ) + P(HT,n ∩Dc
T,n) − P(HY ∩Dc

Y,n) → P(HY ).
(4.3)

Thus, T (vn,i)− T (v̂ρν(n)
)

d→ Y0 − Y+ as n→ ∞. If
{
T (vn,i)− T (v̂ρν(n)

)
}

n≥1
, in

addition, is uniformly integrable, then

E
[
T (vn,i) − T (v̂ρν(n)

)
]
→ E [Y0,i − Y+] , as n→ ∞.

To deduce uniform integrability, note that subadditivity gives

T (vn,i) − T (v̂ρν(n)
) ≤ T (vn,i, v̂n) +

ρν(n)∑

j=n+1

T (v̂j−1, v̂j). (4.4)

But, the distribution of the right-hand side of (4.4) does not depend on n.
Thus, it suffices to show that it has finite expectation. Conditioning on Λk =
{ρν(n) − n = k}, one may do so in an analogous way as in (2.12) in the proof
of Proposition 2.7, part b). We omit the details.

The proof of Theorem 1.7 needs a little more work, due to arising covariance
terms. Moment convergence arguments similar to the one carried through to
prove (4.2) will be used repeatedly.
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Proof of Theorem 1.7. To begin with,

Var
(
T (vn+2M,i)

)
= Var

(
T (v̂ρν(n)

) − µρν(n)

)

+ Var
(
T (vn+2M,i) − T (v̂ρν(n)

) + µρν(n)

)

+ 2Cov
(
T (v̂ρν(n)

) − µρν(n), T (vn+2M,i) − T (v̂ρν(n)
)
)

+ 2µCov
(
T (v̂ρν(n)

), ρν(n)

)
− 2µ2 Var

(
ρν(n)

)
.

(4.5)

We will have to treat each of the terms on the right-hand side one by one.
Consider the first, and note that

Var
(
T (v̂ρν(n)

) − µρν(n)

)
= Var


T (v̂ρ0) − µρ0 +

ν(n)∑

k=1

(τSk
− µSk)




= E






ν(n)∑

k=1

(τSk
− µSk)




2
+ Var

(
T (v̂ρ0) − µρ0

)

+ 2Cov




ν(n)∑

k=1

(τSk
− µSk), T (v̂ρ0) − µρ0




So, an application of both the second and third part of Wald’s lemma, together
with Lemma 4.2, yield

Var
(
T (v̂ρν(n)

) − µρν(n)

)
= Var (τSk

− µSk) E[ν(n)] + Var
(
T (v̂ρ0) − µρ0

)

+ E[τSk
− µSk] Cov

(
ν(n), T (v̂ρ0) − µρ0

)

= σ2(n− ρI) + Var
(
T (v̂ρ0) − µρ0

)
.

To conclude that Var(ρν(n)) is constant, interpret ρν(n) as the level of the first
regeneration after level n. Since a regeneration is equally likely to occur at any
level, due to the shift variable ∆, it follows that Var(ρν(n)) = Var(ρν(n) − n) is
independent of n, and therefore constant.

All remaining terms in the right-hand side of (4.5) will in some way or
another need an argument similar to the one used to prove (4.2). Recall the
notation used for that purpose. We may in an analogous way as in (4.3) divide
into cases whether DT,n and DY,n occurs or not, to show that

T (vn+2M,i) − T (v̂ρν(n)
) + µ(ρν(n) − n)

d→ Y2M,i − Y+ + µr+, as n→ ∞,

Uniform integrability of
{(
T (vn+2M,i)−T (v̂ρν(n)

) +µ(ρν(n) −n)
)2}

n≥1
, can be

proved similar to the uniform integrability needed for (4.2). It follows that for
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r = 1, 2

E
[(
T (vn+2M,i) − T (v̂ρν(n)

) + µ(ρν(n) − n)
)r]→ E

[
(Y2M,i − Y+ + µr+)r

]
,

as n → ∞. From this we conclude that for the second term in the right-hand
side of (4.5) we have that, for Ci = Var(Y2M,i − Y+ + µr+),

Var
(
T (vn+2M,i) − T (v̂ρν(n)

) + µ(ρν(n) − n)
)

= Ci + o(1), as n→ ∞.

Introduce rn := M +max{mn,k < n : Amn,k
occurs}, and rewrite as follows

Cov
(
T (v̂ρν(n)

), ρν(n)

)
= Cov

(
T (v̂ρν(n)

) − T (v̂rn), ρν(n) − n
)

+ Cov
(
T (v̂rn), ρν(n) − n

)
.

It is easy to see that ρν(n) − n
d
= r+ for n ≥ ρI . Partitioning on whether DT,n

and DY,n occur or not, we see that, as n→ ∞,

T (v̂ρν(n)
) − T (v̂rn)

d→ Y+, and
(
T (v̂ρν(n)

) − T (v̂rn)
)

(ρν(n) − n)
d→ Y+r+.

Uniform integrability of
{
(ρν(n) − n)2

}
n≥1

and
{(
T (v̂ρν(n)

) − T (v̂rn)
)2}

n≥1
is

possible to deduce analogously as before; conditioning on the event Λk =
{ρν(n) − rn = k} to deduce that the latter has finite expectation. This im-
plies that also

{(
T (v̂ρν(n)

) − T (v̂rn)
)
(ρν(n) − n)

}
n≥1

is uniformly integrable.
We conclude that, as n→ ∞

Cov
(
T (v̂ρν(n)

) − T (v̂rn), ρν(n) − n
)

→ E [Y+r+] − E [Y+] E [r+]

On the event DT,n, T (v̂rn) depends on passage times below level n, but not on
∆, whereas ρν(n) − n is independent of passage times below level n, and hence
on DT,n. It follows that

E
[
T (v̂rn)(ρν(n) − n)1DT,n

]
= E

[
T (v̂rn)1DT,n

]
E[r+].

In particular,

Cov
(
T (v̂rn), ρν(n) − n

)
= E

[
T (v̂rn)(ρν(n) − n)1DT,n

]
− E

[
T (v̂rn)1DT,n

]
E[r+]

+ E
[
T (v̂rn)(ρν(n) − n)1Dc

T,n

]
− E

[
T (v̂rn)1Dc

T,n

]
E[r+]

= E
[
T (v̂rn)

(
ρν(n) − n− E[r+]

)
1Dc

T,n

]
.

As n → ∞, this expression vanishes, since we can find an upper bound on
E
[
T (v̂rn)

(
ρν(n) − n− E[r+]

)]
in a similar way as before. We conclude that

Cov
(
T (v̂ρν(n)

), ρν(n)

)
= Cov(Y+, r+) + o(1), as n→ ∞.
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The term Cov
(
T (v̂ρν(n)

) − µρν(n), T (vn+2M,i) − T (v̂ρν(n)
)
)

is the only one
left in the right-hand side of (4.5) to take care of. An application of the first
part of Wald’s lemma, we get

E
[
T (v̂ρν(n)

) − µρν(n)

]
= E

[
T (v̂ρ0) − µρ0

]
.

The sequence {τSk
− µSk}ν(n)

k=1 has until now been considered as a sequence
started with at k = 1 and stopped at k = ν(n). But, we can as well see it as a
sequence in the opposite direction. That is, as a sequence started at the first
point of regeneration after level n +M , and that is stopped at the first point
of regeneration after level ρI . Let T ∗ := T (vn+2M,i) − T (v̂ρν(n)

). On the event
{ν(n) ≥ 1}, T ∗ = T (v̂ρν(n)−1

, vn+2M,i) − T (v̂ρν(n)−1
, v̂ρν(n)

) and is independent
of τSk

− µSk for k < ν(n). The event {ν(n) ≥ 1} is itself independent of
{τSk

− µSk}k≥1. This allows us to apply the third part of Wald’s lemma to
obtain

E
[(
T (v̂ρν(n)

) − µρν(n)

)
T ∗1{ν(n)≥1}

]
= E

[(
τSν(n)

− µSν(n)

)
T ∗1{ν(n)≥1}

]

+ E
[(
T (v̂ρ0) − µρ0

)
T ∗1{ν(n)≥1}

]
.

Since E
[(
T (v̂ρν(n)

) − µρν(n)

)
T ∗1{ν(n)=0}

]
= E

[(
T (v̂ρ0) − µρ0

)
T ∗1{ν(n)=0}

]
, we

have

E
[(
T (v̂ρν(n)

) − µρν(n)

)
T ∗] = E

[(
τSν(n)

− µSν(n)

)
T ∗1{ν(n)≥1}

]

+ E
[(
T (v̂ρ0) − µρ0

)
T ∗],

and, in particular,

Cov
(
T (v̂ρν(n)

) − µρν(n), T
∗) = E

[(
τSν(n)

− µSν(n)

)
T ∗1{ν(n)≥1}

]

+ Cov
(
T (v̂ρ0) − µρ0, T

∗).
(4.6)

Let r− := M + max{nk < 0 : Ank
occurs}, Y− := T (v̂r− , v̂r+) and Zk,i :=

T (v̂r− , vk,i). Observe that

(τSν(n)
− µSν(n))T

∗1{ν(n)≥1}
d
=
(
Y− − µ(r+ − r−)

)(
Z2M,i − Y−

)
1H ,

where H = {Ank
occurs for some ρI + ∆− n ≤ nk < 0}. To conclude that the

former term in the right-hand side of (4.6) converges as n → ∞ can now be
done via the Monotone Convergence Theorem. That the limit is finite can be
seen in a similar way as before, conditioning on Λk = {r+ − r− = k}. (Note

that Y−
d
= τSk

, and r+ − r−
d
= Sk.) For the latter term in the right-hand

side of (4.6), let Z ′
2M,i and Y ′

+ be defined in the same way as Z2M,i and Y+

above, but now for a set of passage times {τ ′e}e∈E independent of {τe}e∈E (that
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defines T (v̂ρ0) − µρ0), but with the same ∆. By conditioning on the events
{ν(n) ≥ 1} (with respect to {τe}e∈E) and H (with respect to {τ ′e}e∈E), we see
that as n→ ∞

(
T (vn+2M,i) − T (v̂ρν(n)

)
) d→ (Z ′

2M,i − Y ′
+),

and

(
T (vn+2M,i) − T (v̂ρν(n)

)
)(
T (v̂ρ0) − µρ0

) d→ (Z ′
2M,i − Y ′

+)
(
T (v̂ρ0) − µρ0

)
.

Since
{
(T (v̂ρ0)−µρ0)

2
}

n≥1
and

{(
T (vn+2M,i)−T (v̂ρν(n)

)
)2}

n≥1
can be seen to

be uniformly integrable, as above,
{(
T (vn+2M,i)−T (v̂ρν(n)

)
)
(T (v̂ρ0)−µρ0)

}
n≥1

is also uniform integrable, and we have that as n→ ∞

Cov
(
T (v̂ρ0) − µρ0, T (vn+2M,i) − T (v̂ρν(n)

)
)
→ Cov

(
T (v̂ρ0) − µρ0, Y

′
2M − Y ′

+

)
.

That is, for some constant Ci,

Cov
(
T (v̂ρν(n)

) − µρν(n), T (vn+2M,i) − T (v̂ρν(n)
)
)

= Ci + o(1), as n→ ∞.

This all together amount to that there exists a finite constant Ci such that

Var
(
T (vn+2M,i)

)
= σ2n+ Ci + o(1), as n→ ∞,

which proves the theorem.

5 Geodesics and time constants

The path along which an infection travels from one vertex to another for first-
passage percolation on essentially 1-dimensional periodic graphs is studied in
this section. The existence of such minimising paths can be easily derived from
Lemma 2.3.

Proposition 5.1. Let U and V be two finite sets of vertices of an essentially
1-dimensional periodic graph. There is an almost surely finite path γ from U
to V , such that

T (γ) = T (U, V ).

Moreover, if the passage-time distribution does not have any point masses, then
γ is almost surely unique.

It follows directly from the statement that for any finite I, n and v, there are
almost surely finite paths attaining the infima in Tn, T (v) and maxv∈VGn

T (v).
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Proof. We may assume that U ∪V ⊆ ⋃m
k=0 VGk

. Assume further that t′, t′′ and
M are chosen in accordance with Lemma 2.3. With probability one the event
Am+n ∩ A−2M−n will occur for infinitely many n ≥ 0. Let l be the least such
n. It follows from Lemma 2.3 that for any path Γ between u and v that reach
beyond levelm+l+2M in the positive direction, or level −2M−l in the negative
direction, there is another path Γ′ that only visits vertices in

⋃m+l+2M
k=−2M−l VGk

,
and that satisfies T (Γ) ≥ T (Γ′). Thus, since there are only finitely many edges
between level −2M− l and m+ l+2M , it follows that T (U, V ) is the minimum
of the passage times over an almost surely finite number of paths. This proves
the first statement. The second statement also follows from this, together with
the fact that the probability of two paths having the same passage time is zero,
when the passage-time distribution is free of point masses.

As in the introduction, we will use the term geodesic to refer to a path
attaining the minimal passage time between two vertices, or two finite sets
of vertices. Since geodesics are not necessarily unique, we assume a fixed
deterministic rule to choose one when several are possible, e.g. the shortest
(with some additional rule for breaking ties). Let γ(u, v) denote the geodesic
between u and v. Several properties of geodesics can be investigated. We will
in what comes mainly consider the length of geodesics.

Let N(u, v) denote the length of γ(u, v). The regenerative behaviour stud-
ied in Section 2 will again play an important rôle. It follows from Lemma 2.3
that any geodesic from u ∈ VGn to v ∈ VGm (where n ≤ m) passes v̂ρk

, for all
n+M ≤ ρk ≤ m−M . Moreover, {N(v̂ρk−1

, v̂ρk
)}k∈Z forms an i.i.d. sequence,

which we may use to write

N(v̂ρn) = N(v̂ρ0) +

n∑

k=1

N(v̂ρk−1
, v̂ρk

).

It is now easy to see that {N(v̂n)}n≥1 is a regenerative sequence, with sequence
of regenerative levels {ρn}n≥0. Since there are only finitely many vertices at
each level, say K, it follows that

N(v̂ρk−1
, v̂ρk

) ≤ KSk,

for each k ∈ Z. In particular, N(v̂ρk−1
, v̂ρk

) has finite moments of all orders.
Set

α :=
E[N(v̂ρk−1

, v̂ρk
)]

µS
, and σ2

N :=
Var(N(v̂ρk−1

, v̂ρk
) − αSk)

µS
. (5.1)

Trivially, α ≥ 1 for any essentially 1-dimensional periodic graph.
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Recall that we let {N̂n}n≥1 denote either of {Nn}n≥1,
{
maxv∈VGn

N(v)
}

n≥1

and {N(vn)}n≥1, where {vn}n≥1 is any sequence of vertices such that vn is at
level n. By mimicking the proofs of Theorem 1.3, 1.4, 1.5, 1.6, 1.7 and 3.6,
one may prove the following two results. Note that no moment conditions are
required, since N(v̂ρk−1

, v̂ρk
) has finite moments of all orders. The adaptions

of the proofs are left to the reader.

Theorem 5.2. Consider first-passage percolation on any essentially 1-dimen-
sional periodic graph G, with any passage-time distribution that do not concen-
trate all mass to a single point. Then, the statements of Theorem 1.3, 1.4, 1.5
and 3.6 holds (with constants α and σ2

N ) for the sequence {N̂n}n≥1.

Theorem 1.8 is included in Theorem 5.2.

Theorem 5.3. Consider first-passage percolation on any essentially 1-dimen-
sional periodic graph G, with any passage-time distribution that do not concen-
trate all mass to a single point. Let vn,i be a specific vertex at level n. Then,
for some Ci, C

′
i ∈ R, as n→ ∞,

E[N(vn,i)] = αn+ Ci + o(1),

Var
(
N(vn,i)

)
= σ2

Nn+ C ′
i + o(1).

Geodesics are, as seen via Lemma 2.3, locally determined. Thus, it makes
sense to talk about an infinite geodesic from −∞ to ∞. Let to this end γ∗

denote the unique (subject to the rule for breaking ties) path that between
level ρk−1 and ρk coincides with γ(v̂ρk−1

, v̂ρk
), for each k ∈ Z. The resulting

infinite path is indeed a geodesic, i.e., any finite portion γ̃∗ of γ∗ with endpoints
u and v satisfies T (γ̃∗) = T (u, v). It is possible to characterize time and length
constants in terms of the infinite geodesic.

Proposition 5.4.

α =
∑

v∈VG0

P(v ∈ γ∗) =
∑

e∈E∗
G0

P(e ∈ γ∗),

µ =
∑

e∈E∗
G0

E[τe1{e∈γ∗}] =
∑

e∈E∗
G0

E[τe| e ∈ γ∗]P(e ∈ γ∗).

Proof. We will deduce the characterization of α in terms of vertices, and leave
the remaining cases, which are deduced similarly, to the reader. Observe that

N(u,w) =
∑

k∈Z

∑

v∈VGk

1{v∈γ(u,w)} − 1.
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According to Theorem 5.2, we have

E[N(v̂−n, v̂n)]

2n
→ α, as n→ ∞.

Define N∗ :=
∑n−√

n

k=−n+
√

n

∑
v∈VGk

1{v∈γ∗}. Clearly

E[N∗]
2n

=
2(n−√

n)

2n

∑

v∈VG0

P(v ∈ γ∗) →
∑

v∈VG0

P(v ∈ γ∗), as n→ ∞,

so we are finished if we show that E
[
|N(v̂−n, v̂n) − N∗|

]
/n → 0, as n → ∞.

Let

Dn :=
{
Ak ∩A−k−2M occurs for some k ∈ [n−√

n, n− 2M ]
}
,

where Ak and M are as defined in Section 2. Let

κn := min{k ≥ n : Ak ∩A−k−2M occurs}.

Trivially, |N(v̂−n, v̂n) −N∗| ≤ 4|VG0 |(κn + 2M). On the event Dn we have

N(v̂−n, v̂n) −N∗ =
∑

k>n−√
n

k<−n+
√

n

∑

v∈VGk

1{v∈γ(u,w)} − 1

≤ 2|VG0 |(κn + 2M − n+
√
n).

Since κn−n can be dominated by a geometrically distributed random variable,
similar to Sk in the proof of the first part of Proposition 2.7, we easily realise
that

E
[
|N(v̂−n, v̂n) −N∗|

]
= E

[
|N(v̂−n, v̂n) −N∗|(1Dn + 1Dc

n
)
]

≤ 2|VG0 |
(
E[κn − n] + 2M +

√
n
)

+ 4|VG0 |
(
E[κn] + 2M

)
P(Dc

n)

≤ 4|VG0 |
(
C +

√
n+ nP(Dc

n)
)

= o(n).

As mentioned, the remaining characterizations are deduced similarly.

Benjamini et al. (2003) posed the question whether for first-passage perco-
lation on the Zd lattice, P

(
0 ∈ γ(−n,n)

)
→ 0 as n → ∞ (given existence of

geodesics). One may pose a corresponding question for first-passage percola-
tion on the (K,d)-tube. Let γ∗K denote the infinite geodesic on the (K,d)-tube.
How does P(v ∈ γ∗K) behave as K → ∞? In particular, does

max
v∈VGn

P(v ∈ γ∗K) → 0, as K → ∞?
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If it does, at which rate? Let αK denote the constant α associated to the
(K,d)-tube. By symmetry it is easily realised that for even K,

max
v∈VGn

P(v ∈ γ∗K) ≤ αK

2d−1
.

We do not have enough symmetry to conclude a similar upper bound in K.
We can increase the symmetry of the (K, 2)-tube by connecting the vertices
(n, 0) and (n,K − 1), for each n, by an edge. On the resulting graph we have,
for every vertex v,

P(v ∈ γ∗) =
α

K
.

The same can be done for any (K,d)-tube. Join, for each j = 2, 3, . . . , d, the
vertices

(m1,m2, . . . ,mj−1, 0,mj+1, . . . ,mK−1)

and

(m1,m2, . . . ,mj−1,K − 1,mj+1, . . . ,mK−1)

by an edge, for all m1 ∈ Z and m2, . . . ,mK−1 ∈ {0, 1, . . . ,K − 1}. Refer to the
resulting graph as a (K,d)-cylinder. Let α̃K denote the constant α associated
to the (K,d)-cylinder. We have for every vertex v of the (K,d)-cylinder

P(v ∈ γ∗) =
α̃K

Kd−1
.

Thus, in view of Remark 5.5 below, there is a constant C = C(d) such that

1

Kd−1
≤ P(v ∈ γ∗) ≤ C

Kd−1
,

for every K ≥ 1, and every vertex v of the (K,d)-cylinder.

Remark 5.5. Provided that E[τe] < ∞ and that Pτ (0) is sufficiently small,
Kesten (1986) gives an argument that shows that on the Zd lattice, there is a
constant C = C(d) such that E

[
N(u, v)

]
≤ C dist(u, v) for all vertices u and

v (cf. Howard (2004, page 146)). It is clear that the argument also applies
to (K,d)-tubes and (K,d)-cylinders. That is, on either of these graphs, there
exists a C = C(d) such that for all K ≥ 1

E
[
N(u, v)

]
≤ C dist(u, v)

for all vertices u and v. A direct consequence of this is that αK ≤ C and
α̃K ≤ C, for some finite constant C, for all K ≥ 1.
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Remark 5.6. An object closely related to geodesics is the tree of infection Ψ.
Let v0 ∈ VG0 denote a vertex referred to as the origin. The tree of infection is
then defined as the tree Ψ =

⋃
v∈V

γ(v0, v) spanning the underlying graph G
(see Figure 2, page 13 for a realisation on the (2, 2)-tube). One may ask for
the number of infinite self-avoiding paths in Ψ started at the origin, denoted
by κ(Ψ). On any essentially 1-dimensional periodic graph κ(Ψ) = 2, almost
surely. To see this, for any M ≥ 1, let κM denote the number of self-avoiding
paths in Ψ that reach level M . With probability one, for some n ≥ M the
event An will occur. It follows from Lemma 2.3 that the geodesic from u to v,
for all u at level n and v at level n+ 2M , have all to pass a certain vertex at
level n + M . Thus, only one of the κM self-avoiding paths in Ψ will survive
beyond level n + 2M . This implies that precisely one self-avoiding path will
reach infinitely far in positive direction. The same applies in negative direction.
From this we conclude that κ(Ψ) = 2 almost surely.

On the Zd lattice for d ≥ 2, it is believed that κ(Ψ) is infinite. So far, it
is only known that κ(Ψ) ≥ 2d almost surely (see Hoffman (2008) and Gouréré
(2007)). It would be interesting to prove that κ(Ψ) is almost surely constant.
That would follow from an higher dimensional version of the Proposition 1.10.
It is not known whether such a coupling is possible.

5.1 Continuity of constants

The following result is inspired by a similar result due to Cox (1980) and
Cox and Kesten (1981), who in their case consider first-passage percolation
on the Zd lattice. The proof of the lattice case is rather lengthy. Due to the
regenerative behaviour in the case of essentially 1-dimensional periodic graphs,
and in particular the characterization of µ and σ given in (2.7), and of α and
σN given in (5.1), the proof of our result turns out to be much simpler.

Proposition 5.7. Let Fm for m = 1, 2, . . . ,∞ be distribution functions such

that Fm
d→ F∞ as m→ ∞. Then, as m→ ∞,

α(Fm) → α(F∞) and σN (Fm) → σN (F∞).

Assume further that there are p ≥ 1 (edge) disjoint paths from v̂0 to v̂1, and
a distribution function V such that Fm ≥ V for all m ≥ 1. Let YV denote
the minimum of p independent random variables with distribution V . If, in
addition, E[YV ] <∞ and E[Y 2

V ] <∞, then as m → ∞, respectively,

µ(Fm) → µ(F∞) and σ(Fm) → σ(F∞).

Remark 5.8. This result will be used in Ahlberg (2011) in order to prove a
dynamically stable version of Theorem 1.3.
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In order to compare the different distributions, we will use a coupling of
random variables via their inverse distribution functions

F−1(u) := inf{x ∈ R : F (x) ≥ u}.

The same approach is used in Cox (1980) and Cox and Kesten (1981). Indeed,
if U is uniformly distributed on [0, 1], then F−1(U) has distribution F , since

P
(
F−1(U) ≤ x

)
= P

(
U ≤ F (x)

)
= F (x), for all x ∈ R.

Thus, if we let F run over the class of distribution functions, then {F−1(U)}F

generates a coupling of all differently distributed random variables. Note
that F−1 is nondecreacing since F is, and has at most countably many dis-
continuity points (since Q is countable, and for each discontinuity point u,
[F−1(u−), F−1(u)] ∩ Q 6= ∅). It is not hard to prove that (see e.g. Thorisson

(2000, Section 1.8.4)), as m → ∞, Fm
d→ F∞ implies F−1

m (u) → F−1
∞ (u) for all

continuity points u ∈ (0, 1). In particular, F−1
m (U) → F−1

∞ (U) almost surely,
as m→ ∞.

Once we have the above coupling, the rest will follow fairly easily. For

i.i.d. sequences, if Fm
d→ F∞, Fm ≥ V for all m, and V has finite mean,

then F−1
m (U) ≤ V −1(U) and E

[
F−1

m (U)
]
→ E

[
F−1
∞ (U)

]
as m → ∞, by the

Dominated Convergence Theorem. For the proof of the proposition, the idea
is similar.

Proof of Proposition 5.7. Let {Ue}e∈E be a collection of independent random
variables uniformly distributed on [0, 1]. Thus, as F ranges over the class
of passage-time distributions, then

{
{F−1(Ue)}e∈E

}
F

simultaneously couples
i.i.d. sets of passage times of the graph. Choose a ∈ (0, 1/2) such that F−1

∞ (1−
a) > F−1

∞ (a), and F−1
∞ is continuous in both a and 1− a. Take ǫ > 0 such that

F−1
∞ (1 − a) − F−1

∞ (a) > 2ǫ. Choose L <∞ such that
∣∣F−1

m (a) − F−1
∞ (a)

∣∣ ≤ ǫ and
∣∣F−1

m (1 − a) − F−1
∞ (1 − a)

∣∣ ≤ ǫ,

for all m ≥ L. Recall the definition of An = An(M, t′, t′′) in Section 2. Set
t′ = F−1

∞ (a) + ǫ and t′′ = F−1
∞ (1 − a) − ǫ, and let M be chosen in accordance

with Lemma 2.3 (recall that M is chosen independently of the passage time
distribution Fm). For the same M (and with notation as in Section 2), define

Ãn = Ãn(M) :=
{
Ue ≤ a,∀e ∈ Ên

}
∩
{
Ue ≥ 1 − a,∀e ∈ En \ Ên

}
.

Since a > 0, we have P(Ãn) > 0. For all m ≥ L we have
{
F−1

m (u) ≤ t′, for u ≤ a,

F−1
m (u) ≥ t′′, for u ≥ 1 − a.
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With a slight abuse of notation, we let An(F ) denote the event An with respect
to
{
F−1(Ue)

}
e∈E

. In particular, this implies that Ãn ⊆ An(Fm) for all L ≤
m ≥ ∞. Define a sequence {ρ̃k}k≥0 with respect to Ãn analogously as in
Section 2. Note that for m ≥ L, the sequence {ρ̃k}k≥0 is a subsequence of
{ρk}k≥0 defined with respect to An(Fm). The advantage of this is that we get
a regenerative sequence valid for all distributions Fm with L ≤ m ≤ ∞.

From here the result follows quickly. Let TF (u, v) and NF (u, v) denote the
passage time and length of geodesic, respectively, between u and v with respect
to
{
F−1(Ue)

}
e∈E

. For m ≥ L we have the characterization

α(Fm) =
E
[
NFm(v̂ρ̃0 , v̂ρ̃1)

]

E[ρ̃1 − ρ̃0]
, σN (Fm) =

E
[
N2

Fm
(v̂ρ̃0 , v̂ρ̃1)

]

E[ρ̃1 − ρ̃0]
,

µ(Fm) =
E
[
TFm(v̂ρ̃0 , v̂ρ̃1)

]

E[ρ̃1 − ρ̃0]
, σ(Fm) =

E
[
T 2

Fm
(v̂ρ̃0 , v̂ρ̃1)

]

E[ρ̃1 − ρ̃0]
.

Thus, in order to prove that µ(Fm) → µ(F∞) as m → ∞, it suffices to show
that

E
[
TFm(v̂ρ̃0 , v̂ρ̃1)

]
→ E

[
TF∞(v̂ρ̃0 , v̂ρ̃1)

]
, as m→ ∞. (5.2)

But F−1
m (U) → F−1

∞ (U) almost surely, as m→ ∞, and therefore also

TFm(v̂ρ̃0 , v̂ρ̃1) → TF∞(v̂ρ̃0 , v̂ρ̃1), almost surely.

Since TV (v̂ρ̃0 , v̂ρ̃1) has finite mean when YV does (according to Proposition
2.7), and since TFm(v̂ρ̃0 , v̂ρ̃1) ≤ TV (v̂ρ̃0 , v̂ρ̃1), we conclude by the Dominated
Convergence Theorem that (5.2) holds when E[YV ] < ∞. To see that the
domination is not necessary in order to prove convergence of α(Fm) to α(F∞),
it suffices to realize that for m ≥ L and some C <∞, we have NFm(v̂ρ̃0 , v̂ρ̃1) ≤
C(ρ̃1 − ρ̃0). The remaining conclusions are drawn similarly.

Remark 5.9. The true condition for the convergence E
[
F−1

m (U)
]
→ E

[
F−1
∞ (U)

]

is in fact uniform integrability of {Fm}m≥1. In the same way it is possible to
relax the moment condition on YV to uniform integrability of

{
Y r

Fm

}
m≥1

(for

r = 1 or 2), which grants uniform integrability of
{
T r

Fm
(v̂ρ̃0 , v̂ρ̃1)

}
m≥1

. We
leave it to the reader to go through the details.

5.2 Time constant and the (K, d)-tube

Let µK denote the time constant associated with the (K,d)-tube. It is easy to
realize that µK+1 ≤ µK . However, it is hard to prove that without a (trivial)
coupling argument. In fact, strict inequality holds, for which we will need the
same coupling in order to see. The coupling is as follows. Let {τe}e∈E

Zd
be
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i.i.d. passage times associated to the Zd lattice. The (K,d)-tubes are naturally
seen as subgraphs of the Zd lattice. Let TK(u, v) denote the passage time with
respect to {τe}e∈E

Zd
, between u and v, when only paths in the Z×{0, . . . ,K−

1}d−1 nearest neighbour graph (the (K,d)-tube) are allowed. This produces
a simultaneous coupling of the passage time on (K,d)-tubes for all K ≥ 1.
Trivially, TK+1(u, v) ≤ TK(u, v) for any u and v in Z × {0, . . . ,K − 1}d−1.

Proposition 5.10. For all K ≥ 1, µK+1 < µK .

Proof. Let AK
n be the event defined in (2.4) with respect to the (K,d)-tube,

for γn chosen to be the straight line segment between the points (n,K, 0, . . . , 0)
and (n+2M,K, 0, . . . , 0). It follows from Lemma 2.3 that if AK+1

n occurs, then

δ := TK

(
ne1, (n+ 2M)e1

)
− TK+1

(
ne1, (n + 2M)e1

)
> 0.

Thus, if mk = (2M + 1)k, then

TK+1(0e1,mke1) + δ

k−1∑

j=0

1AK+1
mj

≤ TK(0e1,mke1)

for all k ≥ 0. Dividing by mk and taking limits as k tends to infinity, gives

µK+1 + δP
(
AK+1

n

)
(2M + 1)−1 ≤ µK .

In order to prove that the limit of the sequence {µK}K≥1 is µ(e1), i.e.,
equals the time constant for the Zd lattice, we will use a coupling similar
to the above one. For K = 0, 1, . . . ,∞, let T̃K(u, v) denote the passage
time with respect to {τe}e∈E

Zd
, between u and v, when only paths in the

Z×{−K, . . . ,K}d−1 nearest neighbour graph (the (2K+1, d)-tube) are allowed.
This produces a simultaneous coupling of the passage time on (K,d)-tubes for
odd K. The case K = ∞ corresponds to the Zd lattice.

Proposition 5.11. lim
K→∞

µK = µ(e1).

Proof. Clearly T̃K(0e1, ne1) ≥ T̃K+1(0e1, ne1). For all n we get

T̃∞(0e1, ne1) = lim
K→∞

T̃K(0e1, ne1) = inf
K≥0

T̃K(0e1, ne1), almost surely.

An application of the Monotone Convergence Theorem

E
[
T̃∞(0e1, ne1)

]
= lim

K→∞
E
[
T̃K(0e1, ne1)

]
= inf

K≥0
E
[
T̃K(0e1, ne1)

]
.
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Since ∃ limn→∞ an/n = infn≥1 an/n, for any subadditive real-valued sequence
{an}n≥1, we have for any 0 ≤ K ≤ ∞ that

µ2K+1 = lim
n→∞

E
[
T̃K(0e1, ne1)

]

n
= inf

n≥1

E
[
T̃K(0e1, ne1)

]

n
.

Thus, since µK is non-increasing in K

lim
K→∞

µ2K+1 = inf
K≥0

inf
n≥1

E
[
T̃K(0e1, ne1)

]

n
= inf

n≥1
inf
K≥0

E
[
T̃K(0e1, ne1)

]

n

= inf
n≥1

E
[
T̃∞(0e1, ne1)

]

n
= µ(e1).

6 Exact coupling and a 0–1 law

The aim for this section is to couple first-passage percolation infections with
different initial configurations, i.e., different initially infected components, in
such a way that the infections will eventually coincide. As an application of
this, we shall prove a 0–1 law. The method of proof will once again make use
of the regenerative behaviour explored in Section 2.

First we must state what we mean by a coupling. A coupling of two ran-
dom variables X ∼ P and Y ∼ P ′ on a measurable space (E, E), is a joint
distribution P̂ of (X,Y ), i.e., a measure on (E2, E2), such that its marginal
distributions coincide with P and P ′, respectively. When we couple two time-
dependent random elements {Xt}t≥0 and {Yt}t≥0, we say that the coupling is
exact if with probability one there exists a Tc < ∞ such that Xt = Yt, for all
t ≥ Tc.

We will present an exact coupling of the sets of infected vertices Bt and B′
t

of two first-passage percolation processes with different initial configurations.
Recall that we let Pτ ( · ) denote the distribution of τe, and let R+ denote the
Borel σ-algebra on [0,∞). Then {τe}e∈E and {τ ′e}e∈E are random elements on
the product space

(
[0,∞)E,RE

+

)
, each with distribution given by the product

measure PE

τ . Let En denote the set of edges between level −n and n, but not
including edges between two vertices at level −n and n. In the same manner
Ec

n denotes the set of edges at and before level −n, as well as at level n and
beyond.

We shall prove the following result which is slightly stronger than Proposi-
tion 1.10.

Proposition 6.1 (Coupling, continuous times). Let I and I ′ be finite subsets of
the set of vertices V of an essentially 1-dimensional periodic graph G. Assume
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that the passage time distribution Pτ has an absolutely continuous component
(with respect to Lebesgue measure). For any m ≥ 0, there exists a coupling of
{τe}e∈Ec

m
and {τ ′e}e∈Ec

m
such that if {τe}e∈Em and {τ ′e}e∈Em each have distribu-

tion PEm
τ , then the marginal distributions of {τe}e∈E and {τ ′e}e∈E are given by

the product measure PE

τ , and such that if first-passage percolation is performed
with

(
I, {τe}e∈E

)
and

(
I ′, {τ ′e}e∈E

)
, respectively, then with probability one there

exists an Nc <∞ and a Tc <∞, such that

T (vn) = T ′(vn) and Bt = B′
t, (6.1)

for all vn ∈ VGn for n ≥ Nc, and for all t ≥ Tc.

When the passage time distribution Pτ is discrete, i.e., Pτ (Λ) = 1 for the
set of point masses

Λ := {tj ∈ [0,∞) : Pτ (tj) > 0},

the statement of Proposition 6.1 is not true in general. More precisely, there
are essentially 1-dimensional periodic graphs on which no exact coupling is
possible (cf. Remark 6.6). In the discrete case, we will therefore restrict our
attention to the case of (K,d)-tubes.

Proposition 6.2 (Coupling, discrete times). Let I and I ′ be finite subsets of
the set of vertices V of the (K,d)-tube, for K,d ≥ 2. Assume that the passage
time distribution Pτ is such that Pτ (Λ) = 1 for the set of point masses Λ and
that either of the following hold:

a) there are tj ∈ Λ and integers nj for j in some finite set of indices J∗,
such that ∑

j∈J∗

nj is odd, and
∑

j∈J∗

njtj = 0.

b) dist(x,y) is even, for all x ∈ I, y ∈ I ′.

For any m ≥ 0, there exists a coupling of {τe}e∈Ec
m

and {τ ′e}e∈Ec
m

such that if
{τe}e∈Em and {τ ′e}e∈Em each have distribution PEm

τ , then the marginal distri-
butions of {τe}e∈E and {τ ′e}e∈E are given by the product measure PE

τ , and such
that if first-passage percolation is performed with

(
I, {τe}e∈E

)
and

(
I ′, {τ ′e}e∈E

)
,

respectively, then with probability one there exists an Nc < ∞ and a Tc < ∞,
such that

T (vn) = T ′(vn) and Bt = B′
t, (6.2)

for all vn ∈ VGn for n ≥ Nc, and for all t ≥ Tc.
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Before we construct the couplings, we focus on the promised 0–1 law that
follows from Proposition 6.1 and 6.2. For this we will use Lévy’s 0–1 law. It
states that for σ-algebras {Ft}t≥0 such that Ft ↑ F∞ as t → ∞, if A ∈ F∞,
then P(A|Ft) → 1A, as n→ ∞, almost surely. A proof for the discrete case can
be found in e.g. Durrett (2005, Theorem 4.5.8). The continuous case follows
via the Martingale convergence theorem.

Recall that we defined the σ-algebra Tt = σ
(
{Bs}s≥t

)
, and define Ft :=

σ
(
{Bs}0≤s≤t

)
, where as before Bs is the set of infected vertices at time s. We

may think of Tt as the σ-algebra of events A ∈ σ
(⋃

t≥0 Ft

)
that do not depend

on the times at which vertices were infected before time t. The 0–1 law we
shall prove deals with the tail σ-algebra T =

⋂
t≥0 Tt.

Theorem 6.3 (0–1 law). Consider first-passage percolation performed under
the assumptions of either Proposition 6.1 or 6.2. Then P(A) ∈ {0, 1}, for any
event A ∈ T .

Note that Theorem 1.9 is a special case of Theorem 6.3.

Proof of Theorem 6.3 from Propositions 6.1 and 6.2. Consider two infections
with the respective sets of passage times {τe}e∈E and {τ ′e}e∈E. For t ≥ 0, let
Ft and F ′

t be σ-algebras generated by their respective realisations up to time
t. Let

νt = max
{
n ≥ 0 : (Bt ∪B′

t) ∩ (VGn ∪ VG−n
) 6= ∅

}

denote the furthest level (in positive or negative direction) infected at time t.
Since, almost surely, ρk < ∞ and T (v̂ρk

)/k → µτ > 0 as k → ∞, then there
is a k = k(t) < ∞ such that T (v) > t for all v ∈ ⋃n≥ρk

VGn . Thus νt < ∞,
almost surely, for any t <∞.

For any fixed t ≥ 0, by Propositions 6.1 and 6.2, there is a coupling of
{τe}e∈Ec

νt+1
and {τ ′e}e∈Ec

νt+1
, such that there exists an almost surely finite time

Tc, such that Bs = B′
s for all s ≥ Tc. Since A ∈ TTc , the outcome of A only

depends on Bs for s ≥ Tc. In particular it has to hold that

P(A|Ft) = P(A|F ′
t).

Thus, P(A|Ft) is nonrandom and equals P(A), for all t ≥ 0. But, according
to Lévy’s 0–1 law, P(A|Ft) → 1A as t → ∞, almost surely. Hence, P(A) = 1A

almost surely, and therefore P(A) equals either 0 or 1.

It remains only to prove Propositions 6.1 and 6.2.
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6.1 Exact coupling of time-delayed infections on Z

Before proving Proposition 6.1 and 6.2, we shall first prove a lemma where
we consider two infections on Z. This lemma will figure as a key step in
the proof of Proposition 6.1 and 6.2. For first-passage percolation on Z, Tn

simply takes the form Tn =
∑n

k=1 τk. If we let the latter infection be delayed
for some time Tdelay, i.e., started at time Tdelay instead of time zero, then
T ′

n = Tdelay +
∑n

k=1 τ
′
k. We will construct a coupling of the passage times such

that Tn = T ′
n for large n. The precise statement is as follows.

Lemma 6.4. Let Tdelay be any non-negative constant, and assume that either
of the following hold:

a) Pτ has an absolutely continuous component (with respect to Lebesgue mea-
sure).

b) Pτ is such that for some finite index set J , there are non-negative integers
nj and n′j, such that

∑
j∈J nj =

∑
j∈J n

′
j, and for atoms tj ∈ Λ of Pτ

∑

j∈J

njtj =
∑

j∈J

n′jtj + Tdelay. (6.3)

Then, there exists a coupling of {τk}k≥1 and {τ ′k}k≥1 such that their marginal
distributions are that of i.i.d. random variables with distribution Pτ , and such
that

n∑

k=1

τk = Tdelay +
n∑

k=1

τ ′k, for large n. (6.4)

The key to prove this lemma is to (in each case separately) identify a
suitable random walk. The identification of the random walk in case a) heavily
exploits ideas similar to those found in Lindvall (2002, Chapter III.5). In case
b), a multi dimensional random walk will be based on condition (6.3). This
walk is then easily coupled with known techniques found e.g. in Lindvall (2002,
Chapter II.12–17).

Proof of case a). Let [a, b] be an interval on which Pτ has density ≥ c, for some
c > 0. Define

δ := max

{
d ≥ 0 : d ≤ b− a

2
, d =

Tdelay

m
for some m ∈ N

}
.

Couple {τk}k≥1 and {τ ′k}k≥1 in the following way. With probability 1− c2δ
we choose τk = τ ′k, drawn from the distribution

P̃τ ( · ) :=
(
Pτ ( · ) − cλ( · ∩ [a, a+ 2δ])

)/
(1 − c2δ),
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where λ denotes Lebesgue measure. With the remaining probability c2δ, draw
τk uniformly on the interval [a, a+ 2δ], and choose τ ′k as

τ ′k =

{
τk + δ, if τk ≤ a+ δ

τk − δ, if τk > a+ δ
.

That τ ′k also is uniformly distributed on [a, a + 2δ] is immediate. Thus, it is
easy to see that the marginal distribution of both τk and τ ′k is Pτ , and this is
indeed a coupling of the two infections.

τ1 τ2 τ3

τ ′
2 τ ′

3

t
Tc

τNc

0

τ ′
1 τ ′

Nc

Tdelay

Figure 5: The dots represent the times at which the respective infec-
tion spreads. In this realisation τ1 = τ ′1 − δ, τ2 = τ ′2 and τ3 = τ ′3 + δ.
The coupling is constructed such that after some time Tc, both infec-
tions reach some level Nc simultaneously.

The coupling is such that each time τk and τ ′k are chosen differently, the
difference {Dn}n≥1, where Dn := Tdelay +

∑n
k=1(τ

′
k − τk) will jump ±δ. Since

Tdelay = mδ, for some integer m, Dn constitutes a simple random walk on δZ.
Let Nc denote the first n for which Dn hits zero. From this moment on, τk
and τ ′k are chosen identically, and (6.4) holds for n ≥ Nc. That the coupling is
successful is easily seen, since

P(Nc <∞) = P(∃n : Dn = 0)

≥ P(∃n : Dn = 0|τk 6= τ ′k i.o.)P(τk 6= τ ′k i.o.) = 1,

where ’i.o.’ abbreviates ’infinitely often’. The last equality follows from the
recurrence of a 1-dimensional simple random walk, and Borel-Cantelli’s second
lemma.

Proof of case b). By assumption, for some set {tj}j∈J ⊆ Λ of atoms for the
distribution Pτ , there are non-negative integers nj and n′j such that

∑
j∈J nj =∑

j∈J n
′
j and (6.3) holds.

It is easily seen that we may assume that J , nj and n′j are chosen such that
for each j ∈ J , exactly one of the integers nj and n′j is positive. We introduce
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integer valued random variables

Xn
j = #{k ≤ n : τk = tj} − nj,

Y n
j = #{k ≤ n : τ ′k = tj} − n′j.

Define Zn
j = Xn

j − Y n
j . It is clear that we from (6.3) can conclude that (6.4)

holds, if Zn
j = 0 for all j ∈ J and τk = τ ′k for all k ≤ n such that τk 6∈ {tj}j∈J

or τ ′k 6∈ {tj}j∈J .
Let Jn = {j ∈ J : Zn

j 6= 0}, let pj = Pτ (tj), and qn =
∑

j∈Jn
pj. In partic-

ular, J0 = J . Couple {τk}k≥1 and {τ ′k}k≥1 by choosing τk and τ ′k identically
from the distribution

P̃τ ( · ) :=
1

1 − qk−1


Pτ ( · ) −

∑

j∈Jk−1

pj1{tj}( · )




with probability 1−qk−1. With remaining probability qk−1 we choose τk and τ ′k
independently with distribution P(τ = tj) =

pj

qk−1
, for j ∈ Jk−1. The marginal

distribution of τk and τ ′k is seen to be Pτ , whence this is a coupling of {τk}k≥1

and {τ ′k}k≥1.
Note that τk = τ ′k for all k such that τk 6∈ {tj}j∈J and τ ′k 6∈ {tj}j∈J . For

each fixed j ∈ J , {Zn
j }n≥0 will, as n increases, jump ±1 with equal probability.

Hence, for fixed j, {Zn
j }n≥0 constitutes a simple random walk on Z. Note that

if n∗ denotes the first n such that Zn
j = 0, then, by definition, j ∈ Jn for

n < n∗, but j 6∈ Jn for n ≥ n∗.
By assumption we have that

∑

j∈J

Z0
j =

∑

j∈J

(
nj − n′j

)
= 0.

Moreover, the sum of Zn
j is constant for all n, i.e.,
∑

j∈J

Zn
j =

∑

j∈J

Z0
j = 0.

It follows that it is not possible for |Jn| = 1 for some n. There will therefore
always be a positive probability to choose τn+1 6= τ ′n+1 as long as Zn

j for some
j. From this observation, Borel-Cantelli’s second lemma and the recurrence
of 1-dimensional simple random walks, we may further conclude that P

(
∃n :

Zn
j = 0

)
= 1 for each j ∈ J . Let Nc = min{n ≥ 0 : Jn = ∅}. For n ≥ Nc we

have Zn
j = 0 for all j ∈ J , and (6.4) holds for every such n. The coupling is

successful since

P(Nc <∞) = P


⋂

j∈J

{
∃n : Zn

j = 0
}

 = 1.
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6.2 Exact coupling of two infections

In order to prove Proposition 6.1 and 6.2, we will arrange matters so that
Lemma 6.4 can be applied. First, we need some notation. Recall from Section
2.2 that En denotes the set of edges between level n and n + 2M , including
edges at level n and level n+2M . In (2.2) we defined Ên = γn ∪EGn ∪EGn+2M

,
where γn is a path of shortest length between VGn and VGn+2M

. Introduce the
notation ên+M for the edge in γn with endpoints v̂n+M and u, where v̂n+M is
the vertex in VGn+M

first reached by γn, and u the vertex first reached after
v̂n+M by γn. Define the event

A∗
n :=

{
τe ≤ t′,∀e ∈ Ên \ {ên+M}

}
∩
{
τe ≥ t′′,∀e ∈ En \ Ên

}
.

Note that An = A∗
n ∩ {τên+M

≤ t′} for An as defined in (2.4).

We will next prove Proposition 6.1, which is a slightly stronger version
of Proposition 1.10. We first outline the general idea. It follows from the
regenerative behaviour that if τe = τ ′e for all e ∈ E, then there is a real number
Td such that

Bt ∩
⋃

n≥0

VGn = B′
t+Td

∩
⋃

n≥0

VGn (6.5)

for t large enough. The idea for the coupling is to assign identical passage times
for both infections, that is τe = τ ′e, except for certain edges which we make sure
both infections have to pass. More precisely, for some sequence {lk}k≥0, for k
such that A∗

lk
occurs, choose either the passage times for êlk+M independently

at most t′, or equal. This generates a sequence of edges for which we invoke
Lemma 6.4. That is, we make sure that {T (v̂ρn) − T ′(v̂ρn)}n≥1 performs a
random walk which eventually hits zero. This implies that (6.5) holds, with
Td = 0, for t large enough. This will complete the coupling of the infections in
the direction of increasing levels. The opposite direction is treated in the same
way.

Proof of Proposition 6.1. By assumption, Pτ has an absolutely continuous com-
ponent, so suppose that [a, b] is an interval on which Pτ has density ≥ c > 0.
Let a < t′ < t′′ < b and choose M in accordance with Lemma 2.3. We
may further assume that I ∪ I ′ contains no vertex beyond level m. Let
lk := m + k(2M + 1) for integers k ≥ 0. Couple {τe}e∈Ec

m
and {τ ′e}e∈Ec

m

by choosing τe = τ ′e with distribution Pτ , independently for all e at level m or
beyond such that e 6= êlk+M for some k ≥ 0. Independently for k ≥ 0, let

(ξk, ξ
′
k) =

{
(θk, θ

′
k), with probability Pτ ([0, t

′])

(ηk, ηk), with probability 1 − Pτ ([0, t
′]),
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where θk and θ′k are to be coupled below, so that they both have marginal
distribution Pτ ( · |τ ≤ t′), and ηk has distribution Pτ ( · |τ > t′). For the set of
edges {êlk+M , for k ≥ 0}, we choose the pair

(
τêlk+M

, τ ′êlk+M

)
=

{
(ξk, ξ

′
k), if A∗

lk
occurs

(τk, τk), otherwise,

where τk is distributed according to Pτ , independently for all k. One realises
from the coupling that the marginal distributions of both τe and τ ′e is Pτ , for
every edge e.

Note that the only edges for which τe and τ ′e may differ, are the edges êlk+M

for k ≥ 0 such that Alk occurs. Let κj denote the index k for which Alk occurs
for the jth time. That

(
τêlk+M

, τ ′êlk+M

)
= (θk, θ

′
k) (6.6)

is equivalent to that Alk occurs. Since P(Alk) > 0, we will have an infinite
sequence {κj}j≥1 such that (6.6) holds. We now claim that the proposition
will follow if we apply Lemma 6.4 to the sequences {θκj

}j≥1 and {θ′κj
}j≥1,

with distribution Pτ ( · |τ ≤ t′), and

Tdelay =
∣∣∣T (v̂lκ1+M) − T ′(v̂lκ1+M )

∣∣∣ .

To see this, we use Lemma 2.3. Given Alk , the path along which any
vertex at level lk + 2M or beyond is infected has to pass the edge êlk+M . By
the coupling τe = τ ′e for all e at level lκ1 or beyond such that e 6= êlκj

+M for

j ≥ 1. Moreover, τe = θ ≤ t′ and τ ′e = θ′ ≤ t′ for e ∈
{
êlκj

+M , for j ≥ 1
}
.

It follows that each vertex at level lκ1 + 2M + 1 and beyond, will be reached
in the same order. Since Pτ is absolutely continuous on [a, b] and t′ > a,
Pτ ( · |τ ≤ t′) is absolutely continuous on [a, t′]. Condition a) of Lemma 6.4
is therefore fulfilled. Coupling {θκj

}j≥1 and {θ′κj
}j≥1 according to the lemma

we will have with probability one that, from some level on, both infections will
reach each vertex at the same time, i.e.,

T (vn) = T ′(vn) (6.7)

for any vn ∈ VGn , for n sufficiently large.
The infections may in the same manner be coupled along the negative

coordinate axis. Doing this, then there is Nc ∈ N such that (6.7) holds for
|n| ≥ Nc. In almost surely finite time, each vertex at level n, for |n| ≤ Nc, will
be infected. Hence, we conclude that for some almost surely finite time Tc,

Bt = B′
t, for each t ≥ Tc.
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In preparation for the proof of Proposition 6.2, we restrict our attention to
(K,d)-tubes. Let Fn denote the set of edges between level n and n+2M +4β,
for integers

M >
(d− 1)(K − 1)t′

t′′ − t′
and β >

t′

t′′ − t′
.

Let e1 = (1, 0, . . . , 0). Denote by eu,n the edge between (n + M + β)e1 and
(n + M + β, 1, 0, . . . , 0), and by ed,n the edge between (n + M + 3β)e1 and
(n + M + 3β, 1, 0, . . . , 0). Let γ∗n denote the path of shortest length from
n = ne1 to (n+ 2M + 4β)e1. Let γ∗∗n denote the path of shortest length from
n to (n + 2M + 4β)e1 that visits the four endpoints of eu,n and ed,n. Let F̂n

and Ĥn be defined as (see Figure 6)

F̂n := γ∗n ∪ {eu,n, ed,n} ∪ EGn ∪ EGn+2M+4β

Ĥn := γ∗∗n ∪ EGn ∪ EGn+2M+4β
.

For constants t′ and t′′ such that mτ < t′ < t′′ < Mτ , define the events

Cn :=
{
τe ≤ t′,∀e ∈ F̂n

}
∩
{
τe ≥ t′′,∀e ∈ Fn \ F̂n

}
,

Dn :=
{
τe ≤ t′,∀e ∈ Ĥn

}
∩
{
τe ≥ t′′,∀e ∈ Fn \ Ĥn

}
.

Trivially P(Cn) = P(Dn) > 0, since F̂n and Ĥn contain equally many edges.

level n n + M + 4β n + 2M + 4βn + M + 2βn + M

Figure 6: The (3, 2)-tube between level n and n + 2M + 4β. If Dn

occurs, the infection will advance along the thick edges.

Recall that ρI = max{n ∈ Z : VGn ∩I 6= ∅}. The following lemma says that
given that the event Cn (or Dn) occurs, the infection will in order to reach
level n+ 2M + 4β from level n do so via γ∗n (or γ∗∗n ).

Lemma 6.5. Let t′ and t′′ be constants such that mτ < t′ < t′′ < Mτ , and
assume that n ≥ ρI . Given Cn (respectively Dn), then

T (v) = T (n) + T (Γ) + T
(
(n+ 2M + 4β)e1, v

)
,

for each v at level n+2M+4β or beyond, where Γ = γ∗n (respectively Γ = γ∗∗n ).
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It is easy to see that the infection, from level n to level n + 2M + 4β, in-
evitably has to follow the paths γ∗n and γ∗∗n , in their respective cases, reasoning
in a similar way as in the proof of Lemma 2.3. We leave the details to the
reader.

The coupling of Proposition 6.2 will be constructed in two steps. The
second part is similar to the coupling in the proof of Proposition 6.1. The first
part is needed to make sure that condition b) of Lemma 6.4 will be satisfied.
Before we give the somewhat technical proof, we present the idea behind the
first step.

The events Cn and Dn were defined with respect to passage times from the
sequence {τe}e∈E. Let C ′

n and D′
n denote the analogous events with respect

to the sequence {τ ′e}e∈E. Assign identical passage times for both infections,
except for some edges in Flk , for some sequence {lk}k≥0. The remaining edges
we couple in order to make the event Clk occur simultaneously as D′

lk
, and Dlk

occur simultaneously as C ′
lk

. When they happen, the difference in length of the
minimising paths in Tn+2M+4β and T ′

n+2M+4β will either increase or decrease
by 2. Thus, the difference in length constitutes a random walk. End the first
step when it hits either 0 or the odd number ω =

∑
j∈J∗ nj, for {nj}j∈J∗ as in

assumption a) of Proposition 6.2. We will see that condition b) of Lemma 6.4
is then satisfied for Tdelay = |T ′(v) − T (v)|, for some vertex v.

Proof of Proposition 6.2. We may assume that I∪I ′ contains no vertex beyond
level m. Set lk := m+ k(2M + 4β + 1) for k ≥ 0. For j = 1, 2, . . . , 2β, let fk,j

(and hk,j) denote the edge in F̂lk (and Ĥlk) between level lk +M + β + j − 1
and lk +M + β + j (respectively).

Couple {τe}e∈Ec
m

and {τ ′e}e∈Ec
m

in the following way. For one k at the time,
choose τe = τ ′e with distribution Pτ , independently for every edge e between
level lk and lk+1, not at level lk+1 nor among {fk,j, hk,j : j = 1, 2, . . . , 2β}. For
j = 1, 2, . . . , 2β, choose τfk,j

and τhk,j
independently with distribution Pτ , and

set
(
τ ′fk,j

, τ ′hk,j

)
=

{ (
τhk,j

, τfk,j

)
, if Clk ∪Dlk(

τfk,j
, τhk,j

)
, otherwise.

Trivially τe has distribution Pτ , and it is easy to see that the marginal dis-
tribution of τ ′e for each e also is Pτ . Note that the coupling is such that C ′

lk
occurs if and only if Dlk occurs. In addition, D′

lk
occurs if and only if Clk does.

Let zk, for k ≥ 1, denote the length of the path of shortest passage time
from I to level lk + 2M + 4β, with respect to {τe}e∈E. When several paths are
possible, choose one. Similarly, let z′k denote the length of the path of shortest
passage time from I ′ to level lk + 2M + 4β, with respect to {τ ′e}e∈E. When
several paths are possible, choose one that minimises |zk−z′k|. Set ζk := zk−z′k.
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With help from Lemma 6.5, we draw the following conclusions. For each k
such that Clk (and therefore also D′

lk
) occurs, ζk − ζk−1 = −2. When Dlk (and

therefore also C ′
lk

) occurs, ζk − ζk−1 = 2. Otherwise ζk = ζk−1. Thus, {ζk}k≥1

constitutes a simple random walk on either 2Z or 2Z + 1, depending on the
value of ζ1. Such walk is recurrent and will with probability one, reach either
zero or the odd number ω :=

∑
j∈J∗ nj, respectively. Let κ denote the first k

for which this happens. Couple the infections along the negative coordinate
axis in the same way.

The first part of the coupling is done, and before we continue with the
second part, we shall verify that assumption b) of Lemma 6.4 is satisfied. We
may assume that Tlκ+2M+4β ≤ T ′

lκ+2M+4β. Set

Tdelay = T ′
lκ+2M+4β − Tlκ+2M+4β .

Given
{
(τe, τ

′
e)
}

e∈Elκ+2M+4β
, we may represent the passage time for each infec-

tion as

Tlκ+2M+4β =
∑

j∈J

mjtj and T ′
lκ+2M+4β =

∑

j∈J ′

m′
jtj ,

for index sets J and J ′, tj ∈ Λ, and positive integers mj and m′
j that indicate

the number of edges e in the minimising path to level lκ + 2M + 4β such that
τe = tj and τ ′e = tj, respectively.

If ζκ = 0, then
∑

j∈J mj =
∑

j∈J ′ m′
j , and assumption b) of Lemma 6.4 is

directly satisfied, since

Tdelay + Tlκ+2M+4β = T ′
lκ+2M+4β .

Note that this will be the case if dist(x,y) is even, for all x ∈ I, y ∈ I ′, since
then ζk ∈ 2Z. If rather ζκ = ω is odd, we need the additional assumption that∑

j∈J∗ njtj = 0 for some index set J∗, point masses tj, and integers nj such
that

∑
j∈J∗ nj = ω. Then, assumption b) of Lemma 6.4 is again satisfied, since

Tdelay + Tlκ+2M+4β = T ′
lκ+2M+4β +

∑

j∈J∗

njtj.

We will now go on with the second part of the coupling. Let

t∗ := max{tj ∈ Λ : j ∈ J ∪ J ′ ∪ J∗}.

It may be the case that t∗ = Mτ as defined in (2.3). This makes it necessary
to introduce some extra notation. Write E′

n for the set of edges between level
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n and n + 2M + 1, and let γ′n denote the path of shortest length from n to
(n+ 2M + 1)e1. Let

Ê′
n = γ′n ∪ EGn ∪ EGn+2M+1

.

Denote by ên the edge between n and (n+1)e1. Let Xn denote the set of edges
connecting a vertex at level n with one at level n + 1, excluding the edge ên.
Define the event

A∗∗
n =

{
τe ≤ t′,∀e ∈ Ê′

n \ {ên+M}
}
∩ {τe ≥ t∗,∀e ∈ Xn+M}

∩
{
τe ≥ t′′,∀e ∈ E′

n \
(
Ê′

n ∪Xn

)}
.

Let λk := lκ+1 + k(2M + 2) for k ≥ 0. Continue the coupling of {τe}e∈Ec
m

and {τ ′e}e∈Ec
m

by choosing τe = τ ′e with distribution Pτ , independently for all e
at level λ0 or beyond such that e 6= êλk+M for some k ≥ 0. Independently for
k ≥ 0, let

(ξk, ξ
′
k) =

{
(θk, θ

′
k), with probability Pτ ([0, t

∗])

(ηk, ηk), with probability 1 − Pτ ([0, t
∗]),

where θk and θ′k have marginal distribution Pτ ( · |τ ≤ t∗), and ηk has distri-
bution Pτ ( · |τ > t∗) (ηk is not needed when t∗ = Mτ ). For the set of edges
{êλk+M , for k ≥ 0} we couple their passage times as

(
τêλk+M

, τ ′êλk+M

)
=

{
(ξk, ξ

′
k), if A∗∗

λk
occurs

(τk, τk), otherwise,

where τk is distributed according to Pτ , independently for all k. One realises
from the coupling that the marginal distributions of both τe and τ ′e is Pτ .

Note that the only edges for which τe and τ ′e may differ, are the edges êλk+M

for k ≥ 0 such that A∗∗
λk

∩
{
τêλk+M

≤ t∗
}

occurs. Let κj denote the index k for

which A∗∗
λk

∩
{
τêλk+M

≤ t∗
}

occurs for the jth time. That

(
τêλk+M

, τ ′êλk+M

)
= (θk, θ

′
k) (6.8)

is equivalent to that A∗∗
λk

∩
{
τêλk+M

≤ t∗
}

occurs. Since

P
(
A∗∗

λk
∩ {τêλk+M

≤ t∗}
)
> 0,

we will have an infinite sequence {κj}j≥1 such that (6.8) holds. We now claim
that the proposition will follow if we apply Lemma 6.4 to the sequences {θκj

}j≥1

and {θ′κj
}j≥1, with distribution Pτ ( · |τ ≤ t∗) and Tdelay as defined above.

55



To see this, argue as in the proof of Lemma 2.3. Given A∗∗
λk
∩
{
τêλk+M

≤ t∗
}
,

the path along which any vertex at level λk + 2M + 1 or beyond is infected
inevitably has to pass the edge êλk+M . By the coupling, τe = τ ′e for all e
at level λκ1 or beyond such that e 6= êλκj

+M for some j ≥ 1. Moreover,

τe = θ ≤ t′ and τ ′e = θ′ ≤ t′ for e ∈
{
êlκj

+M for j ≥ 1
}
. Therefore, each vertex

at level λκ1 + 2M + 1 and beyond, will be reached in the same order for both
infections. Coupling {θκj

}j≥1 and {θ′κj
}j≥1 according to Lemma 6.4 we will

have with probability one that, from some level on, both infections will reach
each vertex at the same time, i.e.,

T (vn) = T ′(vn) (6.9)

for any vn ∈ VGn for n sufficiently large. Since we chosen t∗ as large as we did,
we made sure that Pτ ( · |τ ≤ t∗) meets assumption b) of Lemma 6.4.

The infections may in the same manner be coupled along the negative
coordinate axis. Doing this, then there is Nc ∈ N such that (6.7) holds for
|n| ≥ Nc. In almost surely finite time, each vertex at level n, for |n| ≤ Nc, will
be infected. Hence, we conclude that for some almost surely finite time Tc,

Bt = B′
t, for each t ≥ Tc.

Remark 6.6. There exists in general no exact coupling of two infections with
discrete passage time distribution on arbitrary 1-dimensional periodic graphs.
Consider the distribution Pτ (1) = Pτ (1 + 3/5) = 1/2. Pτ satisfies the assump-
tion of Proposition 6.2, whence there is an exact coupling of two infections on
the (K,d)-tube, for K,d ≥ 2.

Consider instead the graph with set of vertices Z × {0, 1} and where two
vertices are connected by an edge if their Euclidean distance is ≤

√
2. Note

that with the above passage time distribution, in order to reach any vertex at
level n, an infection will always pass exactly n edges. This is easily seen by
realising that no vertical edge will ever be used in order to reach an uninfected
vertex. Thus, for two infections started with I = {(0, 0)} and I ′ = {(m, 0)},
we will have

∣∣T (n) − T ′(n)
∣∣ ≥ inf

a+b=n
a′+b′=n−m

∣∣∣∣a− a′ + (b− b′)
(

1 +
3

5

)∣∣∣∣

= inf
b−b′∈Z

∣∣∣∣m− 3(b− b′)
5

∣∣∣∣ ≥ 1

5
,

for any m that is not a multiple of 3. As we can see, an exact coupling is not
possible.
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Remark 6.7. Condition a) of Proposition 6.2 is due to the fact that the (K,d)-
tube is bipartite, i.e., that every circuit has even length. As seen in Remark
6.6, not every non-bipartite graph has an exact coupling without condition a).
But, condition a) and b) of Proposition 6.2 could be dropped for e.g. the class
of triangular graphs with vertex set Z×{0, 1, . . . ,K−1} and where two vertices
at Euclidean distance is 1 and every two vertices (n,m) and (n+ 1,m+ 1) for
any n ∈ Z and m = 0, 1, . . . ,K − 2, are connected by an edge. The necessary
modifications of the first part of the proof, and of the event Dn in particular,
are easily made.

Remark 6.8. If dist(x,y) is odd, for all x ∈ I, y ∈ I ′, then condition a) of
Proposition 6.2 is necessary. To see this, assume that an exact coupling is
possible. In particular, T (v) = T ′(v) for some vertex v. But, if one infection
has an even number of edges to pass in order to reach v, the other has an odd
number of edges to pass. Thus,

0 = T (v) − T ′(v) =
∑

j∈J

njtj −
∑

j∈J

n′jtj ,

for integers nj and n′j such that
∑

j∈J(nj − n′j) is odd. Hence, condition a)
holds.

Remark 6.9. Condition a) of Lemma 6.4 can be weakened to distributions
Pτ whose convolution with itself has an absolutely continuous component.
In fact, it is sufficient if Pτ convoluted with itself n times, for some n ≥ 0,
has an absolutely continuous component. Since the distribution of a sum of
independent random variables is the convolution of the individual distribu-
tions, we may instead of specifying how to choose (τj , τ

′
j) for j ≥ 1, choose(∑jn

k=(j−1)n+1 τk,
∑jn

k=(j−1)n+1 τ
′
k

)
according to the same specification. Conse-

quently, the assumption on Pτ of Proposition 6.1 can be weakened to involve
distributions whose convolution with itself n times has an absolutely continu-
ous component. The modifications are left to the reader.

An example of a distribution that does not have an absolutely continuous
component, but whose convolution does, is given by the following. Let ξ0, ξ1, . . .
be i.i.d. Bernoulli(1/2)-distributed random variables. Define τ to have binary
expansion

τ :=





(0, ξ1, 0, ξ3, 0, . . .), with probability
1

2
(ξ0, 0, ξ2, 0, ξ4, . . .), otherwise.

Let τ1 and τ2 be two independent random variables distributed as τ , and let
A denote the event that one of τ1 and τ2 has all even coordinates equal to
zero and the other has all odd coordinates equal to zero. Neither τ1 nor τ2
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is absolutely continuous, but the conditional distribution of τ1 + τ2 given A
is uniformly distributed on [0, 1]. Hence the distribution of τ1 + τ2 has an
absolutely continuous component.

6.3 No exact coupling possible on trees

We have seen that there is an exact coupling of two first-passage percolation
infections on any essentially 1-dimensional periodic graph when the passage
time distribution has an absolutely continuous component. We also saw how
this sort of coupling gave rise to a 0–1 law. One may ask whether a continuous
component is sufficient for an analogous coupling, and corresponding 0–1 law,
on any graph? We will answer this question no, by showing that the binary
tree T2 constitutes a counterexample. T2 is the infinite graph that does not
contain any circuit, and where each vertex has three neighbours. The graph is
completely homogeneous and one vertex, called the root, is chosen for reference.
Let {τe}e∈E be a set of independent and exponentially distributed passage times
associated with the edge set E of T2, and analogous to before, let

Bt =
{
v ∈ V : T (root, v) ≤ t

}
.

The following argument is based on the theory of continuous branching
processes. Define the front line of the infection at time t as

Ft := #{v 6∈ Bt : v shares an edge with some u ∈ Bt}.

Note that F0 = 3 and that Ft increases by one, when Bt does. Hence, Ft can
be seen as a continuous time branching process with Ft individuals at time
t. Each individual gives with probability one birth to two children (and dies)
after an exponentially distributed time, independent of one another. It is well-
known (see e.g. Athreya and Ney (1972, Theorems III.7.1–2)) that, for some
Malthusian parameter λ > 0,

∃W := lim
t→∞

Fte
−λt, almost surely, (6.10)

and that E[W ] = 3. Let τe1, τe2 and τe3 denote the passage time of the edges
connected to the root, and let F̃t denote Ft conditioned on {τe1 , τe2, τe3 ≥ 1}.
Then, by the lack-of-memory property of the exponential distribution, we have

that F̃t+1
d
= Ft for any t ≥ 0. Thus, by (6.10) we have almost surely

lim
t→∞

F̃te
−λt d

= e−λ lim
t→∞

Fte
−λt = e−λW,

and we conclude that W is almost surely non-constant. Note that the event
{
W = lim

t→∞
Fte

−λt ≤ x
}
∈ T , for every x.
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Then, a 0–1 law analogous to Theorem 6.3 cannot hold for first-passage per-
colation on T2, since this would imply that P(W ≤ x) ∈ {0, 1}, i.e., that W is
almost surely constant.
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ström for introducing him to this problem, as well as for his valuable advice
along the way. He would also like to thank Erik Broman for his constructive
remarks on the manuscript, Vladas Sidoravicius for interesting discussions, as
well as Andreas Nordvall-Lager̊as for pointing out the book by Gut (2009),
which enriched an earlier version of this paper.

59



Bibliography

D. Ahlberg. Asymptotics of first-passage percolation on 1-dimensional
graphs. Licentiate thesis, avalible at http://www.math.chalmers.se/Math/
Research/Preprints/2008/39.pdf, 2008.

D. Ahlberg. The asymptotic shape, large deviations and dynamical stability
in first-passage percolation on cones. Avalible at http://arxiv.org/abs/

1107.2280, 2011.

K. B. Athreya and P.E. Ney. Branching processes. Springer, Berlin, 1972.
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Paper II





The asymptotic shape, large

deviations and dynamical

stability in first-passage

percolation on cones

Daniel Ahlberg

Abstract

In this paper we consider first-passage percolation on certain sub-
graphs of the Zd nearest neighbour graph. We present a three-fold ex-
tension of the Shape Theorem. Firstly, we show that the convergence
holds not only almost surely and in L1, but also completely. For this, we
deduce certain large deviation estimates for first-passage times under the
assumption of finite power moment on the passage time distribution. Sec-
ondly, we prove that there are no exceptional times at which the almost
sure convergence fails, when edges update their values according to inde-
pendent Poisson clocks. With respect to the mentioned dynamics, this
provides a dynamically stable version of the Shape Theorem. Finally, we
prove that all of the above extends to cone-like subgraphs of the lattice,
for which their associated asymptotic shapes can be expressed in terms
of the asymptotic shape of the lattice.

1 Introduction

First-passage percolation was first considered by Hammersley and Welsh (1965).
It can be thought of as a model for the spread of an infection on an under-
lying graph G with set of vertices VG and set of edges EG. Associate to the
edges of the graph non-negative i.i.d. random variables {τe}e∈EG , referred to as
passage times. To avoid trivialities, we assume throughout this paper that the
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passage-time distribution does not concentrate all mass at a single point. With
the present interpretation of the model, the passage time of an edge should be
thought of as the random time it takes for an infection to spread along that
edge.

One of the main achievement in first-passage percolation is known as the
Shape Theorem (cf. Theorem 1.1), and describes the almost sure rate of the
growth of an infection started at the origin on the Zd nearest neighbour graph,
in all directions simultaneously. The Zd nearest neighbour graph is also com-
monly referred to as the Zd lattice, and is the graph whose vertices are the
points in Zd and where every two vertices at Euclidean distance one are joined
by an edge. We assume throughout that d ≥ 2. The two main theorems of
this paper together give a three-fold extension of the Shape Theorem. The
first main result, Theorem 1.2, says that a statement analogous to the Shape
Theorem holds for certain cone-like subgraphs of the Zd lattice. Moreover, it
states that the convergence holds almost surely, in L1 and completely. The
second main result, Theorem 1.6, is a dynamically stable version of the Shape
Theorem. For this we will introduce a dynamical version of first-passage per-
colation, in which edges update their values according to i.i.d. Poisson clocks.
As will be emphasized later on, the time dimension in which this takes place
should not be confused with the interpretation given to the random values
assigned to the edges as ’times’.

Let us by a path refer to an alternating sequence of vertices and edges;
v0, e1, v1, . . . , en, vn, beginning and ending with a vertex, such that vk is the
endpoint of the edges ek and ek+1 that precedes and follows vk. The vertices v0
and vn are referred to as endpoints of the path. A path with endpoints u and
v will be referred to as a path from u to v. We will repeatedly abuse notation
and identify a path with its set of edges. For a path Γ, we define the passage
time of Γ as T (Γ) :=

∑
e∈Γ τe, and define the passage time, or first-passage

time, between two vertices u, v ∈ VG as

T (u, v) := inf
{
T (Γ) : Γ is a path from u to v

}
.

Given a vertex 0 ∈ VG, referred to as the origin, we define the set of vertices
reachable within time t as

Wt :=
{
v ∈ VG : T (0, v) ≤ t

}
.

Interpreting passage times as times it takes an infection to traverse the cor-
responding edges, then the first-passage time T (u, v) should be thought of as
the time it takes an infection started at u to reach v. Starting with a single
infected vertex at the origin, Wt is interpreted as the spatial propagation, i.e.,
the set of infected vertices, at time t.
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When the underlying discrete structure is given by the Zd lattice, we will for
practical reasons extend the definition of T (x,y) from Zd to Rd. For x,y ∈ Rd

we assigning T (x,y) the passage time T (x∗,y∗), where x∗ and y∗ denotes the
two points in Zd closest to x and y, respectively (choosing the point closest to
the origin in case of a tie, say). The definition of Wt extends consequently to
let Wt contain all points x ∈ Rd such that T (0,x) ≤ t.

1.1 The Shape Theorem

An important breakthrough was achieved by Kingman (1968) and his Sub-
additive Ergodic Theorem. The theorem implies that for any ẑ of the form
ẑ = z/|z|, for some z ∈ Zd,

∃µZd(ẑ) := lim
n→∞

T (0, nẑ)

n
, almost surely and in L1, (1.1)

under the assumption that E[Y ] <∞, where

Y = min(τ1, τ2, . . . , τ2d), (1.2)

and τ1, τ2, . . . , τ2d are independent and distributed as τe. The limit µZd(·) that
figures in (1.1) is referred to as the time constant. Given the radial convergence
in (1.1), a fair amount of additional work provides the asymptotic growth in
all directions simultaneously. In particular, if E

[
Y d
]
<∞, then

lim sup
z∈Zd: |z|→∞

∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ = 0, almost surely. (1.3)

Alternatively, we can present (1.3) in terms of how closely t−1Wt resembles the
set

W∗ :=
{
x ∈ Rd : |x| ≤ µZd(x/|x|)−1

}
.

(As will be seen in Section 2, µZd(·) extends continuously to all unit vectors
in Sd−1.) Stated in terms of spatial propagation, the result is known as the
Shape Theorem and due to Cox and Durrett (1981), inspired by a result of
Richardson (1973).

Theorem 1.1 (Shape Theorem). Consider first-passage percolation on Zd

with i.i.d. passage times such that E
[
Y d
]
< ∞, for Y defined as in (1.2).

If µZd(e1) > 0, then, for all ǫ > 0, almost surely,

(1 − ǫ)W∗ ⊂ 1

t
Wt ⊂ (1 + ǫ)W∗, for t large enough.

If µZd(e1) = 0, then for every compact set K in Rd, almost surely,

K ⊂ 1

t
Wt, for t large enough.
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Theorem 1.1 can be seen to be equivalent to (1.3) via an inversion argument.
For the purpose of this paper, it will be more convenient to consider limits of
the form in (1.3). It was shown by Kesten (1986) that

µZd(e1) = 0 if and only if P(τe = 0) ≥ pc(d),

where pc(d) denotes the critical probability for independent bond percolation
on the Zd lattice. Moreover, it is known that if µZd(x̂) = 0 for some x̂ ∈ Sd−1,
then it does for all. In the regime µZd(e1) > 0, the shape W∗ can be seen to
be compact, convex and to have non-empty interior.

1.2 A shape theorem for subgraphs

The Shape Theorem gives a Law of Large Numbers for first-passage percolation
on the Zd lattice. In this paper we will show that similar limit result can be
achieved for certain subgraphs of the Zd lattice. A subgraphs G of the Zd

lattice will be called induced if any two vertices in G are connected by an edge
if and only if the same thing holds in the Zd lattice. An induced subgraph is
uniquely determined by its set of vertices. Subsets of Zd is in turn uniquely
determined by a subsets of Rd. Thus, we say that G is the subgraph of the Zd

lattice induced by V ∈ Rd, if G is an induced subgraph of the Zd lattice and
VG = V ∩ Zd.

Let B(y, r) =
{
x ∈ Rd : |x − y| ≤ r

}
denote the closed Euclidean ball.

We will in this paper focus on subgraphs G of the Zd lattice induced by sets
of the form

⋃
a≥0B

(
ax̂, ω(a)

)
, for some x̂ ∈ Sd−1 := {x ∈ Rd : |x| = 1} and

ω : [0,∞) → [0,∞). Note that when ω(a) = r · a for some r ∈ (0, 1), then G
is simply a d-dimensional cone. One of the main results of this paper is the
following extension of (1.3) (and hence the Shape Theorem). The constant Rd

that figures in the statement of the theorem will be explained and quantified
in Lemma 2.4.

Theorem 1.2. For any d ≥ 2 there exists a universal constant Rd such that the
following holds. Let x̂ ∈ Sd−1 and let ω : [0,∞) → [0,∞) be a convex or concave
function such that ω(a) → ∞, as a → ∞. Consider first-passage percolation
on the subgraph G of the Zd lattice induced by

⋃
a≥0B

(
ax̂, ω(a) +Rd

)
.

a) If E[τe] <∞, then lim sup
z∈VG : |z|→∞

E

∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ = 0.

b) If E[Y d] <∞, then lim sup
z∈VG : |z|→∞

∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ = 0,

almost surely.
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c) If E[Y d+1] <∞, then
∑

z∈VG

P

(∣∣∣∣
T (0, z)

|z| − µZd(z/|z|)
∣∣∣∣ > ǫ

)
<∞,

for all ǫ > 0.

We continue with a series of remarks on the statement of Theorem 1.2.
As mentioned above, ω(a) = r · a gives rise to a cone in the classical sense
when r ∈ (0, 1). When r = 1, G is the subgraph induced by the half-space
{z ∈ Zd : 〈z, x̂〉 ≥ −Rd}, where 〈·, ·〉 denotes inner product, and for r > 1, G
equals the Zd lattice. Hence, part b) of Theorem 1.2 extends (1.3).

We will prove part b) and c) of Theorem 1.2 under the stronger condition
that E[τ2

e ] < ∞. This will save us from a few additional technicalities, which
can be found in the paper of Cox and Durrett (1981). The necessary steps
for the proof to go through without the stronger condition are indicated in
Remark 6.4.

The condition E[τe] <∞ for the L1-convergence in part a) to hold can not
be relaxed in general. However, it is not hard to see that if the limsup is taken
over z ∈ VG ∩ ⋃a≥0B

(
ax̂, ω(a)

)
instead of over z ∈ VG , then E[Y ] < ∞ is

sufficient. In particular, E[Y ] <∞ is sufficient when G is the Zd lattice.
The case when x̂ is of the form z/|z|, for some z ∈ Zd, and ω(a) ≡ K −Rd

was treated in Ahlberg (2010). Also in this case the limit exists and satisfies
µK(x̂) > µZd(x̂) for all K ≥ Rd. Indeed µK(x̂) → µZd(x̂) as K → ∞ (cf.
Proposition 2.9), which explains the presence of µZd(·) in Theorem 1.2.

For x̂ ∈ Sd−1 and r ∈ (0, 1), let C(x̂, r) :=
⋃

a≥0B(ax̂, r · a). The cone
C(x̂, r) is with elementary trigonometry found to have radius equal to r√

1−r2
·a

at distance a from its tip. Consequently, an alternative way to generate C(x̂, r)
is as the volume obtained when the function g(a) = r√

1−r2
· a, for a ≥ 0, is

rotated around the axis {ax̂}a∈R. The other way around, the volume obtained
when the function g(a) = r · a, for a ≥ 0 and some r > 0, is rotated around
the axis {ax̂}a∈R equals C

(
x̂, r√

1+r2

)
. In fact, for any non-decreasing convex

function g : [0,∞) → [0,∞), there is a convex function ω : [0,∞) → [0,∞) such
that the rotation volume obtained when g is rotated around the axis {ax̂}a∈R

equals
⋃

a≥0B
(
ax̂, ω(a)

)
.

The convergence in part c) of Theorem 1.2 is also known as complete conver-
gence, a concept first introduced by Hsu and Robbins (1947). More generally,
a random sequence {Xn}n≥1 is said to converge completely to X as n→ ∞ if

∞∑

n=1

P
(
|Xn −X| > ǫ

)
<∞, for all ǫ > 0.

Observe that complete convergence of a random sequence implies almost sure
convergence, via Borel-Cantelli’s lemma. For Theorem 1.2 this implies that
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part b) is included in part c).
Finally, the following observation is made in connection to Theorem 1.2.

Recall that the sub-critical regime of bond percolation on the Zd lattice coin-
cides with µZd(e1) > 0, that is µZd(e1) > 0 if and only if P(τe = 0) < pc(d). In
addition, µZd(e1) > 0 coincides with linear growth of the spatial propagation of
the infection, via the Shape Theorem. This is not true for all graphs. Consider
the subgraph of the Z2 lattice induced by

{
(x, y) ∈ R2 : 0 ≤ y ≤ a log(1 + x)

}
,

for some a ∈ R+. Grimmett (1983) proved that for each a ∈ R+ the crit-
ical probability for bond percolation on this graph lies strictly between 1/2
and 1. Although this graph is not treated by Theorem 1.2, it is by similar
means easy to see that limn→∞ T (0, ne1)/n = µZd(e1), almost surely, also for
this graphs. In particular, we conclude that the sub-critical regime of bond
percolation does not coincide with the regime in which limn→∞ T (0, ne1)/n is
almost surely positive.

1.3 Large deviations

Hsu and Robbins (1947) proved that the sequence of arithmetic averages of
i.i.d. random variables converges completely to its common mean, given that
their variance is finite. That this is also necessary was proved by Erdős. We
will from an extension of their results (cf. Theorem 3.1) deduce the following
result which we will need to prove the large deviations estimate in part c) of
Theorem 1.2.

Proposition 1.3. Let x̂ ∈ Sd−1 and α ≥ 1. Consider first-passage percolation
on the Zd lattice with E[Y α] <∞. Then,

∞∑

n=1

nα−2P

(
T (0, nx̂) >

(
µZd(x̂) + ǫ

)
n
)
<∞, for any ǫ > 0.

This result is a kind of large deviations estimate for first-passage times
above the time constant, and as we will see (cf. Proposition 4.1), it also holds
for subgraphs of the Zd lattice. We will also prove a large deviations estimate
below the time constant, in which case we have exponential decay.

Proposition 1.4. Consider first-passage percolation on the Zd lattice. For
any ǫ > 0, there are α = α(ǫ) <∞ and β = β(ǫ) > 0 such that

P

(
T (0, nx̂) < (µZd(x̂) − ǫ)n

)
≤ αe−βn, for all n ≥ 0 and x̂ ∈ Sd−1.

Proposition 1.4 extends a result by Grimmett and Kesten (1984) (d = 2)
and Kesten (1986) (d ≥ 2). They treat the case when x̂ = e1. The con-
vergence obtained in Proposition 1.3 does not seem to be previously known
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under the given hypothesis. However, Grimmett and Kesten also show that
P
(
T (0, ne1) > (µZd(e1) + ǫ)n

)
decays at least exponentially, but under the

stronger assumption that E[eγτe ] < ∞ for some γ > 0. First-passage times as
defined above are sometimes referred to as point-to-point passage times. Re-
lated results have also been obtained by Chow and Zhang (2003) for so-called
face-to-face passage times, and by Garet and Marchand (2007) for the chemi-
cal distance in bond percolation clusters. We should mention that it does not
follow from the proof we present whether E[Y α] < ∞ is a necessary condition
for the conclusion of Proposition 1.3 or not.

In fact, it is possible to prove something stronger that Proposition 1.4. We
will introduce what could be referred to as point-to-shape passage times, which
we define as

TW
0,n := inf

{
T (0, z) : z ∈ Zd with |z| ≥ n

µZd(z/|z|)

}
.

This definition only makes sense when µZd(·) > 0, which is known to hold
when P(τe = 0) < pc(d), where pc(d) denotes the critical probability in bond
percolation on the Zd lattice. For these cases, TW

0,n equals the time it takes to
reach a vertex at the boundary of, or outside the blow-up nW∗ of the shape
W∗. In the light of the Shape Theorem, it natural that (see Section 3)

lim
n→∞

TW
0,n

n
= 1, almost surely. (1.4)

In fact, the following is true, from which Proposition 1.4 comes as an easy
corollary. Our proof of this result is heavily influenced by the proof presented
in Kesten (1986) for the case x̂ = e1 of Proposition 1.4.

Proposition 1.5. For any ǫ > 0 there exists α = α(ǫ) <∞ and β = β(ǫ) > 0
such that

P

(
TW

0,n < (1 − ǫ)n
)
≤ αe−βn, for all n ≥ 0.

1.4 Dynamical first-passage percolation

We will also consider a dynamical version of first-passage percolation. This is
inspired by so-called dynamical percolation introduced by Häggström, Peres,
and Steif (1997). From bond percolation, dynamical (bond) percolation is ob-
tained by allowing the edges of a graph to flip between ’open’ and ’closed’
according to i.i.d. Poisson clocks. At each fixed time, an infinite open compo-
nent exists with probability either 0 or 1 (depending on the probability of an
edge being open). Is this property dynamically stable in the sense that for al-
most every realization we will see an infinite open component either present or
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absent at all times? This question was first studied in Häggström et al. (1997),
and continued by Benjamini, Kalai, and Schramm (1999), Schramm and Steif
(2010) and Garban, Pete, and Schramm (2010). It is not hard to conclude
that away from criticality, the answer is ’yes’. However, at criticality, the Z2

lattice exhibits exceptional times at which an infinite open component exists,
as proved by Garban et al. (2010). In a related work, Benjamini, Häggström,
Peres, and Steif (2003) consider similar questions in the context of i.i.d. se-
quences.

Analogously, we obtain a dynamical version of first-passage percolation by
assigning i.i.d. passage times, together with independent Poisson clocks, to the
edges of a graph G. When a clock rings, the passage time of the corresponding
edge is re-sampled from the same distribution. More formally, associate inde-
pendently to each edge e of the underlying graph a random process {τe(s)}s≥0

defined as follows. Given non-negative i.i.d. random variables {τ (j)
e }e∈EG ,j≥1

and i.i.d. rate 1 exponentially distributed random variables {ξ(j)e }e∈EG ,j≥1, let

ξ
(0)
e = 0 for each e, and define for all e ∈ EG and s ≥ 0

τe(s) := τ (j)
e , for

j−1∑

k=0

ξ(k)
e ≤ s <

j∑

k=0

ξ(k)
e .

By construction, the processes {τe(s)}s≥0 are independent for different edges,
and {τe(s)}s≥0 will sometimes be referred to as the dynamical passage time

of the edge e. If τ
(j)
e has probability measure ν, then for any s ≥ 0, the

distribution of {τe(s)}e∈EG is given by the product measure νEG . Let for each
s ≥ 0, T (s)(u, v) denote the passage time between the points u and v with
respect to {τe(s)}e∈EG . It follows that also

T (0)(u, v)
d
= T (s)(u, v), for all s ≥ 0.

It is natural to think of dynamical passage times as evolving with time.
This gives us two time dimensions. To better picture the dynamical setting, it
may help not to think of τe(s) as the time, but as the cost related to crossing e
at time s. Then T (s)(u, v) is interpreted as the minimal cost to travel between
u and v at time s, and

{
T (s)(u, v)

}
s≥0

as the evolution over time of the cost
for the passage between u and v.

On the Zd lattice (1.1) states that if E[Y ] <∞, then

P

(
lim

n→∞
T (s)(0, nẑ)

n
= µZd(ẑ)

)
= 1, for each s ≥ 0,
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and, (1.3) that if E[Y d] <∞, then we have the stronger

P

(
lim sup

z∈Zd: |z|→∞

∣∣∣∣∣
T (s)(0, z)

|z| − µZd(z/|z|)
∣∣∣∣∣ = 0

)
= 1, for each s ≥ 0.

An application of Fubini’s theorem strengthens this to

P

(
lim sup

z∈Zd: |z|→∞

∣∣∣∣∣
T (s)(0, z)

|z| − µZd(z/|z|)
∣∣∣∣∣ = 0 for Lebesgue-a.e. s ≥ 0

)
= 1.

Our next result strengthened this to hold for every s ≥ 0. The Shape Theorem
is so to say dynamically stable with respect to the dynamics introduced. The
same is true for the almost sure convergence in part b) of Theorem 1.2.

Theorem 1.6. For any d ≥ 2 there exists a universal constant Rd such that the
following holds. Let x̂ ∈ Sd−1 and let ω : [0,∞) → [0,∞) be a convex or concave
function such that ω(a) → ∞, as a → ∞. Consider first-passage percolation
on the subgraph G of the Zd lattice induced by

⋃
a≥0B

(
ax̂, ω(a) + Rd

)
. If

E[Y d] <∞, then

P

(
lim sup

z∈VG : |z|→∞

∣∣∣∣∣
T (s)(0, z)

|z| − µZd(z/|z|)
∣∣∣∣∣ = 0 for all s ≥ 0

)
= 1.

Like part b) and c) of Theorem 1.2, we will prove Theorem 1.6 under the
somewhat stronger assumption that E[Y d] <∞.

1.5 Outline of proof and paper

The two main results of this paper, Theorem 1.2 and 1.6, together extends
the Shape Theorem in three different directions. The three extensions are
consequences of the following tasks:

(i) Prove that the convergence in (1.3) holds almost surely, in L1 and
completely.

(ii) Prove that the almost sure convergence in (1.3) is dynamically stable.

(iii) Prove that the convergence in (i) and (ii) also holds on the cone-like
subgraphs we consider.

We will prove task (i)-(iii) step by step. We recall the reader that the al-
most sure convergence in (1.3) is equivalent to the Shape Theorem. The L1-
convergence is normally not emphasized, but can be deduced in the same way.
The novelty in task (i) is the complete convergence.

The accomplishment of the three tasks will proceed along the following
lines.

9



Section 3 Obtain the large deviation estimate in radial directions given by
Proposition 1.3 and 1.4. This is sufficient, together with existing proofs
of the Shape Theorem, to obtain complete convergence in (1.3) under the
condition that E[Y d+1] < ∞. This would complete the first of the three
tasks above.

Section 4 Show that the radial almost sure and L1-convergence in (1.1) ex-
tends to cone-like subgraphs of the lattice. In the same way we extend
the large deviations estimate obtained in Section 3. The results are easily
obtained for rational directions, i.e., x̂ ∈ Ud−1, whereas the general case,
x̂ ∈ Sd−1, is harder. With this we take the first step towards an analogue
of (1.3) for the cone-like graphs in consideration.

Section 5 Here we prove that the almost sure convergence in radial directions,
which is given in (1.1) and extended in Section 4, is dynamically stable.
A dynamically stable version of (1.1) is sufficient, again together with
existing proofs of the Shape Theorem, to obtain a dynamically stable
version of (1.3) under the condition that E[Y d] <∞. This completes the
second task.

Section 6 Finally, we complete the proof of Theorem 1.2 and 1.6. In addition
to the results obtained in Section 4 and 5, the missing piece is a geometric
argument needed to prove Lemma 6.2. The assumption E[τ2

e ] < ∞ is
used in the proof of Lemma 6.2, and only there. That assumption is
made to avoid additional technicalities. Under a even stronger moment
assumption, also the geometric argument is redundant. Together with
the work carried out in Section 4, the third task is accomplished.

First of all, we dedicate Section 2 to recall some additional facts about first-
passage percolation, as well as introducing some notation, that will recur in
the rest of the paper.

2 Preliminaries

Consider first-passage percolation on the Zd lattice. For the purpose of this
paper it will suffice to consider the case when E[Y ] <∞, where Y is as defined
in (1.2). That E[Y ] <∞ is sufficient to obtain E

[
T (0, z)

]
<∞ for any z ∈ Zd

is given by Proposition 2.5 below. An very central concept in first-passage
percolation is the subadditive property, that is, that

T (x,y) ≤ T (x, z) + T (z,y), for any x,y, z ∈ Rd.

10



The property is immediate from the definition of first-passage times, and holds
for first-passage percolation on any graph. Let Ud−1 ⊆ Sd−1 denote the set of
ẑ ∈ Sd−1 such that ẑ = z/|z| for some z ∈ Zd. In (1.1) the time constant µZd(ẑ)
was defined for ẑ ∈ Ud−1 as the almost sure limit of T (0, nẑ)/n as n → ∞.
Existence of the limit is a consequence of the Subadditive Ergodic Theorem,
and crucially based on the subadditive property. Alternatively, µZd(ẑ) equals
limn→∞ E

[
T (0, nẑ)

]
/n = infn≥1 E

[
T (0, nz)

]
/n. This is a more elementary

consequence of the convergence of real-valued subadditive sequences, realized
already by Fekete (1923). Existence of the limit is easily extended to x̂ ∈ Sd−1

as follows. By subadditivity and lattice symmetry,
∣∣∣∣∣
E
[
T (0, nx̂)

]

n
− E

[
T (0, nŷ)

]

n

∣∣∣∣∣ ≤
∣∣∣∣∣
E
[
T (nx̂, nŷ)

]

n

∣∣∣∣∣

≤ E
[
T (0, e1)

]
‖nx̂ − nŷ‖1

n
≤ dE

[
T (0, e1)

]
|x̂ − ŷ|.

(2.1)

Now, assume that x̂ ∈ Sd−1 and ŷ ∈ Ud−1, let n→ ∞, and conclude that

∃µZd(x̂) := lim
n→∞

E
[
T (0, nx̂)

]

n
= lim

ŷ∈Ud−1:
ŷ→x̂

µZd(ŷ), for any x̂ ∈ Sd−1. (2.2)

From (2.1) we also conclude, letting M = dE
[
T (0, e1)

]
and sending n to infin-

ity, that ∣∣µZd(x̂) − µZd(ŷ)
∣∣ ≤M |x̂ − ŷ|, for all x̂, ŷ ∈ Sd−1. (2.3)

Hence, the time constant is Lipschitz continuous on Sd−1. The time constant is
also known to be continuous with respect to weak convergence of passage-time
distributions. This fact will be used in order to prove dynamical stability in
Theorem 1.6. Let V, F1, F2, . . . , F∞ denote passage time distribution functions,
and let µF

Zd denote the time constant on the Zd lattice associated with the
distribution F .

Proposition 2.1 (Cox and Kesten (1981)). If Fn → F∞ weakly, then for each
x̂ ∈ Sd−1

µFn

Zd (x̂) → µF∞

Zd (x̂), as n→ ∞.

Remark 2.2. The proposition was proved, for d = 2 and x̂ = e1, in Cox (1980)
under the assumption that there exists a distribution V ≤ Fn, for all n, with∫∞
0

(
1−V (u)

)
du <∞. That condition was removed in Cox and Kesten (1981).

The proof extends to all d ≥ 2 and directions (cf. Kesten (1986, Theorem 6.9
and Remark 6.18)).
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2.1 The trivial coupling

There is a very natural coupling between passages times on a graph and its
subgraphs. We will throughout this paper assume passage times on a graph
are coupled with passage times on its subgraphs in this way. We are interested
in the Zd lattice and subgraphs thereof. We will next present the coupling,
and some notation, which will be in force for the rest of this paper.

Let EZd denote the edge set of the Zd lattice, and let {τe}e∈E
Zd

be a family of

i.i.d. non-negative random variables associated with the edges of the Zd lattice.
Let G be a subgraph of the Zd lattice, with vertex set VG and edge set EG . In
particular, VG ⊆ Zd and EG ⊆ EZd . For x and y in VG , let TG(x,y) denote
the first-passage time on G between x and y with respect to the set of passage
times {τe}e∈E

Zd
. This generates a simultaneous coupling of first-passage times

among all subgraphs of the Zd lattice. In particular, if G1 is a subgraph of the
Zd lattice, and G2 is a further subgraph of G1, then

TG1(x,y) ≤ TG2(x,y), for all x,y ∈ VG2.

If G is a subgraph of the Zd lattice induced by a set B ⊆ Rd, then we define
TG(x,y) = TG(x∗,y∗) for any x,y ∈ B, where x∗ and y∗ denotes the points in
B ∩ Zd closest to x and y.

We will also use some additional notation. We will let T (·, ·) denote TZd(·, ·)
for short. For K ≥ 1 and ẑ ∈ Ud−1, we will let TK,ẑ(·, ·) denote passage times
on the graph induced by

⋃
a∈R

B(aẑ,K), and referred to as the (K,d, ẑ)-tube
(more on this graph in Section 2.3). For K ≥ 1 and x, y ∈ Rd, we will let
T̃K(x,y) denote the passage time between x∗ and y∗ on the subgraph of the
Zd lattice induced by the set

⋃
a∈[0,1]B

(
x∗ + a(y∗ −x∗),K

)
. In all these cases

we assume the above coupling present. In particular, for any K ≥ 1, z ∈ Zd,
and with ẑ = z/|z|,

T (mz, nz) ≤ TK,ẑ(mz, nz) ≤ T̃K(mz, nz), for any m,n ∈ Z.

When we consider dynamical passage times {τe(s)}e∈E
Zd

in Section 5 and 6,
the analogous coupling to the above one will be assumed to be in force. The
notation above will be adopted also in this case, with an additional superscript

(s), as in T
(s)
G (·, ·), to indicate that dynamical passage times are considered.

2.2 Geometry of the lattice

We will in this section deduce some basic properties of the graphs we consider,
such as connectivity. Furthermore, we will also describe what requirements are
necessary for the entities we are interested in to have finite moments.
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Lemma 2.3. For z ∈ Zd and r ≥
√
d, the subgraph of the Zd lattice induced

by
⋃

a∈[0,1]B(az, r) is connected.

Proof. Let r ≥
√
d. Observe that for any x ∈ Rd, the graph induced by B(x, r)

is connected and non-empty. Moreover, Zd ∩ ⋃a∈[0,c]B(az, r) can be written
as a union of B(ajz, r) for finitely many j’s. Since the induced graph of each
B(ajz, r) is connected, it suffice to choose an increasing sequence of aj’s such
that B(ajz, r) ∩B(aj+1z, r) ∩ Zd 6= ∅, for each j.

Given x ∈ Rd, recall that x∗ denotes the point in Zd closest to x. Clearly
|x − x∗| ≤

√
d/2.

Lemma 2.4. There exists Rd < ∞ such that for each z ∈ Zd and b, c > 0,
there are 2d disjoint paths between (bz)∗ and (cz)∗ contained in the subgraph
of the Zd lattice induced by

⋃
a∈[b,c]B(az, Rd).

From now on and throughout the paper, Rd will be considered as a fixed
constant chosen as in Lemma 2.4.

Proof. Set y = (cz)∗ − (bz)∗. Pick 2d − 1 points x1, . . . ,x2d−1 ∈ Zd such that
the 2d tubes

⋃
a∈[0,1]B

(
(bz)∗ + ay,

√
d
)
, and

⋃
a∈[0,1]B

(
xj + ay,

√
d
)

for j =
1, 2, . . . , 2d − 1 are pairwise disjoint. Since each tube is connected, by Lemma
2.3, we obtain 2d paths from (bz)∗ to (cz)∗ by connecting (bz)∗ and (cz)∗ by
disjoint paths to xj and y + xj , respectively. If the points x1, . . . ,x2d−1 are
chosen at distance at most M from (bz)∗, then the 2d paths will be included in⋃

a∈[0,1]B
(
(bz)∗+ay,M+

√
d
)
. Thus, it suffices to choose Rd ≥M+3

√
d/2.

We now turn to questions regarding conditions for existence of finite mo-
ments. For any z ∈ Zd \ {0}, we have P

(
T (0, z) > s

)
≥ P(Y > s). It is

therefore immediate that for any α > 0

E[Y α] = ∞ ⇒ E
[
T (0, z)α

]
= ∞.

The converse is also true.

Proposition 2.5. Let z ∈ Zd, m,n ∈ Z, K ≥ Rd, α > 0, and set ẑ = z/|z|.
When E[Y α] <∞, then

E
[
T (0, z)α

]
<∞, E

[
TK,ẑ(mẑ, nẑ)α

]
<∞, and E

[
T̃K(0, z)α

]
<∞.

Proof. One may easily realize, e.g. via induction, that there are 2d disjoint
paths between 0 and z of length at most ‖z‖1 + 8. Let Γ denote the longest of
the 2d disjoint paths between 0 and z, and let λ denote its length. Then

P
(
T (0, z) > s

)
≤ P

(
T (Γ) > s

)2d

≤ λ2dP(τe > s/λ)2d = λ2dP(Y > s/λ),
(2.4)
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where the second inequality holds because if T (Γ) > s, then for at least one
of the λ edges τe > s/λ. Moreover, for any non-negative random variable X,
then E[Xα] = α

∫∞
0 xα−1P(X > x) dx for α > 0. In particular,

E[Xα] <∞ ⇔
∞∑

n=1

nα−1P(X ≥ n) <∞, (2.5)

We conclude that E[Y α] < ∞ implies E
[
T (0, z)α

]
< ∞. In combination with

Lemma 2.4, the other conclusions follow in a similar manner.

Theorem 1.2 and 1.6 will be proved assuming that E[τ2
e ] < ∞. That as-

sumption simplifies the presentation somewhat, since Chebyshev’s inequality
applies. The same inequality can be applied to find that indeed

E[τ2
e ] <∞ ⇒ E[Y 4d] <∞. (2.6)

2.3 Tube convergence

In this section we shall review some results from Ahlberg (2010) that will
be needed in the present paper. In that paper, the key to understand the
behaviour of first-passage times on essentially 1-dimensional periodic graphs
was to identify a regenerative structure. In this paper, we will have a particular
interest in the graph induced by the set

⋃
a∈R

B(aẑ,K), above referred to as
the (K,d, ẑ)-tube. Its regenerative structure is specified in the following result.

Proposition 2.6. Assume that K ≥ Rd, z ∈ Zd and ẑ = z/|z|. There is a
sequence of non-negative integer-valued random variables {ρj}j≥0 such that

a) TK,ẑ(0, ρjz) − TK,ẑ(0, ρj−1z) = TK,ẑ(ρj−1z, ρjz).

b)
{(
TK,ẑ(ρj−1z, ρjz), ρj − ρj−1

)}
j≥1

forms an i.i.d. sequence.

The behaviour specified in the above proposition is referred to as a re-
generative behaviour. In particular, TK,ẑ(0, ρnz) can be written as a sum of
independent variables

TK,ẑ(0, ρnz) = TK,ẑ(0, ρ0z) +

n∑

j=1

TK,ẑ(ρj−1z, ρjz).

This can be exploited in order to approximate the value of TK,ẑ(0, nz). Indeed,
TK,ẑ(0, nz) can be approximated by TK,ẑ(0, ρν(n)z), where

ν(n) := min{j ∈ N : ρj ≥ n}.
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Since {ρj}j≥0 is an increasing sequence, we must have that ν(n) ≤ n. Define
further

µK(ẑ) :=
E
[
TK,ẑ(ρj−1z, ρjz)

]

|z|E[ρj − ρj−1]
,

∆j := TK,ẑ(ρj−1z, ρjz) − |z|µK(ẑ)(ρj − ρj−1).

Proposition 2.7. The sequence {ρj}j≥0 can be chosen such that the distribu-
tions of ρν(n) −n and TK,ẑ(nz, ρν(n)z) does not depend on n, and such that for
any α ≥ 1 and j ≥ 1,

a) E
[
(ρj − ρj−1)

α
]
<∞ and E

[
(ρν(n) − n)α

]
<∞.

b) if E[Y α] <∞, then

E
[
TK,ẑ(ρj−1z, ρjz)

α
]
<∞, E

[
TK,ẑ(nz, ρν(n)z)

α
]
<∞,

E
[
|∆j|α

]
<∞, E

[∣∣TK,ẑ(0, ρ0z) − |z|ρ0µK(ẑ)
∣∣α
]
<∞.

Moreover, if E[Y ] <∞, then E[∆j] = 0 for all j ≥ 1.

The regenerative behaviour described in Proposition 2.6 and 2.7 was de-
duced in Ahlberg (2010) and used to prove the following limiting behaviour.

Proposition 2.8. Let K ≥ Rd and ẑ ∈ Ud−1. If E[Y ] <∞, then

lim
n→∞

TK,ẑ(0, nẑ)

n
= µK(ẑ), almost surely and in L1.

The same conclusion holds for TK,ẑ(0, nẑ) exchanged for T̃K(0, nẑ).

The above theorem was proved for so called essentially 1-dimensional peri-
odic graphs. The (K,d, ẑ)-tube is an example of such a graph. The statement
regarding T̃K(0, nẑ), was in Ahlberg (2010) not directly stated. However, it is
easily seen to follow analogously. Proposition 2.8 could in fact be derived from
the Subadditive Ergodic Theorem. However, the approach using regenerative
sequences allows for much more detailed picture to be derived. A central limit
theorem and a law of the iterated logarithm are two examples of additional
results obtained in Ahlberg (2010).

There it was also seen that µK(ẑ) > µZd(ẑ) for all K. However, as K
increases the constants approach each other. This fairly simple consequence
the subadditive behaviour will be essential in this paper. It was indicated
already in Chayes and Chayes (1984), and proofs appeared in Ahlberg (2008,
2010); Chatterjee and Dey (2009). Due to its central rôle to this paper, we
recall the proof also here.
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Proposition 2.9. lim
K→∞

µK(ẑ) = µZd(ẑ), for all ẑ ∈ Ud−1.

Proof. Clearly T̃K(0, nẑ) is decreasing in K. For all n we get

T (0, nẑ) = lim
K→∞

T̃K(0, nẑ) = inf
K≥0

T̃K(0, nẑ), almost surely.

An application of the Monotone Convergence Theorem gives

E
[
T (0, nẑ)

]
= lim

K→∞
E
[
T̃K(0, nẑ)

]
= inf

K≥0
E
[
T̃K(0, nẑ)

]
.

By Fekete’s lemma ∃ limn→∞ an/n = infn≥1 an/n, for any subadditive real-
valued sequence {an}n≥1. Hence, for any 0 ≤ K ≤ ∞

µK(ẑ) = lim
n→∞

E
[
T̃K(0, nẑ)

]

n
= inf

n≥1

E
[
T̃K(0, nẑ)

]

n
.

(Here µ∞(ẑ) refers to µZd(ẑ), and T̃∞(0, nẑ) to T (0, nẑ).) Thus, since µK is
non-increasing in K we conclude that

lim
K→∞

µK(ẑ) = inf
K≥0

inf
n≥1

E
[
T̃K(0, nẑ)

]

n
= inf

n≥1
inf
K≥0

E
[
T̃K(0, nẑ)

]

n

= inf
n≥1

E
[
T (0, nẑ)

]

n
= µZd(ẑ).

3 Large deviation estimates for the lattice

The aim of this section is to prove Proposition 1.3, 1.4 and 1.5. The proof of the
first of the three will be based on a characterization of the rate of convergence
of large deviations of i.i.d. sums. The characterization is a generalized version
of a result due to Hsu, Robbins and Erdős. We refer the reader to Gut (2005,
Theorem 12.1) for a more complete statement as well as a proof.

Theorem 3.1. Let X1,X2, . . . be i.i.d. random variables with mean µ, and let
Sn =

∑n
k=1Xk. For α ≥ 1, the following are equivalent.

a) E
[
|Xk|α

]
<∞.

b)
∑∞

n=1 n
α−2 P

(
|Sn − µn| > nǫ

)
<∞, for all ǫ > 0.

c)
∑∞

n=1 n
α−2 P

(
max1≤k≤n |Sk − µk| > nǫ

)
<∞, for all ǫ > 0.

The proof of Proposition 1.5 will be an adaptation of a proof given in
Kesten (1986) of a less general statement. Proposition 1.5 will be derived
under the additional assumption that E[Y d] <∞, and the reader is referred to
Kesten’s paper to see how this assumption can be avoided. The details of how
Proposition 1.4 follows from Proposition 1.5 are easy to sort out, and therefore
left to the reader. A proof of (1.4) will also be presented.
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3.1 Above the time constant

In order to derive the large deviation estimate for the Zd lattice, we will first
do so for tubes. The following result was not included in Ahlberg (2010), but
will be proved by similar means, based on Proposition 2.6 and 2.7.

Proposition 3.2. Let K ≥ Rd, ẑ ∈ Ud−1 and α ≥ 1. If E[Y α] <∞, then

∞∑

n=1

nα−2P
(∣∣TK,ẑ(0, nẑ) − nµK(ẑ)

∣∣ > nǫ
)
<∞, for any ǫ > 0.

Proof. Fix z ∈ Zd such that ẑ = z/|z|. Let mn := min{m ∈ N : |z|m ≥ n}.
Clearly 0 ≤ |z|mn − n < |z|. Due to subadditivity,

∣∣∣TK,ẑ(0, nẑ) − nµK(ẑ)
∣∣∣ ≤ TK,ẑ(nẑ,mnz) + TK,ẑ(mnz, ρν(mn)z)

+
∣∣∣TK,ẑ(0, ρν(mn)z) − |z|ρν(mn)µK(ẑ)

∣∣∣

+ |z|µK(ẑ)
∣∣∣ρν(mn) −mn

∣∣∣

+ µK(ẑ)
∣∣∣|z|mn − n

∣∣∣.

(3.1)

If we denote the terms in the right-hand side of (3.1) by X1,X2, . . . ,X5, then
it suffices to show that for each j = 1, 2, . . . , 5

∞∑

n=1

nα−2 P(Xj > nǫ/5) <∞. (3.2)

The last term in the right-hand side of (3.1) is non-random and bounded. Thus
P(X5 > ǫn/5) = 0 for large n. Thus, (3.2) does hold for j = 5. According to
Proposition 2.7, ρν(mn)−mn has finite moment of any order, and its distribution
does not depend on n. Thus, (2.5) implies that (3.2) holds also for j = 4.

The only term that is essentially contributing is that for j = 3. Since
ν(m) ≤ m, we have

P(X3 > ǫn/5) ≤ P

(
max
i≤mn

∣∣∣TK,ẑ(0, ρiz) − |z|ρiµK(ẑ)
∣∣∣ > nǫ/5

)

≤ P



∣∣∣TK,ẑ(0, ρ0z) − |z|ρ0µK(ẑ)

∣∣∣+ max
i≤mn

∣∣∣∣
i∑

j=1

∆j

∣∣∣∣ > nǫ/5




≤ P

(∣∣∣TK,ẑ(0, ρ0z) − |z|ρ0µK(ẑ)
∣∣∣ > nǫ/10

)

+ P


max

i≤mn

∣∣∣∣
i∑

j=1

∆j

∣∣∣∣ > nǫ/10


 .
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According to Proposition 2.6 and 2.7 the sequence {∆j}j≥1 is i.i.d., and both
TK,ẑ(0, ρ0z) − |z|ρ0µK(ẑ) and ∆j (for j ≥ 1) have finite moments of order α.
Thus, via (2.5) and Theorem 3.1 (respectively) we conclude that (3.2) holds
for j = 3.

That (3.2) holds for j = 2 and j = 1 will follow in a similar way from
(2.5) as for j = 4. Again, Proposition 2.7 gives that the distribution of X2 =
TK,ẑ(mz, ρν(m)z) does not depend on m, and has finite moment of order α.
Finally, the distribution of X1 = TK,ẑ(nẑ,mnz) may depend on n. However, it
can only vary among a finite number of different ones, each with finite moment
of order α (there are 2d disjoint paths between nẑ and mnz, due to Lemma
2.4).

We will derive Proposition 1.3 from the estimate on the deviations from
the time constant on tubes, that we have just proved.

Proof of Proposition 1.3. Let ǫ > 0, α ≥ 1 and assume that E[Y α] < ∞.
We will first prove that for any ẑ ∈ Ud−1

∞∑

n=1

nα−2P

(
T (0, nẑ) >

(
µZd(ẑ) + ǫ

)
n
)
<∞.

Take K large enough for µK(ẑ) ≤ µZd(ẑ) + ǫ
2 (which is possible according to

Proposition 2.9). Then,

∞∑

n=1

nα−2 P

(
T (0, nẑ) >

(
µZd(ẑ) + ǫ

)
n
)

≤
∞∑

n=1

nα−2 P

(
T (0, nẑ) >

(
µK(ẑ) + ǫ/2

)
n
)

≤
∞∑

n=1

nα−2 P

(
TK,ẑ(0, nẑ) >

(
µK(ẑ) + ǫ/2

)
n
)
,

which Proposition 3.2 says is finite when E[Y α] <∞.
We proceed with the general case. For x̂ ∈ Sd−1, take ẑ ∈ Ud−1 such that

|x̂ − ẑ| ≤ ǫ. Now

T (0, nx̂)−nµZd(x̂) ≤
(
T (0, nẑ)−nµZd(ẑ)

)
+ T (nẑ, nx̂) + n

(
µZd(ẑ)−µZd(x̂)

)

According to 2.3 we have n
∣∣µZd(ẑ) − µZd(x̂)

∣∣ ≤ dE
[
T (0, e1)

]
nǫ. We will show

that for some M <∞
∞∑

n=1

nα−2 P

(
T (nẑ, nx̂) > Mnǫ

)
<∞. (3.3)
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All of the above then easily gives that

∞∑

n=1

nα−2 P

(
T (0, nx̂) − nµZd(x̂) >

(
1 +M + dE

[
T (0, e1)

])
nǫ
)
< ∞,

which is sufficient since ǫ > 0 was arbitrary. It remains to prove (3.3).

Choose a path between (nẑ)∗ and (nx̂)∗ of length λn :=
∥∥(nx̂)∗ − (nẑ)∗

∥∥
1
.

Let v0, v1, . . . , vλn
denote the sequence of vertices in the path. Subadditivity

gives that

T (nẑ, nx̂) ≤
λn∑

j=1

T (vj−1, vj) ≤
λn∑

j=1

T̂ (vj−1, vj),

where T̂ (vj−1, vj) = min
(
T (Γ1), T (Γ2), . . . , T (Γ2d)

)
, and Γ1,Γ2, . . . ,Γ2d de-

notes the 2d disjoint paths between vj−1 and vj of length at most 9. The
variables T̂ (vj−1, vj) and T̂ (vi−1, vi) are not necessarily independent for i 6= j.
However, they are if |vj − vi| > 4

√
2. Since |j − i| = ‖vj − vi‖1 ≤ d|vj − vi|,

they will be independent when |j − i| > 4d
√

2. We can therefore partition
{0, 1, . . . , λn} into at most 8d

√
2 + 1 ≤ 13d sets J1, J2, . . . , J13d, such that for

each i = 1, 2, . . . , 13d, the elements in
{
T̂ (vj−1, vj)

}
j∈Ji

are independent. Each

Ji contains at most λn ≤ d(
√
d+nǫ), which for large n is at most 2dnǫ, indices.

Thus, since when E[Y α] < ∞ also E
[
T̂ (vj−1, vj)

α
]
< ∞, Theorem 3.1 assures

that

∞∑

n=1

nα−2 P


∑

j∈Ji

T̂ (vj−1, vj) >
(

E
[
T̂ (0, e1)

]
+ 1
)
2dnǫ


 <∞.

We conclude that

∞∑

n=1

nα−2 P

(
T (nẑ, nx̂) > 26d

(
E
[
T̂ (0, e1)

]
+ 1
)
dnǫ
)
<∞.

This proves (3.3).

In preparation for Section 4, we also prove that radial L1-convergence holds
in any direction on the Zd lattice. The proof of which is similar to the proof
of Proposition 1.3.

Proposition 3.3. Let x̂ ∈ Sd−1 and d ≥ 2. If E[Y ] <∞, then

lim
n→∞

E

∣∣∣∣
T (0, nx̂)

n
− µZd(x̂)

∣∣∣∣ = 0.
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Proof. Let ǫ > 0 and take ẑ ∈ Ud−1 such that |x̂ − ẑ| ≤ ǫ. As in the proof of
Proposition 1.3 we have

∣∣T (0, nx̂) − nµZd(x̂)
∣∣ ≤

∣∣T (0, nẑ) − nµZd(ẑ)
∣∣+ n

∣∣µZd(x̂) − µZd(ẑ)
∣∣

+ T (nẑ, nx̂)

≤
∣∣T (0, nẑ) − nµZd(ẑ)

∣∣+ dE
[
T (0, e1)

]
nǫ

+

λn∑

j=1

T̂ (vj−1, vj),

where λn =
∥∥(nx̂)∗ − (nẑ)∗

∥∥
1
≤ d

(√
d + n|x̂ − ẑ|

)
. Together with (1.1), we

obtain that

lim
n→∞

E

∣∣∣∣
T (0, nx̂)

n
− µZd(x̂)

∣∣∣∣ ≤ d
(
E
[
T̂ (0, e1)

]
+ E

[
T (0, e1)

])
ǫ.

Since, E
[
T̂ (0, e1)

]
< ∞ when E[Y ] < ∞, and ǫ > 0 arbitrary, the L1-

convergence follows.

3.2 Below the time constant

We first present a proof of (1.4). We will prove (1.4) and Proposition 1.5
under the additional assumption that E[Y d] < ∞. With this assumption,
the derivation of (1.4) and Lemma 3.5 below can be simplified somewhat,
since it enables us to appeal to the Shape Theorem directly. An alternative
version of the Shape Theorem (see Kesten (1986)) can be used to obtain our
results without moment assumption. The reader can in Kesten’s paper find
the additional details that are needed in that case.

Proof of (1.4). Assume that E[Y d] < ∞. By definition, we easily obtain
that, almost surely,

TW
0,n

n
≤

T
(
0,
(

n
µ

Zd (e1) + 1
)

e1

)

n
=

n
µ

Zd (e1) + 1

n
·
T
(
0,
(

n
µ

Zd (e1) + 1
)

e1

)

n
µ

Zd (e1) + 1
→ 1,

as n→ ∞. So, it suffice to show that

lim inf
n→∞

TW
0,n

n
≥ 1, almost surely. (3.4)

Assume that there is δ > 0 such that

lim inf
n→∞

TW
0,n

n
≤ 1 − δ (3.5)
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has positive probability. For any realization satisfying (3.5) there are n1 <
n2 < . . . such that TW

0,nk
/nk ≤ 1 − δ/2. In particular, we can pick z1, z2, . . .

such that zk ∈ Wnk(1−δ/2) and

|zk| ≥ nk

µZd(zk/|zk|)
,

for each k = 1, 2, . . .. The Shape Theorem says that with probability one

Wn(1−δ/2) ⊆ n(1 − δ/4)W∗, (3.6)

for any n sufficiently large. Thus, there are realizations satisfying both (3.5)
and (3.6). But, (3.6) implies that for all n sufficiently large, if z ∈ Wn(1−δ/2),
then

|z| ≤ n(1 − δ/4)

µZd(z/|z|) ,

which is a contradiction. Hence, (3.4) must hold.

We now prepare for the proof of Proposition 1.5. That will require to
extend the definition of point-to-shape passage times somewhat. Assume that
µZd(e1) > 0. For any x,y ∈ Zd, let u(y− x) = (y−x)/|y− x|. Define for any
z ∈ Zd and integers 0 ≤ n ≤ m

TW
n,m(z) := inf

{
T (x,y) : |x− z| ≤ n

µZd

(
u(x − z)

) , |y − z| ≥ m

µZd

(
u(y − z)

)
}
.

For short, we write TW
n,m = TW

n,m(0). One should think of TW
n,m as the minimal

travel time from some vertex within nW∗ to some vertex at the boundary, or
in the complement, of mW∗. Following Kesten’s approach, the first step in
proving Proposition 1.5 is this next lemma.

Lemma 3.4. Let X
(q)
N,N+M for q = 1, 2, . . . denote independent random vari-

ables distributed as TW
N,N+M . There exists C <∞ such that for any n ≥M ≥

N ≥ 0 and x > 0 we have

P
(
TW

0,n < x
)

≤
∑

Q+1≥n/(M+CN)

nd−1

(
C
M

N

)d(Q−1)

P




Q∑

q=1

X
(q)
N,N+M < x


 .

The proof of this lemma does not require any moment assumption.

Proof. Pick z ∈ Zd such that |z| ≥ n/µZd(ẑ), where ẑ = z/|z|. Let γ = γ(z)
be a self-avoiding path from 0 to z. Choose a subsequence v0, v1, . . . , vQ of the
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vertices in γ as follows. Set v0 = 0. Given vq, choose vq+1 to be the first vertex
in γ succeeding vq such that

|vq+1 − vq| ≥
M + 2N

µZd

(
u(vq+1 − vq)

) .

When no such vertex exists, stop and set Q = q. To find a lower bound
on Q, pick a plane tangent to aµZd(ẑ)W∗ at the point aẑ and denote it by
H(a, ẑ). That at least one such plane exists follows from convexity of W∗.
Take aq ∈ R such that vq ∈ H(aq, ẑ) for each q = 0, 1, . . . , Q. It is easily seen

that aq ≤ q
(

M+2N
µ

Zd (ẑ) + 1
)
. Moreover, z ∈ H(a, ẑ) for some a satisfying

n/µZd(ẑ) ≤ a ≤ aQ +
M + 2N

µZd(ẑ)
≤ (Q+ 1)

(
M + 2N

µZd(ẑ)
+ 1

)
.

In particular, since µZd(ẑ) ≤
√
dµZd(e1), we see that Q must satisfy

n ≤ (Q+ 1)
(
M +

(
2 +

√
dµZd(e1)

)
N
)
. (3.7)

Next, pick r > 0 such that [−r, r]d ⊆ W∗ and tile Zd with copies of
(−rN, rN ]d such that each box is centred at a point in Zd, and each point
in Zd is contained in precisely one box. Let Λq denote the box that contains
vq, and let wq denote the centre of Λq. Of course, the tiling can be chosen such
that w0 = v0 = 0. Denote by γq the part of the path γ that connects vq and
vq+1. Note that for q1 6= q2 the two pieces γq1 and γq2 are edge disjoint. By
construction vq is included in the copy of NW∗ centred at wq. Moreover, vq+1

is not included in the interior of the copy of (M + 2N)W∗ centred at vq. By
convexity of W∗, vq+1 cannot either lie in the interior of the shape (M+N)W∗

centred at wq. That is,

|vq−wq| ≤ N

µZd

(
u(vq − wq)

) and |vq+1−wq| ≥ M +N

µZd

(
u(vq+1 − wq)

) . (3.8)

Given x > 0, Q ∈ Z+ and w1, . . . , wQ−1, let A(x,w1, w2, . . . , wQ−1) denote the
event that there exists a path γ from 0 to z which contains edge disjoint pieces
γ0, γ1, . . . , γQ−1 such that

a)
∑Q−1

q=0 T (γq) < x,

b) for each q = 0, 1, . . . , Q− 1, the endpoints vq and vq+1 of γq satisfy (3.8)
(where w0 = 0).
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Since T (γ) ≥∑Q−1
q=0 T (γq), together with (3.7), we obtain that

{
T (0, z) < x

}
⊆

⋃

Q+1≥n/(M+bN)

⋃

w1,w2,...,wQ−1

A(x,w1, w2, . . . , wQ−1) (3.9)

where b = 2 +
√
dµZd(e1). Note that given wq, the passage time of any path

between any two vertices x and y that satisfy |x − wq| ≤ N
µ

Zd (u(x−wq)) and

|y − wq| ≥ M+N
µ

Zd (u(y−wq)) is stochastically larger than TW
N,N+M . Hence, for fixed

w0, w1, . . . , wQ−1, the event A(x,w1, w2, . . . , wQ−1) has probability at most

P

(
X

(1)
N,N+M +X

(2)
N,N+M + . . .+X

(Q)
N,N+M < x

)
. (3.10)

It remains to count the number of possible choices for w1, w2, . . . , wQ−1.
Assume that wq has already been chosen. The distance which the vertex vq+1

can have to wq is bounded by

|vq+1−wq| ≤ |vq+1−vq|+|vq−wq| ≤ M + 2N

µZd

(
u(vq+1 − vq)

)+1+
N

µZd

(
u(vq −wq)

) .

In particular, vq+1 is contained in the cube centred at wq of side length

2
√
d
M +

(
3 + µZd(e1)

)
N

µZd(e1)
.

This cube is intersected by at most (CM/N)d boxes of the form (−rN, rN ]d

that tiles Zd, for some C < ∞. This bounds the number of choices for wq+1,
and since for each q = 1, 2, . . . , Q − 1 we cannot have more choices than this,
the total number of choices for w1, w2, . . . , wQ−1 is at most (CM/N)d(Q−1).
From (3.9) and (3.10) we conclude that

P
(
T (0, z) < x

)
≤

∑

Q+1≥n/(M+CN)

(
C
M

N

)d(Q−1)

P




Q∑

q=1

X
(q)
N,N+M < x


 ,

for some C <∞. The lemma now follows observing that, by convexity of W∗,
the number of z ∈ Zd that satisfies |z| ≥ n/µZd(ẑ) and has a neighbour within
nW∗ are of order nd−1.

Lemma 3.5. For any ǫ > 0, there exists η = η(ǫ) > 0 such that

lim
M→∞

max
N≤ηM

P

(
TW

N,N+M < M(1 − ǫ)
)

= 0.
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Proof. We will prove this lemma under the additional, but not necessary, as-
sumption that E[Y d] < ∞. For z ∈ Zd with |z| ≤ N/µZd(ẑ), let γ be a path
from z to some point y with |y| ≥ (N +M)/µZd(y/|y|). Clearly

TW
0,N+M ≤ T (0, z) + T (γ).

In particular, we may pick z ∈ NW∗ and γ = γ(z) such that T (γ) = TW
N,N+M .

It follows that

TW
0,M ≤ TW

0,N+M ≤ max

{
T (0, z) : z with |z| ≤ N

µZd(ẑ)

}
+ TW

N,M+N .

By (1.4), P

(
TW

0,M < M(1 − ǫ/2)
)
→ 0 as M → ∞. Thus, it suffices to prove

that

lim
M→∞

P

(
max

{
T (0, z) : z with |z| ≤ N

µZd(ẑ)

}
> ǫM/4

)
= 0. (3.11)

However, the event in (3.11) is contained in the event {NW∗ 6⊆ WǫM/4}. Ac-
cording to the Shape Theorem, the probability of this event tends to zero as
M → ∞ for any N ≤ (1 − δ)ǫM/4, and δ > 0. Hence, the result follows for
any η < ǫ/4.

Proof of Proposition 1.5. Fix ǫ > 0. Let X
(1)
N,N+M ,X

(2)
N,N+M , . . . ,X

(Q)
N,N+M

and C <∞ be as in Lemma 3.4, and choose η = η(ǫ) according to Lemma 3.5.
Let

N = min

(
ηM,

⌊
Mǫ

4C

⌋)
.

Markov’s inequality and independence give that for any γ > 0

P




Q∑

q=1

X
(q)
N,N+M < n(1 − ǫ)


 ≤ eγn(1−ǫ)E

[
e−γX

(1)
N,N+M

]Q
,

which in turn is at most

eγ(M+CN)(1−ǫ)
[
eγ(M+CN)(1−ǫ)

(
e−γM(1−ǫ/2) + P

(
X

(1)
N,N+M < M(1 − ǫ/2)

))]Q
.

Since CN −Mǫ/2 ≤ −Mǫ/4, the expression within square brackets is at most

e−γMǫ/4 + e(1+ηC)γM P

(
X

(1)
N,N+M < M(1 − ǫ/2)

)
. (3.12)
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According to Lemma 3.5 we can make this expression arbitrarily small by
choosing γ and M such that γM is large and M is as large as necessary. Fix
γ and M such that N ≥ 1 and (3.12) is at most

(2C)−d max

(
2

η
,
8C

ǫ

)−d

≤
(

2C
M

N

)−d

.

Appealing to Lemma 3.4 with these γ, M and N , we find that

P

(
TW

0,n < n(1 − ǫ)
)

≤ eγ(M+CN)
∑

(Q+1)≥n/(M+CN)

nd−1

(
C
M

N

)d(Q−1)(
2C

M

N

)−dQ

≤ eγ(M+CN) · nd−1 · 2−d(n/(M+CN)−1)+1,

which is of the required form.

4 Radial convergence on cones

In this section we prove that we have almost sure, L1 and complete convergence
in any radial direction on cone-like subgraphs of the Zd lattice. The result will
be stated next, and extends several of the previous results stated for the Zd

lattice. It is the first step in the proof of Theorem 1.2.

Proposition 4.1. Let x̂ ∈ Sd−1, and ω : [0,∞) → [0,∞) be any function such
that ω(a) → ∞ as a→ ∞. Let G denote the subgraph of the Zd lattice induced
by the set

⋃
a≥0B

(
ax̂, ω(a) +Rd

)
.

a) If E[Y ] <∞, then lim
n→∞

TG(0, nx̂)

n
= µZd(x̂), almost surely and in L1.

b) If α ≥ 1 and E[Y α] <∞, then

∞∑

n=1

nα−2P

(∣∣TG(0, nx̂) − nµZd(x̂)
∣∣ > nǫ

)
<∞, for any ǫ > 0.

Two comments. We will not explicitly prove that E[Y ] < ∞ is sufficient
for the almost sure convergence to hold, but rather remark at the end of the
proof on how this can be obtained. That E[Y 2] < ∞ is sufficient follows from
part b) and Borel-Cantelli’s lemma.

In case x̂ ∈ Ud−1, we can easily bound the passage time on the cone between
the passage time on the full lattice and the passage time on a tube. However,
in case x̂ 6∈ Ud−1, we do not know that we have convergence on the tube.
Therefore we will have to make use of a shifting trick.
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Proof. Let x̂ ∈ Sd−1 and ǫ > 0. Next, choose ẑ ∈ Ud−1 such that both
|ẑ − x̂| ≤ ǫ and

∣∣µZd(ẑ) − µZd(x̂)
∣∣ ≤ ǫ/3, choose K ≥ Rd + 1 such that

µK(ẑ) ≤ µZd(ẑ) + ǫ/3, and choose n such that n|ẑ − x̂| > 2K + 3
√
d/2 and∣∣E

[
T̃K(0, nẑ)

]
− nµK(ẑ)

∣∣ ≤ nǫ/3. This is possible according to (2.3), and
Proposition 2.9 and 2.8, in that order. In particular, for the ẑ, K and n
chosen,

∣∣∣E
[
T̃K(0, nẑ)

]
− nµZd(x̂)

∣∣∣ ≤ nǫ. (4.1)

We will need to bound TG(0,mx̂) from below and above by known entities. In
order to obtain an upper bound, choose an integer M = M(K,n) such that
ω(x) ≥ K + n +

√
d/2 for all x ≥ M . Let xn = (nx̂)∗, i.e., the point in Zd

closest to nx̂. By the choice of M , it is clear that for m ≥ M , the subgraph
induced by

⋃
a∈[0,n]B(aẑ+xm,K) is a subgraph of G. Therefore, together with

subadditivity, it is clear that

TG
(
0, (M + kn)x̂

)
≤ TG(0,xM ) +

k−1∑

j=0

T̃K(xM+jn,xM+jn + nẑ)

+

k−1∑

j=0

T̃K(xM+jn + nẑ,xM+(j+1)n).

(4.2)

Recall that |x − x∗| <
√
d. Since

∣∣(xM+jn + nẑ)∗ − xM+(j+1)n

∣∣ ≥ n|ẑ − x̂| − 3
√
d/2 > 2K,

the summands in each of the two sums in the above expression are independent.
A lower bound on TG

(
0, (M + kn)x̂

)
is obtained from T

(
0, (M + kn)x̂

)
. Now,

given m ≥ M , set m = M + kmn + am for integers km ≥ 0 and am ∈ [0, n).
The triangle inequality and subadditivity gives

∣∣∣∣
TG(0,mx̂)

m
− µZd(x̂)

∣∣∣∣ ≤
∣∣∣∣
T (0,mx̂)

m
− µZd(x̂)

∣∣∣∣+
TG(0,mx̂) − T (0,mx̂)

m

≤ 2

∣∣∣∣
T (0,mx̂)

m
− µZd(x̂)

∣∣∣∣+
T̃K

(
(M + kmn)x̂,mx̂

)

m

+

(
TG
(
0, (M + kmn)x̂

)

m
− µZd(x̂)

)
.

(4.3)

26



When (4.2) is substituted into (4.3), we obtain

∣∣∣∣
TG(0,mx̂)

m
− µZd(x̂)

∣∣∣∣ ≤ 2

∣∣∣∣
T (0,mx̂)

m
− µZd(x̂)

∣∣∣∣+
T̃K

(
(M + kmn)x̂,mx̂

)

m

+
TG(0,xM )

m
+


 1

km

km−1∑

j=0

T̃K(xM+jn,xM+jn + nẑ)

n
− E

[
T̃K(0, nẑ)

]

n




+

(
E
[
T̃K(0, nẑ)

]

n
− µZd(x̂)

)
+

1

km

km−1∑

j=0

T̃K(xM+jn + nẑ,xM+(j+1)n)

n
.

(4.4)

Denote the terms in the right-hand side of (4.4) by X1,X2, . . . ,X6.
Part a). Assume that E[Y ] < ∞, and let m tend to infinity. Proposition

3.3 tells us that E[X1] → 0. Since

|xm − xM+kmn| ≤
√
d+

∣∣m− (M + kmn)
∣∣ <

√
d+ n

for m ≥ M , and E
[
T̃K(0, z)

]
< ∞ when |z| <

√
d + n, it is clear that E[X2]

vanishes as m→ ∞. Since E
[
TG(0,xM )

]
<∞, also E[X3] vanishes. The fourth

term is the average of km i.i.d. random variables, minus their mean. Its mean
is therefore zero. The only terms that do not vanish as m → 0, are the last
two. The fifth term is constant, and at most ǫ, due to (4.1). The final term
X6 is an average of independent random variables, each of which is distributed
according to one of a finite number of possible distributions. Since

∥∥(xM+jn + nẑ)∗ − xM+(j+1)n

∥∥
1
≤ d

(
3
√
d/2 + n|ẑ− x̂|

)
≤ 2dnǫ,

due to the choice of n, we obtain for each j ≥ 0 that

1

n
E

[
T̃K

(
xM+jn + nẑ,xM+(j+1)n

)]
≤ 2dE

[
T̃K−1(0, e1)

]
ǫ. (4.5)

Hence, we conclude that

lim
k→∞

E

∣∣∣∣
TG(0,mx̂)

m
− µZd(x̂)

∣∣∣∣ ≤
(
2dE

[
T̃K−1(0, e1)

]
+ 1
)
ǫ.

Since ǫ > 0 was arbitrary, this proves the L1-convergence in part a).
Part b). Assume that E[Y α] < ∞. We aim to prove that for each j =

1, 2, . . . , 6,
∞∑

n=1

nα−2P(Xj > ǫ) <∞. (4.6)
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For j = 1, this follows from Proposition 1.3 and 1.4. Since E
[
T̃K(0, z)α

]
< ∞

for any z ∈ Zd, and T̃K

(
(M + kmn)x̂,mx̂

)
is distributed according to one of

finitely many possible distributions (as m varies), it follows from (2.5) that
(4.6) holds for j = 2. For j = 3, (4.6) follows also from (2.5). For j = 4
the same follows from Theorem 3.1, since the terms in X4 are i.i.d. The term
X5 is again constant, so j = 5 is fine. For j = 6 we do not quite have (4.6).
However, since the terms in X6 are i.i.d. with finite moment of order α, and
can be dominated by a random variable with mean at most 2dE

[
T̃K−1(0, e1)

]
ǫ,

as in (4.5), we have

∞∑

n=1

nα−2P

(
X6 >

(
2dE

[
T̃K−1(0, e1)

]
+ 1
)
ǫ
)
<∞.

We conclude that
∞∑

m=1

nα−2P

(∣∣∣∣
TG(0,mx̂)

m
− µZd(x̂)

∣∣∣∣ >
(
2dE

[
T̃K−1(0, e1)

]
+ 6
)
ǫ

)
<∞.

Since ǫ > 0 was arbitrary, the proof is complete.

Remark 4.2. Here comes an explanation of how to see that E[Y ] < ∞ is suf-
ficient for the almost sure convergence in Proposition 4.1. It is easily de-
duced from (1.4) (or Proposition 1.4) that lim infn→∞ TG(0, nx̂)/n ≥ µZd(x̂)
almost surely. The reason we cannot draw the conclusion we wish directly
from (4.4) is that we have not yet proved that E[Y ] < ∞ is sufficient for con-
vergence of T (0,mx̂)/m. However, we do not need to know that in order to
show, when E[Y ] < ∞, that lim supn→∞ TG(0, nx̂)/n ≤ µZd(x̂). To see this,
bound TG(0,mx̂) from above as in (4.2), and obtain an upper bound similar
to (4.4), that does not include T (0,mx̂). Of course, from this it follows that
also limm→∞ T (0,mx̂)/m exists when E[Y ] <∞.

5 Dynamical stability of radial convergence

In this section we consider dynamical first-passage percolation. The key in
order to understand how dynamical first-passage times behaves, will be to
compare them to non-dynamical first-passage times. We will start to introduce
some notation that will be in force for the rest of this section. Recall that
{τe(s)}e∈E

Zd
denotes the i.i.d. family of dynamical passage times associated

with the Zd lattice. Let Ne = Ne(δ) denote the number or updates of τe(s) on
the interval [0, δ]. Clearly Ne ∼ Poisson(δ) and E[Ne] = δ. Define

τ̄e := τe(0) · 1{Ne(δ)=0}, and τ̂e := sup
s∈[0,δ]

τe(s).
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Let T̄G(x,y) denote the passage time between x and y on G with respect to
{τ̄e}e∈E

Zd
, and let T̂G(x,y) denote the passage time between x and y on G with

respect to {τ̂e}e∈E
Zd

. Clearly, for any δ ≥ 0, and x,y ∈ Rd,

T̄G(x,y) ≤ T
(s)
G (x,y) ≤ T̂G(x,y), for all s ∈ [0, δ].

The first thing we do will be to compare moments.

Lemma 5.1. For δ ≥ 0, α ≥ 0 and q ≥ 1

E

[
min

(
sup

s∈[0,δ]
τ1(s), . . . , sup

s∈[0,δ]
τq(s)

)α]
≤ (1+δ)qE

[
min

(
τ1(0), . . . , τq(0)

)α]
,

where τ1(s), τ2(s), . . . , τq(s) are i.i.d. and distributed as τe(s).

Proof. Since E[Xα] =
∫∞
0 nα−1P(X > x) dx and P

(
min(X1, . . . ,Xm) > x

)
=

P(X1 > x)m for i.i.d. non-negative random variables X,X1, . . . ,Xm, the result
follows from the following observation.

P

(
sup

s∈[0,δ]
τe(s) > x

)
=

∞∑

k=0

P

(
max

j=1,...,k+1
τ (j)
e > x

∣∣∣∣Ne = k

)
P(Ne = k)

≤
∞∑

k=0

(k + 1)P(τe > x)P(Ne = k)

= P(τe > x)E[1 +Ne].

The first step in order to prove a dynamically stable version of the Shape
Theorem is to show that the almost sure convergence in radial directions is
dynamically stable.

Proposition 5.2. Let x̂ ∈ Sd−1, and ω : [0,∞) → [0,∞) be any function such
that ω(a) → ∞ as a→ ∞. Let G denote the subgraph of the Zd lattice induced
by the set

⋃
a≥0B

(
ax̂, ω(a) +Rd

)
. If E[Y ] <∞, then, almost surely, for every

ǫ > 0, there exists an M = M(ǫ) <∞ such that

∣∣∣∣∣
T

(s)
G (0, nx̂)

n
− µZd(x̂)

∣∣∣∣∣ < ǫ, for all s ∈ [0, 1] and n ≥M.

The proof of this proposition is heavily inspired by the proof of the dynam-
ical version of the Law of Large Numbers due to Benjamini et al. (2003).
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Proof. Fix ǫ > 0. Let Ŷ denote the minimum of 2d independent variables
distributed as τ̂e. According to Lemma 5.1, E[Y ] < ∞ implies E[Ŷ ] < ∞, so
the time constants µ̄Zd(x̂) and µ̂Zd(x̂) defined as limits of first-passage times
with respect to {τ̄e}e∈E

Zd
and {τ̂e}e∈E

Zd
, respectively, exist and are finite. As

δ tends to zero, the distributions of τ̄e = τ̄e(δ) and τ̂e = τ̂e(δ) converges weakly
to the distribution of τe. Hence, by Proposition 2.1 we can choose δ > 0 such
that ∣∣µ̂Zd(x̂) − µ̄Zd(x̂)

∣∣ < ǫ/2.

According to Proposition 4.1 we can, almost surely, find M = M(ǫ, δ) < ∞
such that for all n ≥M

∣∣∣∣
T̄G(0, nx̂)

n
− µ̄Zd(x̂)

∣∣∣∣ <
ǫ

2
, and

∣∣∣∣∣
T̂G(0, nx̂)

n
− µ̂Zd(x̂)

∣∣∣∣∣ <
ǫ

2
.

We conclude that

∣∣∣∣∣
T

(s)
G (0, nx̂)

n
− µZd(x̂)

∣∣∣∣∣ < ǫ, for all s ∈ [0, δ] and n ≥M.

The result is now obtained by covering [0, 1] with finitely many intervals of
length δ.

Similarly, one may derive a dynamically stable version of Proposition 2.8.

Proposition 5.3. For K ≥ Rd, ẑ ∈ Ud−1 and E[Y ] < ∞, almost surely, for
every ǫ > 0, there exists an M = M(ǫ) <∞ such that

∣∣∣∣∣∣
T

(s)
K,ẑ(0, nẑ)

n
− µK(ẑ)

∣∣∣∣∣∣
< ǫ, for all s ∈ [0, 1] and n ≥M.

Proof. The proof is analogous to the proof of Proposition 5.2. The reader may
see that it goes through smoothly replacing the reference to Proposition 4.1
with Proposition 2.8, and Proposition 2.1 with its analogue for (K,d, ẑ)-tubes,
which can be found in Ahlberg (2010).

6 Extending the Shape Theorem to cones

The proofs of Theorem 1.2 and 1.6 will naturally follow the proof of the Shape
Theorem closely. We follow the approach given in Howard (2004). An essential
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step in the proof of the Shape Theorem, and subsequently in order to prove
Theorem 1.2 and 1.6, is to show that

∑

z∈Zd

P
(
T (0, z) ≥M |z|

)
<∞, for some M > 0. (6.1)

Under the assumption of finite exponential moment, that is E[eθτe ] < ∞ for
some θ > 0, this follows by standard large deviation estimates for i.i.d. se-
quences. Cox and Durrett (1981) showed that

E[Y d] <∞ ⇔
∑

z∈Zd

P
(
T (0, z) ≥M |z|

)
<∞, for some M > 0. (6.2)

Let Y (z) denote the minimum over the passage times of the 2d edges connected
to z. When E[Y d] = ∞, in fact T (0, z) ≥ Y (z) implies

∑

z∈(2Z)d

P
(
T (0, z) ≥M |z|

)
≥

∑

z∈(2Z)d

P
(
Y (z) ≥M |z|

)
= ∞

for any M < ∞. This proves one implication. Moreover, the Borel-Cantelli
lemma gives that T (0, z)/|z| > M for infinitely many z ∈ Zd. This shows that
E[Y d] <∞ is necessary also for (1.3) to hold.

The remaining direction of (6.2) requires more work. The proof can be
simplified if we make the somewhat stronger assumption E[τ2

e ] < ∞ (as in
Kesten (1986)).

Lemma 6.1. Let G be a graph, and let x and y be two vertices connected with
q disjoint paths, each of length at most λ. If E[τ2

e ] <∞, then

P

(
TG(x,y) ≥

(
E[τe] + 1

)
λ
)

≤
(

E[τ2
e ]

λ

)q

.

(Since there on the Zd lattice are 2d disjoint paths from 0 to z of length of
order ‖z‖1, Lemma 6.1 implies that E[τ2

e ] <∞ is sufficient for (6.1) to hold.)

Proof. Denote the disjoint paths by Γ1,Γ2, . . . ,Γq. Note that

E
[
T (Γj)

]
≤ E[τe]λ, and Var

(
T (Γj)

)
≤ Var(τe)λ ≤ E[τ2

e ]λ

for all j = 1, . . . , q. Since TG(x,y) ≤ T (Γj) for each j, we have

P

(
TG(x,y) ≥

(
E[τe] + 1

)
λ
)

≤
q∏

j=1

P

(
T (Γj) ≥

(
E[τe] + 1

)
λ
)

≤
(

E[τ2
e ]λ

λ2

)q

,

where we in the last step have applied Chebyshev’s inequality.
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We will prove part b) and c) of Theorem 1.2, and Theorem 1.6, under
the additional assumption that E[τ2

e ] < ∞. The stronger assumption will be
used in order to derive Lemma 6.2 from Lemma 6.1. The main ideas are still
present, and the remaining piece needed to obtain Lemma 6.2 with the relaxed
condition E[Y d] <∞ is indicated in Remark 6.4.

6.1 Proof of Theorem 1.2

Let SG :=
{
û ∈ Sd−1 : (aû)∗ ∈ VG for all a large enough

}
. Clearly x̂ ∈ SG,

and if lima→∞ ω(a)/a = 0, then SG = {x̂}. Fix ǫ ∈
(
0, 1

3
√

d

)
, and choose

û(1), . . . , û(m) ∈ SG such that for some M1 <∞
m⋃

j=1

⋃

a≥0

B
(
aû(j), ǫa

)
⊇

⋃

a≥M1

B
(
ax̂, ω(a) +Rd

)
.

If SG = {x̂}, then m = 1, û(1) = x̂, and we may directly apply Proposition 4.1
to obtain desired convergence of

∣∣TG(0, nx̂) − nµZd(x̂)
∣∣. If instead SG 6= {x̂},

then we can choose û(1), . . . , û(m) ∈ SG∩Ud−1 such that they are interior points
in SG (seen as a subset of Sd−1). Then there are δ > 0 and M2 = M2(δ) < ∞
such that
⋃

a≥M2

B
(
aû(j), δa +Rd

)
⊆
⋃

a≥0

B
(
ax̂, ω(a) +Rd

)
, for each j = 1, . . . ,m.

Choose aj ≥M2 such that ajû
(j) ∈ Zd. In particular,

∣∣∣TG
(
0, nû(j)

)
−nµZd(û(j))

∣∣∣ ≤ TG
(
0, ajû

(j)
)

+
∣∣∣TG
(
ajû

(j), nû(j)
)
−nµZd(û(j))

∣∣∣.

We conclude from Proposition 4.1 that when E[Y ] <∞, for each j = 1, 2, . . . ,m,

lim
n→∞

TG
(
0, nû(j)

)

n
= µZd(û(j)), almost surely and in L1. (6.3)

Moreover, when E[Y α] <∞, for some α ≥ 1, we obtain for each j = 1, 2, . . . ,m

∞∑

n=1

nα−2P

(∣∣TG
(
0, nû(j)

)
− nµZd(û(j))

∣∣ > nǫ
)
<∞. (6.4)

Set ẑ = z/|z|. For ẑ close to û(j), we will compare TG(0, z) with TG
(
0, aû(j)

)
,

for a suitably chosen. Define

Hn :=

{
y ∈ Rd : ‖y‖∞ := max

j=1,2,...,d
|yj | = n

}
.
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Given z ∈ Hn, let j(z) denote that of the indices j = 1, 2, . . . ,m that minimizes∣∣ẑ− û(j)
∣∣. With a slight abuse of notation we write û(z) for û(j(z)). Denote by

uz the point in Hn ∩ Zd closest to the unique point in Hn ∩ {aû(z)}a≥0.

Claim 1. If ǫ ∈
(
0, 1

3
√

d

)
and z ∈ Hn, then

|uz − z| ≤ 8dnǫ+
√
d ≤ 8d|z|ǫ +

√
d.

Proof of Claim 1. This claim is easily proved with trigonometry, observing
that the angle α at which the line {aû(z)}a≥0 intersects Hn satisfies tan(α) ≥√
d, the extremal case being û(z) = 1√

d
(1, . . . , 1). The details are left to the

reader.

By subadditivity
∣∣∣TG(0, z) − |z|µZd(ẑ)

∣∣∣ ≤
∣∣∣TG(0, z) − TG(0,uz)

∣∣∣

+
∣∣∣TG(0,uz) − |uz|µZd(û(z))

∣∣∣

+ µZd(û(z))
∣∣∣|uz| − |z|

∣∣∣

+ |z|
∣∣∣µZd(û(z)) − µZd(ẑ)

∣∣∣.

(6.5)

The latter two terms in the right-hand side of (6.5) are non-random. Claim 1
gives

µZd(û(z))
∣∣∣|uz| − |z|

∣∣∣ ≤ µZd(û(z))|uz − z| ≤ µZd(û(z))
(
8d|z|ǫ +

√
d
)
, (6.6)

and, by (2.3), |z|
∣∣µZd(û(z)) − µZd(ẑ)

∣∣ is bounded from above by

|z|dE
[
T (0, e1)

]
|û(z) − ẑ| ≤ |z|dE

[
T (0, e1)

]
ǫ/
√

1 − ǫ2

≤ 2dE
[
T (0, e1)

]
|z|ǫ.

(6.7)

The first term in the right-hand side of (6.5) is, again by subadditivity, at most
∣∣∣TG(0, z) − TG(0,uz)

∣∣∣ ≤ TG(uz, z).

Proof of part a). Assume that E[τe] < ∞. Since ‖z‖1 ≤ d|z|, we conclude
via Claim 1 that

E
[
TG(uz, z)

]
≤ E[τe] ‖uz − z‖1 ≤ dE[τe]

(
8d|z|ǫ +

√
d
)
.

When E[τe] < ∞, also E[Y ] < ∞. So, (6.3) assures that when |z|, and then

also |uz|, is sufficiently large, then E

∣∣∣TG(0,uz) − |uz|µZd(û(z))
∣∣∣ ≤ |uz|ǫ, which
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in turn is at most (1 + 8dǫ)|z|ǫ +
√
dǫ. Finally, together with (6.6) and (6.7),

we have obtained that

E

∣∣∣TG(0, z) − |z|µZd(ẑ)
∣∣∣

≤
(
8d2 E[τe] + (1 + 8dǫ) + 8dµZd(û(z)) + 2dE

[
T (0, e1)

])
|z|ǫ

+
(
dE[τe] + ǫ+ µZd(û(z))

)√
d,

for |z| large enough. Since ǫ > 0 was arbitrary, this proves a).

In order to prove either of the remaining two parts, b) and c), the pending
step is to prove a variant of (6.1). With the approach we have chosen, we will
prove the following.

Lemma 6.2. Let the notation above be in force and assume that E[τ2
e ] < ∞.

There exists M <∞, that does not depend on ǫ, such that

∑

z∈VG

P
(
TG(uz, z) ≥M |z|ǫ

)
<∞.

Since not every vertex of G has the same degree, we will need the following
classification.

Claim 2. There is a partition D0,D1, . . . ,Dd−1 of the vertices in VG, such
that for some C <∞,

∣∣Dq ∩Hn

∣∣ ≤
{
Cnq−1, for q = 1, 2, . . . , d− 1,

Cnd−1, for q = 0.

and if z ∈ Dq ∩Hn for some n, q ≥ 1, then there is a vz ∈ D0 ∩Hn such that
‖vz − z‖1 ≤ C, and there exist (at least) q disjoint paths between z and vz of
length ‖vz − z‖1. For z ∈ D0 there are 2d disjoint paths from z to uz of length
at most C‖uz − z‖1.

Remark 6.3. In most cases it is possible to choose Dq so
∣∣Dq∩Hn

∣∣ ≤ Cnq−2 for
q ≥ 2, and D1 = ∅. (When x̂ = e1 this is always possible.) However, there are
cases when this is not possible. For example, when d = 3 and x̂ = 1√

3
(1, 1, 1),

it is possible to choose ω such that the intersection of VG with {−Rd} × Z2

equals the points along the line
{
a(0, 1, 1) + (−Rd, 0, 0)

}
a≥0

. These vertices
will only have one neighbour.

Proof of Claim 2. We will prove the case when ω(a) = c · a and x̂ = e1 only,
and leave it to the reader to verify that the proof extends to the remaining
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cases. There are three cases: c > 1, c = 1 and c < 1. In the first case set
D0 := VG = Zd. In the second case set D0 := VG = {0, 1, . . .} × Zd−1 and
Dd−1 := {−Rd,−Rd + 1, . . . ,−1} × Zd−1. Both these cases are easy, but the
final case is more tricky. In that, let

D0 :=
{
z ∈ VG : B(z, Rd) ⊆ VG

}
=
⋃

a≥0

B(ae1, c · a). (6.8)

(Here and below we identify subsets of Rd with its restriction to Zd.) Since Hn

is a (d− 1)-dimensional subset of Rd, then there is an C1 <∞ such that

|D0 ∩Hn| ≤ |Hn| ≤ C1n
d−1, and

∣∣(VG \D0) ∩Hn

∣∣ ≤ C1n
d−2.

For q = 1, 2, . . . , d− 1 we define

Dq :=
{
z ∈ VG \D0 : zj 6= 0 for q indices j ≥ 2

}
.

Since VG \D0 =
(⋃

a≥0B(ae1, c ·a+Rd)
)
\
(⋃

a≥0B(ae1, c ·a)
)
, it is clear that

fixation of zj = 0 for some j ≥ 2 in VG \D0 reduces the degree of freedom (in
the choice of z) by one, in the sense that going from Dq+1 to Dq we loose one
dimension. Hence, there is a C2 <∞

|Dq ∩Hn| ≤ C2n
q−1, for each q = 1, 2, . . . , d− 1.

Move on to the second part of the statement. Take z ∈ Dq ∩Hn. Due to
lattice symmetry, we may assume that zj ≥ 0 for all j = 1, 2, . . . , d. We will
choose vz suitably in the rectangle

Rz =
{
v ∈ VG ∩Hn : z1 ≤ v1 ≤ n, and 0 ≤ vj ≤ zj for j ≥ 2

}
.

Due to (6.8) we can find C3 <∞ such that, for v ∈ Rz, if z1 +C3 ≤ v1 ≤ n, or
if v1 = n and |v− ne1| ≤ |z− ne1| −C3, then v ∈ D0. Choose vz accordingly.
Since vz and z differ in q coordinates, it is easy to find q disjoint paths from
vz to z of length ‖vz − z‖1.

It remains to conclude that there are 2d disjoint paths between z ∈ D0 and
uz. This follows from Lemma 2.4, since

⋃
a∈[0,1]B

(
uz+a(z−uz), Rd

)
⊆ VG .

Proof of Lemma 6.2. Let 1 ≤ C < ∞ and D0,D1, . . . ,Dd−1 be as in Claim
2. We will treat each Dq separately, starting with q = 0. Claim 1 says that
‖uz − z‖1 ≤ 8dnǫ +

√
d for z ∈ Hn. Via Lemma 6.1 we deduce that for

z ∈ D0 ∩Hn

P

(
TG(uz, z) ≥

(
E[τe] + 1

)
C(8dnǫ+

√
d)
)

≤ |D0 ∩Hn|
(

E[τ2
e ]

nǫ

)2d

,
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and, since |D0 ∩Hn| ≤ Cnd−1,

∑

z∈D0

P

(
TG(uz, z) ≥

(
E[τe]+1

)
C(8d|z|ǫ+

√
d)
)

≤ C

∞∑

n=1

nd−1

(
E[τ2

e ]

nǫ

)2d

< ∞.

For each z ∈ Dq ∩Hn, where q ≥ 1, we obtain that

P
(
TG(uz, z) ≥

(
E[τe] + 2

)
C(8dnǫ+

√
d+ C)

)
≤ P

(
TG(vz, z) ≥ nǫ

)

+ P

(
TG(uz,vz) ≥

(
E[τe] + 1

)
C(8dnǫ+

√
d+C)

)
.

Let Tq denote the minimum passage times of q disjoint paths of length C. Since
‖vz−z‖1 ≤ C, then P

(
TG(vz, z) ≥ nǫ

)
is at most as large as P(Tq ≥ nǫ). Thus,

∑

z∈Dq∩Hn

P

(
TG(vz, z) ≥ nǫ

)
≤ |Dq ∩Hn|P(Tq ≥ nǫ) ≤ Cnq−1P(Tq ≥ nǫ),

which, summing over n, is finite, since E[T q
q ] < ∞. Moreover, ‖uz − vz‖1 ≤

8dnǫ+
√
d+C, and an application of Lemma 6.1 gives that

∑

z∈Dq∩Hn

P

(
TG(uz,vz) ≥

(
E[τe]+1

)
C(8dnǫ+

√
d+C)

)
≤ |Dq∩Hn|

(
E[τ2

e ]

nǫ

)2d

.

Again |Dq ∩Hn| ≤ Cnq−1, and we conclude that for each q ≥ 1

∑

z∈Dq

P

(
TG(uz, z) ≥

(
E[τe] + 2

)
C(8d|z|ǫ+

√
d+C)

)
<∞.

Hence, it suffices to choose M =
(
E[τe] + 3

)
8Cd.

Remark 6.4. The condition in Lemma 6.2 can be relaxed to E[Y d] <∞. That
is essentially obtained by showing that the set D0 can be chosen in a way that
under the relaxed condition

∑

z∈D0

P
(
TG(uz, z) ≥M |z|ǫ

)
<∞,

for some M < ∞ not depending on ǫ. To see that this is true, consult
Lemma 2.4 and the paper of Cox and Durrett (1981, Lemma 3.3).

Recall that complete convergence implies almost sure convergence.
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Proof of part b) and c). Assume that E[τ2
e ] <∞. We will prove that

∑

z∈VG

P

(∣∣TG(0,uz) − |uz|µZd(û(z))
∣∣ > |z|ǫ

)
<∞. (6.9)

Once this is done, it will follow from (6.5) and Lemma 6.2 that sum of

P

(∣∣∣TG(0, z)−|z|µZd(ẑ)
∣∣∣ >

(
M+1+(8d+

√
d)µZd(û(z))+2dE

[
T (0, e1)

])
|z|ǫ
)

over all z ∈ VG is finite. Since ǫ > 0 has been arbitrarily chosen, this would
prove c), and therefore also b).

In order to prove (6.9), note that uz may obtain the same value for at
most |Hn| vertices z ∈ VG. Since |Hn| = 2d(2n)d−1, then (6.9) follows easily
from (6.4), given that E[Y d+1] < ∞. However, that indeed holds since E[τ2

e ]
is assumed finite, according to (2.6).

6.2 Proof of Theorem 1.6

Assume that E[τ2
e ] < ∞. Only minor adjustments are necessary in order to

obtain Theorem 1.6 from the proof of Theorem 1.2. We proof will proceed
along the same lines. For z ∈ VG , set ẑ = z/|z|. The statement we will prove
is that, almost surely, for every ǫ > 0, there exists M = M(ǫ) <∞ such that

∣∣∣∣∣
T

(s)
G (0, z)

|z| − µZd(ẑ)

∣∣∣∣∣ < ǫ, for all s ∈ [0, 1] and |z| ≥M. (6.10)

This is sufficient for Theorem 1.6 to follow.
Fix ǫ ∈

(
0, 1

3
√

d

)
. Let û(1), . . . , û(m) ∈ SG be chosen as in the proof of

Theorem 1.2. It follows directly from Proposition 5.2 that there exists an
almost surely finite M = M(ǫ) such that

∣∣∣∣∣
T

(s)
G (0, nx̂)

n
− µZd(x̂)

∣∣∣∣∣ < ǫ, for all s ∈ [0, 1] and n ≥M.

For û(j) ∈ SG ∩ Ud−1 that are interior points in SG , we may again choose aj

large, such that
∣∣∣∣∣
T

(s)
G
(
0, nû(j)

)

n
− µZd(û(j))

∣∣∣∣∣ ≤ T
(s)
G
(
0, ajû

(j)
)

n

+

∣∣∣∣∣
T

(s)
G
(
ajû

(j), nû(j)
)

n
− µZd(û(j))

∣∣∣∣∣ ,
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and where the right-hand side is, almost surely, at most ǫ uniformly in s ∈ [0, 1],
for sufficiently large n, again according to Proposition 5.2. That is, there is an
almost surely finite M = M(ǫ) such that for each j = 1, 2, . . . ,m

∣∣∣∣∣
T

(s)
G
(
0, nû(j)

)

n
− µZd(û(j))

∣∣∣∣∣ < ǫ, for all s ∈ [0, 1] and n ≥M. (6.11)

For any given z ∈ VG , let uz be specified as before. Analogously to (6.5)
we have that

∣∣∣T (s)
G (0, z) − |z|µZd(ẑ)

∣∣∣ ≤ T
(s)
G (uz, z)

+
∣∣∣T (s)

G (0,uz) − |uz|µZd(û(z))
∣∣∣

+ µZd(û(z))
∣∣|uz| − |z|

∣∣

+ |z|
∣∣µZd(û(z)) − µZd(ẑ)

∣∣.

(6.12)

According to (6.11), for s ∈ [0, 1], the second term in the right-hand side
of (6.12) is not greater than |uz|ǫ ≤ (1 + 8dǫ)|z|ǫ +

√
dǫ whenever |uz| ≥(

|z| −
√
dǫ
)
/(1 + 8dǫ) ≥M . Recall the notation introduced in Section 5. Since

T
(s)
G (uz, z) ≤ T̂G(uz, z),

and E[τ̂2
e ] < ∞ whenever E[τ2

e ] < ∞, it follows from Lemma 6.2 and Borel-
Cantelli’s lemma that there is an M ′ <∞ such that

sup
s∈[0,1]

T
(s)
G (uz, z) ≤ T̂

(s)
G (uz, z) ≤ M ′|z|ǫ

for all but finitely many z ∈ VG. From all of the above, we conclude that there
is an almost surely finite M ′′ = M ′′(ǫ) such that when |z| ≥M ′′

∣∣∣∣∣
T

(s)
G (0, z)

|z| − µZd(ẑ)

∣∣∣∣∣ ≤
(
M ′ + (1 + 8dǫ) + 8dµZd(û(z)) + 2dE

[
T (0, e1)

]
+ 1
)
ǫ,

for all s ∈ [0, 1]. Since ǫ > 0 was arbitrary, this proves (6.10).
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Paper III





Noise sensitivity in continuum

percolation

Daniel Ahlberg, Erik Broman∗, Simon Griffiths† and Robert Morris‡

Abstract

We prove that the Poisson Boolean model, also known as the Gilbert
disc model, is noise sensitive at criticality. This is the first such result
for a continuum percolation model, and the first for which the critical
probability pc 6= 1/2. Our proof uses a version of the Benjamini-Kalai-
Schramm Theorem for biased product measure. A quantitative version of
this result was recently proved by Keller and Kindler. We give a simple
deduction of the non-quantitative result from the unbiased version. We
also develop a quite general method of approximating continuum perco-
lation models by discrete models with pc bounded away from zero; this
method is based on an extremal result on non-uniform hypergraphs.

1 Introduction

The concept of noise sensitivity of a sequence of Boolean functions was intro-
duced by Benjamini, Kalai, and Schramm (1999), and has since developed into
one of the most exciting areas in probability theory, linking percolation with
discrete Fourier analysis and combinatorics. So far, most attention has been
focused on percolation crossings in two dimensions, either for bond percolation
on the square lattice Z2, or for site percolation on the triangular lattice T. In
this paper we study the corresponding question in the setting of continuum

∗Mathematical Sciences Chalmers University of Technology, and Mathematical Sciences
University of Gothenburg. E-mail: broman@chalmers.se

†IMPA, Rio de Janeiro, RJ, Brasil. E-mail: sgriff@impa.br
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percolation. In particular, we shall prove that the Poisson Boolean model, also
known as the Gilbert disc model, is noise sensitive at criticality.

Roughly speaking, a sequence (fn)n>1 of Boolean functions fn : {0, 1}n →
{0, 1} is said to be noise sensitive if a slight perturbation of the state ω asymp-
totically causes all information about fn(ω) to be lost. More precisely, let
ε > 0 and suppose that ω ∈ {0, 1}n is chosen uniformly at random. Define
ωε ∈ {0, 1}n to be the (random) state obtained by re-sampling each coordinate
(independently and uniformly) with probability ε, and note that ωε is also
a uniform element of {0, 1}n. Then the sequence (fn)n>1 is said to be noise
sensitive (NS) if

lim
n→∞

E
[
fn(ω)fn(ωε)

]
− E

[
fn(ω)

]2
= 0, for every ε > 0. (1.1)

One can easily see, using the Fourier representation of Section 4, that if (1.1)
holds for some ε > 0, then it holds for all ε > 0. For example, the Majority
function (fn(ω) = 1 iff

∑
ωj > n/2) and the Dictator function (fn(ω) = 1 iff

ω1 = 1) are not noise sensitive, but the Parity function (fn(ω) = 1 iff
∑
ωj is

even) is noise sensitive.
Noise sensitivity was first defined by Benjamini et al. (1999), who were

partly motivated by the problem of exceptional times in dynamical percolation
(see e.g. Steif (2009)). In this model, which was introduced independently
by Benjamini (unpublished) and by Häggström, Peres, and Steif (1997), each
bond in Z2 (or site in T) has a Poisson clock, and updates its state every
time the clock rings. At any given time, the probability that there is an
infinite component of open edges is zero at pc (see Bollobás and Riordan (2006a)
or Grimmett (1999), for example). However, there might still exist certain
exceptional times at which such a component appears. Building on the work
of Benjamini et al. (1999), Schramm and Steif (2010) were able to prove that,
for the triangular lattice T, such exceptional times do exist, and moreover the
Hausdorff dimension of the set of such times lies in [1/6, 31/36]. Even stronger
results were later obtained by Garban, Pete, and Schramm (2010), who were
able to prove, via an extremely precise result on the Fourier spectrum of the
‘percolation crossing event’, that the dimension of the exceptional set for T is
31/36, and that exceptional times also exist for bond percolation on Z2.

Following Benjamini et al. (1999), we shall study Boolean functions which
encode ‘crossings’ in percolation models. For example, consider bond perco-
lation on Z2 at criticality (i.e., with p = pc = 1/2), and let fN encode the
event that there is a horizontal crossing of RN , the N ×N square centred at
the origin, using only the open edges of the configuration. In other words, let
fN : {0, 1}E → {0, 1}, where E is the set of edges of Z2 with an endpoint in
RN , be defined by fN (ω) = 1 if and only if there is such a crossing using only

2



edges e ∈ E with ωe = 1. Benjamini et al. proved that the sequence (fN )N>1

is noise sensitive.
Continuum percolation describes the following family of random geometric

graphs: define

Ω :=
{
η ⊂ R2 : |η ∩ F | <∞ for every bounded F ⊂ R2

}
,

and pick η ∈ Ω according to some distribution. We then join two points
of η with an edge in a deterministic way, based on their relative position.
Two especially well-studied examples are Voronoi percolation (see e.g. Bollobás
and Riordan (2006b)), and the Poisson Boolean model, which was introduced
by Gilbert (1960), and is further accounted for in Meester and Roy (1996);
Alexander (1996). In the latter model, η ∈ Ω is chosen according to a Poisson
point process with intensity λ, and for each point x ∈ η, a disc of radius 1 is
placed with its centre on x; let D(η) denote the union of these discs. The model
is said to percolate if there exists an infinite connected component in D(η). It is
well known that there exists a critical intensity 0 < λc <∞ such that if λ < λc

then the model almost surely does not percolate, while if λ > λc it almost
surely percolates. See the books by Meester and Roy (1996) and Bollobás and
Riordan (2006a) for a detailed introduction to continuum percolation.

We shall be interested in the problem of noise sensitivity of the Poisson
Boolean model at criticality, that is, with λ = λc. Let fG

N : Ω → {0, 1} be
the function which encodes whether or not there is a horizontal crossing of RN

using only points of D(η) ∩RN for η ∈ Ω. That is, for every η ∈ Ω,

fG
N (η) = 1 ⇔ H

(
η,RN , •

)
occurs,

whereH(η,RN , •) denotes the event that such a crossing exists in the ‘occupied
space’ D(η).

Since fG
N is defined on Ω, we shall need to modify the definition of noise

sensitivity. Let ε > 0 and λ > 0, and pick η ∈ Ω according to a Poisson point
process of intensity λ. We shall denote the measure associated to this Poisson
process by Pλ, expectation with respect to this measure by Eλ and variance
by Varλ. We define ηε ∈ Ω to be the set obtained by deleting each element
of η independently with probability ε, and then adding a new Poisson point
process of intensity ελ. It is clear that ηε has the same distribution as η. With
a minor abuse of notation, we will let Pλ denote also the measure by which
the pair (η, ηε) is chosen.

Definition 1.1. We say that the Poisson Boolean model is noise sensitive at
λ if the sequence of functions (fG

N )N>1 satisfies

lim
N→∞

Eλ

[
fG

N (η)fG
N (ηε)

]
− Eλ

[
fG

N (η)
]2

= 0, for all ε > 0.

3



We remark that the Poisson Boolean model is trivially noise sensitive at
every λ 6= λc. The reason is simply that when λ > λc (or λ < λc), then
limN fG

N = 1 almost surely (or limN fG
N = 0 almost surely), as is well known.

We shall say that the model is noise sensitive at criticality if it is noise sensitive
at λc.

The following theorem is our main result. It is the analogue for the Pois-
son Boolean model of the result of Benjamini et al. (1999) mentioned above
concerning bond percolation on Z2.

Theorem 1.2. The Poisson Boolean model is noise sensitive at criticality.

The proof of Theorem 1.2 is based on two very general theorems, neither
of which uses any properties of the specific model which we are studying. The
first is a version of one of the main theorems of Benjamini, Kalai, and Schramm
(1999), a result referred to as the BKS Theorem. It gives a sufficient condition
(based on the concept of influence) for an arbitrary sequence of functions to
be noise sensitive at density p (see Theorem 1.4). A quantitative version of
the BKS Theorem for biased product measure was recently proved by Keller
and Kindler (2010). Their result is therefore a strengthening of the qualitative
result of Benjamini et al.. We shall give a short deduction of the BKS Theorem
for general p ∈ (0, 1) from the uniform case.

The second main tool is an extremal result on arbitrary non-uniform hyper-
graphs (i.e., arbitrary events on {0, 1}n), which allows us to bound the variance
that arises when two stages of randomness are used to choose a random sub-
set. We shall use this bound (see Theorem 1.6) to prove noise sensitivity for
the Poisson Boolean model via a corresponding result when we condition on a
’much larger’ Poisson configuration (see Theorem 1.5). These tools are quite
general, and we expect both to have other applications; we shall therefore state
them here, and in some detail, for easy reference.

In order to state the BKS Theorem for product measure, we first need to
define noise sensitivity in this setting. Let Pp denote product measure with
density p ∈ (0, 1) with which we pick ω ∈ {0, 1}n, i.e. Pp(ωi = 1) = p inde-
pendently for every i ∈ [n] := {1, 2, . . . , n}. We let Ep denote expectation with
respect to this measure. When p = 1/2 this corresponds to picking an element
of {0, 1}n uniformly at random, and so we refer to it as the uniform case. De-
fine ωε as above, by re-randomizing each bit (coordinate) independently with
probability ε.

Definition 1.3. A sequence (fn)n>1 of functions fn : {0, 1}n → [0, 1] is said
to be noise sensitive at density p (NSp) if

lim
n→∞

Ep

[
fn(ω)fn(ωε)

]
− Ep

[
fn(ω)

]2
= 0, for every ε > 0. (1.2)
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When p = 1/2, this is equivalent to (1.1), the definition of noise sensitivity
of Benjamini et al. (1999).

The influence at density p, denoted Infp,i(f), of a coordinate i ∈ [n] in a
function f : {0, 1}n → [0, 1], is defined by

Infp,i(f) := Ep

[∣∣f(ω) − f(σiω)
∣∣],

where σi is the function that flips the value of ω at position i. We denote the
sum of the squares of the influences of f by

IIp(f) :=

n∑

i=1

Infp,i(f)2.

The theorem we are about to present was first proved by Benjamini et al.
(1999) in the case p = 1/2, and further remarked to hold for general p ∈ (0, 1).
A quantitative version of the result was obtained by Keller and Kindler (2010).
(In Benjamini et al. (1999) it was stated only for functions into {0, 1}, but the
more general result follows by the same method as one can check, see Keller
and Kindler (2010, Page 3), for example.)

When proving statements concerning functions on the hypercube {0, 1}n

endowed with biased product measure, it can be favourable to strive for a simple
deduction of the case p 6= 1/2 from its uniform counterpart. One technique
used to reduce the biased case to uniform was considered by Friedgut (2004)
and also Keller (2010). We will present a different reduction, with which we
shall give a simple deduction of the following theorem from the known uniform
analogue.

Theorem 1.4 (BKS Theorem for product measure). Let (fn)n>1 be a sequence
of functions fn : {0, 1}n → [0, 1]. For every p ∈ (0, 1),

lim
n→∞

IIp(fn) = 0 ⇒ (fn)n>1 is NSp.

We remark that the approach we use to prove Theorem 1.4 is quite general,
and may be used to extend various other results from uniform to biased product
measure, as can be seen in Section 2.2. Before introducing our second main
tool, Theorem 1.6, let us give some more context, by describing our general
approach to the proof of Theorem 1.2.

Given η ∈ Ω, D(η) corresponds to the geometric graph obtained by con-
necting any two points in η at Euclidean distance at most 2. For p ∈ (0, 1)
and a countable set S, define the (random) p-subset Sp of S as the random
set obtained by including each element of S independently with probability p.
For a p-subset ηp of η ∈ Ω, D(ηp) can be thought of as the resulting struc-
ture when site percolation at density p is performed on (the graph induced by)
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D(η). Possibly, this should rather be referred to as ’disc’ percolation, but we
will stick to calling it site percolation on D(η). In particular, when η ∈ Ω is
chosen according to the measure Pλc/p, then D(ηp) corresponds to a critical
configuration of the Poisson Boolean model. An intermediate step in proving
Theorem 1.2 will be a statement regarding noise sensitivity of site percolation
on D(η).

Given η ∈ Ω, let fη
N denote the restriction of fG

N onto η. Formally, let
Ωη := {ξ ∈ Ω : ξ ⊆ η}, and define fη

N : Ωη → {0, 1} by letting fη
N (ξ) = fG

N (ξ)
for every ξ ∈ Ωη. We can identify Ωη and {0, 1}η and so, equivalently, we
can view fη

N as a function from {0, 1}η to {0, 1}, defined by letting, for every
ξ ∈ {0, 1}η ,

fη
N (ξ) = 1 ⇔ H(ξ,RN , •) occurs.

We will say that site percolation on D(η) is NSp if the sequence (fη
N )N>1 is

NSp. Given ε ∈ (0, 1), let (ηp)
ε denote an ε-perturbation of the site percolation

configuration ηp, that is, each point in η is independently with probability ε
re-evaluated to be included in ηp. NSp of (fη

N )N>1 then corresponds to

lim
N→∞

E
[
fG

N (ηp)f
G
N

(
(ηp)

ε
) ∣∣ η

]
− E

[
fG

N (ηp)
∣∣ η
]2

= 0, for each ε > 0.

Naturally, we will be interested in site percolation onD(η) when η ∈ Ω is chosen
according to Pλc/p. The proof of Theorem 1.2 proceeds via the following.

Theorem 1.5. Site percolation on D(η) is NSp for Pλc/p-almost every η ∈ Ω,
for each sufficiently small p > 0.

Thus, the proof of Theorem 1.2 divides naturally into two parts. In the
first we adapt the methods of Benjamini et al. (1999) to prove noise sensitivity
in Theorem 1.5; in the second we use our bound on the variance (Theorem 1.6,
below) to prove that this noise sensitivity transfers to the continuous Poisson
Boolean model. Interestingly, Theorem 1.6 will also be a key tool in the proof
of Theorem 1.5.

Recall that [n] = {1, 2, . . . , n}. A hypergraph H is simply a collection of
subsets of [n]; or, equivalently, it is a subset of {0, 1}n. We call these sets
‘edges’, and remark that if every edge has exactly two elements then H is a
graph. Given a hypergraph H, a set B ⊆ [n] and p ∈ (0, 1), define

rH(B, p) := P(Bp ∈ H).

We sometimes write P(Bp ∈ H|B) if we explicitly want to stress the choice
of B. In our applications, [n] will correspond to a discrete approximation of a
rectangle R ⊆ R2 while H will be the hypergraph which encodes crossings of
R in D(B). Further, we will let q = q(n) be chosen so that [n]q has (expected)
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density λc/p in R. Note that a p-subset of [n]q has the same distribution as
[n]q ∩ [n]p, and so we have that rH

(
[n]q, p

)
= P

(
[n]q ∩ [n]p ∈ H

∣∣ [n]q
)
.

Theorem 1.6. There is a universal constant C < ∞ such that if p ∈
(
0, 1

2

]
,

q ∈ (0, 1) and n ∈ N satisfy n > 128(pqn)3, n > 4p(qn)2 and pqn > 32 log 1
p ,

then, for every hypergraph H on vertex set [n],

Var
(
rH
(
[n]q, p

))
= Cp

(
log

1

p

)2

.

We emphasize the crucial point, which is that our bound on Var
(
rH
(
[n]q, p

))

goes to zero as p → 0 uniformly in H. At occasions, we shall use the nota-
tion f(x) = O

(
g(x)

)
to denote the existence of a universal constant C < ∞,

independent of all other variables, such that
∣∣f(x)

∣∣ 6 C
∣∣g(x)

∣∣ for all x in some
given range.

As noted above, we shall use Theorem 1.6 in order to prove Theorem 1.5
as well as to deduce Theorem 1.2 from Theorem 1.5. Indeed, we shall use The-
orem 1.6 together with the ’deterministic algorithm method’ (see Sections 2.3
and 5) to obtain bounds on the influences of variables; Theorem 1.5 then follows
from the BKS Theorem for product measure.

The rest of the paper is organized as follows. In Section 2 we give a full
overview of the proof, and state several other results which may be of inde-
pendent interest. In Section 3 we recall some facts about the Poisson Boolean
model, and in the Sections 4 and 5 we prove Theorem 1.4 and extend the ’de-
terministic algorithm method’ of Benjamini et al. (1999) to general p ∈ (0, 1).
In Section 6 we prove Theorem 1.6, and deduce some simple consequences,
and in Section 7 we prove Theorem 1.5 and deduce Theorem 1.2. Finally, in
Section 8 we state some open questions.

Throughout the article we treat elements of {0, 1}n as subsets of [n], and
vice versa, without comment, by identifying sets with their indicator functions.

2 Further results, and an overview of the proof

In this section we introduce a number of auxiliary methods and results that we
shall use in the proof of Theorem 1.2, and which may also be of independent
interest. In particular, we introduce a new way of deducing results for biased
product measure from results in the uniform case. We shall use this method
in Sections 4 and 5 to generalize the BKS Theorem and the ’deterministic
algorithm method’ of Benjamini, Kalai, and Schramm (1999).

Let us begin by outlining how Theorem 1.2 follows from Theorems 1.5

7



and 1.6. Fix p ∈ (0, 1), and observe that

Eλc/p

[
E
[
fG

N (ηp)
∣∣ η
]]

= Eλc/p

[
P
(
H(ηp, RN , •)

∣∣ η
)]

= Pλc

(
H(η,RN , •)

)
= Eλc

[
fG

N (η)
]
,

(2.1)

where the second equality follows since if η ∈ Ω is chosen according to a Poisson
point process of intensity λc/p, then ηp is distributed as a Poisson point process
of intensity λc.

Using Theorem 1.6, and a straightforward discretization of the square RN

(see Section 7), we shall prove the following proposition.

Proposition 2.1. lim
p→0

lim sup
N→∞

Varλc/p

(
P
(
H(ηp, RN , •)

∣∣ η
))

= 0.

In Section 7 we shall show that the Poisson Boolean model is noise sensitive
at criticality if and only if for every ε > 0, as N → ∞,

Eλc/p

[
E
[
fG

N (ηp)f
G
N

(
(ηp)

ε
) ∣∣ η

]
−E
[
fG

N (ηp)
∣∣ η
]2]

+Varλc/p

(
E
[
fG

N (ηp)
∣∣ η
])

→ 0.

For p > 0 small enough, Theorem 1.5 says exactly that the first term is o(1) as
N → ∞, and Proposition 2.1 shows that the second can be made arbitrarily
small by choosing p appropriately.

In the rest of the section we shall outline the proofs of Theorems 1.5 and 1.6;
we begin by stating the key property of the Poisson Boolean model that we
shall need.

2.1 Non-triviality of crossing probabilities

If the probability (in Pλc
) of the crossing event H(η,RN , •) were trivial, in

the sense that it converged to 0 or 1 as N → ∞, then Theorem 1.2 would
itself be trivial. However, this is not the case. Further, one may deduce, using
Theorem 1.6, that for N large enough, with high probability (in Pλc/p), η ∈ Ω
will be such that P

(
H(ηp, RN×tN , •)

∣∣ η
)

is also non-trivial (see Proposition 2.3).
The following fact will be a vital tool in our proof of the noise sensitivity of
the sequence (fη

N )N>1, as it will allow us to bound the probability of the ‘one-
arm event’ (see Section 2.3). Throughout Ra×b denotes the rectangle with side
lengths a and b, centred at the origin.

Theorem 2.2 (Alexander (1996)). For every t > 0 there exists c = c(t) > 0
such that,

c 6 Pλc

(
H
(
η,RN×tN , •

))
6 1 − c, for every N ∈ N.

8



Theorem 2.2 is in fact a slight extension of Alexander (1996, Theorem 3.4),
but it follows similarly. For completeness, we shall sketch the proof in Section 3.
From this bound, together with Theorem 1.6, we shall deduce the following
bound (see Section 7).

Proposition 2.3. For every t, γ > 0 there exist constants c = c(t) > 0 and
p∗ = p∗(t, γ) > 0 such that if p ∈ (0, p∗), then

Pλc/p

(
P
(
H(ηp, RN×tN , •)

∣∣ η
)
6∈ (c, 1 − c)

)
< γ

for every sufficiently large N ∈ N.

This bound will allow us to show that, with high Pλc/p-probability, the

’one-arm event’ of every point of η ∩ RN is bounded above by N−δ, for some
δ > 0 (see Section 2.3).

2.2 A new method for proving results for biased product mea-

sure

We outline here a new method for deducing results in the setting of a den-
sity p product measure from the uniform case (i.e. p=1/2). The idea is the
following. Rather than considering directly the function f : {0, 1}n → {0, 1}
where {0, 1}n is endowed with density p product measure, we consider a related
function hf : {0, 1}n → [0, 1] where {0, 1}n is endowed with uniform measure.
This function hf is obtained from f by an averaging operation. By relating
various parameters of f and hf , results about one may be deduced from results
concerning the other. In particular, we use this method both in our proof of
Theorem 1.4 and in our generalization of the ’deterministic algorithm method’
(see Section 2.3).

The following coupling of the uniform measure on {0, 1}n and the p-density
product measure Pp is key to the definition of hf . In what follows let p ∈ (0, 1)
be fixed and let p̄ = min{p, 1 − p}. (We are generally interested in the case
p 6 1/2 but there is little extra difficulty in presenting the argument in the
general case.)

Let X ∈ {0, 1}n be uniformly distributed. Let Y ∈ {0, 1}n be a 2p̄-subset
of [n], i.e., P(Yi = 1) = 2p̄ for each i ∈ [n], all independently. We define the
random variable Z ∈ {0, 1}n as follows

Zi :=





XiYi if p 6 1/2

1 − (1 −Xi)Yi if p > 1/2
(2.2)
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for each i ∈ [n]. Note that Z is a p-subset of [n], i.e. distributed according to
Pp, and, by construction, Z ⊆ X if p 6 1/2 and Z ⊇ X if p > 1/2.

With the random variables X,Y,Z as defined above, and given any function
f : {0, 1}n → [0, 1] we define

hf (X) := E
[
f(Z)

∣∣X
]
, (2.3)

and observe that hf : {0, 1}n → [0, 1]. We shall use hf to reduce statements
about f(Z), where Z has a p-biased distribution, to statements about hf (X),
where X is chosen uniformly. The connection between f and hf is given by
the following proposition. Here and below, by f being monotone we mean that
f(ω) ≤ f(ω′) for every ω, ω′ ∈ {0, 1}n such that ωj ≤ ω′

j for each j ∈ [n].

Proposition 2.4. Let f : {0, 1}n → [0, 1], p ∈ (0, 1), and set p̄ = min{p, 1−p}.
a) If f is monotone then hf is monotone.

b) Inf1/2,i(hf ) 6 2p̄·Infp,i(f), and moreover equality holds if f is monotone.

c) (fn)n>1 is NSp ⇔
(
hfn

)
n>1

is NS.

Moreover, if p 6= 1/2 then this is also equivalent to lim
n→∞

Var
(
hfn

)
= 0.

Proposition 2.4 is a key step in order to give short proofs of Theorem 1.4
and 2.6 from their uniform counterparts. A related reduction method has
previously been employed to give short deductions (from the uniform case)
of results for biased measure; see e.g. Friedgut (2004); Keller (2010); Keller,
Mossel, and Schlank (2011).

2.3 The deterministic algorithm method

In order to prove Theorem 1.5, we shall use the ‘algorithm approach’, which
was also introduced by Benjamini, Kalai, and Schramm (1999) in the case
p = 1/2. (We would like to thank Jeff Steif for pointing out to us that the
approach of Benjamini et al. can be synthesized in the way it is presented
here.) Given a function f : {0, 1}n → R, let A∗(f) denote the collection of
deterministic algorithms which determine f .1

Definition 2.5 (Revealment of an algorithm). Let f : {0, 1}n → [0, 1] and let
A ∈ A∗(f). For each p ∈ (0, 1), K ⊆ [n] and j ∈ K, define

δj(A) = δj(A, p) := Pp

(
A queries bit j when determining f(ω)

)
.

1An algorithm is simply a rule which, given the information about ω received so far,
tells you which bit of ω to query next. It determines f if it determines f(ω) for any input
ω ∈ {0, 1}n.
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The revealment δK(A) of A with respect to K is defined to be maxj∈K δj(A).

Using Theorem 1.4, we shall prove the following theorem, which generalizes
the method of Benjamini et al. (1999) to the non-uniform set-up. We emphasize
that δK(A) depends on p.

Theorem 2.6. Let r ∈ N be fixed, and let (fn)n>1 be a sequence of monotone
functions fn : {0, 1}n → [0, 1]. For each n ∈ N, let A1, . . . ,Ar ∈ A∗(fn), and
let [n] = K1 ∪ . . . ∪Kr. If for p ∈ (0, 1)

δKi
(Ai)

(
log n

)6 → 0

as n→ ∞ for each i ∈ [r], then (fn)n>1 is NSp.

In order to apply Theorem 2.6, we shall need to define a deterministic
algorithm which determines fη

N , and show that it has low revealment with
high probability. The algorithm which we shall use is analogous to that used
by Benjamini et al. Roughly speaking, we ‘pour water’ into the left-hand side
of the square RN , and query every element of η that we reach via a path in
D(ηp) (see Section 7 for a precise definition). For elements in the left half of
RN we pour water into the right-hand side.

It is easy to see that the probability that an element x ∈ η ∩RN is queried
by A is at most the probability of the corresponding ‘one-arm event’, i.e., the
probability that there is a path from x to the side of RN in D(ηp) (for back-
ground on arm-events, see e.g. Bollobás and Riordan (2006a)). In the original
Poisson Boolean model a bound can be deduced from the RSW Theorem for
the vacant space due to Roy (1990). However, in order to apply Theorem 2.6 we
need a bound for the one-arm-events of fη

N simultaneously for each x ∈ η∩RN ;
we obtain such a bound using Proposition 2.3.

In order to apply Proposition 2.3, we simply surround each point x ∈ η∩RN

by c logN disjoint annuli, and show that, with very high probability (in Pλc/p),
at least half of them are ‘good’, in the sense that the probability that there is a
vacant loop around x is at least γ, for some small constant γ > 0. It will then
follow that with high probability (in Pλc/p), every x ∈ η ∩RN has probability

at most N−δ of being queried by A (see Section 7).

2.4 Hypergraphs

Theorem 1.6 provides a very general bound on the variance that arises in
settings where two stages of randomness are used to select a random subset. We
remark that alternative versions in which one or both of the sets A ⊆ B ⊆ [n]
have a fixed size (see Proposition 6.1 and 6.4) are also proved in Section 6. We
prove these results on the way to proving Theorem 1.6.
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The main step in the proof of Theorem 1.6 is to prove a variance bound
(Proposition 6.1) for the case where the random sets A ⊆ B ⊆ [n] have fixed
sizes m and k > m. It is then relatively straightforward to deduce a corre-
sponding bound on Var

(
rH([n]q, p)

)
, and thus prove Theorem 1.6, by bounding

other factors that might contribute towards the variance. These bounds are
obtained using Chernoff’s inequality (see Section 6).

We shall control Var
(
Xm(Bk)

)
, where Bk is a uniformly chosen k-element

subset of [n] and Xm(B) = Xm(B,H) counts the number of hypergraph edges
of size m contained in B ⊆ [n], using the following theorem of Bey (2003)
concerning the sum of squares of degrees in hypergraphs. It generalizes results
of Ahlswede and Katona (1978) and de Caen (1998), and answered a question
of Aharoni (1980).

Let e(H) denote the number of edges in a hypergraph H, and, given a set
T ⊆ [n], let dH(T ) denote the degree of T in H, i.e., the number of edges of
H which contain T . The following result bounds the sum of the squares of the
degrees over sets of size t in an m-uniform hypergraph, i.e., one in which all
edges have size m. By convention, we let

(n
k

)
:= 0 for k < 0 and k > n.

Bey’s inequality (Bey (2003)). Let H be an m-uniform hypergraph on n
vertices, and let t ∈ [m]. Then

d2

(
H, t

)
:=

∑

T⊆[n]:|T |=t

dH(T )2 6

(m
t

)(m−1
t

)
(n−1

t

) e(H)2 +

(
m− 1

t− 1

)(
n− t− 1

m− t

)
e(H).

To see how Bey’s inequality is related to the variance of Xm(Bk), observe
that dH(T )2 counts the number of (ordered) pairs of edges of size m in H which
both contain T . Thus, summing over t (with appropriate weights), we obtain
an upper bound on E

[
Xm(Bk)

2
]
.

2.5 Summary of the proof

Let us finish this section by summarizing the proof of Theorem 1.2:

(i) We use Bey’s inequality to prove Theorem 1.6.

(ii) We use Proposition 2.4 to deduce the BKS Theorem, as well as Theo-
rem 2.6, for product measure, from the uniform case.

(iii) We deduce Proposition 2.1 and 2.3 from Theorem 1.6 and 2.2.

(iv) Using Proposition 2.3 we prove that, with high probability, there exists
an algorithm (in fact, a pair of algorithms) for fη

N with low revealment.
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(v) Using our algorithm, Theorem 2.6 implies that (fη
N )N>1 is NSp for

Pλc/p-almost every η ∈ Ω, completing the proof of Theorem 1.5.

(vi) Finally, we shall show that Theorem 1.5 and Proposition 2.1 together
imply that (fG

N )N>1 is noise sensitive, completing the proof of Theo-
rem 1.2.

Theorem 2.2 is proved in Section 3, Step 2 is performed in Sections 4
and 5, Step 1 is performed in Section 6, and the missing parts are completed
in Section 7.

3 Non-triviality of the crossing probability at criti-

cality

In this section we shall state the RSW Theorem for vacant space in the Poisson
Boolean model, which was proved by Roy (1990). We shall sketch the proof
of Theorem 2.2, which says that at criticality, the probability of crossing a
square is bounded away from zero and one. The proof is based on the RSW
Theorem. It is with help from Theorem 2.2 we will will be able to deduce that
the algorithm we shall use has low revealment.

Recall that the probability measure Pλ indicates that the set η ∈ Ω is
chosen according to a Poisson process on R2 with intensity λ. Here and later,
H
(
η,R, ◦

)
(or V

(
η,R, ◦

)
) will denote the event that the rectangle R ⊆ R2

contains a horizontal (or vertical) crossing of R2 \D(η).

Vacant RSW Theorem (Roy (1990), see Meester and Roy (1996, Theo-
rem 4.2)). For every δ, t, λ > 0, there exists an ε = ε(δ, t, λ) > 0 such that the
following holds for every a, b, c > 0 with c 6 3a/2. If

Pλ

(
H
(
η,Ra×b, ◦

))
> δ, and Pλ

(
V
(
η,Rc×b, ◦

))
> δ,

then Pλ

(
H
(
η,Rta×b, ◦

))
> ε.

We remark that this result was in fact proved in substantially greater gen-
erality: it holds for random radii, with arbitrary distribution on (0, r) (where
r ∈ R is arbitrary). Alexander (1996) proved the corresponding statement for
the occupied space (for fixed radii), and used this result to prove the following
characterization.

Theorem 3.1 (Alexander (1996, Theorem 3.4)). In the Poisson Boolean model,
there exists θ > 0 such that the following are equivalent:
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a) There is almost surely an infinite occupied component.

b) lim
N→∞

Pλ

(
H
(
η,RN , •

))
= 1.

c) lim
N→∞

Pλ

(
H
(
η,R3N×N , •

))
= 1.

d) There exists N ∈ N such that Pλ

(
H
(
η,R3N×N , •

))
> 1 − θ.

The same holds true if ‘occupied’ is changed for ‘vacant’ throughout.

It follows immediately that there is no percolation at criticality for either
the occupied or vacant space.

Corollary 3.2 (Alexander (1996, Corollary 3.5)). At λ = λc, there is almost
surely no infinite component in the occupied space D(η), and no infinite com-
ponent in the vacant space R2 \D(η).

Proof. A standard argument shows that Pλ

(
H(η,R3N×N , •)

)
is a continuous

function of λ, and so the set of λ ∈ R for which property d) of Theorem 3.1
holds is an open set.

Theorem 2.2 follows immediately from Corollary 3.2, together with the
following slight extension of Theorem 3.1.

Theorem 3.3. For every t > 0,

a) sup
N>1

Pλ

(
H
(
η,RN×tN , •

))
= 1 ⇒ D(η) percolates almost surely.

b) sup
N>1

Pλ

(
H
(
η,RN×tN , ◦

))
= 1 ⇒ R2 \D(η) percolates almost surely.

The proof of Theorem 3.3 is almost identical to that of Theorem 3.1; for
completeness, we shall sketch the argument.

Sketch proof of Theorem 3.3. We shall prove only a); part b) follows by the
same proof, except using the Occupied RSW Theorem of Alexander (1996,
Theorem 2.1) in place of the Vacant RSW Theorem. We claim that our as-
sumption implies property d) in Theorem 3.1, and hence (by property a) of
the theorem) that D(η) percolates.

To show that property d) of Theorem 3.1 holds, we note that a straight-
forward argument shows that

sup
N>1

Pλ

(
H
(
η,RN×tN , •

))
= 1 ⇒ sup

N>1
Pλ

(
H
(
η,RN×N , •

))
= 1,
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by the Vacant RSW Theorem, applied with a = b = c = N . The latter implies
that for each ε > 0 there exists N = N(ε) > 1 such that

Pλ

(
H
(
η,RN×N , •

))
= 1 − Pλ

(
V
(
η,RN×N , ◦

))
> 1 − ε. (3.1)

Next, observe that for every N > 0 and k ∈ N,

Pλ

(
V
(
η,R3N×N , ◦

))
6
(
2k + 1

)
Pλ

(
V
(
η,RN×N , ◦

))

+ 2k · Pλ

(
H
(
η,R k−1

k
N×N , ◦

))
,

and moreover that

Pλ

(
V
(
η,R3N×N , ◦

))
6 2k · Pλ

(
V
(
η,R k+1

k
N×N , ◦

))

+
(
2k − 1

)
Pλ

(
H
(
η,RN×N , ◦

))
.

To see these, partition the rectangle R3N×N into N
k ×N rectangles B1, . . . , B3k,

and consider the leftmost and rightmost pieces Bj touched by a vertical path
across R3N×N . The first follows because either an N ×N square (made up of
Bj ’s) is crossed vertically, or a

(
k−1

k

)
N ×N rectangle is crossed horizontally.

The second follows because either a k+1
k N ×N rectangle is crossed vertically,

or an N ×N square is crossed horizontally.

Thus, either Pλ

(
V (η,R3N×N , ◦)

)
can be made arbitrarily small, as re-

quired, or there exists δ > 0 such that

Pλ

(
H
(
η,R k−1

k
N×N , ◦

))
> δ and Pλ

(
V
(
η,R k+1

k
N×N , ◦

))
> δ (3.2)

for every N = N(ε) and every ε > 0.

Now, apply the Vacant RSW Theorem with a = k−1
k N , b = N , c = k+1

k N ,
for some N > 0. Note that c 6 3a/2 if 2(k + 1) 6 3(k − 1), which holds if
k > 5. Setting t = k

k−1 , it follows that if (3.2) holds for N , then

Pλ

(
H
(
η,RN×N , ◦

))
> ε′. (3.3)

where ε′ = ε(δ, t, λ) > 0 is given by the Vacant RSW Theorem.

Hence if (3.2) holds for N = N(ε′) then (3.3) also holds, and (3.3) con-
tradicts (3.1). Thus (3.2) must fail to hold for N = N(ε′), and so, by the
observations above, Pλ

(
V (η,R3N×N , ◦)

)
can be made arbitrarily small, as re-

quired.
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4 BKS Theorem for biased product measure

A tool that has turned out to be very useful in connection with the study of
Boolean functions is discrete Fourier analysis. For ω ∈ {0, 1}n and i ∈ [n], we
define

χp
i (ω) =





−
√

1−p
p if ωi = 1√

p
1−p otherwise.

Furthermore, for S ⊆ [n], let χp
S(ω) :=

∏
i∈S χ

p
i (ω). (In particular, χp

∅ is the
constant function 1.) We observe that for i 6= j

Ep

[
χp

i (ω)χp
j (ω)

]
=

(
1 − p

p

)
p2 +

(
p

1 − p

)
(1 − p)2 − 2p(1 − p) = 0.

In fact, from this it is easily seen that the set {χp
S}S⊆[n] forms an orthonormal

basis for the set of functions f : {0, 1}n 7→ R. We can therefore express such
functions using the so-called Fourier-Walsh representation (see Paley (1932);
Walsh (1923)):

f(ω) =
∑

S⊆[n]

f̂p(S)χp
S(ω), (4.1)

where f̂p(S) := Ep[fχ
p
S].

Although our results throughout Section 4 and 5 hold for arbitrary p ∈
(0, 1), we will often prove them only for p 6 1/2, since this is the case we
shall need in our applications. The proofs for p > 1/2 all follow in exactly
the same way. From now on, we will not stress that S ⊆ [n] in the notation.
Furthermore, when p = 1/2 we shall write χS for χp

S and f̂(S) for f̂p(S).

The following lemma was proved by Benjamini et al. (1999) in the uniform
case; its generalization to arbitrary (fixed) p is similarly straightforward.

Lemma 4.1. Let p ∈ (0, 1), and let (fn)n>1 be a sequence of functions fn :
{0, 1}n 7→ [0, 1]. The following two conditions are equivalent.

a) The sequence (fn)n>1 is NSp.

b) For every k ∈ N, lim
n→∞

∑

0<|S|6k

f̂n
p
(S)2 = 0.

Proof. Note that Ep

[
χp

S(ω)χp
S′(ωε)

]
= 0 if S 6= S′, that Ep

[
fn(ω)

]
= f̂n

p
(∅),

and that

Ep

[
χp

S(ω)χp
S(ωε)

]
= (1 − ε)|S|,
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since this is zero whenever at least one of the coordinates {ωi : i ∈ S} is
re-randomized, and one otherwise. By (4.1), it follows that

Ep

[
fn(ω)fn(ωε)

]
− Ep

[
fn(ω)

]2
= Ep


∑

S 6=∅
f̂n

p
(S)χp

S(ω)
∑

S′ 6=∅
f̂n

p
(S′)χp

S′(ω
ε)




=
∑

S 6=∅
f̂n

p
(S)2Ep

[
χp

S(ω)χp
S(ωε)

]
=
∑

S 6=∅
f̂n

p
(S)2(1 − ε)|S|,

from which both implications follow easily.

Recall from (2.3) that we define hf (X) := E
[
f(Z)

∣∣X
]
, where (for p 6 1/2)

X and Y in {0, 1}n are independent random variables, X uniformly distributed
and Y with density 2p, and Zi = XiYi for every i ∈ [n]. The key fact - that
the sequence (fn)n>1 is NSp if and only if (hfn

)n>1 is NS - will follow directly
from Lemma 4.1, together with the following result.

Proposition 4.2. Let f : {0, 1}n → [0, 1], p ∈ (0, 1), and set p̄ = min{p, 1−p}.
Then, for every S ⊆ [n],

ĥf (S) =

(
p̄

1 − p̄

)|S|/2

f̂p(S).

Proof. We shall prove the proposition in the case p 6 1/2; the other case
follows similarly. Let f : {0, 1}n → [0, 1] and S ⊆ [n]. By the definitions, we
have

ĥf (S) = E
[
hf (X)χS(X)

]
= E

[
E
[
f(Z)

∣∣X
]
χS(X)

]

= E

[
E
[
f(Z)χS(X)

∣∣X
]]

= E
[
f(Z)χS(X)

]

= E

[
f(Z)E

[
χS(X)

∣∣Z
]]
.

(4.2)

Furthermore, Zi = 1 implies Xi = 1, which implies χi(X) = −1, so

E
[
χi(X)

∣∣Zi = 1
]

= −1,

while Zi = 0 and Xi = 1 implies that Yi = 0, so

E
[
χi(X)

∣∣Zi = 0
]

= 1 − 2 · P
(
Xi = 1

∣∣Zi = 0
)

= 1 − 2 · P(Zi = 0 |Xi = 1)P(Xi = 1)

P(Zi = 0)

= 1 − 1 − 2p

1 − p
=

p

1 − p
.
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We conclude that E
[
χi(X)

∣∣Zi

]
=
√

p
1−pχ

p
i (Z). Therefore, since the Xi and Yi

are all independent,

E
[
χS(X)

∣∣Z
]

=
∏

i∈S

E
[
χi(X)

∣∣Zi

]

=
∏

i∈S

√
p

1 − p
χp

i (Z) =

(
p

1 − p

)|S|/2

χp
S(Z).

Inserting this into (4.2) gives the result.

It is now straightforward to deduce Proposition 2.4 from Proposition 4.2.

Proof of Proposition 2.4. We shall assume that p 6 1/2; once again, the other
case follows similarly. Let f : {0, 1}n → [0, 1].

a) Suppose that f is monotone; we claim that hf is also monotone. Indeed,
observe that

hf (X) = E
[
f(Z)

∣∣X
]

= E
[
f(X · Y )

∣∣X
]

=
∑

ξ∈{0,1}n

f(X · ξ)P(Y = ξ). (4.3)

But if f is monotone, then f(X ·ξ) is also monotone in X for every ξ ∈ {0, 1}n.
Thus (4.3) implies that hf is monotone, as required.

b) We next claim that Inf1/2,i(hf ) 6 2p · Infp,i(f) for every i ∈ [n]. For

i ∈ [n] and k ∈ {0, 1}, let Xi→k ∈ {0, 1}n be defined by Xi→k
j = Xj if j 6= i,

and Xi→k
i = k.

By the definition, we have

Inf1/2,i(hf ) = E
[∣∣hf (X) − hf (σiX)

∣∣]

= E

[∣∣∣E
[
f(Z)

∣∣Xi→1
]
− E

[
f(Z)

∣∣Xi→0
]∣∣∣
]
.

(4.4)

Now, if Xi = 1, then Yi = 1 if and only if Zi = 1, and if Xi = 0 then Zi = 0,
so the right-hand side of (4.4) is equal to

E

[∣∣∣2p · E
[
f(Z)

∣∣Xi→1, Zi = 1
]

+
(
1 − 2p

)
E
[
f(Z)

∣∣Xi→1, Zi = 0
]

−E
[
f(Z)

∣∣Xi→0, Zi = 0
]∣∣∣
]
.

But given Zi, the value of Xi is irrelevant to f(Z), so we have (with obvious
notation X{i}c)

Inf1/2,i(hf ) = 2p · E

[ ∣∣E
[
f(Zi→1) − f(Zi→0)

∣∣X{i}c

]∣∣
]

6 2p · E

[∣∣f(Zi→1) − f(Zi→0)
∣∣
]

= 2p · Infp,i(f),
(4.5)
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as required. Finally, note that the inequality in (4.5) be replaced by an equality
when f is monotone.

c) We are required to show that (fn)n>1 is NSp if and only if (hfn
)n>1 is

NS. Indeed, by Lemma 4.1, (fn)n>1 is NSp if and only if
∑

0<|S|6k f̂n
p
(S)2 → 0

as n→ ∞ for every fixed k, and by Proposition 4.2,

lim
n→∞

∑

0<|S|6k

ĥfn
(S)2 = 0 ⇔ lim

n→∞

∑

0<|S|6k

f̂n
p
(S)2 = 0

for every such k. But by Lemma 4.1 (applied with p = 1/2), we have that
(hfn

)n>1 is NS if and only if
∑

0<|S|6k ĥfn
(S)2 → 0 as n → ∞ for every fixed

k, so the result follows.
Finally, note that Var(hfn

) =
∑

S 6=∅ ĥfn
(S)2. Thus, by Proposition 4.2, if

p 6= 1/2 then

Var(hfn
) =

∑

S 6=∅

(
p

1 − p

)|S|
f̂n

p
(S)2 → 0

as n→ ∞ if and only if
∑

0<|S|6k f̂n
p
(S)2 → 0 as n→ ∞ for every fixed k, as

claimed.

The BKS Theorem for biased product measure follows almost immediately
from the uniform case, together with Proposition 2.4.

Proof of Theorem 1.4. Let (fn)n>1 be a sequence of functions fn : {0, 1}n →
[0, 1], let p ∈ (0, 1), and assume that IIp(fn) → 0 as n → ∞. We are required
to show that (fn)n>1 is NSp.

By part b) of Proposition 2.4, we have

II(hfn
) 6 4p̄2 · II(fn),

and so II(hfn
) → 0 as n → ∞. By the BKS Theorem (i.e., Theorem 1.4 in

the case p = 1/2), which was proved by Benjamini et al. (1999), it follows that
(hfn

)n>1 is NS. But, by part c) of Proposition 2.4, we have (hfn
)n>1 is NS if

and only if (fn)n>1 is NSp. Hence (fn)n>1 is NSp, as required.

5 The deterministic algorithm approach

In this section we shall prove Theorem 2.6. Throughout this section let X
and Z be the random variables defined in (2.2), so X ∈ {0, 1}n is uniformly
distributed, and Z ∈ {0, 1}n is given by Zi = XiYi, where Y is chosen according
to product measure with density 2p. (We assume again for simplicity that
p 6 1/2.)

We need the following definition.
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Definition 5.1 (The Majority function). For every K ⊆ [n] define the function
MK : {0, 1}n → {−1, 0, 1} by

MK(X) :=





1 if
∑

i∈K

(2Xi − 1) > 0

0 if
∑

i∈K

(2Xi − 1) = 0

−1 if
∑

i∈K

(2Xi − 1) < 0.

Theorem 2.6 will follow by combining the BKS Theorem with the following
two propositions, which were both obtained by Benjamini et al. (1999) in the
case p = 1/2. We shall generalize them to the biased setting.

Proposition 5.2. There exists a universal constant C < ∞ such that, if f :
{0, 1}n → [0, 1] is monotone, p ∈ (0, 1) and K ⊆ [n], then

∑

j∈K

Infp,j(f) 6
C

p̄

√
|K|E

[
f(Z)MK(X)

] (
1 +

√
− log E

[
f(Z)MK(X)

])
,

where p̄ = min(p, 1 − p).

Recall that the revealment of an algorithm with respect to a set K ⊆ [n] is
defined as δK(A) := maxj∈K Pp

(
A queries coordinate j

)
.

Proposition 5.3. There exists a universal constant C > 0 such that, if f :
{0, 1}n → [0, 1], p ∈ (0, 1), K ⊆ [n] and A ∈ A∗(f), then

E
[
f(Z)MK(X)

]
6 C δK(A)1/3 log n.

We begin by proving Proposition 5.2, which follows almost immediately
from the uniform case, together with Proposition 2.4.

Proof of Proposition 5.2. The proposition was proved by Benjamini et al. (1999,
Corollary 3.2) in the case p = 1/2; we apply this result to the function hf . It
follows that

∑

j∈K

Inf1/2,j(hf ) 6 C
√
|K|E

[
hf (X)MK(X)

] (
1 +

√
− log E

[
hf (X)MK(X)

])
.

for some C > 0. Next, observe that

E
[
hf (X)MK(X)

]
= E

[
E
[
f(Z)MK(X)

∣∣X
]]

= E
[
f(Z)MK(X)

]
.

Since f is monotone, we have Inf1/2,j(hf ) = 2p̄ · Infp,j(f), by Proposition 2.4,
and so the result follows.
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Also the proof of Proposition 5.3 will be based on the argument of Ben-
jamini et al. (1999, Section 4), but modified to fit in the current setting. The
strategy is roughly as follows: let V denote the set of coordinates queried by
the algorithm. Then with high probability, V ∩ K is small enough so that
MK(X) will (probably) be determined by the values of bits of X in K \V . By
a careful coupling, we can make these independent of the value of f , and thus
E
[
f(Z)MK(X)

]
is small.

We shall use Chernoff’s inequality; see e.g. Alon and Spencer (2008, Ap-
pendix A). Throughout the rest of the paper, ξn,p will denote a binomially
distributed random variable with parameters n ∈ N and p ∈ (0, 1).

Chernoff’s inequality. Let n ∈ N and p ∈ (0, 1), and let a > 0. Then

P

(∣∣ξn,p − pn
∣∣ > a

)
< 2 exp

(
− a2

4pn

)
(5.1)

if a 6 pn/2, and P
(
|ξn,p − pn| > a

)
< 2 exp

(
− pn/16

)
otherwise. If p = 1/2,

then (5.1) holds for every a ≥ 0.

We shall also use the following simple property of the binomial distribution,
which follows by Stirling’s formula.

Observation 5.4. There exists C > 0 such that for every n ∈ N, p ∈ (0, 1)
and a ∈ N,

P
(
ξn,p = a

)
6

C√
np(1 − p)

.

We are now ready to prove Proposition 5.3.

Proof of Proposition 5.3. We assume as before that p 6 1/2; the proof for
p > 1/2 is similar. Let f : {0, 1}n → [0, 1] and ∅ 6= K ⊆ [n] (if |K| = 0 then
both sides are zero). We begin by defining our coupling; the purpose is to make
the values of Xi outside V independent of those inside.

We shall obtain the random variables X and Z, defined in (2.2), as follows.
Let Z1 ∈ {0, 1}K , Z2 ∈ {0, 1}[n]\K and Z3, Z4 ∈ {0, 1}n be such that

P
(
Zj

i = 1
)

= p,

independently for each i and j. Similarly, let W 1 ∈ {0, 1}K , W 2 ∈ {0, 1}[n]\K

and W 3 ∈ {0, 1}n be independent of the Zj
i , and such that

P
(
W j

i = 1
)

=
1 − 2p

2(1 − p)
,
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independently for every i and j. Set Xj
i = max

{
Zj

i ,W
j
i

}
, and observe that

P
(
Xj

i = 1
)

= P
(
Zj

i = 1
)

+ P
(
Zj

i = 0
)
P
(
W j

i = 1
)

= p+
(1 − p)(1 − 2p)

2(1 − p)
=

1

2

for every i and j.

Next, we describe how to use the Xj
i and Zj

i to assign values to coordinates,
depending on the order in which they are queried by A. Indeed, run the
algorithm, and do the following:

(i) If j ∈ K is queried, and is the kth element of K to have been queried
by A, then set Zj := Z1

k and Xj := X1
k .

(ii) If j 6∈ K is queried, and is the kth element of [n] \ K to have been
queried by A, then set Zj := Z2

k and Xj := X2
k .

(iii) When the algorithm stops, let π : K \ V → [|K \ V |] be an arbitrary
bijection, and for each j ∈ K \ V set Zj := Z3

k and Xj := X3
k , where

k = π(j).

(iv) Finally, let Zj := Z4
j and Xj := X4

j for each j ∈ [n] \ (V ∪K).

Note that X is chosen uniformly and Z according to the product measure with
density p. Moreover, note that if Zi = 1 then Xi = 1, so the coupling is as
in (2.2), as claimed.

Let V ⊆ [n] be the (random) set of coordinates which are queried by the
algorithm, and note that V is independent of Z3 and W 3. We first show that
the set V ∩K is likely to be small. Indeed, we have

E
[
|V ∩K|

]
=
∑

j∈K

δA(j) 6 |K|δK(A),

and so, if we define

B1 :=
{
|V ∩K| > |K|δK(A)2/3

}
,

then P(B1) 6 δK(A)1/3, by Markov’s inequality.

Next we shall deduce that, with high probability, the difference between
the number of 0s and 1s on V ∩ K is less than that on K \ V . Indeed, let
Sk :=

∑k
j=1(2X

1
j − 1) denote this difference on the first k coordinates of X1,

and let Tk :=
∑k

j=1(2X
3
j − 1) denote the same thing for X3. Let

B2 :=
{
∃ k 6 |K|δK(A)2/3 : |Sk| >

√
|K|δK(A)1/3 log n

}
,
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and let
B3 :=

{
|T|K\V || 6

√
|K|δK(A)1/3 log n

}
.

Claim. P
(
B1 ∪B2 ∪B3

)
= O

(
δK(A)1/3 log n

)
.

Before proving the claim, let’s see how it implies the proposition. Set
Q =

(
B1 ∪B2 ∪B3

)c
, and let F be the sigma-algebra generated by Z1, Z2 and

W 1. Then

E
[
MK(X)1Q

∣∣F
]

= Pp

(
Q
∣∣F
)
E
[
MK(X)

∣∣F , Q
]

= 0,

by symmetry, since T|K\V | is equally likely to be positive or negative, and Q
implies |T|K\V || > |S|V ∩K||. Thus by the claim, and since F determines f(Z),
we have

∣∣E
[
f(Z)MK(X)

]∣∣ 6
∣∣E
[
f(Z)MK(X)1Q

]∣∣ + P(Qc)

=
∣∣∣E
[
f(Z)E

[
MK(X)1Q

∣∣F
]]∣∣∣ + P(Qc)

= O
(
δK(A)1/3 log n

)
,

as required.
Thus, it only remains to prove the claim, which follows easily using Cher-

noff’s inequality. We have already shown that P(B1) 6 δK(A)1/3, and so it
will suffice to prove corresponding bounds for B2 and B3 ∩Bc

1. The bound for
B2 follows using Chernoff and the union bound. Indeed, let t = |K|δK(A)2/3,
and recall that X1 was chosen uniformly. Thus, by Chernoff’s inequality,

P(B2) 6

t∑

k=1

P

(∣∣2 · ξk,1/2 − k
∣∣ >

√
|K|δK(A)1/3 log n

)

6 2
t∑

k=1

exp

(
−|K|δK(A)2/3 log2 n

8k

)
6 t · e− log2 n/8

6 δK(A)1/3,

as required.
Finally, we shall bound the probability of B3 ∩Bc

1; that is, the probability
that

|V ∩K| 6 t = |K|δK(A)2/3 and |T|K\V || 6
√
|K|δK(A)1/3 log n.

By Observation 5.4 and the union bound, we have

P

(∣∣2 · ξm,1/2 −m
∣∣ 6

√
|K|δK(A)1/3 log n

)
6
√

|K|δK(A)1/3 log n · C1√
m
,
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for some constant C1 > 0 and every m > 1. Since V is determined by the
information in F , and since X3 is uniformly distributed, we have

P(B3 ∩Bc
1) = E

[
P(Bc

1 ∩B3|F)
]

= E
[
1Bc

1
· P(B3|F)

]

6 E

[
1Bc

1
·
√

|K|δK(A)1/3 log n
C1√

|K \ V |

]

6
√

|K|δK(A)1/3 log n
2C1√
3|K|

= O
(
δK(A)1/3 log n

)
,

where we in the second inequality used that on Bc
1, we have

|K \ V | > |K| − t > 3|K|/4,

assuming that t 6 |K|/4 (since otherwise δK(A) > 1/8, and the proposition is
trivial). This completes the proof of the claim, and hence of the proposition
as well.

It is now easy to deduce Theorem 2.6. We shall use the following straight-
forward optimization lemma.

Lemma 5.5. If a1 > a2 > . . . > an > 0, then

max

{
n∑

i=1

c2i : c1 > . . . > cn > 0, and

k∑

i=1

ci 6

k∑

i=1

ai for all k ∈ [n]

}
=

n∑

i=1

a2
i .

We are ready to prove Theorem 2.6.

Proof of Theorem 2.6. Let r ∈ N be fixed, and let (fn)n>1 be a sequence of
monotone functions fn : {0, 1}n → [0, 1]. For each n ∈ N, let A1, . . . ,Ar ∈
A∗(f) and let K1, . . . ,Kr be a partition of [n]. Let p ∈ (0, 1), and suppose that

δKi
(Ai)

(
log n

)6 → 0

as n → ∞ for each i ∈ [r]. We shall show that IIp(fn) → 0 as n → ∞, and
hence deduce, by Theorem 1.4, that (fn)n>1 is NSp.

Choose C > 0 so that Propositions 5.2 and 5.3 both hold for C, and
assume that n ∈ N is sufficiently large so that δKi

(Ai)
1/3 log n 6 1/(2C) for

each i ∈ [r]. To bound IIp(fn) =
∑n

j=1 Infp,j(fn)2 from above, we shall first
bound

∑
j∈K Infp,j(fn) for every K ⊆ [n], and then apply Lemma 5.5. Let

us assume for simplicity that δKi
(Ai) > 1/n for some i ∈ [r]; the other case

follows by an almost identical calculation.
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Claim. For every K ⊆ [n], we have

∑

j∈K

Infp,j(fn) 6
C2r

p̄

√
|K|max

i∈[r]

{
δKi

(Ai)
1/3
}(

log n
)3/2

.

Proof of claim. By Proposition 5.2, for every K ⊆ [n] we have

∑

j∈K

Infp,j(fn) 6
C

p̄

√
|K|E

[
fn(Z)MK(X)

] (
1 +

√
− log E

[
fn(Z)MK(X)

])
.

Moreover, by Proposition 5.3, for every i ∈ [r] and every K ⊆ Ki,

E
[
fn(Z)MK(X)

]
6 C δKi

(Ai)
1/3 log n.

Recall that C δKi
(Ai)

1/3 log n 6 1/2, and note that x
(
1 +

√− log x
)

is increas-
ing on (0, 1/2). Thus, if K ⊆ Ki for some i ∈ [r], then

∑

j∈K

Infp,j(fn) 6
C2

p̄

√
|K|max

i∈[r]

{
δKi

(Ai)
1/3
}(

log n
)3/2

,

since maxi∈[r] δKi
(Ai) > 1/n. Summing over i ∈ [r], the claim follows.

Without loss of generality, assume that

Infp,1(fn) > . . . > Infp,n(fn),

and apply Lemma 5.5 with cj = Infp,j(fn), and

aj =
C2r

p̄
max
i∈[r]

{
δKi

(Ai)
1/3
}(

log n
)3/2(√

j −
√
j − 1

)
.

By the claim applied to K = [k], we have, for each k ∈ [n],

k∑

j=1

cj =

k∑

j=1

Infp,j(fn) 6
C2r

p̄

√
kmax

i∈[r]

{
δKi

(Ai)
1/3
}(

log n
)3/2

=

k∑

j=1

aj ,

and hence, since p is fixed and
∑

j

(√
j −√

j − 1
)2

= O
(
log n

)
, by Lemma 5.5

there is C ′ <∞ such that

n∑

j=1

Inf2p,j(fn) 6

n∑

j=1

a2
j =

C2r

p̄
max
i∈[r]

{
δKi

(Ai)
2/3
}(

log n
)3 n∑

j=1

(√
j −

√
j − 1

)2

6
C ′

p̄
max
i∈[r]

{
δKi

(Ai)
2/3
}(

log n
)4 → 0

as n→ ∞, as claimed. Thus, by Theorem 1.4, (fn)n>1 is NSp, as required.
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We finish this section by proving the following closely related result, which
was also proved by Benjamini et al. (1999, Theorem 1.5) in the case p = 1/2.
In fact we shall not need it, but since it follows immediately from the uniform
case and Proposition 2.4, and may be of independent interest, we include it for
completeness.

Given a function h : {0, 1}n → [0, 1], define

Λ(h) := max
K⊆[n]

E
[
h(X)MK(X)

]
.

In particular, Λ(hf ) = max
K⊆[n]

E
[
f(Z)MK(X)

]
.

Theorem 5.6. There exists a constant C > 0 such that, if f : {0, 1}n → [0, 1]
is monotone and p ∈ (0, 1), then

IIp(f) 6
C

min(p2, (1 − p)2)
Λ2(hf )

(
1 − log Λ(hf )

)
log n.

Proof. We apply the uniform case to the function hf . By Proposition 2.4, it
follows that

4p̄2 · IIp(f) = II1/2(hf ) 6 CΛ2(hf )
(
1 − log Λ(hf )

)
log n,

as required.

6 Hypergraphs

In this section we shall prove Theorem 1.6, which will allow us to bound the
variance (in Pλc/p) of the probability P

(
H(ηp, RN , •)| η

)
. Although one can

think of all the results in this section in terms of events on the cube {0, 1}n, it
will be convenient for us to use the language of hypergraphs. For background
on graph theory, see Bollobás (1998).

Recall that a hypergraph H is just a collection of subsets of [n], which
we refer to as edges of H. We shall write Hm for the m-uniform hypergraph
contained in H, that is, the collection of edges with m elements, and recall that
for B ⊆ [n],

rH(B, p) := P
(
Bp ∈ H

)
.

The proof of Theorem 1.6 is in two parts: first we shall prove the corre-
sponding result for sets of fixed size. That is, instead of considering [n]q we
consider a uniformly chosen set Bk ⊆ [n] of size k and instead of [n]q ∩ [n]p, we
consider a uniformly chosen subset of Bk of size m 6 k.
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6.1 The proof for sets of fixed size

Let us begin by informally illustrating the central idea with a simple example.
Let G be a (large) graph with vertex set [n], and consider the restriction of G
to a random subset S ⊆ [n] selected uniformly at random from the sets of size
k. If k = 2 then the resulting graph G[S] will have density either 0 or 1, which
will typically be quite far from the density of the original graph. However, once
k is a large constant the density of G[S] is already unlikely to be far from the
density of G.

The following proposition extends this result to hypergraphs. Given a hy-
pergraph H on vertex set [n], a subset S ⊆ [n] and an integer 0 6 m 6 n,
define

Xm(S) :=
∣∣{e ∈ Hm : e ⊆ S}

∣∣,

and X̃m(S) := Xm(S)/
(|S|

m

)
.

Proposition 6.1. Let n,m, k ∈ N, and suppose that n > k > m, and that
n > 2m3 and n > km/2. Let H be a hypergraph on vertex set [n], and let
Bk ⊆ [n] be a uniformly chosen subset of size k. Then

Var
(
Xm(Bk)

)
6

48m

k

(
k

m

)2

and

Var
(
X̃m(Bk)

)
6

48m

k
.

We remark that with a little extra effort, one could improve the upper
bounds in Proposition 6.1 by a factor of βm := e(Hm)/

(n
m

)
. Since we shall not

need such a strengthening, however, we leave it to the reader to verify that
that follows from the proof. In order to keep the presentation simple, we also
make no attempt to optimize the constant.

We shall use some straightforward relations between binomial coefficients
in the proof of Proposition 6.1; we state them here for convenience.

Observation 6.2. Let n, k,m, t be integers such that k > m > t > 1 and
n > 2m3. Then

a)

(
k

m

)2

=
m∑

t=0

(
k

2m− t

)(
2m− t

m

)(
m

t

)
.

b)

(
m− 1

t

)(
n

m

)2

6

(
n

2m− t

)(
2m− t

m

)(
n− 1

t

)
.
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c)

(
m− 1

t− 1

)(
n− t− 1

m− t

)(
n

m

)
6

2t

m

(
n

2m− t

)(
2m− t

m

)(
m

t

)
.

Proof. For a), note that both sides count the number of (ordered) pairs of m-
subsets of set of size k; on the right-hand side we have partitioned according
to the size of their intersection. By convention,

(n
k

)
:= 0 for k > n.

For b) and c), note that the case m = t is trivial. So, assume n > 2m3 and
m > t > 1, simply cancel common terms and note that it suffices to prove that

x · (n −m)!(n −m)!

(n− 2m+ t)!(n− t)!
> 1, (6.1)

where in b) x = m(n−t)
n(m−t) and in c) x = 2(n−t)

n−m . Since (a + c)/(b + c) > a/b for
b > a > 0 and c > 0, we obtain

(n−m)!(n −m)!

(n− 2m+ t)!(n − t)!
=

(n− 2m+ t+ 1) . . . (n −m)

(n−m+ 1) . . . (n− t)

>

(
n− 2m

n−m

)m−t

> 1 − m2

n−m
,

where the last inequality follows since (1 − a)m > 1 − m · a for all a 6 2.
Moreover,

m(n− t)

n(m− t)
>

m(n− 1)

n(m− 1)
and

2(n− t)

n−m
> 2.

To prove b) via (6.1), it therefore suffices to show that m(n−1)
n(m−1) ·

(
1− m2

n−m

)
> 1,

or equivalently that n(n−m3− 2m)+m3 +m2 > 0. For c) it similarly suffices

to show that 1 − m2

n−m >
1
2 , which is equivalent to n > 2m2 + m. Certainly,

n > 2m3 is sufficient in both cases.

We shall use Bey’s inequality in order to prove the following lemma, from
which Proposition 6.1 follows easily. Let

Yt(k,m) :=

(
k

2m− t

)(
2m− t

m

)(
m

t

)
,

which counts the number of pairs of m-subsets of a fixed k-set which have t
common elements.

Lemma 6.3. Let k,m, n ∈ N, with n > k > 2m and n > 2m3. Let H be a
hypergraph on [n], and let Bk ⊆ [n] be a uniformly chosen subset of size k.
Then

Var
(
Xm(Bk)

)
6 2βm

m∑

t=1

(
t

m
+

k

2n

)
Yt(k,m).
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Proof. Let α(H, t) :=
∣∣{(e, f) : e, f ∈ H and |e ∩ f | = t

}∣∣ denote the number
of pairs (e, f) of edges of H with t common vertices. We first claim that

E
[
Xm(Bk)

2
]

=

m∑

t=0

α(Hm, t)

(
k

2m−t

)
(

n
2m−t

) . (6.2)

Indeed, writing 1A for the indicator function of the event A, and
([n]

k

)
for the

collection of subsets of [n] of size k, we obtain

E
[
Xm(Bk)

2
]

=
1(n
k

)
∑

S∈([n]
k )

∑

e,f∈Hm

1{e∪f⊆S}

=
1(n
k

)
m∑

t=0

∑

e,f∈Hm

1{|e∩f |=t}
∑

S∈([n]
k )

1{e∪f⊆S} .

But if |e∩ f | = t then |e∪ f | = 2m− t, and so there are exactly
(n−2m+t
k−2m+t

)
sets

S of size k such that e ∪ f ⊆ S. Moreover,
(n−2m+t
k−2m+t

)( n
2m−t

)
=
(n
k

)( k
2m−t

)
, and

hence

E
[
Xm(Bk)

2
]

=

m∑

t=0

∑

e,f∈Hm

1{|e∩f |=t}

(
k

2m−t

)
(

n
2m−t

) ,

as claimed.

Next, observe that α(Hm, t) 6 d2(Hm, t), where d2(Hm, t) denotes the sum
of dH(T )2 over all t-sets in [n], and recall that e(Hm) = βm

(
n
m

)
. Hence, by

Bey’s inequality and Observation 6.2 part b) and c),

α(Hm, t)

( k
2m−t

)
( n
2m−t

)

6

((
m
t

)(
m−1

t

)
(n−1

t

) e(Hm)2 +

(
m− 1

t− 1

)(
n− t− 1

m− t

)
e(Hm)

) ( k
2m−t

)
( n
2m−t

)

6

(
β2

m +
2t

m
· βm

)(
k

2m− t

)(
2m− t

m

)(
m

t

)

(6.3)

for every 1 6 t 6 m. Moreover, α(Hm, 0) 6 e(Hm)2 = β2
m

(n
m

)2
, so by part a)

of Observation 6.2

α(Hm, 0)

(
k

2m

)
( n
2m

) 6 β2
m

(
n

m

)2
(

k
2m

)
( n
2m

) = β2
m

(
k

2m

)
( n
2m

)
m∑

t=0

(
n

2m− t

)(
2m− t

m

)(
m

t

)
.
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Cancelling common terms, we easily see that for each 1 6 t 6 m

( k
2m

)( n
2m−t

)
( n
2m

)( k
2m−t

) 6

(
k

n

)t

6
k

n
.

Hence,

α(Hm, 0)

( k
2m

)
( n
2m

) 6 β2
m

(
k

2m

)(
2m

m

)
+
k

n
· β2

m

m∑

t=1

(
k

2m− t

)(
2m− t

m

)(
m

t

)
.

(6.4)
Finally,

E
[
Xm(Bk)

]2
= β2

m

(
k

m

)2

= β2
m

m∑

t=0

(
k

2m− t

)(
2m− t

m

)(
m

t

)
, (6.5)

by part a) of Observation 6.2. Combining (6.2), (6.3), (6.4) and (6.5), we
obtain

Var
(
Xm(Bk)

)
6

m∑

t=1

(
2t

m
· βm +

k

n
· β2

m

)(
k

2m− t

)(
2m− t

m

)(
m

t

)
,

as required.

It is easy to deduce Proposition 6.1 from Lemma 6.3.

Proof of Proposition 6.1. We deduce the claimed bound on Var
(
Xm(Bk)

)
;

the second statement follows immediately from the first, since Xm(Bk) =( k
m

)
X̃m(Bk). The result is trivial for m 6 k 6 48m, so we can assume that

k > 48m. (In fact we shall only use that k > 4m.)
First, note that by Lemma 6.3, and since n > km/2, we have

Var
(
Xm(Bk)

)
6 2

m∑

t=1

t+ 1

m
Yt(k,m), (6.6)

where Yt(k,m) =
( k
2m−t

)(2m−t
m

)(m
t

)
. We shall see that most of the weight of

the Yt(k,m) is concentrated on terms with small t. We split into two cases,
depending on the size of m.

Case 1. k > 3m2.

We shall prove that

m∑

t=1

t+ 1

m
Yt(k,m) 6

4

m
Y1(k,m) 6

4m

k

(
k

m

)2

. (6.7)
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Indeed, first note that

(t+ 2)Yt+1(k,m)

(t+ 1)Yt(k,m)
=

(t+ 2)(m− t)2

(t+ 1)2(k − 2m+ t+ 1)

6
3m2

2(t+ 1)(k − 2m)
6

1

2
,

(6.8)

since k − 2m > k/2 and (t+ 1)k > 2k > 6m2. This proves the first inequality
in (6.7); for the second, observe that

Y1(k,m) =
m2

k
· (k −m)!(k −m)!

(k − 2m+ 1)!(k − 1)!
·
(
k

m

)2

6
m2

k

(
k

m

)2

,

as claimed. By (6.6), we obtain Var
(
Xm(Bk)

)
6

8m

k

(
k

m

)2

.

Case 2. k 6 3m2.

Let a :=
⌊
6m2/k

⌋
, and observe that (6.8) holds whenever t > a. Thus

m∑

t=a

t+ 1

m
Yt(k,m) 6

2(a+ 1)

m
Ya(k,m) 6

18m

k

(
k

m

)2

,

since Ya(k,m) 6
( k
m

)2
and a+ 1 6 9m2/k. Moreover, it is immediate that

a−1∑

t=1

t+ 1

m
Yt(k,m) 6

a

m

a−1∑

t=1

Yt(k,m) 6
6m

k

(
k

m

)2

.

By (6.6), we obtain Var
(
Xm(Bk)

)
6

48m

k

(
k

m

)2

, as required.

6.2 The proof for random-sized sets

We shall now deduce Theorem 1.6 from Proposition 6.1. The task can be
divided into two part, via the conditional variance formula,

Var(X) = Var
(
E[X |Y ]

)
+ E

[
Var(X |Y )

]
, (6.9)

applied with X = rH
(
[n]q, p

)
and Y =

∣∣[n]q
∣∣. To illustrate the idea behind the

proof, let K ∼ Bin(n, q) and given K, let M ∼ Bin(K, p). Roughly, we obtain
upper bounds on the right-hand side of (6.9) as follows.

Proposition 6.1 will be applied to bound the latter of the two terms. By
Chernoff’s inequality M 6 2pK occurs with high probability when pK is large,
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which in turn is likely to occur when pqn is large. Thus, if pqn is large, then
M/K 6 2p with high probability, which together with Proposition 6.1, shows
that E

[
Var

(
XM (BK)

∣∣K
)]

is small.
The size of [n]q, here represented by K, will roughly fluctuate by

√
qn

around its mean. This will influence the mean of M , representing the size of
[n]q ∩ [n]p, roughly by p

√
qn. However, M will naturally vary by

√
pqn which

is much larger than p
√
qn when p is small. Hence, conditioning on the size of

[n]q will not affect the size of [n]q ∩ [n]p much.
As a first step towards Theorem 1.6, we obtain a result for fixed k and a

randomly chosen m ∼ Bin(k, p). Indeed, given a hypergraph H on vertex set
[n], a subset S ⊆ [n] of size k, and p ∈ (0, 1), observe that

rH(S, p) =
k∑

m=0

P
(
ξk,p = m

)
X̃m(S),

where ξk,p ∼ Bin(k, p), as in the previous section. The following proposition is
an easy consequence of Proposition 6.1.

Proposition 6.4. Let p ∈ (0, 1) and let n, k ∈ N, with n > 16(pk)3 and
n > pk2. Let H be a hypergraph on vertex set [n], and let Bk ⊆ [n] be a
uniformly chosen subset of size k. Then

Var
(
rH(Bk, p)

)
6 96p + 4exp

(
− pk/16

)
.

Proof. The result follows from Proposition 6.1 and Chernoff’s inequality, since
if m 6 2pk then the variance of X̃m(Bk) is at most 96p, and the probability
that ξk,p > 2pk is at most 2e−pk/16.

To spell it out, note that if p 6 1/2 and m 6 2pk, then m 6 k, n > 2m3

and n > km/2, and so, by Proposition 6.1,

Var
(
X̃m(Bk)

)
6

48m

k
6 96p.

Since Var
(
X̃m(Bk)

)
6 1, the same bound trivially holds for p > 1/2.

Now since rH(Bk, p) =
∑k

m=0 P
(
ξk,p = m

)
X̃m(Bk),

Var
(
rH(Bk, p)

)
=

∑

m1,m2

P
(
ξk,p = m1

)
P
(
ξk,p = m2

)
Cov

(
X̃m1(Bk), X̃m2(Bk)

)
.

By Cauchy-Schwarz’s inequality, we have Cov(X,Y ) 6
√

Var(X)Var(Y ), and
thus

Var
(
rH(Bk, p)

)

6
∑

m1,m2

P
(
ξk,p = m1

)
P
(
ξk,p = m2

)√
Var

(
X̃m1(Bk)

)
Var

(
X̃m2(Bk)

)

6 96p + 2 · P
(
ξk,p > 2pk

)
6 96p + 4exp

(
− pk/16

)
,
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where the last step is by Chernoff’s inequality, as required.

In order to deduce Theorem 1.6 from Proposition 6.4, we shall use the fol-
lowing simple bounds on binomial random variables, which follow immediately
from Chernoff’s inequality.

Observation 6.5. Let p ∈ (0, 1/2], q ∈ (0, 1) and n ∈ N, be such that pqn >

32 log(1/p). Then

a) P

(∣∣ξn,q − qn
∣∣ > 2

√
qn log(1/p)

)
6 2p.

b) P

(
ξn,q 6

16

p
log

1

p

)
6 P

(
ξn,q 6 qn/2

)
6 2e−qn/16 6 2p.

We shall also need the following bound, relating nearby binomial coeffi-
cients.

Lemma 6.6. Let p ∈ (0, 1/4], q ∈ (0, 1) and n ∈ N satisfy pqn > 16 log(1/p).
If

qn − 2
√
qn log(1/p) 6 k 6 k′ 6 qn + 2

√
qn log(1/p),

and
∣∣m− pqn

∣∣ 6 4
√
pqn log(1/p), then

P
(
ξk′,p = m

)

P
(
ξk,p = m

) = 1 +O

(√
p log

1

p

)
.

Proof. First observe that
√
qn log(1/p) 6

√
pqn/4, by assumption, so that

k > qn−
√
pqn

2
>

3qn

4
, and 0 6 m 6 2pqn 6

qn

2
.

In particular, k > m. For each k < ℓ 6 k′,

P
(
ξℓ,p = m

)

P
(
ξℓ−1,p = m

) =
ℓ(1 − p)

ℓ−m
= 1 +

m− pℓ

ℓ−m
= 1 +

m−pℓ
ℓ

1 − m
ℓ

.

Next observe that 0 6
m
ℓ 6

2
3 , and

∣∣∣∣
m− pℓ

ℓ

∣∣∣∣ 6

4
√
pqn log 1

p + 2p
√
qn log 1

p

3
4qn

6

20
√
p log 1

p

3
√
qn

.

In particular,
P
(
ξℓ,p = m

)

P
(
ξℓ−1,p = m

) 6 1 + 10

√
p

qn
log

1

p
.
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Expressing the quantity of interest as a telescoping product, we obtain

P
(
ξk′,p = m

)

P
(
ξk,p = m

) =
k′∏

ℓ=k+1

P
(
ξℓ,p = m

)

P
(
ξℓ−1,p = m

)

6

(
1 + 10

√
p

qn
log

1

p

)k′−k

= 1 +O

(√
p log

1

p

)
,

where we in the final step used that (1 + x)m 6 emx 6 1 + mxemx, that
k′ − k 6 4

√
qn log(1/p) and the fact that

√
p log 1

p is bounded. This provides
the upper bound, and a lower bound is obtained similarly.

We are now ready to prove Theorem 1.6.

Proof of Theorem 1.6. The result is trivial for any p ∈
(

1
4 ,

1
2

]
, since the

variance is at most 1. Let 0 < p 6 1/4, 0 < q < 1 and n ∈ N, and sup-
pose that n > 128(pqn)3, n > 4p(qn)2 and pqn > 32 log(1/p). Observe that
therefore Observation 6.5 and Lemma 6.6 applies, and that the assumptions of
Proposition 6.4 are met for every k 6 2qn.

Apply the conditional variance formula (6.9) with X = rH
(
[n]q, p

)
and

Y =
∣∣[n]q

∣∣ to obtain

Var
(
rH
(
[n]q, p

))
= Var

(
E

[
rH
(
[n]q, p

) ∣∣∣
∣∣[n]q

∣∣
])

+ E

[
Var

(
rH
(
[n]q, p

) ∣∣∣
∣∣[n]q

∣∣
)]
.

(6.10)

Note that in the former term on the right-hand side, the variance is over the
size k of [n]q, and the expectation over the (uniform) choice of a subset in [n]
of size k. In the latter, the variance is over the uniform choice of the set [n]q
of prescribed size. First, we use Proposition 6.4 and Observation 6.5 to show
that the latter part of (6.10) is small.

Claim 1. E

[
Var

(
rH
(
[n]q, p

) ∣∣∣
∣∣[n]q

∣∣
)]

6 104p.

Proof of Claim 1. First note that
∣∣[n]q

∣∣ ∼ Bin(n, q), so if Bk ⊆ [n] is a uni-
formly chosen set of size k, we have the expression

E

[
Var

(
rH
(
[n]q, p

) ∣∣∣
∣∣[n]q

∣∣
)]

=
n∑

k=0

Var
(
rH(Bk, p)

)
P
(
ξn,q = k

)
.

Now, P
(
ξn,q 6

16
p log 1

p

)
6 2p, by Observation 6.5. On the other hand, by

Chernoff’s inequality P(ξn,q > 2qn) 6 2 exp(−qn/16) 6 2p. For k 6 2qn
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Proposition 6.4 applies, as observed above. So if 16
p log 1

p 6 k 6 2qn, then we
have

Var
(
rH(Bk, p)

)
6 100p,

and the claim follows.

For each k ∈ [n], set αk := E
[
rH(Bk, p)

]
, where Bk ⊆ [n] is a uniformly

chosen set of size k. LetK andK ′ be independent random variables with distri-
bution Bin(n, q). Note that E

[
rH
(
[n]q, p

) ∣∣ ∣∣[n]q
∣∣ = k

]
= αk, so the remaining

term in (6.10) may be re-written as

Var
(
E

[
rH
(
[n]q, p

) ∣∣∣
∣∣[n]q

∣∣
])

= Var
(
αK

)
=

1

2
E

[(
αK − αK ′

)2]
.

Again by Observation 6.5, the probability that

qn− 2

√
qn log

1

p
6 K,K ′

6 qn+ 2

√
qn log

1

p
(6.11)

is at least 1 − 4p. Hence, it will suffice to prove the following claim.

Claim 2. For qn− 2
√
qn log 1

p 6 k 6 k′ 6 qn+ 2
√
qn log 1

p

∣∣αk′ − αk

∣∣ = O

(√
p log

1

p

)
.

Proof of Claim 2. Note that αk can be expressed as

αk = E
[
rH(Bk, p)

]
=

k∑

m=0

P
(
ξk,p = m

)
E
[
X̃m(Bk)

]
=

k∑

m=0

P
(
ξk,p = m

)
βm.

Set S :=
{
m : |m− pqn| 6 4

√
pqn log 1

p

}
, and re-write the difference as

∣∣αk′ − αk

∣∣ =

∣∣∣∣∣

k′∑

m=0

P
(
ξk′,p = m

)
βm −

k∑

m=0

P
(
ξk,p = m

)
βm

∣∣∣∣∣

6
∑

m∈S

∣∣∣P
(
ξk′,p = m

)
− P

(
ξk,p = m

)∣∣∣

+ P
(
ξk′,p 6∈ S

)
+ P

(
ξk,p 6∈ S

)
.

(6.12)

Next, we show that P
(
ξk,p 6∈ S

)
6 2p; the same is obtained for k replaced by

k′ analogously. By the triangle inequality, we find

∣∣ξk,p − pqn
∣∣ 6

∣∣ξk,p − pk
∣∣+ p|k − qn| 6

∣∣ξk,p − pk
∣∣+ 2p

√
qn log

1

p
.
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Since pqn > log 1
p and p 6

1
4 , we obtain k 6 2qn. As a consequence

P

(∣∣ξk,p − pqn
∣∣ > 4

√
pqn log(1/p)

)
6 P

(∣∣ξk,p − pk
∣∣ > 3

√
pqn log(1/p)

)

6 P

(∣∣ξk,p − pk
∣∣ > 2

√
pk log(1/p)

)
6 2p,

via Chernoff’s inequality. Hence, P
(
ξk,p 6∈ S

)
6 2p and also P

(
ξk′,p 6∈ S

)
6 2p.

The claim now follows from (6.12) and Lemma 6.6, which states that

∣∣∣P
(
ξk′,p = m

)
− P

(
ξk,p = m

)∣∣∣ = O

(√
p log

1

p

)
· P
(
ξk,p = m

)

for every m ∈ S.

Theorem 1.6 is easily deduced from Claim 1 and 2, and (6.11). Indeed,

Var
(
rH
(
[n]q, p

))
=

1

2
E

[(
αK − αK ′

)2]
+ 104p

6 P

(∣∣ξn,q − qn
∣∣ > 2

√
qn log(1/p)

)
+ O

(
p

(
log

1

p

)2)

= O

(
p

(
log

1

p

)2)
,

as required.

We end the section by presenting an easy consequence of Theorem 1.6. It
provides a general framework from which Proposition 2.3 can be deduced from
Theorem 2.2. It follows almost immediately from Theorem 1.6, together with
Chebyshev’s inequality.

Corollary 6.7. Given ε > 0, there exists p∗ = p∗(ε) > 0 such that, if p ∈
(0, p∗), q ∈ (0, 1) and n ∈ N satisfy n > 128(pqn)3, n > 4p(qn)2 and pqn >

32 log 1
p , then

P

(∣∣∣P
(
[n]p ∩ [n]q ∈ H

∣∣ [n]q
)
− P

(
[n]pq ∈ H

)∣∣∣ > ε

)
< ε,

for every hypergraph (event) H ⊆ {0, 1}n.

Proof. Fix ε > 0. According to Theorem 1.6 there exists a universal constant
C < ∞ such that for all p ∈

(
0, 1

2

)
, q ∈ (0, 1) and n ∈ N that satisfy n >

128(pqn)3, n > 4p(qn)2 and pqn > 32 log 1
p

Var
(
rH
(
[n]q, p

))
6 Cp

(
log

1

p

)2

.
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Pick p∗ = p∗(ε) such that Cp
(
log 1

p

)2
6 ε3 for all p ∈ (0, p∗). Hence, for all

p ∈ (0, p∗), q ∈ (0, 1) and n ∈ N that satisfy the given conditions, we obtain
via Chebyshev’s inequality that

P

(∣∣∣P
(
[n]p ∩ [n]q ∈ H

∣∣ [n]q
)
− P

(
[n]pq ∈ H

)∣∣∣ > ε

)
6

Var
(
rH
(
[n]q, p

))

ε2
6 ε.

It is immediately seen from Corollary 6.7 that its statement could alterna-
tively be formulated as follows.

Corollary 6.8. Given c ∈ (0, 1) and ε ∈
(
0, c

2

)
, there exists p∗ = p∗(ε) > 0

such that, if r ∈ (0, p∗) and n ∈ N satisfy n > 128(rn)3, n > 4(rn)2/p∗ and
rn > 32 log 1

p∗ , then

P
(
[n]r ∈ H

)
> c implies P

(
P
(
[n]p∗ ∩ [n]q ∈ H

∣∣ [n]q
)
< ε
)
< ε

for each event (hypergraph) H ⊆ {0, 1}n, where q = r/p∗.

7 Proof of Theorem 1.2

In this section we shall put together the pieces, and prove Theorem 1.2. We
shall first deduce Propositions 2.1 and 2.3 from Theorem 1.6; then we shall
use the deterministic algorithm method to prove Theorem 1.5; finally we shall
deduce Theorem 1.2.

7.1 Variance bound – Proof of Proposition 2.1 and 2.3

We shall prove the following slight generalization of Proposition 2.1, which
follows easily from Theorem 1.6, together with an easy discretization argument.

Proposition 7.1. lim
p→0

lim sup
a, b→∞

Varλc/p

(
P
(
H(ηp, Ra×b, •)

∣∣ η
))

= 0.

In order to apply Theorem 1.6 we need to construct a discretization of the
rectangle Ra×b. In order to do so, for each δ > 0 consider the lattice

Λ = Λδ
a,b := R(a+2)×(b+2) ∩ δZ2,

and set n = |Λδ
a,b|, the number of vertices of δZ2 in the rectangle R(a+2)×(b+2).

(Note that we consider the rectangle R(a+2)×(b+2) because it contains all the
points which can affect the event H(η,Ra×b, •).) Let p > 0, and set

q = q(n) := 1 − e−λcδ2/p. (7.1)
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Let Λq denote a random q-subset of Λ, and Λq ∩Λp denote a random p-subset
of Λq. Of course, the distribution of Λq ∩ Λp equals that of Λpq.

The following lemma is an immediate consequence of Theorem 1.6.

Lemma 7.2. There exists a universal constant C < ∞ such that for each
p ∈

(
0, 1

2

]
, if a = a(p), b = b(p) > 1 are sufficiently large and δ = δ(a, b) > 0

is sufficiently small, then the following holds. Let Λ = Λδ
a,b, n = |Λ| and q > 0

be as described above. Then

Var
(
P
(
H(Λq ∩ Λp, Ra×b, •)

∣∣Λq

))
6 Cp

(
log

1

p

)2

.

Proof. We apply Theorem 1.6 to the hypergraph H which encodes crossings
of the rectangle Ra×b. That is, we identify the vertices of Λ = Λδ

a,b with the
elements of [n], and define H by the relation that for any B ⊆ [n]

B ∈ H ⇔ H
(
B,Ra×b, •

)
occurs.

It only remains to check that for every fixed p the conditions of Theorem 1.6
are satisfied if a and b are chosen sufficiently large, and thereafter δ is chosen
sufficiently small. Clearly, there are 0 < c1 6 c2 < ∞ such that c1

ab
δ2 6 n 6

c2
ab
δ2 . One can further show that δ2 6

p
λc

implies λcδ2

2p 6 q 6
λcδ2

p , and
consequently that

c1
λcab

2p
6 pqn 6 c2

λcab

p
.

Thus, choose ab large so that pqn > 32 log 1
p holds, and thereafter δ2 6

p
λc

small enough for n > 128(pqn)3 and n > 4(pqn)2/p to hold.

In order to deduce Proposition 7.1, we need to provide a coupling between
our two probability spaces – one discrete, the other continuous – which approx-
imately maps the crossing event H(η,Ra×b, •) onto itself (in the sense of (7.2)).
More precisely, we will construct a mapping ψ from Ω to subsets of Λ = Λδ

a,b

such that when η ∈ Ω is chosen according to Pλc/p, then
(
η, ψ(η)

)
represents

a coupling between a Poisson point process of intensity λc/p and a q-subset of
Λ, where q is as in (7.1).

To construct the mapping, cover R(a+2)×(b+2) with disjoint δ × δ squares,

centred on elements of Λδ
a,b, and let ψ map points of η to the centre of the

square in which they lie. That is, given η ∈ Ω, let

ψ(η) :=
{
y ∈ Λδ

a,b : x ∈ y + (−δ/2, δ/2]2 for some x ∈ η
}
.

Observe that if η is picked according to Pλc/p, then ψ(η) is distributed as Λq.

We define a bad event Eδ
a,b ⊆ Ω, by saying that Eδ

a,b occurs if either of the
following holds:
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a) Two points of η lie in the same δ× δ square, i.e.,
∣∣∣η∩

(
y+

(
− δ

2 ,
δ
2

]2 )∣∣∣ > 1

for some y ∈ Λδ
a,b.

b) There exist x, y ∈ η ∩R(a+2)×(b+2) with 2 − 2δ 6 ‖x− y‖2 6 2 + 2δ.

c) There exist x ∈ η such that 1 − δ 6 ‖x− ∂Ra×b‖2 6 1 + δ,

where ∂Ra×b denotes the boundary of Ra×b and the distance between a point
and a set is defined in the canonical way. Observe that a) and b) implies that,
if Eδ

a,b does not occur, then the graphs naturally induced by the points of η
and ψ(η) (connecting any two point at distance at most 2) are identical, and
the vertices are in 1-1 correspondence. Hence, together with c), we have that
for every η ∈ Ω \ Eδ

a,b,

{
ξ ⊆ η : H(ξ,Ra×b, •) occurs

}
=
{
ξ ⊆ η : H(ψ(ξ), Ra×b, •) occurs

}
. (7.2)

In particular, we find that if P
(
H(ηp, Ra×b, •) | η

)
6= P

(
H(ψ(η)p, Ra×b, •) | η

)
,

then η ∈ Eδ
a,b. For the coupling

(
η, ψ(η)

)
to be favourable, we need to the

occurrence of Eδ
a,b to be unlikely.

Lemma 7.3. For every ε > 0, λ > 0 and a, b > 1, there is δ = δ(ε, λ, a, b) > 0
such that Pλ

(
Eδ

a,b

)
6 ε.

Proof. To bound Pλ

(
Eδ

a,b

)
, we estimate the probabilities of a), b) and c) sep-

arately.
For property a), the probability is O(δ2λ2ab), since each δ × δ-square has

probability at most (δ2λ)2 of containing at least two points of η, and there are
about ab/δ2 such squares.

Property b) has probability at most O(δλ+ δλ2ab). Informally, the reason
is that conditioned on the number of points in η ∩R(a+2)×(b+2), the points are
uniformly distributed. Each pair of uniformly distributed points inR(a+2)×(b+2)

has probability O
(
δ/(ab)

)
of falling within the right distance of each other.

Furthermore, since the expected number of pairs of points are O
(
λab+(λab)2

)
,

we arrive at the claimed probability. It is not hard to make this argument
precise.

For c), it is immediate that the probability is O(δab). It is clear that
Pλ

(
Eδ

a,b

)
can be made arbitrarily small if only δ is chosen sufficiently small.

We can now easily deduce Proposition 7.1 from Lemmas 7.2 and 7.3.

Proof of Proposition 7.1. First, note that for any random variable X tak-
ing values in [0, 1], and any event E,

Var(X · 1E) − 2 P(Ec) 6 Var(X) 6 Var(X · 1E) + P(Ec).
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To see this, note that

Var(X) = Var(X · 1E) + Var(X · 1Ec) − 2 E[X · 1E]E[X · 1Ec]

= Var(X · 1E) + E[X2 1Ec] −
(
E[X] + E[X · 1E ]

)
E[X · 1Ec ].

When applied with X = P
(
H(ηp, Ra×b, •)| η

)
and E = Ω \ Eδ

a,b, we obtain
via (7.2) that

Varλc/p

(
P
(
H(ηp, Ra×b, •)| η

))

6 Varλc/p

(
P
(
H(ψ(η)p, Ra×b, •) | η

)
· 1Ω\Eδ

a,b

)
+ Pλc/p

(
Eδ

a,b

)

6 Varλc/p

(
P
(
H(ψ(η)p, Ra×b, •) | η

))
+ 3Pλc/p

(
Eδ

a,b

)

= Var
(
P
(
H(Λq ∩ Λp, Ra×b, •)

∣∣Λq)
)

+ 3Pλc/p

(
Eδ

a,b

)
,

(7.3)

since ψ(η), by construction, has the same distribution as Λq, when η is chosen
according to Pλc/p, and Λ = Λδ

a,b and q > 0 are as above. Now, for each

p ∈
(
0, 1

2

]
, let ε = p

(
log 1

p

)2
and choose a, b > 1 sufficiently large and δ > 0

sufficiently small for Lemma 7.2 and 7.3 to hold (the latter with λ = λc/p).
Together with (7.3) we obtain that

Varλc/p

(
P
(
H(ηp, Ra×b, •)

∣∣ η
))

6 (C + 3) p

(
log

1

p

)2

,

where C <∞ is as given in Lemma 7.2.

Our second consequence of Theorem 1.6 is Proposition 2.3. To save us from
repeating the discretization, we shall deduce it from Proposition 7.1.

Proof of Proposition 2.3. Fix t, γ > 0, and recall that, by Theorem 2.2, we
have

c 6 Eλc/p

[
P
(
H(ηp, RN×tN , •)

∣∣ η
)]

6 1 − c

for some c = c(t) > 0. Moreover, by Proposition 7.1, there exists a constant
p∗ = p∗(t, γ) > 0 such that

lim sup
N→∞

Varλc/p

(
P
(
H(ηp, RN×tN , •)

∣∣ η
))

<
c2γ

4
,

for every 0 < p < p∗. Now, setting c′ = c/2, apply Chebyshev’s inequality to
obtain

Pλc/p

(
P

(
H
(
ηp, RN×tN , •

) ∣∣ η
)
6∈ (c′, 1 − c′)

)
<

c2γ/4

(c/2)2
= γ,

for every sufficiently large N ∈ N, as required.
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7.2 Site percolation on D(η) – Proof of Theorem 1.5

Our next aim is to prove that for all sufficiently small p > 0, the sequence
(fη

N )N>1 is NSp for Pλc/p-almost every η ∈ Ω. The proof is based on The-
orem 2.6, the deterministic algorithm method. We begin by defining the al-
gorithm which we shall use; it is a straightforward adaptation of that used
by Benjamini et al. (1999) to prove noise sensitivity of bond percolation cross-
ings.

Recall that, given any η ∈ Ω, the function fη
N : {0, 1}η → {0, 1} is defined

by
fη

N (ξ) = 1 ⇔ H
(
ξ,RN , •

)
occurs, for each ξ ∈ Ωη.

The following algorithm determines fη
N(ξ) for any η ∈ Ω, and any ξ ∈ {0, 1}η .

The name given to the algorithm is inspired by the following way of visualizing
it: imagine pouring water into the left-hand side of RN , and allowing it to
enter only balls D(x) such that ξ(x) = 1, i.e., such that x ∈ ξ. If water can
flow to the other side of RN , there is a connection. Recall that points of η that
lie outside RN+2 cannot affect the outcome of fη

N . Hence, the domain of fη
N is

really finite dimensional, and we can (and will) in the following identify η and
its restriction η ∩RN+2.

Algorithm (The Water Algorithm). Define the algorithm AW as follows. Let
η ∈ Ω and ξ ∈ {0, 1}η . Further, let

A0 :=
{
(x, y) ∈ R2 : x = −N/2

}
and Q0 := ∅

denote the ‘active’ and ‘queried’ points at time zero. For each k ∈ N, if Qk−1

and Ak−1 have already been chosen, then define Qk and Ak as follows:

1. Set Qk := D
(
D(Ak−1)

)
∩ η, and query the elements of Qk.

2. Let Ak denote the set x ∈ Qk such that ξ(x) = 1.

3. If Ak = Ak−1, then stop, and set A∞ = Ak, otherwise go to step 1.

4. If H(A∞, RN , •) occurs, then output 1, otherwise output 0.

Define the algorithm A∗
W similarly, except with A0 :=

{
(x, y) ∈ R2 : x = N/2

}
.

To see that the Water Algorithm determines fη
N (ξ), note that at each step

k ∈ N the algorithm queries each x ∈ η such that D(x)∩D(Ak−1) 6= ∅. Hence,
an element x ∈ η is queried if and only if there is a path from the left edge
of RN to D(x), using only points of D(ξ) ∩ RN+2. Thus, if fη

N (ξ) = 1 then
the algorithm will find a horizontal path across RN contained in D(ξ) ∩ RN ;
conversely, if fη

N (ξ) = 0 then the algorithm will output zero, since A∞ ⊆ ξ.
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As we shall see, the algorithm AW is unlikely to query points in the right-
hand half of RN+2, and A∗

W unlikely to query those in the left-hand half.
Define

KL := RN+2 ∩
((

−∞, 0
)
× R

)
, and KR := RN+2 ∩

([
0,∞

)
× R

)
.

Recall Definition 2.5. Given η ∈ Ω, it will be convenient to introduce a notation
for the revealment of the algorithm AW in a bounded region K ⊆ R2. We
denote this by δK(AW ) = δK(AW , N, p, η), and is defined as

δK(AW ) := max
x∈η∩K

P
(
AW queries x when determining fG

N (ηp)
∣∣ η
)
.

The following lemma will allow us to deduce Theorem 1.5 from Theorem 2.6.

Lemma 7.4. For every C > 0, there exists δ > 0 and p∗ = p∗(C) such that
for p ∈ (0, p∗),

Pλc/p

(
δKR

(
AW

)
> N−δ

)
6 N−C

for every sufficiently large N ∈ N. (The same holds for KR and AW substituted
for KL and A∗

W .)

Informally, what the statement says is that with very low Pλc/p-probability

(6 N−C), the configuration η ∈ Ω will be ’bad’ in the sense that the algorithm
has high probability (> N−δ) to find its way to some x ∈ η ∩KR.

Partition RN+2 into (N +2)2 squares of side-length 1 in the canonical way,
and denote these squares by S1, . . . , S(N+2)2 . Define Aℓ to be the annulus
centred at the origin, and consisting of all point with ℓ∞-norm between ℓ and
2ℓ, and for 1 6 i 6 (N + 2)2, let Aℓ(Si) denote Aℓ shifted to be concentric to
Si. For fixed η ∈ Ω, let C

(
Aℓ(Si), ηp

)
denote the (monotone decreasing) event

that there is a loop of vacant space in Aℓ(Si); equivalently, it is the event that
there is no path between the two faces of Aℓ(Si) which is contained in D(ηp).

Now, consider the t = log4(N/4) annuli Aℓ(1)(Si), . . . ,Aℓ(t)(Si), where ℓ(j) =
4j . Of course, t might not be an integer, but this is easily adjusted for by the
reader. Note that the distance between Aℓ(j)(Si) and Aℓ(j+1)(Si) is at least 2
for each j, so the events C

(
Aℓ(j)(Si), ηp) are independent.

Proof of Lemma 7.4. It will suffice to prove that for every C > 0, there exists
δ > 0 and p∗ = p∗(C) such that if p ∈ (0, p∗), then for every Si that intersects
KR,

Pλc/p

(
δSi

(
AW

)
> N−δ

)
6 N−C (7.4)
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for every sufficiently large N ∈ N. To realize that this suffices, note that there
are less than (N + 2)2 squares Si that intersect KR, so

Pλc/p

(
δKR

(
AW

)
> N−δ

)
6 N−C(N + 2)2,

as required.
For η ∈ Ω and Si ⊆ KR, note that if

⋂
j∈[t] C

(
Aℓ(j)(Si), ηp

)c
does not occur,

i.e. that C
(
Aℓ(j)(Si), ηp

)
occurs for some j ∈ [t], then no point η ∩ Si will be

queried by the algorithm AW (or A∗
W if instead Si ⊆ KL). This follows because

AW queries x ∈ η ∩KR if and only if there exists a path from the left edge of
RN to D(x), using only points of D(ηp), and since x ∈ KR, so x is ℓ∞-distance
at least N/2 from the left edge of RN . However, no such path can exist if
C
(
Aℓ(j)(Si), ηp

)
occurs for some j ∈ [t]. Therefore, to obtain (7.4), we will

show that

Pλc/p


P

(
⋂

j∈[t]

C
(
Aℓ(j)(Si), ηp

)c
∣∣∣∣∣ η
)

> N−δ


 6 N−C . (7.5)

Fix C > 0 and choose γ = γ(C) > 0 such that 2tγt/4 6 N−C (when N is
large). By Proposition 2.3 and the FKG inequality, we conclude that there is
p∗ = p∗(C) > 0 such that if p ∈ (0, p∗), then

Pλc/p

(
P
(
C
(
Aℓ(Si), ηp

) ∣∣ η
)

> c4
)

> 1 − γ (7.6)

for all sufficiently large ℓ ∈ N, where c > 0 is a fix constant given by Proposi-
tion 2.3. Define the good event G ⊆ Ω as

G :=

{
η ∈ Ω :

∣∣∣
{
j ∈ [t] : P

(
C
(
Aℓ(j)(Si), ηp

) ∣∣ η
)

> c4
}∣∣∣ > t

2

}
.

Note that if η ∈ Gc, then P
(
C
(
Aℓ(j)(Si), ηp

) ∣∣ η
)

> c4 must fail for at least half
of the j’s in [t], of which at least t

4 fulfill j >
t
4 . Thus, if N is sufficiently large,

then (7.6) applies and gives that

Pλc/p(G
c) 6 Pλc/p

(∣∣∣
{
j >

t

4
: P
(
C
(
Aℓ(j)(Si), ηp

) ∣∣ η
)
< c4

}∣∣∣ > t

4

)

6 2tγt/4
6 N−C ,

(7.7)

by the choice of γ. Finally, for η ∈ G at least t/2 of the annuli Aℓ(j)(Si) have a
reasonable probability (> c4) of containing a loop that prevents the algorithm
to reach Si. This implies that for η ∈ G

P

(
⋂

j∈[t]

C
(
Aℓ(j)(Si), ηp

)c
∣∣∣∣∣ η
)

6
(
1 − c4

)t/2
6 N−δ, (7.8)
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for some δ > 0.
Combining (7.7) and (7.8) we obtain (7.5), and therefore also (7.4).

We can now deduce Theorem 1.5.

Proof of Theorem 1.5. We prove that if p > 0 is sufficiently small, then
(fη

N )N>1 is NSp for Pλc/p-almost every η ∈ Ω. Indeed, according to Lemma 7.4
and Borel-Cantelli’s lemma, we can find δ > 0 and p∗ such that for every
p ∈ (0, p∗)

Pλc/p

(
δKR

(
AW

)
> N−δ for infinitely may N

)
= 0.

By symmetry, the same holds for δKL

(
A∗

W

)
, and hence

(
δKR

(
AW

)
+ δKL

(
A∗

W

))(
logN

)6 → 0, as N → ∞,

for Pλc/p-almost every η ∈ Ω. Since fη
N is monotone for each N > 1 and η ∈ Ω,

we may apply Theorem 2.6 to conclude that for Pλc/p-almost every η ∈ Ω, the
sequence (fη

N )N>1 is NSp.

7.3 The Poisson Boolean model is noise sensitive at criticality

We are finally ready to deduce Theorem 1.2; as we remarked in Section 2, it
follows easily from Theorem 1.5 and Proposition 2.1. Recall that fG

N is the
function that for each η ∈ Ω encodes whether or not there is a horizontal
crossing of RN in the occupied space D(η)∩RN . To prove the noise sensitivity
of the Poisson Boolean model we must prove that for some ε > 0,

lim
N→∞

Eλc

[
fG

N (η)fG
N (ηε)

]
− Eλc

[
fG

N (η)
]2

= 0, for every ε ∈ (0, 1). (7.9)

For p ∈ (0, 1) and ε ∈ (0, 1) such that ε < 1 − p, set δ = ε/(1 − p). We
observe the equivalence of the following two constructions of a pair in Ω.

(i) Recall that the pair (η, ηε) is chosen as follows. Pick η ∈ Ω according
to the measure Pλc

. Obtain ηε by deleting each element of η indepen-
dently with probability ε, and proceed by adding a new configuration
picked independently according to Pελc

.

(ii) Recall that the pair
(
ηp, (ηp)

δ
)

is chosen as follows. Pick η ∈ Ω ac-
cording to the measure Pλc/p. Obtain ηp by deleting each element of

η independently with probability p. Construct (ηp)
δ by independently,

with probability δ for every x ∈ η, re-randomizing the decision to delete
or keep it.
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Obviously, picking (η, ηε) according to Pλc
is equivalent to

(
ηp, (ηp)

ε
)

when η
is picked according to Pλc/p. In particular,

Eλc

[
fG

N (η)fG
N (ηε)

]
− Eλc

[
fG

N (η)
]2

= Eλc/p

[
fG

N (ηp)f
G
N

(
(ηp)

δ
)]

− Eλc/p

[
fG

N (ηp)
]2
.

(7.10)

Proof of Theorem 1.2. Fix ε ∈ (0, 1) and γ ∈ (0, 1). Pick p ∈ (0, 1 − ε)
sufficiently small in order for (fη

N )N>1 to be NSp for Pλc/p-almost every η ∈ Ω,
and for

lim sup
N→∞

Varλc/p

(
E
[
fG

N (ηp)
∣∣ η
])
< γ

to hold. The former is possible according to Proposition 1.5, and the latter
according to Proposition 2.1. Set δ = ε/(1 − p). We have, as a consequence
of (7.10), that

Eλc

[
fG

N (η)fG
N (ηε)

]
− Eλc

[
fG

N (η)
]2

= Eλc/p

[
E
[
fG

N (ηp)f
G
N

(
(ηp)

δ
) ∣∣ η

]]
− Eλc/p

[
E
[
fG

N (ηp)
∣∣ η
]]2

= Eλc/p

[
E
[
fG

N (ηp)f
G
N

(
(ηp)

δ
) ∣∣ η

]
− E

[
fG

N (ηp)
∣∣ η
]2]

+ Varλc/p

(
E
[
fG

N (ηp)
∣∣ η
])
.

(7.11)

Sending N to infinity, we obtain by the choice of p that (7.11) is at most γ.
Since both γ and ε were arbitrary, (7.9) has been established, so the Poisson
Boolean model is noise sensitive at criticality.

We remark that, using (7.11), we obtain as an immediate consequence of
Theorems 1.2 and 1.5 the following strengthening of Proposition 2.1: For every
sufficiently small p > 0

lim
N→∞

Varλc/p

(
P
(
H(ηp, RN , •)

∣∣ η
))

= 0.

8 Open problems

In this paper we have laid out a fairly general approach to the problem of
proving noise sensitivity in models of continuum percolation, and we expect
that our method could be applied to prove similar results in more general
settings. In this section we shall state a few of these open problems.
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8.1 More general Poisson Boolean models

The simplest extension of the Poisson Boolean model considered in this paper
would be to allow discs to be assigned with random (but bounded) radii. Given
R > 0 and some distribution µR on (0, R), we obtain a configuration of occupied
space in this model by picking η ∈ Ω, according to the measure Pλ, and
placing a disc of radius r(x) at x ∈ η, where r(x) is chosen according to µR,
independently for each vertex.

In this paper we consider sensitivity to small perturbations of the Poisson
point configuration with respect to the positions of the points. In the Poisson
Boolean model with random radii, perturbations can be achieved in several
different ways, as is informally described below.

(i) We can add and remove a small proportion of the balls, much like in
this paper.

(ii) We can leave the Poisson configuration unaffected, but re-randomize
some of the radii.

(iii) We can do a mix of both.

For sensitivity to noise as described in (i), the missing ingredient is an RSW
Theorem for the occupied space which allows for random radii.

Conjecture 8.1. For every R > 0 and µR, the Poisson Boolean model with
random radii chosen according to µR is noise sensitive at criticality with respect
to perturbations as described in (i).

An alternative generalization would allow us to use an arbitrary shape S
instead of a disc. Given such an S ⊆ R2, and a Poisson point process η, place
a copy of S on every point x ∈ η; that is, set D(η) =

⋃
x∈η(x + S). It seems

likely that if S is bounded and has positive Lebesgue measure, then results
similar to those presented in this paper could hold.

8.2 Voronoi percolation

Given a configuration η ∈ Ω, the Voronoi tiling of η (see Bollobás and Riordan
(2006a), for example) is constructed by associating each point of R2 with the
point of η closest to it. We call the set of points associated to x ∈ η in
this way the Voronoi cell of x. In Voronoi percolation we choose a random
subset of the cells, by colouring each blue with probability p, and say that the
model percolates if there exists an infinite component of blue space. Bollobás
and Riordan (2006b) proved that if η is picked according to Pλ, the critical
probability is 1/2.
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Given a Voronoi tiling V = V (η) of R2, let fV
N : {0, 1}V → {0, 1} be

the function which, given a colouring of V , replies whether there is a blue
crossing of RN . Picking η according to a Poisson process, we say that Voronoi
percolation is noise sensitive at criticality if (fV

N )N>1 is almost surely NS, that
is for Pλ-almost every η.

Benjamini, Kalai, and Schramm (1999, Section 5) conjectured that knowing
the Voronoi tiling, but not the colouring, gives almost no information as to
whether or not there exists a blue crossing of RN . We make the following
conjecture.

Conjecture 8.2. Voronoi percolation is noise sensitive at criticality.

8.3 Stronger results for the Gilbert model

There is a concept of quantitative noise sensitivity where, in (1.1), one lets ε =
ε(n) depend on n. Recently, very strong results have been proved by Schramm
and Steif (2010) and Garban et al. (2010) in the case of bond percolation on
the square lattice and site percolation of the triangular lattice. An interesting
problem, inspired by their work, would be to prove a quantitative version of
Theorem 1.2.

Problem 1. Determine the exact dependence on N such that with ε = ε(N),

lim
N→∞

Eλc

[
fG

N (η)fG
N (ηε)

]
− Eλc

[
fG

N (η)
]2

= 0.

One possible application of a solution to Problem 1 would be to dynamical
(continuum) percolation. To define this model, consider a Poisson point process
η of density λc in the plane, and suppose points in the plane disappear at rate
one. Next, let new points ’rain down’ at a rate that keeps the intensity of
points in the plane constant. Once landed, also these points disappear at rate
one. This yields a stationary process for which we let ηt denote the set of
points in the plane at time t. By Corollary 3.2, at any given time there is
(almost surely) no infinite component in D(ηt); we therefore say that t is an
exceptional time if there is an infinite component in D(ηt) at time t.

The analogue of the following conjecture was proved for site percolation on
the triangular lattice by Schramm and Steif (2010), and for bond percolation
on the square lattice by Garban, Pete, and Schramm (2010).

Conjecture 8.3. There exist exceptional times in dynamical continuum per-
colation at criticality, almost surely.

A related problem was studied by Benjamini and Schramm (1998).
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