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ABSTRACT

We will study here different resampling procedures for creating
confidence sets in linear models. A special technique called abstract
resampling makes it possible to use the true residuals and the true
model for resampling. This may seem to be peculiar since the true
residuals contains unknown parameters and thus are non observable;
but for each specified parameter value the residuals are observable
and can be used for resampling. Furthermore simulating the null
distribution of some appropriate statistic gives the possibility to test
the accuracy of a hypothetic parameter value. Finally a confidence set
can be created by finding the parameter values which can not be
rejected.

Bootstrapping the true residuals will be called abstract bootstrapping.
We will show that the abstract bootstrap method is closely related to a
permutation method.

A balanced abstract bootstrap method will also be presented, a
method which treats the grand mean in linear models and can be
applied in ordinary bootstrapping as well.

- The resampling methods; bootstrap, abstract bootstrap and the
permutation method are all closely related. Which method to use is
discussed from a practical point of view.
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1. INTRODUCTION

During the last decade computer power has increased enormously and
therefore the interest in computer intensive methods has grown. We
will study here some of these methods especially for creating
confidence sets. One of the great advantages with these methods is
that they demand minimal assumptions about distributional forms.

For creating a confidence set we need information about the
variability of the random variable studied. One way to get this
information is to use resampling methods for example bootstrapping.
Assume that X is a random variable with some unknown distribution
function F, furthermore assume that 6 is the parameter of interest and
T(X) its estimate. The bootstrap method can be illustrated in step by
step the following way:

0 is the parameter of interest and T(X) an estimate of 6

A sample X = estimated distribution t , observation T(X)
estimated distribution = new samples X*

new samples X* = new observations T(X*)

new observations T(X*) = information about the variation of T(X)
information about the variation = confidence set for 6

The crucial and most difficult step is how to use the information
about the variation. The problem is that the new observations and the
information about the variation are produced from the estimated
model and not from the true model. It is difficult to understand and to
calculate the relation between the variation in the estimated model
and the variation in the true model.



In some situations it is possible to do the resampling in another way.
For each resample find the parameter which forces the new
resampled statistic T(X*) to be equal to the original one T(X). The
parameters found are possible values of the true parameter 6. As we
shall see this generated sequence of possible true parameter values
estimates the likelihood function. This resampling technique will be
called abstract resampling, because the statistic is abstract and non
observable until we specify a parameter value.

2. ABSTRACT SIMULATION TECHNIQUE

2.1 Abstract samples

One technique for simulating outcomes of a random variable is to
simulate Uy,Uy, ..., Uy independently and uniformly distributed in the
interval [0,1] and then transform these values according to the actual
distribution; bearing in mind that if X is a random variable and F its
c.d.f. then F(X) is uniformly distributed in the interval [0,1], in other
words F1(Uj has the same distribution as X.

Example 1, Assume that X is binomially distributed with known
parameters n and p. Simulating an outcome x is easily done by
simulating n independent values uniformly distributed in the interval
[0,1] and then count the number of values less than p.

Generally, assume that X is a random variable with a distribution
possible to simulate by transforming U's. This means that each
sequence of U's is a potential outcome for X. For a given U sequence
the outcome depends on the value of the parameter(s) belonging to
the actual distribution. The outcome is undecided until we specify the
parameter value i.e. the outcome is abstract.



Example 2. Assume that X is binomially distributed with parameters
n=10 and with an unknown p-value. A sequence U1,Uz, ..., Ujg is a
potential outcome of X, an abstract outcome, which will be undecided
until we specify the parameter p. Observe that we have the possibility
to get exactly the outcome that we want. Assume that we want x=3,
then we just have to choose a p-value such that exactly three
observations are less than this value, i.e. choose a p-value in the
interval [Usy, Uy ]. Observe that it is possible to get all of the
outcomes in the sample space of X: for x=1,2,...,9 choose a p-value in
the interval [U), Ux+1)]1, for x=0 choose a p-valuec[0,U(1)] and for
x=10 choose a p-value €[U(10),1], where U, is the X:th ordered value.

Example 3. Assume that X is normally distributed with parameters
o=1 and with an unknown u value. If Z has standard normal
distribution, then Z is a potential outcome of X=p+Z. The value of X is
controllable, we can get exactly the value x that we want by choosing
u=x-Z. For each simulated Z we get a possible value of u to have
produced the outcome Xx.

Assume that X is a random variable with some distribution
depending on the parameter 6. Let x denote the original outcome and
let X*(8) denote an abstract outcome. Furthermore assume that we
repeatedly simulate U-sequences and for each sequence find the o'-
value that makes X*(6)=x. The series of 6'-values are all possible true
8-values to have produced the outcome x. A confidence set is created
by sorting these values and rejecting the most extreme ones .




2.2 Abstract simulation versus maximum likelihood

We will here examine the relation between the abstract simulation
technique and the maximum likelihood theory. Suppose that £(6,x) is
the frequency or density function of the random variable X, where 6
is the true parameter belonging to the set 6. Consider the likelihood
function L(x,0)=f(6,x) as a function of 6 for fixed x. Here x is thought of
as an observation obtained in an experiment. In the discrete case
L(x,8) gives the probability of observing x. Thus we can regard L(x,0)
as a measure of how likely 0 is to have produced the observation x.

The method of maximum likelihood consists of finding the value )

which is most likely to have produced the observation x.
8: L(x,0) =f(6x) > L(xp) =f(8,x) , for all 6€®.

The maximum likelihood estimate , the most likely parameter to
have produced the observation, can also be found by keeping the x

value fixed and simulate 8'values by abstract simulation. The most
frequented 6'value gives us the maximum likelihood estimate ) .

Example 4. Assume that X1,X2, ... , Xn are independent normally
distributed random variables all with the parameters n (unknown)

and o=1. As a statistic we will use X which is the maximum likelihood
estimate of p. Simulate n independently distributed normal standard
variables 71,7, , ... , 7, and let

— n
Xo*=w'+Zy , Xo* w42y yoy X =47 x*=%_);1xi*.

The sample X;*,X2*, ..., Xp* is abstract and can be used for
generating normally distributed samples. The outcome depends on
which specific p' values we choose, the most interesting n' values are

the values that make X*=X < X=p+Z « p'=X - Z. Unconditionally the
expectation E[u']=p,let X be an observation then conditionally E[u' |

X=X ]=x . Also observe that VAR[y' |X=X]= # = VAR[X].



Thus the expectation of our generating parameter p' conditionally
gives the maximum likelihood estimate and unconditionally the true
parameter value p. The variance result also indicates that if we can
create a confidence interval by studying u' we will get the same
interval as the exact interval found by ordinary normal distribution

theory X*z(1-q12) #

As we have pointed out the most frequented 6'value gives the
maximum likelihood estimate #. A more general result is that the
generated sequence of possible parameters in fact estimates the whole
likelihood function. This means that abstract simulation makes it
possible to find the likelihood function with simulations instead of
calculations. A confidence interval/set can be found by studying the
integral of the likelihood function. When the likelihood function is
found by abstract resampling, studying the integral means that we
should study the generated sequence of possible parameters. A
confidence set is found by rejecting the most extreme parameter
values.




2.3 Creating confidence intervals by abstract simulation
Assume that X is a random variable with some distribution function
Fo , where 0 is an unknown one dimensional parameter. Furthermore

let T(X) be a statistic and assume that a large/small T(X) value
indicates a large/small 6 value.

For a given observation t(x):
The lower confidence limit 60w, is found by

Poiow ( T(X) 2 t(x) ) = a/2

Observe that 6w is the largest 6 value that makes the outcome t(x)

or more extreme (largér) outcomes unlikely. Analogously the upper
confidence limit 6ypp, is found by

Poypp ( TX) = t(x) ) = 0/2.

Let X*(8) be an abstract variable and assume that X*(8) increases with
8. Define: Binf = inf{0'; t(X*(06")) 2 t(x) } and
Bsup = sup{ 0" ; t(X*(6")) < t(x) }

Then P( Oinf < 010w ) = 0/2

These results are easily motivated by the inequality relation
Binf < Blow <> t(X*(B10w)) = t(x) and that
Poiow (T(X) 2 t(x)) = a/2 « P(U(X*(B10w)) = (X)) = a/2.

The practical use of this result is that we can create a confidence
interval by abstract simulation. For each abstract simulation find the
Binf and Osyp value. Sort the 6jyr values in order and let the
(a/2)100% percentile be the lower confidence limit. Also sort the 65y
values in order and let the (1-a/2)100% percentile be the upper
confidence limit. If the distribution F is continuous then there is a
unique value 6' that makes t(X*(6'))=t(x). In this case 8inf=6sup and
both percentiles are found from the same series. :



2.4 Example: The binomial distribution
Assume that X is binomially distributed with parameters n and p.
For a given outcome X the lower confidence limit pjow is found by

Poow( X 2 X) =5

Analogously the upper confidence limit pypis found by
Ppyp( X<X) =5

The interval [Piow , Pupl is a (1-0)100% confidence interval.

We will now study the abstract binomial sample. Assume that

Uy,U2, ..., Uy are independent and uniformly distributed in the
interval [0,1]. As we have seen this sample can be used for generating
binomial samples. For each specified p'-value we get a binomial
outcome by counting the number of Uj's less than p'. The interesting
p'-values are the values that give an outcome which is equal to the
basic outcome X i.e. the p'-values in the interval [Ux),Uxx.1)], where
Ux) is the X:th ordered value. In this case the extreme values, inf and
sup, are Uy and Ux.1) respectively. These values should be studied in
order to find the confidence limit, motivated by:

P(Ux)<piow) = 3  and
P(Ux+1) Z Pup) = %

In this case it is also rather easy to verify these results analytically.
The binomial frequency function gives

n
Poiow( X2X) =3 (1) Diow? (1-piow ) ™i

1=X

The frequency function for the ordered statistic Uy is

n!
fV)="&Dr @xp VT (Av) 2



Furthermore

Plow n!

P(U(X) —<-p10w) = f (X-1)!  (n-X)! v X1 (1'V) nX dv
0

and by using repeated partial integration this equals
n n - -
2 (1) piowl (1-piow ) i
1=X

which verifies the results.

This means that if we simulate U, a large number of times, and sort
these values in order, we will find the lower confidence limit as the
(a/2)100% percentile. Analogously the upper confidence limit is found
as the (1-0/2)100% percentile in the ordered series of Ux.1) values.

2.5 A theorem for creating confidence sets by abstract
simulation. ,
Let X denote a random variable with distribution function F
depending on the parameter 6, where 6 belongs to the set®.
Furthermore let X* denote an abstract outcome, let X*(0') denote the
value of the abstract outcome corresponding to the specific 8' value.

Theorem:

Suppose that there is a set A(8) for all 6€0 such that;
Po(XEA(0))=1-a, and for each possible outcome x define
S(x)={0 ; xcA(0)}. If we also define S*={0' ; X*(0")€A(0)}

then Py(6€S(X))=Py(6€S*)=1-a

Proof 6€S* « X*(0)eA(0) Observe that X* is an abstract
sample of X which means that X*(6) has the same unconditional
distribution as X. Thus the two events X*(8)eA(8) and XcA(8) have the
same probability which implicates that 6€S(X) and 6€S* also have the
same probability. Finally 6€S(x) <« x€A(0) = Pg(0€S(X)) =
Po(XeA(8))=1-a.



The practical use of this theorem is that we can create confidence sets
by simulating abstract outcomes X*. This is done by the following
steps:

1. Simulate X* and find the parameter(s) 6' that makes X*(8') equal or
less extreme than X. This means that XeA(0) = X*(0')EA(6).
Let L={0" : XeA(0) = X*(06"')eA(0) } (the set of likely parameters).

2. Save the most extreme parameters from L e.g for the one
dimensional case save infL and suplL.

Observe that Pg(A(0) contains L)=1-a =

Pg(the most extreme 6':s in L €A(0) )=1-a

3. Simulate a large number of abstract samples and repeat step 1 & 2.
All the parameters saved from step 2 should now be studied in order
to create a confidence set. Which confidence limits that should be
chosen depends on which shape of the confidence set that is wanted.

2.6 Minimum unlikelihood procedure
The abstract simulation technique generates possible true parameters,
it generates the likelihood function. In the one dimensional case a
confidence interval is easily created (as shown in 2.3), by sorting the
possible parameters in order and then choosing the percentiles as
confidence limits. The interval contains the g% most likely parameters,
we have sorted out the (1-q)% most unlikely parameters. We could
say that the confidence interval contains the q% least unlikely
parameters. Because the procedure rejects the most unlikely
parameters and saves the least unlikely ones, we will call this
procedure the minimum unlikelihood procedure. Usually the number
of resamples is recommended to be 999. This is so because the 999
observations is reasonably many and divide the real line into 1000
intervals with equal probability, different percentiles are now easily
found. For instance the common percentiles 0.5%, 2.5% , 99.5% and
97.5% are found as the observation numbers 5, 25, 995 and 975.



Assume that the distribution is continuous, in this case it is rather
easy to generalize the procedure to the multidimensional case with a
parameter vector of size n. Each resample generates a possible
parameter vector in the n-dimensional space. Repeating this
resampling a large number of times gives a sequence of such
parameter vectors. In the one dimensional case we -sort the
observations in order with the aim to divide the real line into
intervals.

In this case we have to construct boxes in the space. The procedure is

done by using following steps:

1. Create the largest box in the space including all parameter points.

2. Reject the used parameter vectors.

3. Among the remaining parameter vectors repeat step 1-2
until g100% of the parameter vectors are rejected.

4. Use the remaining (1-q)100% parameter vectors and create the
largest box i.e. the confidence box.

Example 5. Assume that n=3. The first box (the largest box), is the box
with the minimum and maximum values in each direction as limits,
that is taking Xmin and Xmax as limits in X direction, Ymin and Ymax as
limits in Y direction and Znin and Zmax as limits in Z direction. The
vectors containing these points are now used and the next box is
found exactly in the same way studying the remaining parameter
vectors. Each box uses a number of parameter vectors, in this case
with n=3 a box can be constructed with 2,3,4,5 or 6 parameter vectors.
The required number of parameter vectors is random. If the nominal
level of confidence is 95% then we shall create new boxes until 5% of
the parameter vectors are used. If for instance 1000 parameter
vectors were generated, we shall create boxes until 50 (or as close as
possible) parameter vectors are used. The largest box created from
the remaining 950 parameter vectors is the 95% confidence box.

10



3. BOOTSTRAP

3.1 Distribution free models

The models examined this far are all models with some known
distribution e.g. binomial or normal. We will now study the abstract
simulation technique for distribution free models. The idea of
bootstrap, Efron(1982), is to use the empirical distribution function
not only for estimation but for resampling as well. In some situations
it is possible to use these two technigues together. We estimate the
distribution with the empirical one and then apply the abstract
simulation technique. This mixture is called abstract bootstrap,

Holm(1990,1993).

The model studied here is the linear model with explanatory variables
possible for the experimenter to choose. A general procedure for
creating confidence sets will be deduced. Also suggested is a special
balanced method for treating the grand mean. The abstract
bootstrapping is, as we shall see, closely related to some permutation
methods, Maritz(1984).

3.2 Bootstrap confidence intervals.

Let X=( X1, X2,..., Xy ) be an i.i.d sample with unknown distribution
function and let 6 be the parameter of interest and 6=g(X) an estimate
of 6. Furthermore let X*=(X*;, X*;,..., X*;) be a bootstrap sample,
independently drawn from ( Xj, X2,..., Xp ), with equal probability in
each point and with replacement. The bootstrap sample gives the
bootstrap estimate é\*=g(X*). Repeating this sampling a large number
of times gives a sequence of bootstrap estimates which can be used to
approximate the distribution of 8.

The original percentile method, Efron(1982), takes the
percentiles, [é\*(a/Z) , é\*(l-a/ 2) ], as a(1-0)100% confidence
interval for 6. There are suggested refinements of this method;
the bias correction method, Efron(1982), and the accelerated
bias correction method, Efron(1987).

11



Singh(1981), Bickel & Freedman(1981) and Beran(1987) use another
method called the functional method, (root method, pivot method).
The distribution of a pivot variable is approximated by the bootstrap
distribution of the corresponding bootstrap pivot variable.

Example 6. Translation, parameter of interest the mean 6. Assume that
8-0 is our pivot variable and has a fixed distribution invariant with 6.
The probability P(a< 6-o <b)=1-a corresponds to P*(a< ) <b)=1-a,

(* denotes bootstrap distr.). Thus a+6=é‘*1ow = a=6*10w -4 and b=6*up-6 ,
where é‘*low and é‘*up are the lower and upper percentiles in the
bootstrap distribution. The approximation is:

P( 6%10w 6 <6-0 <6%yp -6 ) ~1-a.

Thus the functional bootstrap method gives us the functional
confidence interval, [26—6‘ *up » 26-6 *low ] -

3.3 Bootstrap in linear models.

The method suggested by Efron (1982), resamples the empirical
residuals. Model Y= a + XB + ¢, where Y is the observation vector (nx1)
, o is a (nx1) vector with all components equal to a, X is the design
matrix (nxp), p the parameter vector (px1) and ¢ the residual vector

(nx1). The components of the residual vector are assumed to be i.i.d
and to have expectation 0 and some variance o2. Let e be the

empirical residual vector, ei=Yi-$ -Xiﬁ . New observations are found by
Yhew= &+ Xé‘ + e* , where e* is a bootstrap sample drawn from e. It is
now possible to use the Monte Carlo technique to find the estimated ﬁ
distribution and create a confidence interval for p. However, the
empirical residuals are neither independent nor equally distributed,
thus they can at most serve as an approximation of a sample of true
ii.d residuals.

12



Example: Simple linear regression, Yi= a + Xif§ + ¢ i=1,2,....,n

where x= -2, -1, 0, 1, 2 gives es=(2e1-2e3-4e4+4e5)1/10 with variance
0.4 o2 and e3=(-2e1-2e2+8e3-2e4-2e5)1/10 with variance 0.8 o2.

The variance of e3 is twice as high as that of es.

This means that we have a further approximation bes1de the
bootstrap approximation itself.

Another method suggested by Holm(1990,1993), is to use the non
observable abstract true residuals for resampling. This means that we
depict the original experiment closer and that the only approximation
is the pure bootstrap approximation. The method is a mixture of
abstract simulation and bootstrap technique. The essential point in
the paper by Holm is that although the true residuals are not
observable we get an observable final result. The final result is a
confidence set and can be calculated directly without knowledge of
the true residuals. This is possible by using the theorem and applying
the procedure for finding confidence limits. This procedure will now
be studied in more detail.

13



4. ABSTRACT BOOTSTRAP

4.1 Abstract bootstrap in linear models.

The model Y=o + Xp + ¢ is the same as in 3.3. Let £* denote the
abstract bootstrap sample, drawn from ¢ (the true non observable
residual vector). That is e*= Y* -a - X*B, where Y* consists of the
randomly choosen observation and X* consists of the corresponding
TOWS.

The new (abstract!) observations are:

Ynew=0 +Xp+e*=a+XB+ Y*-a-X*B =XB+ Y*-X*B
Having original observations and new abstract observations, we will
now study the related estimates. The ordinary least square estimate is
6‘ = SY , where S is the estimation matrix found by ordinary least
square estimation. In the non full rank case S is found by using
restrictions. The abstract bootstrap estimate is:

B* = SYpew = Sa + SXB +Se* .
As pivot variable we will use ﬁ—E[é‘] = 6\ - Sa - SXB. Furthermore we
will assume that S1=0 , where 1 is a (nx1) vector with all components
equal to 1. This gives orthogonality between a and g. Observe that:

S1=0 = So=0 = é‘-E[ﬁ] = 6 - SXB , (in the full rank case SXp=p).
The corresponding abstract bootstrap pivot is:

B* - BX[p*] =B* - E*[Sa + SXB +Se* ] = f* - S - SXB -SE*[ &* | =

B* - So - SXp -S¥ = f* - SXp , where T is a (nx1) vector with all
components equal to T, (S1=0 = Sa=0 and Sz=0).

The statistic, (the abstract bootstrap pivot variable) is non observable
because gis unknown. But observe that for a hypothesis. =" the

nulldistribution is possible to simulate. This notable feature and the
relation between tests and confidence sets are just the facts that
makes it possible to create a confidence set.

14



According to the technique described in the theorem 2.5 we should
study the parameters which gives an abstract outcome equal to the
original one. That is, making the abstract bootstrap pivot equal to the
original pivot variable:

f*-SXg=f-SXB = f*=P = So+SXg+Ss* =SY =

Sa + SXB + SY* - Sa - SX*B = SY = S(X-X*)B=S(Y-Y*)

For each resample solve the equation above. This generates a
sequence of B's. Sorting these B's and eliminating the most extreme
ones leaves a confidence set, (or in the one dimensional case an
interval).

The procedure can be summarised in the following steps:
1. Find the estimation matrix S
2. For each simulated bootstrap sample solve S(X-X*)B=S(Y-Y*)
3. Sort out the most extreme parameters, according to the
minimum unlikelihood method.
4. The most extreme f's among the remaining ones are the
limits which form the confidence set.

In the proceeding we will refer several times to this procedure
and these four steps.

In the non full rank case the estimation matrix is found by using
a restriction KTg=m. The abstract bootstrap technique shall depict
the original model as closely as possible and therefore this
restriction must also be taken into account in the abstract
bootstrap procedure. Either directly in the abstract bootstrap
estimate or in step 2 of the procedure. That is, for each
simulated abstract bootstrap sample find the solution to S(X-
X*)B=S(Y-Y*) complemented with KTg=m. Both ways lead to the
same final result as will be illustrated in 4.3, studying the one
way analysis of variance.

15



4.2 Example: Simple linear regression

The model is Yi= a + (X;-X)B + &, i=1,2,...,n. The residuals are assumed
to be i.i.d and to have expectation 0. The estimation matrix (vector),

S=(X-X)T/Qy, where (X-X) is a (nx1) vector with i:th element equal to
Xi-X and Q =§ (X;-X)2. The second step in the procedure is to solve

i=1

S(X-X*)B=S(Y-Y*).

In this case X=(X-X) and X*=(X*-X) =

(X-X)T ((X-X)-(X*-X))p/Qx = (XX)T (Y-Y*) /Qx =

(1-Wx*/QB = - Wy*/Qx , where Wy* _2 (Xi-X)X;* and
4

2 (Xi+X)Y;* which means that
p= (6 Qx-W *)/(QxWy*).

This is the generating variable which gives us the sequence of g's from
which we create a confidence interval according to step 3. That is, just
sorting the g's in order and choosing the (1-a/2)100% and the
0/2100% percentiles as confidence limits.

A more detailed description of the simple linear regression case,
asymptotic validity, comparisons between the abstract and the
ordinary method and simulations, (which indicates good performance
for the abstract method), is given in the report by S.
Holm(1990,1993).

16



4.3 Example: One way analysis of variance
Model Yjj= o + Bi + &jj , i=1,...,k and j=1,....m (replicate)
In matrix form Y= o + Xp + ¢ ,this is a non full rank model and

k

therefore we will use the restriction ¥ gi=0 , in matrix form 178=0.
i=1

This gives the estimation matrix S (kxkm) =

"y

~
11 1.1 1 1 L
m-kr[l u-m kl'n kl‘n .es m krn-u
1
" km
1 1 1 1 1 1 1
-krn l--lqn m-krrl tllm m krn.ll
1
" km
11 N B 11
kl‘n .ae m kl’n enn krn .o m-m aes
1 1
m  km
Y ¢

In row nr i the elements which affect the Y:series nr i equals

1 1 1 1

1 1
- m - m . and the other elements equal -3~ .- o -

= é‘ =SY=(Y; Y ) , (kx1) vector.
Step 2. Solve S(X-X*)B=S(Y-Y*)  with the restriction 178 =0
Observe that 1T8 =0 = SXp=p = S(X-X*)p= (Ix-SX*)B=S(Y-Y*) =

B =(Ik - = [Nyl + = L INIT) 1 (Y -T-%+T*) , where

Ik is a unit (kxk) matrix, 1xis a (kx1) vector with all elements =1,
[Ni;*] denotes the number of Y:s choosen from series j in the
bootstrap seriesi, Nj*is the total number of Y:s chosen from series j

, Y;and Y;* is the series means respectively the bootstrapped series

means , finally Y and T* are the two grand means. This is the
variable which generates the sequence which we shall study in order
to obtain a confidence set, according to step 3 and 4.

17



In the argumentation above the restriction was taken into account
when solving the equation in step 2. It is also possible to use the
restriction directly in the bootstrap estimate. We will now once more
deduce the generating variable but use the restriction directly in the
bootstrap estimate. Hopefully this will illustrate the idea of abstract
bootstrap further.

With the restriction 1T é\ =0, the estimate 6 is found by solving:

XX B + 1n = XT(Y-a)

1T # =0
Here XTX= mlg , where Ik is a unit matrix (kxk) and thus

milT g + kh = 1TXT(Y-0:)
ie.

m § = X'(Y-a) -  11TXT(Y-0:)

f =< [XT(Y-a) - 11TXT(Y-0) ]
Observe that i [ XTe -Il(- 11TXTo ]=0 and thus

B =L xry-1 111XTY]

m k

These are the well-known differences between the mean in each
group and the grand mean .

By resampling the true residuals new observations are found:
Ynew = o+ XB+ ¢* =a + XB+ ( Y* -a - X*B) = Y* + XB - X*B

The abstract bootstrap estimate is found by using the same restriction
1T8*=0. This gives:

f*= L [XTY* + XTX p- XTX* B~ & 11TXTY - & 11TXTX p + & 117XTX*
Bl

Using the restriction directly in the estimate gives:
fr= = [XTY* + XTX B - XTX* B - £ 11TXTY + £ 117XTX* ]
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For finding the g of interest, let é‘*=é‘ :
1 1 1 o L .
(Tc- o XTX* + o0 TITXTXS) B o XT(Y-Y4) - o 11TXT(Y-Y%)
Here XTX*=[Nj;*] and 1T[Nj;*|=[Nj*] furthermore — XT(Y-Y*) equals

(Y; -¥) and finally 1TXT(Y-Y*) equals the number n( T-%.
And thus we have reached the same result one more time.

The procedure in 4.1 is more general and may be more applicable for
computer programming.

4.4 A numerical example

We will now put some figures into the one way analysis of variance.
Model Yjj= a + Bi + &j , i=1,...,3 and j=1,2 (replicate)

Observation serie Y=(Y11,Y12,Y21,Y22,Y31,Y32)=(10,12,16,18,20,20)

, average Y-16.

Original estimate 6 =( 61, ﬁz, 63 ) =( -5,1,4)

Assume that the resampled residual is equal to:

e*=(¢5 €2 ,€6,€3,84,86) ,theresampled vector of observations:

Y*=(20,12,20,16,18,20) average Y*=17.666...
A few calculations give the generating variable:
B=(-6, 2, 4)

Going backwards in the argumentation, this means that if the true
parameter is equal to g=(-6, 2, 4), and if the first residual had been
equal to &5, the second residual had been equal to €2 and so on, then
the estimate had been equal to ﬁ=( -5,1,4). We have used the
exchangeability of the i.i.d. true residuals and have found a possible
true parameter. Resampling the true residuals over and over again
generates a sequence of possible parameters and by sorting out the
q100% most extreme we have the (1-q)100% most likely parameter
values left, i.e. a (1-q)100% confidence set. This is a typical mission for
a powerful computer.
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4.5 Simulation
A program for simulating the case of one way analysis of variance was
constructed with the following steps:
1. Input are the model and seeds for the random number generation
2. Random number generation of residuals
3. Calculating the original estimates
4, Bootstrapping the residuals
5. Find the generated parameters (step 2)
* By Gauss elimination with pivoting

6. Save the generated parameters
7. Repeat step 4-6 1000 times.
8. Find the confidence box:

a, Create the largest box

b, Count the number of parameter vectors needed for that box

¢, Repeat step a-b until 50 (or as close as possible) parameter

vectors are used.
d, The largest box created by using the remaining parameter
vectors is the confidence box, (with level of confidence=95%).

Simulation results:
The model tested is: Yjj= o + i + &5 , i=1,...,3 and j=1,4
with o=0, g1=-15, p2=5, B3=10.
The residuals were generated from a normal distribution with u=0 ,
o02=4, Repeating the steps 1-8 above 1000 times gave the following
results:

Nominal level of confidence=95.23 %
Observed level of confidence=95.5 % (simultaneously)
Observed level of confidence = mean length of interval mean values

for the parameter: for the parameter for the limits
B1: 98.1 % 4.5 -17.2 -12.7
B2 : 98.1 % 4.6 27, 73
B3 : 98.6 % 4.5 7.8, 123

20



4.6 Example: Two way analysis of variance

Two way analysis of variance

Model Yijk=a+Bi+ N + &k, i=1,..m j=1,..n k=1,..K (replicate),

in matrixformY=a + X+ ¢ , whereY is a (mnkx1) vector ,

a has the same form but with all elements equal to the grand mean o,
X is the design matrix and

B is a ((m+n)x1) vector containing the parameters gand ).

As usual ¢ is the residual vector. This model is also a non full rank
model, the parameters are not identifiable and therefore we will use

the restrictions:

m n ’
Y 8i=0 and Exi=0 . This gives the estimation matrix S ((m+n)xmnk).
=1 i=1

S is not shown because of the large space it would need , anyhow it
gives the ordinary estimates: f=SY = fi=Y;.-Y.. and h=Y;-Y..
In the next step solve: S(X-X*)B=S(Y-Y*)

m
with restrictions 1T =0 ( Eﬁi=0 )
i=1
n
and 1T\ =0 ( 27\4=0 )
=1

Observe that the restrictions = SXB=f = S(X-X*)B = (Im+n-SX*)p =S(Y-Y*).
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The generating variable g equals:

(Imen-1fzIm O || Nig Nijj [+p=|1m O || N N_5|) -1
1
0 ZIn|[Nji Ny O 1n||N_.i N_j

( N o I D i

Y;-Y. Y-V , ( where the different variables are
of the same kind as in the one way lay out.

For example N;_; is the number of Y:s in bootstrap series i , chosen
from series j. Series nr i are the rows in X which have the element in
column i equal to 1, i=1,...,m (for the g:s) , and equivalent series j ,( for
the A:s ), are the rows in X which have the element in column m+j
equal to 1, j=1,...,n ). This variable generates the possible parameter
vectors which should be studied for obtaining a confidence set. For
instance by arranging boxes as described in 2.6.

4.7 Assuming normal distribution.
Model Y=a + X + ¢, where we assume that the residuals are normally
distributed with some known variance i.e. &_ N(0,0). The least square

estimate €=SY. Assume that the model is a full rank model, that
E[SY]=p and that Sa=0.

Simulate 1%, €%, ..., en* independently and _ N(o,0).

New observations are found as Ypew = a + Xp' + e*= and the new
estimate is found as f*=SYpew =So. + SXB' + Se* = B' + Se* .

Find the p' for which f*=f < p' + Se*=SY < B' =SY - Se* = S(Y-¢*)

This is the generating variable which can be used for simulating the
likelihood function. Observe that ' is normally distributed with the
mean SY and the variance o2. Confidence limits found by simulations
are expected to be the same as found by ordinary Normaldistribution
theory. The simulation error will be very small if we compute a large
number of resamples, which is easily done with some computer
power. Of course simulations are not necessary in this trivial case.
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5. A BALANCED ABSTRACT BOOTSTRAP METHOD FOR
TREATING THE GRAND MEAN

5.1 The balanced abstract bootstrap method :
The model Y = a + XB + ¢ contains a grand mean which we have not
treated yet. At first sight this seems to be impossible because of a
twofold reason. Firstly, our new abstract observations (Ypew = a + Xp +
e* = o+ Xp + Y*-o-X*B =XB + Y* - X*8) do not contain the o and
secondly there is a p dependence ! But, by using a balanced resample
it is possible to treat this problem as an ordinary translation problem.

The estimate we use is the average Y, this means that our estimation
matrix ,(vector) is S= (;11- R 1;) , Where n is the total number of Y:s.
Assume that SXp=0, (orthogonality between a and B parts). As pivot
statistic we will use Q—E[é] = &0 . Our bootstrap estimate is o= SYnew
=SXB + SY* - SX*8 , but SXp=0 and the term SX*g will be equal to O if

we balance our resampling and choose the same number of Y:s from
each series .

This is possible in replicate models, for example simple linear
regression with replicates, one way and two way analysis of variance.
We balance the variation part out, by choosing equal numbers of

observation from each level, and get the average without factor
influence. In fact we have changed the problem to be an ordinary

average study for treating the mean in a translation model, see
example 6 in 3.2, Observe that our chosen observations can be placed

anywhere in the bootstrap series. This balance condition, that
observations shall occur the same number of times from each level is
easily achieved by a random permutation. Example: Assume that we
have four different levels and that five observations shall be taken
from each level. Write the string:

12341234123412341234 representing the series that we shall choose
an observation from. Permutating this string gives a random order
like:

21223443112341433214 which means that we shall start with
choosing an observation randomly from series 2 and then choose an
observation randomly from series 1, and so on.
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In the balanced method SX*g =0 and the bootstrap estimate a*=SY*,

The corresponding pivot statistic is:
a*-E*[a] = & -SE*[Y*]—a* SE*[*]-So-SE[X *g]=
6*-St -Sa=4*-St -Sa=&*-% -a

For finding the o of interest let the two pivots be equal:
A A

d-o = G*-2-a = SY*- S1( = 1T (Y-0-Xp))-o= SY*-SY =
a=SY-SY*+a=2SY-SY*
This is the generating variable which should be studied in order to
obtain a confidence interval, the limits are found by using the
minimum unlikelihood method (2.6). This confidence interval is
comparable with the confidence interval created by the ordinary
bootstrap method in the translation example.

5.2 Balanced method, usual bootstrapping.

The balanced method described above is also possible to apply when

using the usual bootstrap methods.

Example: One-way analysis of variance.

Model Yijj= o + B; + &jj , i=1,...K and j=1,...,m (replicate), with the
k

restriction ¥ pi=0. The grand mean is estimated by the average and if
i=1

we balance the bootstrap sample, the bootstrap estimate will not be

affected by the different factor levels. By balancing we can treat the

grand mean as the mean in an ordinary translation problem, example

6 in 3.2.

5.3 Theoretical aspects of balancing.

Observe that in the bootstrap method there are two
approximations involved, first the statistical approximation using
the empirical distribution function as an estimate of the true
distribution function and secondly the use of Monte Carlo
simulation which is a numerical approximation.
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Davidson et al. (1986) have shown that by using this type of balancing
it is possible to reduce the simulation error, specially in bias
estimation. This is so because many estimates have a large linear
component. Furthermore Hinkley et al. (1990) extends the
methodology to second order balance, which principally affects
bootstrap estimation of variance.

The balanced method forces the resample to contain the same number
of observations from each group, but note that there are no limitations
in which observations we choose in a group, this means that we can
choose the same observation in a group more than one time. A
stronger balancing would be that an observation can be chosen just
one time. If the bootstrap sample is of the same size as the original

sample balance gives in fact a permutation. We will now show the
close relation between permutation methods and bootstrap methods.
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6. A PERMUTATION METHOD

6.1 The permutation method

The balanced methods described above are examples of bootstrapping
with some kind of restriction. An even stronger restriction is to
resample without replacement i.e. use permutations. We will study
here a permutation method for linear regression presented in
Maritz(1984). The basic idea is to use the exchangeability of i.i.d
residuals. New observations are found by permutating the residuals:

Model Yj= a + (x-X)B + ¢ ,j=1,2,...,n

The residuals are assumed to be i.i.d and to have expectation 0. Thus
analysing trends of the residuals , ¢ (B)=Yj-a -(x-X)B , tests accuracy
of the parameter §. The general class of test statistics are

T(B,%,H,Y,x)= Y ¥(x;)H[e;(B)]
j=1

Example: Let T([S,\I!,H,Y,x)=§;1 (%-X)gj = § (x-%) (Yj-a-(x;-X)B)
=1 j=1

To test Hp=p=Bo evaluate all n! permutations of the ;s and for each
permutation calculate the T value. Each of these T values have
probability 1/n! in the null distribution. If our original observed T
value is extreme in this distribution the hypothesis is rejected. A
confidence interval is created by finding the set of g:s that we can not
reject. Let

Tq(6)=.§1 (XXen;j = _§1 (%-%)(Ynj-a-(Xnj-X)B)
= =

denote one of the n! possible permutations of T(g). Let Q" be the set of
all permutations excluding the observed one. Let N(B) denote the
number of Tg(B) ; g€Q that are smaller than our observed T(g). If
N(p)>r and N(p)<n!-r then the pcan not be rejected in a two-sided test
with significance level r/n!.

Therefore a confidence interval is found by examining the values of
N(B) as g varies g varies from - to +o0.

26



Represent N(p) as:

NE) = SIS (5-0(Yra -(x08) - 3 (x5 -%)(Yojo (xj-0)B) > O]

(X5 -X)(Yj~Yn;j)

p

n
> ﬁ] ,assuming that E (%5 -%) (%5Xny) >0
j=1

i
™
Lo
|
T
ey

(X -X)(Xj-Xnj)

S
NGB

N(B) change value whenever g equals one of the slope estimates

Y (x5 R (Y5-Yny)
j=1
Y (%5 -R)(xXj~Xnj)

|

Thus confidence limits can be found by calculating the slope estimate
for each permutation, sorting these values in order and then choosing
the upper and lower percentile as confidence limits.

Observe that the generating variable above is exactly the same as
found with the abstract bootstrap method in 4.2. This is natural
because the variable above is also deduced in an abstract manner.
Each resample (permutation) gives a possible true parameter, namely
the parameter which makes the resampled estimate equal to the
original one. In linear regression the abstract bootstrap method and
the permutation method are closely related, in fact the only difference
between the two methods is the resampling procedure, with or
without replacement.

The test statistic T(ﬁ)=§ (x;-X)e; has in both methods conditional
j=1

expectation equal to 0. Conditionally Var[T in the abstract method] =
9;1’-—1- Var[T in the perm. meth.]. Thus the two methods have the same

asymptotic properties. Further theoretical comparisons will not be
considered in this paper, but we will discuss the use of different
resampling methods from a practical point of view.
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7. COMPARISONS

The ordinary bootstrap method, the abstract bootstrap method and
the permutation method are all resampling methods. In many
situations the choice of method depends on different practical
problems. In some models there are non-existence problems in
several points or even worse, a method does not work at all. These
kinds of problems will now be illustrated in some examples.

Example 7. Translation, parameter of interest: the mean pn=E[X].

Model Yj=p+¢ , j=1,2,..n

The abstract bootstrap method sometimes fails in step 2, that is
finding the generating variable, the variable that makes the bootstrap
estimate equal to the original one. Sometimes this variable does not
exist, like in this very simple model:

e*=Y* u*=Y*-n , newobservations: Ypew=pn+e*=p +Y*-p=Y*
Observe that the new observations do not contain the parameter p,
and of course it is not possible to find any generating variable. Thus
the abstract method does not work in this case. But observe that
resampling the true residuals, in this case, gives new observable
observations. These new observations are just the observations found
by using the ordinary bootstrap method. Thus the ordinary method
works but the abstract method does not. Using the ordinary bootstrap
method usually means that we have to use the estimated residuals
and the estimated model for resampling, but in this simple model it
works anyway. The permutation method does not work either, for two
reasons. Firstly all permutations give the same average and secondly
the generating variable does not exist.

The three methods can be separated in two parts. On the first
side the ordinary bootstrap method, which gives observable
observations directly. On the other side the abstract bootstrap
method and the permutation method, both methods generate non
observable observations but by finding the generating variable a
confidence set can be constructed. The problem is that in some
resamples the generating variable does not exist. The most

obvious resample is the one which is identical with the original
oneie,. e*=¢. -
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If the generating variable, the variable that makes the bootstrap
estimate equal to the original one, had been existing for this resample,
it would have been too good to be true, because in that case the
generating variable would be equal to the true parameter of the
model! Unfortunately this is not always the only resample for which
the generating variable does not exist, there may be others.

The number of resamples for which the generating variable does not
exist may be the determing factor for which model to use. In the
simple model above the generating variable did not exist for any
resample at all and thus the abstract bootstrap- and permutation
method did not work. It is also worth noting that in the resamples
with non existing generating variable, we get an observable new
observation and thus an ordinary bootstrap estimate.

In linear models (except the simple model in the example above), the
disadvantage with the ordinary bootstrap method is that we have to
use the estimated residuals (which are not i.i.d), and the estimated
model for resampling, remembering that: Ynew = o+ Xﬁ + e* , where e*
is a resample from the estimated residuals. The disadvantage with the
abstract bootstrap- and the permutation method is the problem with
non existing generating variables. But the number of resamples with
this non existence is in most models relatively small even when the
number of observations is moderate.

Example 8. Simple linear regression, Yi= o + Xip + & , i=1,2,3

and Xj=-2 Xp=-1 X3=3.

To use the ordinary bootstrap method we have to use the estimated
model for resampling. We will instead examine the two other
methods:

The generating variable is equal to:

n — n — n — n —
p=(§ 3 XeK2- 3 (eROY) /(3 (KrR? - 3 (XX
The generating variable does not exist when:

T (XK - 3 (XRXi* = 0 o 14 = -2X1* - Xp* +3X3*

i=1 i=1
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There is only one resample which fulfils the equation above namely
the obvious resample ¢*= ¢ < X*=X; Vi. In the abstract bootstrap
method this is one out of 27 resamples and in the permutation
method this is one out of 6 resamples.

Suppose that we increase the model to the design:

X1=-3 Xp=-2 X3=-1 X4=0 Xs5=1 Xg=2 X7=3.

Observe that this design includes the origin and thus the residual
number four does not affect the estimate and thus just by changing
residual number four to anyone of the others we will get a resample
for which the generating variable does not exist. Totally there will be
non existence for 742 resamples out of 823543 (=0.0009), in the
abstract bootstrap method. In the permutation method there will be
non existence for 7 out of 5040 (~0.0014), (results from a computer
simulation).

Thus even if the number of observation is moderate the probability of
getting a resample with a non existing generating variable is small.
Observe that the 742 resamples with non existing generating variable
contains information, these resamples give observable new
observations and new estimates possible to treat according to the
ordinary bootstrap method.
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8. DISCUSSION

Which method to use, the ordinary bootstrap, the abstract bootstrap,
the balanced abstract bootstrap or the permutation method, is a
rather difficult question, it depends on several circumstances, for
instance:

1. The model: When studying the mean in the simple translation
model the ordinary bootstrap method was the only applicable.

2. The parameter of interest: Studying the grand mean in a linear
model, a balancation of the resamples was necessary to avoid
influence from the variation part.

3. The design and the total number of observations: These factors
affect the probability of the non existence problem in the abstract
bootstrap- and the permutation method.

The abstract procedure for creating a confidence set is a useful
technique for resampling methods. In linear models this technique
makes it possible to resample the true residuals. The abstract
bootstrap- and the permutation method use the true model for
resampling. This is an advantage compared with the ordinary
bootstrap method which use the estimated model for resampling and
thus has more approximations involved.

The abstract bootstrap- and the permutation method are closely
related, in the linear model the only difference is how to
resample, with or without replacement. The two methods have
the same asymptotic properties. To recommend one of these
methods is difficult, because on one side the abstract bootstrap
method seems to have a lower probability of the non existence
problem, but on the other side balanced resampling may reduce
the simulation error. |
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9. FURTHER DEVELOPMENT.

Even if the distribution is known there can be reasons for using
abstract resampling, for instance if the statistic is complex and it is
difficult to analytically calculate the likelihood function. This is the
case of the interesting theory of generalized linear model, McCullagh &
Nelder(1989).

Model E[Y]=n , g(E[YD)=g(u)=Xp for some function g. An estimate of
B is found by iterating
XTWXf = WXTz until  f-fiq <0.0001

0
Where W is a weight matrix W-1y_1= [ -gﬁ(ul) ]2 Vi1 , and Vi1 is the
variance function evaluated at ﬁk.l,
dg(w)
op
the link function applied to the data, g(y)~g(u) + (y-u)g () .

by
gé(:‘ L\ 1 is called the

The variable z= g(uk-1) + (Y-px-1)( )x-1 is a linearized form of

Furthermore Pi-fi1 = (XTWX)-TWXT(y-ux-1)(

adjustment part.

It may be possible to create confidence set in this model as well. For a
known distribution of Y, for instance binomial (logit link), simulate an
abstract sample. Next step is to find the parameter which makes the
resampled estimate equal to the original one. Let ﬁk be the start point
and find the parameter which makes the adjustment part small i.e. so
small that the iteration stops at once. Then the new estimate is equal
to the original one.

There are, however, still some problems to solve, for instance if
the known distribution is discrete the generating parameter will
not be unique, this is a difficult problem especially if the
parameter is multidimensional. '
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