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1. INTRODUCTION 

It is common practice for economic theories to postulate non-linear relationships between 

t:t:onomic variables, production functions being an example. If a theory suggests a specific 

functional form, econometricians can propose estimation techniques for the parameters, and 

asymptotic results, about normality and consistency, under given conditions are known for 

these estimates, see e.g. Judge et. a1. (1985) and White (1984) and Gallant (1987, chapter 

7). However, in many cases the theory does not provide a single specification or specifica­

tions are incomplete and may not capture the major features of the actual data, such as trends, 

seasonality or the dynamics. When this occurs, econometricians can try to propose mort: 

general specifications and tests of them. There are clearly an immense number of possible 

parametric nonlinear models and there are also many nonparametric techniques for approxi­

mating them. Given the limited amount of data that is usually available in economics it 

would not be appropriate to consider many alternative models or to use many techniques. 

Because of the wide possibilities the methods and models available to analyze non-linearities 

are usually very flexible so that they can provide good approximations to many different 

generating mechanisms. A consequence is that with fairly small samples the methods arc 

inclined to over-fit, so that if the true mechanism is linear, say, with residual variance 0
2
, 

the fitted model may appear to find nonlinearity and the estimated residual variance is less 

than 0
2

. The estimated model will then be inclined to forecast badly in the post-sample 

period. It is therefore necessary to have a specific research strategy for modelling non-linear 

relationships between time series. In this chapter the modelling process concentrates on a 

particular situation, where there is a single dependent variable Yt to be explained and:.!..t is 

a vector of exogenous variables. Let It be the information set 

It = {Yt-j ,j > 0; !t-i ' i O!: 0 } (1.1 ) 

and denote all of the variables (and lags) used in It by ~. The modelling process will then 

attempt to find a satisfactory approximation for f( ~ ) such that 

E [Yt I It ] = f( ~ ) . ( 1.2) 

I f the error is 
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then in some cases a more parsimonious representation will specifically include lagged E'S 

in f( ). 

The strategy proposed is: 

(i) Test Yt for linearity, using the information It. As there are many possible 

forms of nonlinearity it is likely that no one test will be powerful against 

them all, so several tests may be needed. 

(ii) If linearity is rejected, consider a small number of alternative parametric 

models and/or nonparametric estimates. Linearity tests may give guidance 

as to which kind of nonlinear models to consider. 

(iii) These models should be estimated in-sample and compared out-of-sample. 

The properties of the estimated models should be checked. If a single model 

is required, the one that is best out-of-sample may be selected and re-estimated 

over all available data. 

The strategy is by no means guaranteed to be successful. For example, if the nonlinearity is 

associated with a particular feature of the data, but if this feature does not occur in the 

post-sample evaluation period, then the nonlinear model may not perform any better than a 

linear model. 

Section 2 of the chapter briefly considers some parametric models, Section 3 discusses tests 

of linearity, Section 4 reviews specification of nonlinear models, Section 5 considers 

estimation and Section 6 evaluation of estimated models. Section 7 contains an example and 

section 8 concludes. This survey largely deals with linearity in the conditional mean, which 

occurs if f( ~ ) in (1.1) can be well approximated by some linear combination 92 ' ~ of 

the components of ~. It will generally be assumed that ~ contains lagged values of Yt 

plus, possibly, present and lagged values of Zt including 1. This definition avoids the 

difficulty of deciding whether or not processes having forms of heteroskedasticity that 

involve explanatory or lagged variablels, such as ARCH, are non-linear. It is clear that some 

tests of linearity will be confused by these types of heteroskedasticity. Recent surveys of 

some of the topics considered here include Tong (1990) for univariate time series, H~ird\e 

(1990) for non-parametric techniques, Brock and Potter (1992) for linearity testing and 

Granger and Tedisvirta (1992). 

There has recently been a lot of interest, particularly by economic theorists in chaotic 

processes, which are deterministic series which have some of the linear properties of familiar 
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stochastic processes. A well known example is the "tent-map" Yt = 4Yt-l (l-Yt-l ), which, 

with a suitable starting value in (0,1), generates a series withall autocorrelations equal to 

zero and thus a flat spectrum, and so may be called a "white chaos", as a stochastic white 

noise also has these properties. Economic theories can be constructed which produce such 

processes as discussed in Chen and Day (1992). Econometricians are unlikely to expect such 

models to be relevant in economics, having a strong affiliation with stochastic models and 

so far there is no evidence of actual economic data having been generated by a deterministic 

mechanism. A difficulty is that there is no statistical test which has chaos as a null hypothesis, 

so that non-rejection of the null could be claimed to be evidence in favour of chaos. For a 

discussion and illustrations, see Liu et. al. (1991). However, a useful linearity test has been 

proposed by Brock et. al. (1987), based on chaos theory, whose properties are discussed in 

section 3.2. 

The hope in using nonlinear models is that better explanations can be provided of economic 

events and consequently better forecasts. If the economy were found to be chaos, and if the 

generating mechanism can be discovered, using some learning model say, then forecasts 

would be effectively exact, without any error. 

2. TYPES OF NONLINEAR MODELS 

2.1. Models from economic theory 

Theory can both suggest possibly sensible nonlinear models or can consider some optimiz­

ing behaviour, with arbitrary assumed cost or utility functions, to produce a model. An 

example is a relationship of the form 

(2.1) 

so that Yt is the smallest of a pair of alternative linear combinations of the vector of variables 

used to model Yt . This model arises from a disequilibrium analysis of some simple markets, 

with the linear combinations representing supply and demand curves, for more discussion 

see Quandt (1982) and Maddala (1986). 

If we replace the "min condition" by another variable Zt_d which may also be one of the 

elements of w t but not 1, we may have 
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(2.2) 

where F (Zt-d ) = 0, Zt-d S c, F (Zt-d ) = 1, Zt-d > C • This is a switching regression model 

with switching variable Zt-d where d is the delay parameter; see Quandt (1983). In univariate 

time series analysis (2.2) is called a two-regime threshold autoregressive model; see e.g. 

Tong (1990). Model (2.2) may be generalized by assuming a continuum of regimes instead 

of only two. This can be done for instance by defining 

F (Zt-d ) = (1 + exp { - Y (Zt-d - c)} )-1 , Y > 0 

in (2.2). Maddala (1977, p. 396) already proposed such a generalization which is here called 

a logistic smooth transition regression model. F may also have a form of a probability density 

rather than cumulative distribution function. In the univariate case this would correspond 

.to the exponential smooth transition autoregressive model (Tedisvirta, 1990a) or its well­

known special case, the exponential autoregressive model (Haggan and Ozaki, 1981). The 

transition variable may represent changing political or policy regimes, high inflation versus 

low, upswings of the business cycle versus the downswings and so forth. These switching 

models or their smooth transition counterparts occur frequently in theory which, for 

example, suggests changes in relationships when there is idle production capacity versus 

otherwise or when unemployment is low versus high. Aggregation considerations suggest 

that a smooth transition regression model may often be more sensible than the abrupt change 

in (2.2). 

Some theories lead to models that have also been suggested by time series statisticians. An 

example is the bivariate non-linear autoregressive model described as a "prey-predator" 

model by Desai (1984) taking the form 

11 Y1t = -Q + b exp (Y2t ) 

11 Y2t = c + b exp (Y1t ) 

where Y1 is the logarithm of the share of wages in national income and Y2 is the logarithm 

of the employment rate. Other examples can be found in the conference volume Chen and 

Day (1992). The fact that some models do arise from theory justifies their consideration but 

it does not imply that they are necessarily superior to other models that currently do not arise 

from economic theory. 
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2.2. Models from time series theory 

The linear autoregressive, moving average and transfer function models have been popular 

in the time series literature following the work by Box and Jenkins (1970) and there are a 

variety of natural generalizations to non-linear forms. If the information set being considered 

is 

It = {Yt-j , j = 1, ... ,q, :!t-i , i = O, ... ,q } 

denote Ct the residual from Yt explained by It and let ekt be the residual from Xkt explained 

by It (excluding Xkt itself). The components of the models considered in this section are 

non-linear functions of components such as g (Yt-j ), h (Xk,t-i ), G (Ct_j ), H (ek,t-i) plus 

cross-products such as Yt-j Xk,t-i , Yt-j Ct-i , Xa,t-j eb,t-i or Ct_j ek,t-i . A model would string 

together several such components, each with a parameter. For a given specification, the 

model is linear in the parameters so they can be easily estimated by OLS. The big questions 

are about specification of the model, what components to use, what functions and what lags. 

There are so many possible components and combinations that the "curse of dimensionality" 

soon becomes apparent, so that choices of specification have to be made. Several classes of 

models have been considered. They include 

(i) nonlinear autoregressive, involving only functions of the dependent variahle. 

Typically only simple mathematical functions have been considered (such as 

cosine, sign, modulus, integer powers, logarithm of modulus or ratios of low 

order polynomials); 

(ii) nonlinear transfer functions, using functions of the lagged dependent variable 

and current and lagged explanatory variables, usually separately; 

(iii) bilinear models, Yt = 2: /3jk Yt-j Ct-k + similar terms involving products of a 
j,k 

component of:!t and a lagged residual of some kind. This can be thought of 

as one equation of a multivariate bilinear system as considered by Stensholt 

and Tj0stheim(1987); 

(iv) nonlinear moving averages, being sums of functions of lagged residuals lOt, 

(v) doubly stochastic models contain the cross-products between lagged Yt and 

current and lagged components of Xkt or a random parameter process and arc 
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discussed in Tj¢stheim (1986). 

Most of the models are augmented by a linear autoregressive term. There has been little 

consideration of mixtures of these models. Because of difficulty of analysis lags are often 

taken to be small. Specifying the lag structure in nonlinear models is discussed in section 

4. 

A number of results are available for some of these models, such as stability for simple 

nonlinear autoregressive models (Lasota & Mackey, 1987), stationarity and invertibility of 

bilinear models or the autocorrelation properties of certain bilinear systems but are often 

too complicated to be used in practice. To study stability or invertibility of a specific model 

it is recommended that a long simulation be formed and the properties of the resulting series 

be studied. There is not a lot of experience with the models in a multivariate setting and 

little success in their use has been reported. At present they cannot be recommended for use 

compared to the smooth transition regression model of the previous section or the more 

structured models of the next section. A simple nonlinear autoregressive or bilinear model 

with just a few terms may be worth considering from this group. 

2.3. Flexible statistical parametric models 

A number of important modelling procedures concentrate on models of the form 

p 

Yt = ~ , ~ + ~ Uj CPj ( yj ~ ) + Ct 

j=l 

(2.4) 

where!!:J is a vector of past Yt values and past and present values of a vector of explanatory 

variables & plus a constant. The first component of the model is linear and the CPj (x) are a 

set of specific functions in x, examples being: 

(i) power series, CPj (x) ==) (x is generally not a lag ofy) ; 

(ii) trigonometric, cP (x) = sin x or cos x, (2.4) augmented by a quadratic term 
, 

ZtAz(gives the flexible function forms discussed by Gallant (1981); 

(iii) CPj (x) = cP (x) for aJI j, where cP (x) is a "squashing function" such as a 
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probability density function or the logistic function cp (x) = (l+exp (-x)r1 
. 

This is a neural network model, which has been used successfully in various 

fields, especially as a learning model, see e.g. White (1989); 

(iv) if CPj (x) is estimated non-parametrically, by a "super-smoother", say, the 

method is that of "projection-pursuit", as briefly described in the next section. 

The first three models are dense, in the sense that theorems exist suggesting that any 

well-behaved function can be approximated arbitrarily well by a high enough choice of p, 

the number of terms in the sum, for example Stinchcombe and White (1989). In practice, 

the small sample sizes available in economics limit p to a small number, say one or two, to 

keep the number of parameters to be estimated at a reasonable level. In theory p should be 

chosen using some stopping criterion or goodness-of-fit measure. In practice a small, 

arbitrary value is usually chosen, or some simple experimentation undertaken. These models 

are sufficiently structured to provide interesting and probably useful classes of nonlinear 

relationships in practice. They are natural alternatives to non parametric and semiparametric 

models. A nonparametric model, as discussed in section 2.5 produces an estimate of a 

function at every point in the space of explanatory variables by using some smoother, but 

not a specific parametric function. The distinction between parametric and nonparametric 

estimators is not sharp, as methods using splines or neural nets with an undetermined cut 

off value indicate. This is the case in particular for the restricted non parametric models in 

section 6. 

2.4. State-space, time-varying parameter and long-memory models 

Priestley (1988) has discussed a very general class of models for a system taking the form: 

(moving average terms can also be included) where It is a kx1 stochastic vector and b is 

a "state-variable" consisting ofb = (It, It-l , ... , It-k+l ) and which is updated by a Markov 

system, 
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Here the cp 's and the components of the matrix F are general functions, but in practice 

will be approximated by linear or low-order polynomials. Many of the models discussed in 

section 2.2 can be embedded in this form. It is clearly related to the extended Kalman filter 

(see Anderson and Moore, 1979) and to time-varying parametric ARMA models, where the 

parameters evolve according to some simple AR model, see Granger and Newbold (1986, 

chapter 10). For practical use various approximations can be applied, but so far there is little 

actual use of these models with multivariate economic series. 

For most of the models considered in section 2.2, the series are assumed to be stationary, 

but this is not always a reasonable assumption in economics. In a linear context many actual 

series are 1(1), in that they need to be differenced in order to become stationary, and some 

pairs of variables are cointegrated, in that they are both 1(1) but there exists a linear 

combination that is stationary. A start to generalizing these concepts to nonlinear cases has 

been made by Granger and Hallman (1991a,b). 1(1) is replaced by a long-memory concept, 

co integration by a possibly nonlinear attractor, so that Yt ,xt are each long-memory but there 

is a function g (x) such that Yt - g(xt ) is stationary. A nonparametric estimator for g (x) is 

proposed and an example provided. 

2.5. Nonparametric models 

Nonparametric modelling of time series does not require an explicit model but for reference 

purposes it is assumed that there is the following model 

Yt = f( Xt-l '~-l ) + g (Xt-l '~-l ) Ct (2.5) 

where {Yt ,Xt} are observed with {Xt} being exogeneous, and where Xt-l = (Yt-i
1 

, ••• , Yl-i ) 
f' 

and ~-1 = (Xt-jl , ... , Xt_jp) are vectors of lagged variables, and {Et} is a sequence of 

martingale differences with respect to the information set It = {Yt-i ,i > 0; xt-i ,i > 0 ). 

The joint process {Yt ,Xt} is assumed to be stationary and strongly mixing (cf. Robinson, 

1983). The model formulation can be generalized to several variables and instantaneous 

transformation of exogeneous variables. There has recently for instance been a surge or 
interest in nonparametric modelling, for references see for instance Ullah (1989), Barnett el 

al. (1991) and HardIe (1990). The motivation is to approach the data with as much flexibility 

as possible not being restricted by the straitjacket of a particular class of parametric models. 

However, more observations are needed to obtain estimates of comparable variability. In 
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econometric applications the two primary quantities of interest are the conditional mean 

(2.6) 

and the conditional variance 

(2.7) 

The conditional mean gives the optimal least squares predictor of Yt given lagged values 

Yt-i
1 

, ••• , Yt-i
p

; xt-h , ... , Xt_jq • Derivatives of M(K...;~) can also have economic interpretations 

(Ullah, 1989) and can be estimated nonparametrically. The conditional variance can be used 

"to study volatility. For (2.5), M~ ,~) = f ~ ~) and V~~) = 02i~ ~), where 0
2 = 

E( E;) . As pointed out in the Introduction, this survey mainly concentrates on M 6:; ~ while 

it is assumed that g6:; ~ == 1. 

A problem of nonparametric modelling in several dimensions is the curse of dimensionality. 

As the number of lags and regressors increases, the number of observations in a unit volume 

element of regressor space can become very small, and it is difficult to obtain meaningful 

nonparametric estimates of (2.6) and (2.7). Special methods have been designed to overcome 

this obstacle, and they will be considered in sections 4 and 5.3. Applying these methods 

often results in a model which is an end product in that no further parametric modelling is 

necessary. 

Another remedy to difficulties due to the dimension is to apply semi parametric models. 

These models usually assume linear and parametric dependence in some variables, and 

nonparametric functional dependence in the rest. The estimation of such models as well as 

restricted nonparametric ones will be considered in section 5.3. 

3. TESTING LINEARITY 

When parametric nonlinear models are used for modelling economic relationships, model 

specification is a crucial issue. Economic theory is often too vague to allow complete 

specification of even a linear, let alone a nonlinear model. Usually at least the specification 
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of the lag structure has to be carried out using the available data. As discussed in the 

Introduction, the type of nonlinearity best suited for describing the data may not be clear at 

the outset either. The first step of a specification strategy for any type of nonlinear model 

should therefore consist of testing linearity. As mentioned above it may not be difficult at 

all to fit a nonlinear model to data from a linear process, interpret the results and draw 

possibly erroneous conclusions. If the time series are short that may sometimes be success­

fully done even in situations in which the nonlinear model is not identified under the linearity 

hypothesis. There is more statistical theory available for linear than nonlinear models and 

the parameter estimation in the former models is generally simpler than in the latter. Finally, 

multi-step forecasting with nonlinear models is more complicated than with linear ones. 

Therefore the need for a nonlinear model should be considered before any attempt at 

nonlinear modelling. 

3.1. Tests against a specific alternative 

Since estimation of nonlinear models is generally more difficult than that of linear models 

it is natural to look for linearity tests which do not require estimation of any nonlinear 

alternative. In cases where the model is not identified under the null hypothesis of linearity, 

tests based on the estimation of the nonlinear alternative would normally not even be 

available. The score or Lagrange multiplier principle thus appears useful for the construction 

of linearity tests. In fact, many well-known tests in the literature are Lagrange multiplier 

(LM) or LM type tests. Moreover, some well-known tests like the test of Tsay (1986) which 

have been introduced as general linearity tests without a specific nonlinear alternative in 

mind can be interpreted as LM tests against a particular nonlinear model. This may not be 

surprising because those tests do not require estimation of a nonlinear model. Other tests, 

not built upon the LM principle, do exist and we shall mention some of them. Recent 

accounts of linearity testing in nonlinear time series analysis include Brock and Potter 

(1992), De Gooijer and K~mar (1991), Granger and Tedisvirta (1992, chapter 6) and Tong 

(1990, chapter 5). For small-sample comparisons of some of the tests, see Chan and Tong 

(1986), Lee et a1. (1992), Luukkonen et a1. (1988a) and Petruccelli (1990). 

Consider the following nonlinear model 

(3.1) 

where ~ = (1, Yt-i ,"', Yt-p , xti , ... , xtk )" .!:i = (ut-i , ... , Ut_q )" ut = g(~, !t, ~ , .!:i ) c[ , c{ 

is a martingale difference process: E( Et I It ) = 0, cov( Et I It ) = a~ , where It is as in (1.1). It 
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follows that E(ut I It) = ° and cov(ut I It) = o~ g2 ('lV, 8, w t' vt ). Assume thatfand g are at 

least twice continuously differentiable with respect to the parameters Q = (81 , ... , 8m )' and 

~ = ('4J1 , ... , '4J[)'. Letj(O,~, ~) = 0, so that the linearity hypothesis becomes HO: Q = O. 

To test this hypothesis assuming g == 1 write the conditional (pseudo) logarithmic likelihood 

function as 

T 

= 2: It ce., m; Yt I wt"",w1, Vt,· .. ,vv W(} Uo) 
1 

T 
2 2 ~ 2 = C - (TI2) log 0E - (1/2 0E) L.i ut . 

1 

The relevant block of the score vector scaled by l/V'T becomes 

This is the block that is nonzero under the null hypothesis. The information matrix is bloek 

diagonal so that the diagonal element conforming to 0
2 builds a separate block. Thus the 

inverse of the block related to 8 and evaluated at Ho becomes 

where!:!:.t is lit evaluated at Ho; see e.g. Granger and Tedisvirta (1992, chapter 6). Setting 

fi. = CU1 ,"', uT )' the test statistic, in obvious notation, has the form 

LM = u'H (H'M H )-1 H' u _ w _ (3.2) 

where Mw = I - W(W,W)-lW' and the vector 11 consists of residuals from (3.1) estimated 

under Ho and g == 1. Under a set of assumptions which are moment conditions for (3.2), see 

White (1984, Theorem 4.25), (3.2) has an asymptotic X2 (m) distribution. A practical way 

of carrying out the test is by ordinary least squares as follows: 

(i) Regress Yt on ~t, compute the residuals ut and the sum of squared residuals SSR(). 
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(ii) Regress 11.t on ~ and !it" compute the sum of squared desiduals SSR 1. 

(iii) Compute 

(SSRo - SSR 1 )1m 
F(m, T-n-m) = SSR

1
/(T-n-m) 

with n=k+p+ 1, which has an approximate F distribution under 8 = O. 

The use of an F test instead of the Xl test given by the asymptotic theory is recommended 

in small samples because of its good size and power properties, see Harvey (1990, p. 

174-175). 

As an example, assume wt = (1, w; )' with ~ = (Yt-1 , ... , Yt-q )' and f = ~; 8 ~ 

= (1:t @ ~' vee (8) so that (3.1) is a univariate bilinear model. Then ht = (1:t @ ~t), 

lit = (!& @ ~) and (3.2) is a linearity test against bilinearity discussed in Weiss (1986) and 

Saikkonen and Luukkonen (1988). 

In a few cases fin (3.1) factors as follows: 

( 3.3) 

and h (0,113, Wt) = o. Assume that 82 is a scalar whereas 113 may be a vector. This is the ease 

for many nonlinear models such as smooth transition regression models. Vector vt is dropped 

for simplicity. The linearity hypothesis can be expressed as H02: 82 = O. However, Hal: 8 1 

= 0 is also a valid linearity hypothesis. This is an indication of the fact that (3.1) with (3.3) 

is only identified under the alternative 82 ~ 0 but not under 82 = O. If we choose H02 as our 

starting-point, we may use the Taylor expansion 

Assume furthermore that bt has the form 

, 

bt = 830 + 11 31k~) (3.5) 

where 1131 and k(~) are rx1 vectors. Next replace h in (3.3) by the first-order Taylor 

approximation at 82 = 0 
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Then (3.3) becomes 

-, 
= ~1 ~ + k(~)'lJ1~ 

, 
where ~1 = 8?81830 ,'II = 8:z!hfu1 and (3.1) has the form 

, - * 
= ~1 ~ + (k(~) ® ~)' vec ('II) + ut (3.6) 

The test can be carried out as before, at the second stage Yt is regressed on w t and 

(k(~) ® ~) and under H~1 : vec('P) = ° the test statistic has an asymptotic X:2 (nr ) 

distribution. 

From (3.6) it is seen that the original null hypothesis H02 has been transformed into H o( 

vec (I·P) = O. ApproximatingfJ as in (3.4) and reparameterizing the model may be seen as a 

way of removing the identification problem. However, it may also be seen as a solution in 

the spirit of Davies (1977). Let ~* be the residual vector from the regression (3.6). Then 

and the test statistic 

- [u'u - in! u (8 )'u( 8 ) ]/nr 
F = sup e ,e F ( 8? , 83 ) = . f (8)' (8 )/(T ) . 2 3 - I.n . u u -n-nr - - --

The price of the neat asymptotic null distribution is that not all the information in lIJ has 

been used: in fact lJ1 is of rank one and only contains n+r+ 1 parameters. 

As an example, assume ~ = ~ = (Yt-l, ... ,Yt-p)', choose 830 = 0, and let 831 be a scalar and 

- :2 .. - - 3:2 :2 
k(~) = Yt-1' ThIS gIves lJ1 = 8318281 and (k(~) ® wt) = (Yt-1, Yt-1Yt-2 , ... , Yt-1Yt-p) . The 

resulting test is the linearity test against the univariate exponential autoregressive model in 

p p 

Saikkonen and Luukkonen (1988). If ~ = k(~), '" '" f() Y iY replaees L.J L.J -rij t-' t-j 

i=1 j=i 
, 

(k (~) ® ~)' vee (tV) and HOl: crij = 0, i = 1, ... ,p; j = i, ... p. The test is the first of the 

three linearity tests against smooth transition autoregression in Luukkonen et al. (1988b) 
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when the delay parameter d is unknown but it is assumed that 1 s d s p. The number or 

degrees of freedom in the asymptotic null distribution equals p(p+l)/2. If w t also contains 

other variables than lags of Yt, the test is a linearity test against smooth transition regression; 

see Granger and Terasvirta (1992, chapter 6). If the delay parameter is known, 

k(~) = Yt-d, so that (k(~) ®~) = (yt-LYt-d , ... , l-d , .. , Yt-pYt-d)' and theF test has p and 

T-n-p degrees of freedom. 

In some cases the first-order Taylor series approximation is inadequate. For instance, let HI 
= (810,0, ... ,0), in (3.3) so that the only nonlinearity is described by fJ multiplied by a constant. 

Then the LM type test has no power against the alternative because (k(~) ® ~)' vec(th) 

= Q'~, say, and therefore C{)ij = 0, V'i,j. In such a situation, a third-order Taylor series 

approximation of f is needed for constructing a proper test; see Luukkonen et al. (1988h) 

ror discussion . 

. 3.2. Tests without a specific alternative 

The above linearity tests are tests against a well-specified nonlinear alternative. There exist 

other tests that are intended as general tests without a specific alternative. We shall consider 

some of them. The first one is the Regression Error Specification Test (RESET; Ramsey, 

1969). Suppose we have a linear model 

Yt = m'~ + ut (3.7) 

where wt is as in (3.1) and whose parameters we estimate by OLS. Let ut ' t = 1, ... ,T, be the 

estimated residuals and Yt = Yt - ut the fitted values. Construct an auxiliary regression 

h 

- , " };. -j' * ut = ~ ~ + L.J Uj Y t + ut . (3.8) 

j=2 

The RESET is the F-test of the hypothesis Ho: OJ = 0, j = 2, ... ,h, in (3.8). If 

~t = (1, Yt-l,···,Yt-p)' and h = 2, (3.8) yields the univariate linearity test of Keenan (1985). 

In fact, RESET may also be interpreted as a LM test against a well-specified alternative; see 

for instance Tedisvirta (1990b) or Granger and Terasvirta (1992, chapter 6). 

Tsay (1986) suggested augmenting the univariate (3.7) by second-order terms so that the 

auxiliary regression corresponding to (3.8) becomes 



p p 

Ut =1.jJ'Wt + 2: 2: CPijYt-iYt-j+U; 

i=j j=i 
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(3.9) 

The linearity hypothesis to be tested is HO: CPij = 0, 'v'i,j. The generalization to multivariate 

models is immediate. This test also has a LM type interpretation showing that the test has 

power against a larger variety of nonlinear models than the RESET. This is seen by 

comparing (3.9) with (3.6) when k(~) = ~ as discussed in the previous section. The 

advantage of RESET lies in the small number of parameters in the null hypothesis. When 

w( = (1,Yt-l)' (or w t = (1,xtjJ'), the two tests are identical. 

A general linearity test can also be based on the neural network model (2.4), and such a test 

is presented in Lee et al. (1992). In computing the test statistic, Yj, j = 1, ... ,p, in (2.4) are 

selected randomly from a distribution. Terasvirta et al. (1991) showed that this can he 

avoided by deriving the test by applying the LM principle, in which case p = 1 in (2.4). 

Assumingp> 1 does not change anything because (2.4) is not globally identified under that 

assumption if (Pix) = cp(x), j = 1, ... ,p. The auxiliary regression for the test becomes 

p p p p p 

ut = 1.jJ'wt + 2: 2: bij Yt-iYt-j + 2: 2: 2: bijkYt-iYt-j Yt-k + u; (3.10) 

i=l j=i i=l j=i k=j 

and the linearity hypothesis Ho : bij = 0, bijk = 0, 'v'i,j,k. The simulation results in TerHsvirla 

et al. (1991) indicate that in small samples the test based on (3.10) has better power than 

the original neural network test. 

There has been no mention yet about tests against piecewise linear or switching regression 

or its univariate counterpart, threshold autoregression. The problem is that h in (3.3) is not 

a continuous function of parameters if the switch-points or thresholds are unknown. This 

makes the likelihood function irregular and the score principle inapplicable. Ertel and 

Fowlkes (1976) suggested the use of cumulative sums of recursive residuals for testing 

linearity. First order the variables in ascending (or descending) order according to thl: 

transition variable. Compute the parameters recursively and consider the cumulative sum 

of the recursive residuals. The test is analogous to the CUSUM test Brown et al. (1975) 

suggested in which time is the transition variable and no lags of Yt are allowed in we' 

However, Kramer et a1. (1988) showed that the presence of lags ofYt in the model does not 

affect the asymptotic null distribution of the CUSUM statistic. Even before that, Petruccelli 

and Davies (1986) proposed the same test for the univariate (threshold autoregressive) caSl:; 
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see also Petruccelli (1990). The CUSUM test may also be based on residuals from OLS 

estimation using all the observations instead of recursive residuals. Ploberger and Kramer 

(1992) recently discussed this possibility. 

The CUSUM principle is not the only one available from the literature of structural change. 

Quandt (1960) suggested generalizing the F test (Chow, 1960) for testing parameter 

constancy in a linear model with known change-point by applying F = sup. F (t) where 
tGT 

T = {tlto < t < T - t1}' He noticed that the null distribution of F was nonstandard. Andrews 

(1990) provided the asymptotic null distribution for F and tables for critical values; see also 

Hansen (1990). If the observations are ordered according to a variable other than time, a 

linearity test against switching regression is obtained. In the univariate case, Chan (1990) 

and Chan and Tong (1990) applied the idea of Quandt to testing linearity against threshold 

autoregression (TAR) with a single threshold; see also Tong (1990, chapter 5). Chan (1991) 

provided tables of percentage points of the null distribution of the test statistic. In fact, this 

test can be regarded as one against a well-specified alternative: a two-regime switching 

regression or threshold autoregressive model with a known transition variable or delay 

parameter. For further discussion, see Granger and Terasvirta (1992, chapter 6). 

Petruccelli (1990) compared the small sample performance of the CUSUM, the threshold 

autoregression test of Chan and Tong and the LM type test against logistic STAR of 

Luukkonen et al. (1988b) when the true model was a single-threshold TAR model. The 

results showed that the first two tests performed reasonably well (as the CUSUM test a 

"reverse CUSUM" (Petruccelli, 1990) was used). However, they also demonstrated that the 

LM type test had quite comparable power against this TAR which is a special case of the 

logistic STAR model. 

As mentioned in the introduction, Brock et al. (1987) proposed a test (BDS test) of 

independent, identically distributed observations based on the correlation integral, a concept 

that arises in chaos theory. Let Yt,n be a part of a time'series Y T,T = (YY; .. ·,Y 1): Yt,n = 
(YPYt-z,· .. ,Yt-n+1)' Compare a pair of such vectors Yt nand Ys n' They are said to be no more , , 
than E apart if 

II Yt,j - Ys,j II s E ,j = 0,1" .. ,11.-1. (3.11) 

The correlation integral is defined as 

en (E) = lim T -2 {number of pairs (t,s) with 1 s t, ssT such that (3.11) holds} . 
T-oo 
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Brock et a1. (1987) defined 

(3.12) 

Under the hypothesis that {Yt} is an iid process, (3.12) has an asymptotic normal distribution 

with zero mean and variance given in Brock et a1. (1987). Note that (3.12) depends on nand 

E which the investigator has to choose. A much more thorough discussion of the BDS test 

and its properties is found in Brock and Potter (1992) or Scheinkman (1990). It may be 

mentioned, however, that a rather long time series is needed to obtain reasonable power. 

Lee et a1. (1992) contains some small-sample evidence on the behaviour of the BOS test but 

it is not very conclusive; see Terasvirta (1990b). 

Linearity of a single series may also be tested in the frequency domain. Let {Yt} be stationary 

and have finite moments up to the sixth order. Then we can define the bispectral density 

f( Wj,Wj) of Yt based on third moments and 

wherej{wD is the spectral density ofYt. Two hypotheses can be tested: (i) ifj{wj,wj) == 0 then 

Yt is linear and Gaussian, (ii) if b( Wj,Wj) == bo > 0 then Yt is linear but not Gaussian, i.e., the 

parameterized linear model for {Yt} has non-Gaussian errors. Subba Rao and Gabr (1980) 

proposed tests for testing these two hypothesis. Hinich (1982) derived somewhat different 

tests for the same purpose. For more discussion see e.g. Priestley (1988) and Brockett et a\. 

(1988). A disadvantage of these tests seems to be relatively low power in small samples. 

Besides, performing the tests requires more computation than carrying out most of their time 

domain counterparts. 

It has been assumed so far that g == 1 in (3.1). If this assumption is not satisfied, the size of 

the test may be affected. At least the BOS test and the tests based on bispectral density are 

known to be sensitive to departures from that assumption. If linearity of the conditional 

mean is tested against a well-specified alternative using LM type tests, some possibilities 

of taking conditional heteroskedasticity into account exist and will be briefly mentioned in 

the next section. 
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3.3. Constancy of conditional variance 

The assumption g == 1 is also a testable hypothesis. However, because conditional hetero­

skedasticity is discussed elsewhere in this volume, testing g == 1 against nonconstant 

conditional variance is not considered here. This concerns not only testing linearity against 

ARCH but also testing it against random coefficient linear regression; see e.g. Nicholls and 

Pagan (1985) for further discussion on the latter situation. 

Iff == 0 and g == 1 are tested jointly, a typical LM or LM type test is a sum of two separate 

LM (type) tests for f == 0 and g == 1, respectively. This is the case because under this joint 

null hypothesis the information matrix is block diagonal; see Granger and Terasvirta (1992, 

chapter 6). Higgins and Bera (1989) derived a joint LM test against bilinearity and ARCH. 

On the other hand, testing f == 0 when g =f. 1 is a more complicated affair than it is when g == 

1. If g is parameterized, the null model has to be estimated under conditional heteroskedas­

ticity. Besides, it may no longer be possible to carry out the test making use of a simple 

auxiliary regression, see Granger and Terasvirta (1992). If g is not parameterized but g =f 1 

is suspected then the tests described in section 3.1 as well as RESET and the Tsay test can 

be made robust against g " 1. Davidson and MacKinnon (1985) and Wooldridge (1990) 

described techniques for doing this. The present simulation evidence is not yet sufficient to 

fully evaluate their performance in small samples. 

4. SPECIFICATION OF NONLINEAR MODELS 

If linearity tests indicate the need for a nonlinear model and economic theory does not 

suggest a completely specificied model, then the structure of the model has to be specified 

from the data. This problem also exists in nonparametric modelling as a variable selection 

problem because the lags needed to describe the dynamics of the process are usually 

unknown; see Auestad and Tj0stheim (1991) and Tj0stheim and Auestad (1991a,b). To 

specify univariate time series models, Haggan et al. (1984) devised a specification technique 

based on recursive estimation of parameters of a linear autoregressive model. The parame­

ters of the model were assumed to change over time in a certain fashion. Choosing a model 

from a class of state-dependent models, see Priestley (1980, 1988), was carried out by 

examining the graphs of recursive estimates. Perhaps because the family of state-dependent 

models is large and the possibilities thus many, the technique is not easy to apply. 

If the class of parametric models to choose from is more restricted, more concrete specifi-
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cation methods may be developed. (For instance, Box and Jenkins (1970) restricted their 

attention to linear ARMA models.) Tsay (1989) presented a technique making use of 

linearity tests and visual inspection of some graphs to specify a model from the class of 

threshold autoregressive models. It is easy to use and seems to work well. Chen and Tsay 

(1990) considered the specification of functional-coefficient autoregressive models whereas 

Chen and Tsay (1991) extended the discussion to additive functional coefficient regression 

models. The key element in that procedure is the use of arranged local regressions in which 

the observations are ordered according to a transition variable. Lewis and Stevens (1991a) 

applied multivariate adaptive regression splines (MARS), see Friedman (1991), to specify 

adaptive spline threshold autoregressive models. Terasvirta (1990a) discussed the specifi­

cation of smooth transition autoregressive models. This technique was generalized to 

smooth transition regression models in Granger and Terasvirta (1992, chapter 7) and will 

be considered next. 

.Consider the smooth transition regression model withp+k+1 independent variables 

(4.1 ) 

where E{ ut lIt} = 0, cov{ ut II} = a2,lt = {Yt-p j=1,2, . .. ;xt_j,i, i=l, ... ,k, j=O,l, ... }, (information 

set), m = (CPO,CP1,···,CPm)', ft = (80,8 z, ... , 8m)', m = k+p+ 1, and tl't = (l,Yt-z,···,Yt-p; x 1p···,Xkt)'· 

The alternatives for Fare F(zJ = (1 + exp { - Y(Zt - e)} rl, Y > 0, which gives the logistic 

STR model and F(zJ = 1 - exp { - Y(Zt - e/}, Y > 0, corresponding to the exponential STR 

model. The transition variable Zt may be any element of wt other than 1 or another variable 

not included in w(" 

The specification proceeds in three stages. First, specify a linear model to serve as a hase 

for testing linearity. Second, test linearity against STR using the linear model as the null 

model. If linearity is rejected, determine the transition variable from the data. Testing 

linearity against STR is not difficult. A test with power against both LSTR and ESTR if the 

transition variable is assumed known is obtained by proceeding as in section 3.1. This leads 

to the auxiliary regression 

(4.2) 

" where Ztd is the transition variable and ut is the OLS residual from the linear regression y l 

= j3'wt + u{' If Ztd is an element of l:!4, ~ = (1, ~ )' has to be replaced by ~ in (4.2). The 

linearity hypothesis is HOd: f21 = f22 =J13 = O. Equation (4.2) is also used for selecting Ztd' 
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The test is carried out for all candidates for Ztd, and the one yielding the smallest p-value is 

selected if that value is sufficiently small. If it is not, the model is taken to be linear. This 

procedure is motivated as follows. Suppose there is a true STR model with transition variable 

Ztd that generated the data. Then the LM type test against that alternative has optimal power 

properties. If an inppropriate transition variable is selected for the test, the resulting test may 

still have power against the true alternative but the power is less than if the correct transition 

variable is used. Thus the strongest rejection of the null hypothesis suggests that the 

corresponding transition variable be selected. For more discussion of this procedure see 

Terasvirta (1990a,c) and Granger and Terasvirta (1992, chapter 6 and 7). If linearity is 

rejected and a transition variable selected, then the third step is to choose between LSTR 

and ESTR models. This can be made by testing a set of nested null hypotheses within (4.2): 
* * * they are H 03: i23 = 0, H 02: i22 = 01i23 = 0 and H 01: i21 = 01i22 = i23 = O. The test results 

contain information that is used in making the choice; see Granger and Terasvirta (1992, 

chapter 7). 

Specifying the lag structure of (4.1) could be done within (4.2) using an appropriate model 

selection criterion but there is little experience about the success of such a procedure. In the 

existing applications, a general-to-specific approach based on estimating nonlinear STR (or 

STAR) models has mostly been used. 

The model specification problem also arises in nonparametric time series modelling. Taking 

model (2.5) as a starting-point, there lS the question of which lags 

Xl-il , ... , Xt-ip ; Yt-h , ... , Yt-jq should be included in the model. Furthermore it should be 

investigated whether the functions f and g are linear or nonlinear and whether they arc 

additive or not. Moreover, if interaction terms are included, how should they be modelled 

and, more generally, can the nonparametric analysis suggest functional forms such as the 

smooth transition or threshold function or an ARCH type function for conditional variance? 

These are problems of exploratory data analysis for nonlinear time series, and relatively 

little nonparametric work has been done in the area. Various graphical model indicators 

have been tried out in Tong (1990, chapter 7), Haggan et al. (1984) and Auestad and 

Tj0stheim (1990), however. Perhaps the most natural quantities to look at are the lagged 

conditional mean and variance of increasing order, i.e. 

My,iY) = E(Yt I Yt-k = y) 

(4.3) 

Vy key) = var(Yt I Yt-k = Y) . , 
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In univariate modelling these quantities have been extensively, albeit informally, used in 

Tong (1990, chapter 7). They can give a rough idea of the type of nonlinearity involved, but 

they fail to reveal things like the lag structure of an additive model. 

A more precise and obvious alternative is to look at the functions M()!;~ and V(~J·±2. defined 

in (2.6) and (2.7), but they cannot be graphically displayed for p+q > 2, and the curse of 

dimensionality quickly becomes a severe problem. Auestad and Tj0stheim (1991) and 

Tj0stheim and Auestad (1991a) introduced projections as a compromise between M()!.;~, 

V()!...·~ and the indicators (4.3). To define projections consider the conditional mean function 

M(Yt-i
l 

, ••• , Yk , ... , Yt-i
p 

; xt-h , ... , xt-jq ) with Yt-i
k 

excluded. The one-dimensional projector 

of order (p,q) projecting on lag ik of Yt is defined by 

(4.4) 

The projector Pxk(x) is defined in the same way. For an additive model with , 
p q 

M(YI ,"', Yp ; xl,···, Xq ) = ~ ai (Yi ) + ~ Pj (Xj) it is easily seen that if all p+q lags are 
i=l j=l 

included in the projection operation, then 

where Ilk = E(yJ - E{aiYt)} and Ok = E(xJ - E { PixJ}. Clearly the additive terms aiY) 

and Pk(x) cannot be recovered using My,k and Mx,k of (4.3). 

Projectors can be defined similarly for the conditional variance, and in principle they reveal 

the structure of models having an additive conditional variance function. Both types of 

projectors can be estimated by replacing theoretical expectations with empirical averages 

and by introducing a weight function to screen off extreme data. Properties and details are 

given in Auestad and Tj¢stheim (1991) and Tj0stheim and Auestad (1991a). 

An important part of the model specification problem consists of singling out the significant 

lags i1, ... ,ip; h, ... ,jq and the orders p and q for the conditional mean (2.6) and conditional 

variance (2.7). Auestad and Tj0stheim (1990, 1991), Tj0stheim and Auestad (1991b) and 

Cheng and Tong (1990) considered this problem, Granger and Lin (1991) did the same from 

a somewhat different point of view. Auestad and Tj0stheim adopted an approach analogous 

to the parametric final prediction error (FPE) criterion of Akaike (1969). They treated it 



22 

only in the univariate case, but it is easily extended to the multivariate situation. 

For model (2.5) with g == 1 (no heterogeneity) a nonparametric bias corrected and estimated 

version of the parametric FPE is given by 

1\ 

FPE (i1 , ... , ir;h ,···,js)= 

1 ( I r+s )-1 Jr+s B 
1 ~ 1\ + n 7, r,s 

r L,; (Yt - M (Yt-i1 , ••• , xt-i ; Xt-jl , ... , Xt_j ) r+s 1 { r+s r+s 
t r s 1-(nh r 2k(O) -J 

( 4.5) 

where J = J k2 (x)dx, k is a kernel function and Br s essentially represents the dynamic range , 
of the data in an (r+s)-dimensional space. It can be estimated as 

2 
w (Yt-i , ... , Yt-i ; Xt_j , ... , Xt_j ) 

Br s = r 1 2:" 1 r 1 s 
, t P (Yt-i

1 
, ••• , Yt-i

r 
; Xt-h , ... , Xt-js ) 

1\ 

where w is a weight function designed to screen off extreme observations, and p is the 

estimated joint density function. Criterion (4.5) can be used both to determine orders p and 

q and significant lags i1, .. ,ip and h, ... ,jq in (2.6). A more general formula for the hetero­

geneous case is given in Tj0stheim and Auestad (1991b) to which the reader is referred for 

details of derivation and examples with simulated and real data. Cheng and Tong (1992) 

discussed a closely related approach based on cross validation. 

An alternative and less computer intensive method is outlined by Granger and Lin (1991). 

They use the Kendall rank partial autocorrelation function and the bivariate information 

measure 

1\ 

f 
logp (x,y) 1\ 

log (p (x) p (y)) p (x,y)dxdy 

[or a pair of lags. Joe (1989) studied its properties in the iid case. Robinson (1991) considered 

the random process case and tests of independence. Specification of semiparametric time 

series models is discussed in the next section together with estimation. 
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5. ESTIMATION IN NONLINEAR TIME SERIES 

5.1. Estimation of parameters in parametric models 

For parametric nonlinear models, conditional nonlinear least squares is the most common 

estimation technique. If the errors are normal and independent, this is equivalent to 

conditional maximum likelihood. The theory derived for dynamic nonlinear models (3.1) 

with g == 1 gives the conditions for consistency and asymptotic normality of the estimators. 

For an account, see e.g. Gallant (1987, chapter 7). Even more general conditions were 

recently laid out in Potscher and Prucha (1990, 1991). These conditions may be difficult to 

verify in practice, so that the asymptotic standard deviation estimates, confidence intervals 

and the like have to be interpreted with care. For discussions of estimation algorithms see 

e.g. Quandt (1983), Judge et al. (1985, appendix B) and Bates and Watts (1988). The 

estimation of parameters in (2.2) may not always be straightforward. Local minima may 

occur, so that estimation with different starting-values is recommended. Estimation of y in 

transition function (2.3) may create problems if the transition is rapid because there may not 

be sufficiently many observations in the neighbourhood of the point about which the 

transition takes place. The convergence of the estimate sequence may therefore be slow, see 

Bates and Watts (1988, p. 87) and Granger and Tedisvirta (1992, chapter 7). For simulation 

evidence and estimation using real economic data sets see also Granger et al. (1992), 

Luukkonen (1990), Tedisvirta (1990a) and Terasvirta and Anderson (1991). Model (2.2) 

may even be a switching regression model in which case y is not finite and cannot be 

estimated. In that case its estimated value will grow until the iterative estimation algorithm 

breaks down. An available alternative is then to fix y at some sufficiently large value and 

estimate the remaining parameters conditionally on that value. 

The estimation of parameters becomes more complicated if the model contains lagged errors 

as the bilinear model does. Subba Rao and Gabr (1984) outlined a procedure for the 

estimation of a bilinear model based on maximizing the conditional likelihood. Quick 

preliminary estimates may be obtained using a long autoregression to estimate the residuals 

and OLS for estimating the parameters keeping the residuals fixed. This is possible because 

the bilinear model has a simple structure in the sense that it is linear in the parameters if we 

regard the lagged residuals as observed. Granger and Terasvirta (1992, chapter 7) suggested 

this alternative. 

If the model is a switching regression or threshold autoregressive model, nonlinear least 

squares is an inapplicable technique because of the irregularity of the sum of squares or 

likelihood function. The problem consists of the unknown switch-points or thresholds for 
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which unique point estimates are not available as long as the number of observations is 

finite. Tsay (1989) suggested specifying (approximate) switch-points from "scatterplots of 

t-values" in ordered (according to the switching variable) recursive regressions. As long as 

the recursion stays in the same regime, the t-value of a coefficient estimate converges to a 

fixed value. When observations from another regime are added into the regression, the 

coefficient estimates start changing and the t-values deviating. Tsay (1989) contains 

examples. The estimation of parameters in regimes is carried out by ordinary least squares. 

Chan (1988) showed (in the univariate case) that if the model is stationary and ergodic, the 

parameter estimates, including those of the thresholds, are strongly consistent. 

5.2. Estimation of nonparametric functions 

In nonparametric estimation the most common way of estimating the conditional mean (2.6) 

and variance (2.7) is to apply the so-called kernel method. It is based on a kernel function 

. k(x) which typically is a real continuous, bounded, symmetric function integrating to one. 

Usually it is required that k(x) ~ 0 for all X, but sometimes it is advantageous to allow k(x) 

to take negative values, so that we may have f x2 k(x)dx = O. The kernel method is explained 

in much greater detail in the chapter by HardIe on nonparametric estimation. 

The kernel acts as a smoothing device in the estimation procedure. For quantities depending 

on several variables as in (2.6) and (2.7) a product kernel can be used. Then the kernel 

estimates of M and Vare 

12: p q 

T 
Ys n kh 1 (yr - Ys-i ) n kh 2 (xr - xs-i ) , r' r 

" s r=1 r=1 
M(Y1,oo"Yp, Xl>oo"xq) = ----------------

1 p q 

T 
~ n kh 1 (yr - Ys-i ) n kh 2 (xr - xs-i ) L.J, r' r 

S r=1 r=1 

(5.1) 

1 2: ? P q 
, r' r T Y; n kh 1 (yr - Ys-i ) n kh 2 (xr - xs-i ) 

" s r=1 r=1 "2 
V(Y1,oo"Yp' Xl>oo"xq) = - (M ( 1:, ~» 

1 p q 

T 
~ n kh 1 (yr - Ys-i ) n kh 2 (xr - xs-i ) L.J, r' r 
S r=1 r=1 

(5.2) 

where kh,lx) = hj1ki (hj1x), i=1,2. Here k1 and k2 are the kernel functions associated with 

the {Yt} and {Xt} process, and h1 and h2 are the corresponding bandwidths. The bandwidth 
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controls the width of the kernel function and thus the amount of smoothing involved. The 

bandwidth will depend on the total number of observations T, so that h = h(T) - ° as T --;. 

00. It also depends on the dimensions p and q, but this has been suppressed in the above 

notation. In the following, to simplify notation, it is assumed that {Yt}, {Xt} are measured 

roughly on the same scale, so that the same bandwidth and the same kernel function can be 

used everywhere. 

1\ 

Under regularity conditions (Robinson, 1983) it can be proved that M (J:, ~) and 
1\ 

V (1:., ~) are asymptotically normal. More precisely, 

(Tlf+
q 

)V2 { if (J:, ~ ) - M ( J: , ~ ) } - N (0, ; ~ ~: ~ ~ jp+q ) (5.3) 

and 

(Tlf+
q t2 { V (J:, ~) - V (J:, ~) } - N (0, ; ~ ~::~ jp+q) (5.4) 

where the convergence is in distribution, j = f k2 (x)dx, and s()!., ~ is defined in Auestad and 

Tj0stheim (1990). 

Several points should be noted for (5.3) and (5.4). For parametric models we have 

fl-consistency. For nonparametric models the rate is V TJl+7J, which is slower. The 

presence ofp(~;y in the denominator of the left-hand sides of (5.3) and (5.4) means that the 

variance blows up close to the boundaries of the data set, and extreme care must be used in 
1\ 1\ 

the interpretation of M( ~ , J: ) and V( ~ , J: ) there. 

There are other aspects of practical significance that are not immediately transparent from 

(5.3) and (5.4). They will be discussed next. 

Confidence intervals. Asymptotic confidence intervals can in principle be computed from , 
(5.3) and (5.4) by replacingp()!.,;Y, V()!.,;Y and s()!.,;Y by corresponding estimated quantities. 

An alternative is to try to form bootstrap confidence intervals. Franke and Wendel (1990) 

discussed a simple example where the bootstrap performs much better than asymptotic 

intervals. In the general case the bootstrap developed by Kiinsch (1989) and Politis and 

Romano (1990) may be needed. 

1\ 1\ 

Bias. As seen from (5.3) and (5.4), M(y, x) and V(y, x) are asymptotically unbiased. For a 
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finite sample size the bias can be substantial. Thus, reasoning as in Auestad and Tj0stheim 

(1990) yields 

a pC Y.., x ) 
+ 

~ a M(y", x) 
L.J a xi 

P 2 q 2 
a p( Y.. , x) +! " a M( Y.. , x ) ( ) 1" a M( Y.. , x) Of "Y , A_" ) I 

ax. 2 L.J 2 P Y..,! +"2 L.J 2 \.L r 
L i=l aYi i=l aXi i=l 

(5.5) 

where 12 = f x2k(x)dx. A corresponding formula (Tj0stheim and Auestad, 1991a) holds for 

the conditional variance. A Gaussian linear model will have a linear bias in the conditional 

mean, but in general the bias can lead to a misspecified model. For example a model with 

a flat conditional variance (no conditional heteroskedasticity) may in fact appear to have 

some form of heteroskedasticity due to bias from a rapidly varying M (Y.. , ! ). An exampk 
1\ 

is given in Auestad and Tj0stheim (1990). Generally, V IT .!) is more affected by bias and 
1\ 

has more variability than M (y",!). This makes it harder to reveal the structure of the 

conditional variance using purely nonparametric means; see for instance the example or 
conditional stock volatility in Pagan and Schwert (1990). Another problem is that misspeei­

fication of the conditional mean may mix up conditional mean and variance effects. This is 

of course a problem in parametric models as well. 

Choosing the bandwidth: Comparing the variance and bias formulae (5.3-5) it is seen that 

the classical problem of all smoothing operations is present. As h increases, the variance 

decreases whereas the bias increases and vice versa. How should h be chosen for a given 

data set? 

There are at least three approaches to this problem. The simplest solution is to compute 

estimates for several values of h and select one subjectively. A second possibility is to use 

asymptotic theory. From (5.3-5) it is seen that if we require that variance and bias squared 

should be asymptotically balanced, then (Tlf+qr1 - ",,4, or h - T -l/(p+q+4). An extension 

of this argument (Truong and Stone, 1992) yields h - T -l/(p+q+2R), whereR is a smoothness 

parameter. The problem of choosing the proportionality factor still remains. A discussioll 

of this and related problems is given in HardIe (1990, chapter 5), in the chapter by H~irdle 

in this volume and in Marron (1989). The third possibility, which is the most time consuming 

but possibly the one most used in practice, is to use some form of cross validation. For 

details, see the above references. Simulation experiments showing considerable variahility 
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for h selected by cross validation for one and the same model have been reported. 

Boundary effects. For a point (x,.r) close to the boundary of the data set there will he 

disproportionally more points on the "inward" side of (x, .r). This asymmetry implies that 

we are not able to integrate over the entire support of the kernel function, so that we cannot 

exploit the fact thatf xk(x)dx = o. This in turn means that there is an additional bias of order 

h due to this boundary effect. For example, for a linear regression model the estimated 

regression line would bend close to the boundary. The phenomenon has primarily been 

examined theoretically in the fixed regression design case (Rice, 1984; Milller, 1990). 

Higher order kernels. Sometimes so-called higher order kernels have been suggested for 

reducing bias. It is seen from (5.4) that if k is chosen such thatfik(x)dx = 0, the bias will 

effectively be reduced to the next order term in the bias expansion (typically of order h\ 
However, practical experience in the finite sample case has been mixed, and a higher order 

kernel does not work unless T is rather large. 

Curse of dimensionality. This problem was mentioned in the Introduction. It is a well-known 

difficulty of multidimensional data analysis and a serious one in nonparametric estimation. 

Although the bandwidth h typically increases somewhat as the dimensions p and q increase, 

this is by no means enough to compensate for the sparsity of points in a neighborhood of a 
1\ 

given point. The estimate M (y,x) will eventually reach a limiting value essentially inde-

pendent of the chosen h. Indeed, in the limiting situation the sums in the numerator and 

denominator of (5.1) and (5.2) will be completely dominated by the observational pair (ysxs) 
1\ 

closest to (x,..r) and in the limit M(x,y) becomes 

M* (y , :! ) = y s* ( 1:: , ! ) + 1 

where s*(y,x) is the s for which II Xs - Y 112 + 11.!s -x 112 is minimized. There may still he 

some useful information left in M*(x,..r} that can be used for specification purposes 

(Tj0stheim and Auestad, 1991a,b) or as input to iterative algorithms described in the next 

section, but it is of little use as an accurate estimate of M(x,.r). 

In general one should try to avoid the curse of dimension by not looking at too many 

regressors simultaneously; i.e. by considering (2.6) and (2.7) such that while ip and iq may 

be large, p and q are not. This requires a meth!Jd for singling out significant lags nonpara­

metrically, which was discussed in section 4. Alternatively, the problem may be handled by 

applying more restricted models which will be considered in the next section. 
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Other estimation methods. There are a number of alternative nonparametric estimation 

methods. These are described in Hardie (1990, chapter 3) and Hastie and Tibshirani (1990, 

chapter 2). The most commonly used are spline smoothing, nearest neihgbour estimation, 

orthogonal series expansion and the regressogram. For all of these methods there is a 

smoothing parameter that must be chosen in analogy with the choice of bandwidth for the 

kernel smoother. The asymptotic properties of the resulting estimators are roughly similar 

to those in kernel estimation. The spline smoother (Silverman, 1984) can be rephrased 

asymptotically as a kernel estimator with negative sidelobes. Diebolt (1990) applied the 

regressogram to test for nonlinearity. Yakowitz (1987) considered nearest neighbour 

methods in time series. Further applications will be mentioned in the next section. 

5.3. Estimation in restricted nonparametric and semi parametric models 

As mentioned above, general nonparametric estimation with many variables leads to 

increased variability and problems with the curse of dimensionality. To alleviate these 

problems one can look at more restrictive models requiring particular forms for f and g in 

(2.5) or one can consider semi-parametric models. This section is devoted to models of that 

kind. 

Additive models: Virtually all restrictive models have some sort of additivity built into them. 

In the simplest case (using consecutive lags) 

p q 

Yt = 2: ai (Yt-i ) + 2: ~i (xt-i ) + Ct • 

i=l i=l 

Regression versions of such models and generalizations with interaction terms are analysed 

extensively in Hastie and Tibshirani (1990) and references therein. Taking conditional 

expectations with respect to Yt-i and Xt_j simple identities are obtained which can be used as 

a basis for an iterative algorithm for computing the unknown functions ai and f)j" The 

algorithm needs initial values of these functions. One possibility is to use either projections 

or simply a linear model for this purpose. Some examples and theoretical properties in the 

pure regression case are given by Hastie and Tibshirani. See also Chen and Tsay (1991). 

The ACE algorithm treats a situation in which the dependent variable may be transformed 

as well, so that 
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The algorithm is perhaps test suited for a situation where Uj = 0 for all i, so that there is a 

clear distinction between the input and output variables. The method was developed in 

Breiman and Friedman (1985). Some curious aspects of the ACE algorithm are highlighted 

in Hastie and Tibshirani (1990, p. 184-186). In view of the above comments it is perhaps 

not surprising that in a time series example Hallman (1990) obtained better results by using 

a version of backfitting (Tibshirani, 1988) than with the ACE algorithm. 

Chen and Tsay (1990) considered a univariate model allowing certain interactions. Their 

functional coefficient autoregressive (FCAR) model is given as 

Yt = II (Yt-i
1 

, ... , Yt-ik ) Yt-1 + ... + Jp (Yt-i
1 
,"', Yt-ik ) Yt-p + Et 

with ik:s p. By ordering the observations according to some variable or a known combination 

bf them to an "ordered" local regression the authors proposed an iterative procedure for 

evaluatingh, ... ,jp and gave some theoretical properties. The procedure simplifies dramati­

cally if all the fj are one-dimensional. The authors fitted an FCAR model of this type to the 

chicken pox data of Sughihara et al. (1990). The fitted model seemed to point at a threshold 

autoregressive model. The forecasts from such a model subsequently fitted to the data had 

a MSE at least 30 % smaller than a seasonal ARMA model used as a comparison for 

forecasting 4-11 months ahead. 

Projection pursuit type models. In our notation these models can be written as 

r 

Yt = ~ ~j (I} Y t-1 + se}:! t-1 ) + et 
j=1 

where ~j' j=i, ... ,r, are unknown functions, Yj and mj are unknown vectors determining the 

direction of the j-th projector, and .lLt-l' -It-l are as in (2.5). An iterative procedure (Friedman 

and Stuetzle, 1981) exists for deriving optimal projectors (projection pursuit step) and 

functions ~j' The curse of dimensionality is avoided since in the smoothing part of the 

algorithm it is exploited that ~j is a function of one scalar variable. For time series data, 

experience with this method is limited. A small simulation study Granger and Teriisvirta 

(1991) conducted gave marginal improvements compared to linear model fitting for the 

particular nonlinear models they considered. Projection pursuit models are related to neural 

network models, but for the latter the functions ~j are assumed known and often ~j = ~,j = 

i, ... ,r, thus giving a parametric model class. The fitting of neural network models is 
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discussed in White (1989). 

Regression trees. splines and MARS. Assume a model of form 

and approximate I(~~ in terms of simple basis functions B/~~ so that lappr (~,rJ = 

L Cj Bj (1:.,!). In the regression tree approach (Breiman et aI., 1984) lappr is built up 

j 

recursively from indicator functions Bj (~,rJ = I {.6:,,rJ E Rj } and the regions Rj are 

partitioned in the next step of the algorithm according to a certain pattern. As can be expected 

there are problems in fitting simple smooth functions like the linear model. 

Friedman (1991) in his MARS (Multivariate Adaptive Regression Splines) methodology 

has made at least two important new contributions. First, to overcome the difficulty in fitting 

simple smooth functions Friedman proposed not to automatically eliminate the parent region 

Rj in the above recursive scheme for creating subregions. In subsequent iteration both the 

parent region and its corresponding subregions are eligible for further partitioning. This 

allows for much greater flexibility. The second contribution is to replace step functions by 

products of linear left and right truncated regression splines. The products make it possible 

to include interaction terms. For a detailed discussion the reader is referred to Friedman 

(1991). 

Lewis and Stevens (1991a) applied MARS to time series, both simulated and real data. As 

for most of the techniques discussed in this section a number of input parameters are needed. 

Lewis and Stevens recommended running the model for several sets of parameters and then 

selecting a final model based on various specification/fitting tests. They fitted a model to 

the sunspot data which has 3 one-way, 3 two-way and 7 three way interaction terms. The 

MARS model produced better overall forecasts of the sunspot activity than the models 

applied before. In Lewis and Stevens (1991b) riverflow is fitted against temperature and 

precipitation and good results obtained. There are as yet no applications to economic data. 

The MARS technology appears very promising but must of course be tested more exten­

sively on real and simulated data sets. No asymptotic theory with confidence intervals is 

available yet. 

Stepwise series expansion of conditional densities. In a sense the conditional density p(Yt I 
J!.t-z, ~-1) is the most natural quantity to look at in a joint modelling of {yv Xt} since predictive 

distributions as well as the conditional mean and variance can all be derived from this 
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quantity. Gallant and Tauchen (1990) used this fact as their starting point. 

The conditional density is estimated, to avoid the curse of dimensionality, by expanding it 

in Hermite polynomials. These are centred and scaled so that the conditional mean M()!..,~ 

and variance V()!..,.g playa prominent role. As a first approximation they are supposed to be 

linear Gaussian and of ARCH type, respectively. 

Gallant et a1. (1990) looked at econometric applications, notably to stock market data. In 

particular, they investigated the relationship between volatility of stock prices and volume. 

A main finding was that an asymmetry in the volatility of prices when studied by itself mon.: 

or less disappears when volume is included as an additional conditional variable. Possible 

asymmetry in the conditional variance function (univariate case) has recently been studied 

by a number of investigators using both parametric and nonparametric methods; see Engle 

and Ng (1991) and references therein. 

Semiparametric models. Another way of trying to eliminate the difficulties in evaluating 

high-dimensional conditional quantities is to assume nonlinear and nonparametric depend­

ence in some of the predictors and parametric and usually linear dependence in others. An 

illustrative example is given by Engle et a1. (1986) who modelled electricity sales using a 

number of predictor variables. It is natural to assume the impact of temperature on electrici t y 

consumption to be nonJinear, as both high and low temperatures lead to increased consump­

tion, whereas a linear relationship may be assumed for the other regressors. A similar 

situation arose in Shumway et a1. (1988) which is a study of mortality as a function of weather 

and pollution variables in the Los Angeles region. 

In the context of model (2.5) with a linear dependence on lags of Yt and nonlinearity with 

respect to the exogenous variable {Xt}, we have 

Yt = £'y t-1 + f(! t-1 ) + c(" 

The modelling technique would depend somewhat on the dimension of Kt-l' In the case 

where the argument of f is scalar, it can be incorporated in the backfitting algorithm of Hastie 

and Tibshirani (1990, p. 118). Under quite general assumptions it is possible to obtain 

v'T-consistency for the parametric part as demonstrated by Heckman (1986) and Robinson 

(1988). Powell et a1. (1989) developed the theory further and gave econometric applications. 
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6. EVALUATION OF ESTIMATED MODELS 

After estimating a nonlinear time series model it is necessary to evaluate its properties to 

see if the specified and estimated model may be regarded as an adequate description of the 

relationship it was constructed to characterize. The residuals of the model can be subjected 

to various tests such as those against ARCH and normality. At least in the parametric case 

linearity of the time series was tested, and the same tests may now be performed on the 

residuals to see if the model adequately characterizes the nonlinearity the tests previously 

suggested. Note, however, that the asymptotic distribution of the Ljung-Box test statistic of 

no autocorrelation based on estimated residuals is not available, as the correct number of 

degrees of freedom is known only for the linear ARMA case. However, considering residual 

autocorrelations as such is informative. One should also study the stability of the model, 

which generally can only be done numerically by simulating the model without noise. The 

exogenous variables should be set on a constant level, for instance to equal their sample 

means. If the solution path diverges, the model should be rejected and respecification 

attempted. Other examples of a solution are a limit cycle or a stable singular point. See e.g. 

Ozaki (1985) for further discussion. 

The out-of-sample prediction of the model is an important part of the evaluation process. 

The precision of the forecasts should be compared to those from the corresponding linear 

model. However, as mentioned in the Introduction, the results also depend on the data during 

the forecasting period. If there are no observations in the range in which nonlinearity of the 

model makes an impact, then the forecasts cannot be expected to be more accurate than 

those from a linear model. The check is thus negative: if the forecasts from the nonlinear 

model are significantly less accurate than those from the corresponding linear one, then the 

nonlinear specification should be reconsidered. 

7. EXAMPLE 

As a parametric example of the specification, estimation and evaluation cycle we shall 

consider the seasonally unadjusted logarithmic U.S. industrial output 1960(1) to 1986(4). 

This is one of the series analyzed in Terasvirta and Anderson (1991). The four quarter 

differences (growth rate) contain strong fluctuations, and the problem is to find an adequate 

description of the series. Selecting the linear. autoregressive model using AIC yields an 

AR(6) model. Results of the linearity tests against STAR when the delay, d, is varied from 

1 to 9 are given in Table 1. The test is based on an auxiliary regression like (4.2) which is 
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Table 1. The p-values of the linearity test against STAR for delays d = 1, ... ,9, for the 

four-quarter differences of the logarithmic U.S. industrial output, 1960(1)-1986(4). The 

base model is AR(6). 

d 1 2 3 4 5 6 7 8 

p-value 0.22 0.22 0.0062 0.0086 0.060 0.35 0.65 0.46 

Yt = -0.021 + 0.35Yt_l + 0.24Yt_3 - 1.03Yt_4 + 0.33Yt_9 

(0.0072) (0.12) (0.20) (0.19) (0.11) 

+(0.021 + 1.16Yt_l - 0.57Yt_2 - 0.24Yt_3 + 1.03Yt_4 - 0.33Yt_9) 

(0.0072) (0.15) (0.10) (0.20) (0.19) (0.11) 

1 1\ 

x (1 + exp[-49x17.5(Yt_3-0.0061)]Y + ut 

(37) (0.0007) 

9 

0.55 

(7.1) 

univariate and the transition variable is Yt-d. It is seen from Table 1 that d=3 and d=4 are the 

two obvious possibilities. Both were tried, and results finally reported are based on d=3. 
* * * The next step was to choose between ESTAR and LSTAR by testing H 03, H 02 and H 01> 

respectively, as discussed in section 4. The choice was an LSTAR model. Specification of 

the dynamic structure of the model was carried out by estimating LSTAR models from 

general to specific. The final model is s=0.0176 (residual standard deviation), LB(12) = 7.5 

(Ljung-Box test with 12 autocorrelations), ML( 4) = 7.3 (0.12) (McLeod-Li test against 

ARCH; p-value in parentheses), JB = 16.8 (0.0002) (Jarque-Bera test against non-normal­

ity). Note that there are several exclusion restrictions of type Cf>j = -8j in (7.1) that have been 

imposed as they do not contradict the data. The normality test indicates that there are outliers 

among the residuals. They are in fact large (in absolute value) negative residuals which can 

be interpreted as negative shocks to the system. Carrying out the linearity test for the 

residuals setting d = 3 yields p-value = 0.040 indicating that there may still be some 

nonlinearity left not captured by (7.1). The number of lags in (7.1) is fairly large mainly 

because the series is seasonally unadjusted. 

A detail in the estimated equation worth pointing out separately is the large standard 
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deviation of y. In order to obtain an idea of the size of y the exponent of the transition function 

is standardized by multiplying it by the inverse of the estimated standard deviation of Yt 

which equals 17.5. Seen against that background y = 49 is a large number indicating that 

the transition function changes from zero to unity or vice versa very rapidly whenYt_3 crosses 

0.0061. However, the uncertainty of y seems large. This is the situation described in Bates 

and Watts (1988, p. 87). The large standard deviation reflects the fact that a wide range of 

values of y around 49 would give a very similar transition function. It is not due to linearity 

of the series. Many more observations in the neighbourhood of c would be needed to estimate 

y accurately. As a matter of fact, the residual variance of (7.1) is less than two-thirds of that 

of the AR(6) model, which is a large reduction. 

The long-term solution of (7.1) is interesting. The realizations starting from a given set of 

starting values display cycles of varying length but no regular limit cycle seems to appear. 

If the starting-values are changed slightly, another cyclical realization emerges which 

gradually drifts apart from the previous one. Thus any change in the starting-values affects 

the long-run solution. It is also instructive to study the characteristic polynomials of (7.1) 

at different values of the logistic transition function F (see (4.1», zero and unity being most 

interesting as the extreme values. When F = 0, which corresponds to the recession, the 

equation has two pairs of complex roots with moduli 1.11 and 1.01, respectively. The roots 

of the expansion regime (F = 1) are a stationary complex pair with modulus 0.75. Thus the 

output recovers from a recession swiftly as explosive roots are needed to characterize that. 

On the other hand, there is little else in this characterization than large negative shocks 

pushing the industry from an expansion into a recession. 

One-quarter-ahead forecasts for 1987-1988 not shown here contribute little to the analysis 

because the output growth fluctuates little during that period. Both linear and nonlinear 

models have the root mean square prediction error way below the residual standard deviation 

of the nonlinear model. 

The general conclusion is that there is no inherent nonlinearity in the series. For instance, it 

cannot be argued that the series is asymmetric, which has been a recent topic of nonlinear 

time series analysis. Nonlinear structure is needed mainly to describe the recovery of 

industrial production from a large negative shock. This is also seen by comparing the 

residuals of (7.1) and the AR(6) model, which also is a useful way of evaluating the nonlinear 

model. For more discussion of this and similar models for a few other OEeD countries the 

reader is referred to Tedisvirta and Anderson (1991). Applications of bivariate STR models 

can be found in Granger et aI. (1992); see also Granger and Terasvirta (1992, chapter 10). 
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8. CONCLUSIONS 

This chapter is an attempt at an overview of various ways of modelling nonlinear economic 

relationships. Since nonlinear time series models and methods are a very large field, not all 

important developments have been covered. The emphasis has been on model building, and 

the modelling cycle of linearity testing, model specification, parameter or nonparametric 

function estimation and model evaluation has been highlighted. The estimation of fully 

specified nonlinear theory models like disequilibrium models has not been the topic here. 

A majority of results concern the estimation of the conditional mean of a process whereas 

the conditional variance has received less attention. This is in part because conditional 

heteroskedasticity is discussed in a separate chapter. Random coefficient models also belong 

under that heading and have not been considered here. Furthermore, this presentation retlecL~ 

the belief that economic phenomena are more naturally characterized by stochastic than 

deterministic models, so that deterministic chaos and its applications to economics have 

only been briefly mentioned in the discussion. 

At present the number of applications of nonlinear time series models in economics is still 

fairly limited. Many techniques discussed here are as yet relatively untested. However, the 

situation may change rather rapidly, so that in a few years the possibilities of evaluating the 

empirical success of the present and new techniques will be essentially better than now. 
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