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ABSTRACT 

We will study here different resampling procedures for creating 
confidence sets in linear models. A special technique called abstract 
resampling makes it possible to use the true residuals and the true 
model for resampling. This may seem to be peculiar since the true 
residuals contains unknown parameters and thus are non observable; 
but for each specified parameter value the residuals are observable 
and can be used for resampling. Furthermore simulating the null 
distribution of some appropriate statistic gives the possibility to test 
the accuracy of a hypothetic parameter value. Finally a confidence set 
can be created by finding the parameter values which can not be 
rejected. 

Bootstrapping the true residuals will be called abstract bootstrapping. 
We will show that the abstract bootstrap method is closely related to a 
permutation method. 

A balanced abstract bootstrap method will also be presented, a 
method which treats the grand mean in linear models and can be 
applied in ordinary bootstrapping as well. 

The resampling methods; bootstrap, abstract bootstrap and the 
permutation method are all closely related. Which method to use is 
discussed from a practical point of view. 
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1. INTRODUCTION 

During the last decade computer power has increased enormously and 
therefore the interest in computer intensive methods has grown. We 
will study here some of these methods especially for creating 
confidence sets. One of the great advantages with these methods is 
that they demand minimal assumptions about distributional forms. 

For creating a confidence set we need information about the 
variability of the random variable studied. One way to get this 
information is to use resampling methods for example bootstrapping. 
Assume that X is a random variable with some unknown diStribution 
function F, furthermore assume that 8 is the parameter of interest and 
T(X) its estimate. The bootstrap method can be illustrated in step by 
step the following way: 

8 is the parameter of interest and T(X) an estimate of 8 

A sample X => estimated distribution -p , observation T(X) 
estimated distribution => new samples X* 
new samples X* => new observations T(X*) 
new observations T(X*) => information about the variation of T(X) 
information about the variation => confidence set for 8 

The crucial and most difficult step is how to use the information 
about the variation. The problem is that the new observations and the 
information about the variation are produced from the estimated 
model and not from the true model. It is difficult to understand and to 
calculate the relation between the variation in the estimated model 
and the variation in the true model. 
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In some situations it is possible to do the resampling in another way. 
For each resample find the parameter which forces the new 
resampled statistic T(X*) to be equal to the original one T(X). The 
parameters found are possible values of the true parameter 8. As we 
shall see this generated sequence of possible true parameter values 
estimates the likelihood function. This resampling technique will be 
called abstract resampling, because the statistic is abstract and non 
observable until we specify a parameter value. 

2. ABSTRACT SIMULATION TECHNIQUE 

2.1 Abstract samples 
One technique for simulating outcomes of a random variable is to 
simulate Ul,UZ , ... , Un independently and uniformly distributed in the 
interval [0,1] and then transform these values according to the actual 
distribution; bearing in mind that if X is a random variable and Fits 
c.d.f. then F(X) is uniformly distributed in the interval [0,1], in other 
words F-l(Ui) has the same distribution as X. 

Example 1. Assume that X is binomially distributed with known 
parameters nand p. Simulating an outcome x is easily done by 
simulating n independent values uniformly distributed in the interval 
[0,1] and then count the number of values less than p. 

Generally, assume that X is a random variable with a distribution 
possible to simulate by transforming U's. This means that each 
sequence of U's is a potential outcome for X. For a given U sequence 
the outcome depends on the value of the parameter(s) belonging to 
the actual distribution. The outcome is undecided until we specify the 
parameter value i.e. the outcome is abstract. 
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Example 2. Assume that X is binomially distributed with parameters 
n=lO and with an unknown p-value. A sequence Ul,U2 , ... , UlO is a 
potential outcome of X, an abstract outcome, which will be undecided 
until we specify the parameter p. Observe that we have the possibility 
to get exactly the outcome that we want. Assume that we want x=3, 
then we just have to choose a p-value such that exactly three 
observations are less than this value, i.e. choose a p-value in the 
interval [U(3), U(4) ]. Observe that it is possible to get all of the 
outcomes in the sample space of X: for x=1,2, ... ,9 choose a p-value in 
the interval [U(X), U(X+l)] , for x=O choose a p-valuee[O,U(1)] and for 
x=lO choose a p-value e[U(lO),l], where U(X) is the X:th ordered value. 

Example 3. Assume that X is normally distributed with parameters 
a= 1 and with an unknown f.,I, value. If Z has standard normal 
distribution, then Z is a potential outcome of X=f.,I,+Z. The value of X is 
controllable, we can get exactly the value x that we want by chOOSing 
f.,I,=x-Z. For each simulated Z we get a possible value of f.,I, to have 
produced the outcome x. 

Assume that X is a random variable with some distribution 
depending on the parameter e. Let x denote the original outcome and 
let x*(e) denote an abstract outcome. Furthermore assume that we 
repeatedly simulate U-sequences and for each sequence find the e'
value that makes x*(e)=x. The series of e'-values are all possible true 
e-values to have produced the outcome x. A confidence set is created 
by sorting these values and rejecting the most extreme ones. 
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2.2 Abstract simulation versus maximum likelihood 
We will here examine the relation between the abstract simulation 
technique and the maximum likelihood theory. Suppose that f( a,x) is 
the frequency or density function of the random variable X, where a 
is the true parameter belonging to the set e. Consider the likelihood 
function L(x,a)=f(a,x) as a function of a for fixed x. Here x is thought of 
as an observation obtained in an experiment. In the discrete case 
L(x,a) gives the probability of observing x. Thus we can regard L(x,a) 
as a measure of how likely a is to have produced the observation x. 
The method of maximum likelihood consists of finding the value ~ 
which is most likely to have produced the observation x. 

~: L(x,~) = f(~,x) ~ L(x,a) = f(a,x) , for all aEe. 

The maximum likelihood estimate ~ , the most likely parameter to 
have produced the observation, can also be found by keeping the x 
value fixed and simulate a' values by abstract simulation. The most 
frequented a'value gives us the maximum likelihood estimate 9'.:. 

Example 4. Assume that Xl,X2 , ... , Xn are independent normally 
distributed random variables all with the parameters ~ (unknown) 

and a= 1. As a statistic we will use X which is the maximum likelihood 
estimate of ~. Simulate n independently distributed normal standard 
variables Zl,Z2 , ... , Zn and let 

X *- 'Z X *- , Z X *- , 7 1 -~ + 1, 2 -~ + 2 , ... , n -~ +L41 
- 1 n X*=- ~ X·* n-" 1 • 

i=l 

The sample Xl*,X2*, ... , Xn* is abstract and can be used for 
generating normally distributed samples. The outcome depends on 
which specific ~' values we choose, the most interesting ~' values are 

the values that make X*= X <=> X=~+2 <=>~' = X - 2. Unconditionally the 

expectation E[~']=~, let x be an observation then conditionally E[~' , 

X=x ]=x. Also observe that VAR[~' ,X=X)= ~ = VAR[X]. 
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Thus the expectation of our generating parameter ~' conditionally 
gives the maximum likelihood estimate and unconditionally the true 
parameter value ~. The variance result also indicates that if we can 
create a confidence interval by studying ~' we will get the same 
interval as the exact interval found by ordinary normal distribution 

- , 
theory X ±Z(1-a/2) Vn. 

As we have pointed out the most frequented e' value gives the 
maximum likelihood estimate ~. A more general result is that the 
generated sequence of possible parameters in fact estimates the whole 
likelihood function. This means that abstract simulation makes it 
possible to find the likelihood function with simulations instead of 
calculations. A confidence interval/set can be found by studying the 
integral of the likelihood function. When the likelihood function is 
found by abstract resampling, studying the integral means that we 
should study the generated sequence of possible parameters. A 
confidence set is found by rej ecting the most extreme parameter 
values. 
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2.3 Creating confidence intervals by abstract simulation 
Assume that X is a random variable with some distribution function 
Fa , where S is an unknown one dimensional parameter. Furthermore 
let T(X) be a statistic and assume that a largel small T(X) value 
indicates a largel small S value. 

For a given observation t(x): 
The lower confidence limit Slow, is found by 

PSlow ( T(X) ~ t(x)) = a/2 

Observe that Slow is the largest S value that makes the outcome t(x) . . 

or more extreme (larger) outcomes unlikely. Analogously the upper 
confidence limit Supp, is found by 

PSupp ( T(X) ~ t(x) ) = a/2 . 

Let X*(s) be an abstract variable and assume that X*(S) increases with 
S. Define: Sinf = inf{ S'; t(X*(S')) ~ t(x)} and 

ssup = sup{ s'; t(X*(S')) ~ t(x) } 

Then P( Sinf ~ Slow) = a/2 
P( Ssup ~ Supp ) = a/2 

These results are easily motivated by the inequality relation 
Sinf ~ Slow ¢> t(X*(Slow)) ~ t(x) and that 
PSlow (T(X) ~ t(x)) = a/2 ¢> P(t(X*(Slow)) ~ t(x)) = a/2. 

The practical use of this result is that we can create a confidence 
interval by abstract simulation. For each abstract simulation find the 
Sinf and ssup value. Sort the Sinf values in order and let the 
(a/2)lOO% percentile be the lower confidence limit. Also sort the Ssup 
values in order and let the (1-a/2)lOO% percentile be the upper 
confidence limit. If the distribution F is continuous then there is a 
unique value S' that makes t(X*(S'))=t(x). In this case Sinf=Ssup and 
both percentiles are found from the same series. 
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2.4 Example: The binomial distribution 
Assume that X is binomially distributed with parameters nand p. 
For a given outcome x the lower confidence limit Plow is found by 

Analogously the upper confidence limit Pup is found by 

The interval [Plow, Pup] is a (1-a) 100% confidence interval. 

We will now study the abstract binomial sample. Assume that 
V l,VZ , ••• , Vn are independent and uniformly distributed in the 
interval [0,1]. As we have seen this sample can be used for generating 
binomial samples. For each specified p'-value we get a binomial 
outcome by counting the number of Vi'S less than p'. The interesting 
p'-values are the values that give an outcome which is equal to the 
basic outcome X i.e. the p'-values in the interval [V(X),V(x+l)], where 
V(X) is the X:th ordered value. In this case the extreme values, inf and 
sup, are V(X) and V(X+I) respectively. These values should be studied in 
order to find the confidence limit, motivated by: 

a. 
P(V(X) 5 Plow) = 2" and 

a. 
P(V(X+I) ~ Pup) = 2" 

In this case it is also rather easy to verify these results analytically. 
The binomial frequency function gives 

n 
Pplow( X ~ x ) = L (f) Plow i (1-Plow) n-i 

i=x 

The frequency function for the ordered statistic V (X) is 

~( ) n! X-I ( 1 ) n-X 
.L' V = (X-I)! (n-X)! V -v 
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Furthermore 

Plow n! 
P(U(X) ~ Plow) = I (X-I)! (n-X)! V X-I (I-v) n-X dv 

o 
and by using repeated partial integration this equals 

n 
}: (Y) Plow i (I-Plow) n-i 

i=x 

which verifies the results. 

This means that if we simulate U (X) a large number of times, and sort 
these values in order, we will find the lower confidence limit as the 
(u/2)IO()O;6 percentile. Analogously the upper confidence limit is found 
as the (l-u/2)IOO% percentile in the ordered series of U(X+I) values. 

2.5 A theorem for creating confidence sets by abstract 
simulation. 

Let X denote a random variable with distribution function F 
depending on the parameter a, where a belongs to the set e. 
Furthermore let X* denote an abstract outcome, let x*(a') denote the 
value of the abstract outcome corresponding to the specific a' value. 

Theorem: 
Suppose that there is a set A(a) for all aEe such that; 
ps(XEA(a))=I-u, and for each possible outcome x define 
S(x)={a; xEA(a) I. If we also define s*={a'; X*(a')EA(a) I 

then ps(aES(X) )=ps(aES*)=I-u 

Proof aES* <=> X*(a)EA( a) Observe that X* is an abstract 
sample of X which means that x*(a) has the same unconditional 
distribution as X. Thus the two events X*( a )EA( a) and XEA( a) have the 
same probability which implicates that aES(X) and aES* also have the 
same probability. Finally aES(X) <=> xEA( a) ~ ps(aES(X)) = 
Ps(XEA(a))=I-u. 
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The practical use of this theorem is that we can create confidence sets 
by simulating abstract outcomes X*. This is done by the following 
steps: 

1. Simulate X* and find the parameter(s) a' that makes x*(a') equal or 
less extreme than X. This means that XEA(a) => X*(a')EA(a). 
Let L={a' : XEA(a) => x*(a')EA(a)} (the set of likely parameters). 

2. Save the most extreme parameters from L e.g for the one 
dimensional case save infL and supL. 
Observe that Pe(A(a) contains L)=l-<1 => 

Pe(the most extreme a':s in L EA(a) )=1-<1 

3. Simulate a large number of abstract samples and repeat step 1 & 2. 
All the parameters saved from step 2 should now be studied in order 
to create a confidence set. Which confidence limits that should be 
chosen depends on which shape of the confidence set that is wanted. 

2.6 Minimum unlikelihood procedure 
The abstract simulation technique generates possible true parameters, 
it generates the likelihood function. In the one dimensional case a 
confidence interval is easily created (as shown in 2.3), by sorting the 
possible parameters in order and then choosing the percentiles as 
confidence limits. The interval contains the q% most likely parameters, 
we have sorted out the (l-q)% most unlikely parameters. We could 
say that the confidence interval contains the q% least unlikely 
parameters. Because the procedure rejects the most unlikely 
parameters and saves the least unlikely ones, we will· call this 
procedure the minimum unlikelihood procedure. Usually the number 
of resamples is recommended to be 999. This is so because the 999 
observations is reasonably many and divide the real line into 1000 
intervals with equal probability, different percentiles are now easily 
found. For instance the common percentiles 0.5%, 2.5% , 99.5% and 
97.5% are found as the observation numbers 5,25,995 and 975. 
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Assume that the distribution is continuous, in this case it is rather 
easy to generalize the procedure to the multidimensional case with a 
parameter vector of size n. Each resample generates a possible 
parameter vector in the n-dimensional space. Repeating this 
resampling a large number of times gives a sequence of such 
parameter vectors. In the one dimensional case we . sort the 
observations in order with the aim to divide the real line into 
intervals. 

In this case we have to construct boxes in the space. The procedure is 
done by using following steps: 
1. Create the largest box in the space including all parameter points. 
2. Rej ect the used parameter vectors. 
3. Among the remaining parameter vectors repeat step 1-2 

until q10091> of the parameter vectors are rejected. 
4. Use the remaining (l-q) 100% parameter vectors and create the 

largest box i.e. the confidence box. 

Example 5. Assume that n=3. The first box (the largest box), is the box 
with the minimum and maximum values in each direction as limits, 
that is taking Xmin and Xmax as limits in X direction, Ymin and Ymax as 
limits in Y direction and Zmin and Zmax as limits in Z direction. The 
vectors containing these points are now used and the next box is 
found exactly in the same way studying the remaining parameter 
vectors. Each box uses a number of parameter vectors, in this case 
with n=3 a box can be constructed with 2,3,4,5 or 6 parameter vectors. 
The required number of parameter vectors is random. If the nominal 
level of confidence is 95% then we shall create new boxes until 5% of 
the parameter vectors are used. If for instance 1000 parameter 
vectors were generated, we shall create boxes until 50 (or as close as 
possible) parameter vectors are used. The largest box created from 
the remaining 950 parameter vectors is the 95% confidence box. 
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3. BOOTSTRAP 

3.1 Distribution free models 
The models examined this far are all models with some known 
distribution e.g. binomial or normal. We will now study the abstract 
simulation technique for distribution free models. The idea of 
bootstrap, Efron( 1982), is to use the empirical distribution function 
not only for estimation but for resampling as well. In some situations 
it is possible to use these two techniques together. We estimate the 
distribution with the empirical one and then apply the abstract 
simulation technique. This mixture is called abstract bootstrap, 
Holm( 1990,1993). 

The model studied here is the linear model with explanatory variables 
possible for the experimenter to choose. A general procedure for 
creating confidence sets will be deduced. Also suggested is a special 
balanced method for treating the grand mean. The abstract 
bootstrapping is, as we shall see, closely related to some permutation 
methods, Maritz(1984). 

3.2 Bootstrap confidence intervals. 
Let X=( Xl, X2, ... , Xn ) be an i.i.d sample with unknown distribution 
function and let S be the parameter of interest and ~=g(X) an estimate 
of S. Furthermore let X*=(X*I, X*2, ... , X*n) be a bootstrap sample, 
independently drawn from ( Xl, X2, ... , Xn ), with equal probability in 
each point and with replacement. The bootstrap sample gives the 
bootstrap estimate ~*=g(X*). Repeating this sampling a large number 
of times gives a sequence of bootstrap estimates which can be used to 
approximate the distribution of ~. 

The original percentile method, Efron( 1982), takes the 
percentiles, [~*(a/2), ~*(I-a/2) ] , as a (l-a)100% confidence 
interval for S. There are suggested refinements of this method; 
the bias correction method, Efron(1982), and the accelerated 
bias correction method, Efron(1987). 
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Singh(1981), Bickel & Freedman(1981) and Beran(1987) use another 
method called the functional method, (root method, pivot method). 
The distribution of a pivot variable is approximated by the bootstrap 
distribution of the corresponding bootstrap pivot variable. 

Example 6. Translation, parameter of interest the mean 8. Assume that 
9'-8 is our pivot variable and has a fixed distribution invariant with 8 . 

The probability P(~ ~-8 ~b)=I-a corresponds to P*(a~ 9'*-9' ~b)=I-a , 
(* denotes bootstrap distr.). Thus a+~=~*low => a=~*low -9' and b=~*up-9' , 
where 9'*low and 9'*uP are the lower and upper percentiles in the 
bootstrap distribution. The approximation is: 
P( 9'*low -9' ~ ~-8 ~ 9'*uP -9' ) ~ I-a. 
Thus the functional bootstrap method gives us the functional 
confidence interval, [2~-9'*up, 29'-9'*low] . 

3.3 Bootstrap in linear models. 
The method suggested by Efron (1982), resamples the empirical 
residuals. Model Y= a + X~ + £, where Y is the observation vector (nxl) 
, a is a (nxl) vector with all components equal to a, X is the design 
matrix (nxp), ~ the parameter vector (pxl) and £ the residual vector 
(nxl). The components of the residual vector are assumed to be LLd 
and to have expectation 0 and some variance 0 2 • Let e be the 
empirical residual vector, ei=Yi-~-Xi~. New observations are found by 
Ynew= t. + xt + e*, where e* is a bootstrap sample drawn from e. It is 
now possible to use the Monte Carlo technique to find the estimated ~ 
distribution and create a confidence interval for ~. However, the 
empirical residuals are neither independent nor equally distributed, 
thus they can at most serve as an approximation of a sample of true 
i.i.d residuals. 
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Example: Simple linear regression, Yi= a + Xi(3 + Ei i=1,2, ... ,n 
where x= -2, -1, 0, 1, 2 gives es=(2el-2e3-4e4+4es) 1110 with variance 
0.4 02 and e3=(-2el-2e2+8e3-2e4-2es) 1110 with variance 0.8 02. 

The variance of e3 is twice as high as that of es. 
This means that we have a further approximation beside the 
bootstrap approximation itself. 

Another method suggested by Holm(1990,1993), is to use the non 
observable abstract true residuals for resampling. This means that we 
depict the original experiment closer and that the only approximation 
is the pure bootstrap approximation. The method is a mixture of 
abstract simulation and bootstrap technique. The essential point in 
the paper by Holm is that although the true residuals are not 
observable we get an observable final result. The final result is a 
confidence set and can be calculated directly without knowledge of 
the true residuals. This is possible by using the theorem and applying 
the procedure for finding confidence limits. This procedure will now 
be studied in more detail. 
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4. ABSTRACT BOOTSTRAP 

4.1 Abstract bootstrap in linear models. 
The model Y = a + X~ + e is the same as in 3.3. Let e * denote the 
abstract bootstrap sample, drawn from e (the true non observable 
residual vector). That is e*= y* - a - X*~, where y* consists of the 
randomly choosen observation and X* consists of the corresponding 
rows. 

The new (abstract!) observations are: 
Y new = a + X~ + e* = a + Xf3 + y* - a - X*~ = X~ + y* - X*~ 

Having original observations and new abstract observations, we will 
now study the related estimates. The ordinary least square estimate is 
t = SY , where S is the estimation matrix found by ordinary least 
square estimation. In the non full rank case S is found by using 
restrictions. The abstract bootstrap estimate is: 

t* = SYnew = Sa + SXf3 +Se* . 
As pivot variable we will use t-E[tJ = ~ - Sa - SX~. Furthermore we 
will assume that Sl=O , where 1 is a (nx1) vector with all components 
equal to 1. This gives orthogonality between a and ~. Observe that: 

Sl=O ~ Sa=O ~ ~-E[tJ = ~ - SX~ , (in the full rank case SX~=~). 
The corresponding abstract bootstrap pivot is: 

~* - E*~*] =~* - E*[Sa + SX~ +Se* ] = ~* - Sa - SX~ -SE*[ e* ] = 

~* - Sa - SX~ -S"l = ~* - SX~ ,where"l is a (nx1) vector with all 

components equal to e, (Sl=O ~ Sa=O and Se=O). 

The statistic. (the abstract bootstrap pivot variable) is non observable 
because (3 is unknown. But observe that for a hypothesis. (3=(3' the 
nulldistribution is possible to simulate. This notable feature and the 
relation between tests and confidence sets are just the facts that 
makes it possible to create a confidence set. 
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According to the technique described in the theorem 2.5 we should 
study the parameters which gives an abstract outcome equal to the 
original one. That is, making the abstract bootstrap pivot equal to the 
original pivot variable: 

~* - SX(3 = ~ - SX(3 => ~* = ~ => Sa + SX~ +S8* = SY => 

Sa + SX~ + Sy* - Sa - SX*~ = SY => S(X-X*)~=S(Y-Y*) 

For each resample solve the equation above. This generates a 
sequence of ~'s. Sorting these ~'s and eliminating the most extreme 
ones leaves a confidence set, (or in the one dimensional case an 
interval). 

The procedure can be summarised in the following steps: 
1. Find the estimation matrix S 
2. For each simulated bootstrap sample solve S(X-X*)~=S(Y-Y*) 
3. Sort out the most extreme parameters, according to the 

minimum unlikelihood method. 
4. The most extreme Ws among the remaining ones are the 

limits which form the confidence set. 
In the proceeding we will refer several times to this procedure 
and these four steps. 

In the non full rank case the estimation matrix is found by using 
a restriction KT~=m. The abstract bootstrap technique shall depict 
the original model as closely as possible and therefore this 
restriction must also be taken into account in the abstract 
bootstrap procedure. Either directly in the abstract bootstrap 
estimate or in step 2 of the procedure. That is, for each 
simulated abstract bootstrap sample find the solution to S(X
X*)~=S(Y-Y*) complemented with KT~=m. Both ways lead to the 
same final result as will be illustrated in 4.3, studying the one 
way analysis of variance. 

15 



4.2 Example: Simple linear regression 

The model is Yi= a + (Xr 'X)(3 + Ei, i=I,2, ... ,n. The residuals are assumed 
to be LLd and to have expectation O. The estimation matrix (vector), 

S=(X_X)T IQx, where (X-X) is a (fixl) vector with i:th element equal to 
_ n_ 

XrX and Qx = I (Xi-X)2. The second step in the procedure is to solve 
i=l 

S(X-X*) (3=S(Y-Y*). 

In this case X=(X-X) and X*=(X*-X) => 

(X-X)T «X-X)-(X*-X»)(3/Qx = (X-X)T (Y-Y*) lOx => 

~ n _ 
(I-Wx*/Qx)(3 = p - Wy*/Qx , where Wx*= I (Xi-X)Xi* and 

i=l 
n _ 

Wy*= I (Xi-X)Yt which means that 
i=l 

(3= (~Qx-Wy*)/(Qx-Wx*). 

This is the generating variable which gives us the sequence of (3's from 
which we create a confidence interval according to step 3. That is, just 
sorting the (3' s in order and choosing the (l-al 2) 100% and the 
a/21000h percentiles as confidence limits. 

A more detailed description of the simple linear regression case, 
asymptotic validity, comparisons between the abstract and the 
ordinary method and simulations, (which indicates good performance 
for the abstract method), is given in the report by S. 
Holm(1990,1993). 
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4.3 Example: One way analysis of variance 
Model Yij= a + f3i + Eij , i=1, ... ,k and j=1, ... ,m (replicate) 
In matrix form Y = a + X(3 + E , this is a non full rank model and 

k 
therefore we will use the restriction}: fh =0 , in matrix form 1Tf3=0. 

i=l 
This gives the estimation matrix S (kxkm) = 

1 1 1 1 - - ---
m knl"'m knl 

1 
knl 
1 1 

knl ... - knl 

1 
knl 

1 1 
knl ... - knl 

1 1 
m knl 

1 1 
knl ... - knl 

1 1 1 1 
m-knl "'m-knl 

1 1 
knl ... - knl 

1 
knl ... 

1 
knl ... 

1 1 
... m-knl ... 

In row nr i the elements which affect the Y:series nr i equals 
1 1 1 1 1 1 
~ - knl ... m - knl and the other elements equal - knl ... - knl 

~ ~ = SY =( Yi -Y) , (kx1) vector. 
Step 2. Solve S(X-X*)f)=S(Y-Y*) with the restriction ITf) =0 
Observe that 1Tf) =0 ~ SXf3=f) ~ S(X-X*)f)= (Ik-SX*)f)=S(Y-Y*) ~ 

where 

Ik is a unit (kxk) matrix, lk is a (kx1) vector with all elements =1, 
[Ni,j*] denotes the number of Y:s choosen from series j in the 
bootstrap series i, Nt is the total number of Y:s chosen from series j 

, Yi and ~* is the series means respectively the bootstrapped series 

means, finally Y and Y * are the two grand means. This is the 
variable which generates the sequence which we shall study in order 
to obtain a confidence set, according to step 3 and 4. 
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In the argumentation above the restriction was taken into account 
when solving the equation in step 2. It is also possible to use the 
restriction directly in the bootstrap estimate. We will now once more 
deduce the generating variable but use the restriction directly in the 
bootstrap estimate. Hopefully this will illustrate the idea of abstract 
bootstrap further. 
With the restriction 1 T ~ =0, the estimate ~ is found by solving: 

X1X ~ + 11.. = XT(Y-a) 

1T ~=O 

Here X1X= mIk , where Ik is a unit matrix (kxk) and thus 

m1T ~ + kA = 11XT(Y-a) 

i.e. 
m ~ = XT(Y-a) - ~ 11TXT(Y-a) 

~ = 1. [XT(Y-a) - 1. 1fIXT(Y-a) ] P m k 

Observe that ~ [XTa - ~ 111XTa ]=0 and thus 

~ = 1. [ XTy- 1. 111XTy] P m k 

These are the well-known differences between the mean in each 

group and the grand mean . 

By resampling the true residuals new observations are found: 

Ynew = a + ~ + E* =a + Xp + ( y* -a - X*P) = y* + ~ - X*P 

The abstract bootstrap estimate is found by using the same restriction 

1 T~*=O. This gives: 

~*= 1. [ XTy* + X1X P - X1X* P - 1. 11 TX Ty - 1 11 TX1X P + L 111XTX * 
m k k k 

P] 

U sing the restriction directly in the estimate gives: 
~*= 1. [XTy* + X1)( (3 - X1)(* (3 - 1 111)(Ty + 1 111)(1)(* (3] 

m k k 
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For finding the (3 of interest, let ~*=~ : 
(Ik - 1. X1X* + l111X1X* ) R= 1. XT(y_y*) - ..L 11TXT(y-y*) 

m mk P m mk 
1 . 

Here X1X*=[Ni,j*] and 1T[Ni,j*]=[Nj*] furthermore m XT(y_y*) equals 

(Yi -V) and finally 11XT(Y-Y*) equals the number n(Y -Y*). 
And thus we have reached the same result one more time. 

The procedure in 4.1 is more general and may be more applicable for 
computer programming. 

4.4 A numerical example 
We will now put some figures into the one way analysis of variance. 
Model Yij= a + J3i + Eij , i=1, ... ,3 and j=1,2 (replicate) 
Observation serie Y=(Y u,Y 12,Y21,Y22,Y31,Y32)=( 10,12,16,18,20,20) 

, average Y =16. 

Original estimate ~ =( ~b ~2' ~3 ) =( -5,1,4) 
Assume that the resampled residual is equal to: 
£*=(ES ,E2 ,E6, E3 ,E4, E6) ,the resampled vector of observations: 

Y*=(20,12,20,16,18,20) average Y*=17.666 ... 
A few calculations give the generating variable: 
fI=(-6, 2, 4) 

Going backwards in the argumentation, this means that if the true 
parameter is equal to (3=(-6, 2, 4), and if the first residual had been 
equal to ES, the second residual had been equal to E2 and so on, then 
the estimate had been equal to ~=( -5,1,4). We have used the 
exchangeability of the LLd. true residuals and have found a possible 
true parameter. Resampling the true residuals over and over again 
generates a sequence of possible parameters and by sorting out the 
q100% most extreme we have the (1-q)100% most likely parameter 
values left, Le. a (1-q) 100% confidence set. This is a typical mission for 
a powerful computer. 
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4.5 Simulation 
A program for simulating the case of one way analysis of variance was 
constructed with the following steps: 
1. Input are the model and seeds for the random number generation 
2. Random number generation of residuals 
3. Calculating the original estimates 
4. Bootstrapping the residuals 
5. Find the generated parameters (step 2) 

* By Gauss elimination with pivoting 
6. Save the generated parameters 
7. Repeat step 4-6 1000 times. 
8. Find the confidence box: 

a, Create the largest box 
b, Count the number of parameter vectors needed for that box 
c, Repeat step a-b until 50 (or as close as possible) parameter 

vectors are used. 
d, The largest box created by using the remaining parameter 

vectors is the confidence box, (with level of confidence=95%). 
Simulation results: 
The model tested is: Yij= a + f3i + Eij , i=1, ... ,3 and j=1,4 
with a=O, 131=-15 , 132=5 , 133=10. 
The residuals were generated from a normal distribution with ~=O , 
0 2=4. Repeating the steps 1-8 above 1000 times gave the following 
results: 

Nominal level of confidence=95.23 % 
Observed level of confidence=95.5 % 

Observed level of confidence 
for the parameter: 

131 : 98.1 % 
132 : 98.1 % 
133 : 98.6 % 

20 

(simultaneously) 
mean length of interval 
for the parameter 

4.5 
4.6 
4.5 

mean values 
for the limits 

-17.2 ,-12.7 
2.7, 7.3 
7.8,12.3 



4.6 Example: Two way analysis of variance 

Two way analysis of variance 

Model Yijlr a + j3i + Aj + Eijk , i=1, ... ,m j=1, ... ,n k=1, ... ,k (replicate) , 

in matrix form Y = a + Xj3 + E , where Y is a (mnkx1) vector, 

a has the same form but with all elements equal to the grand mean a, 

X is the design matrix and 

j3 is a «m+n)x1) vector containing the parameters ~i and Aj . 

As usual E is the residual vector. This model is also a non full rank 

model, the parameters are not identifiable and therefore we will use 

the restrictions: 
m n 
~j3i=O and ~Ai=O . This gives the estimation matrix S «m+n)xmnk). 
i=1 1=1 

S is not shown because of the large space it would need, anyhow it 

gives the ordinary estimates: ~=SY => ~i=Yi..-Y ... and ~j=Y.j.-Y ... 

In the next step solve: 

with restrictions 

and 

S(X-X*)~=S(Y-Y*) 

IT~=O 

l1A=O 

m 
( ~~i=O ) 

1=1 
n 

(~"-i=O ) 
1=1 

Observe that the restrictions => SXj3=j3 => S(X-X*)j3 = (Im+n-SX*.)j3 =S(Y-Y*). 
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The generating variable fJ equals: 

( Im+n -t[~ 1m 1° ] [Ni.,i. Ni.,.j 1 + ~ [1m 
o ~ In N.j,i. N.j,.j 0 

o ] [N .. ,i. N .. ,.j1 ) -1 
1 N· N . n .. ,1. ..,.J 

( Yi..-v .. ] - Y*i .. -'"Y* ... ]) 

Y.j.-V... )'k.j.- '"Y*... , ( where the different variables are 
of the same kind as in the one way layout. 

For example Ni.,.j is the number of Y:s in bootstrap series i , chosen 
from series j. Series nr i are the rows in X which have the element in 
column i equal to 1, i=I, ... ,m (for the (3:s) , and equivalent series j ,( for 
the A:S ), are the rows in X which have the element in column m+j 
equal to 1, j=I, ... ,n). This variable generates the possible parameter 
vectors which should be studied for obtaining a confidence set. For 
instance by arranging boxes as described in 2.6. 

4.7 Assuming normal distribution. 
Model Y = a + X(3 + e , where we assume that the residuals are normally 
distributed with some known variance i.e. ei", N(o,a). The least square 

estimate ~=SY. Assume that the model is a full rank model, that 
E[Sy] =(3 and that Sa=O. 
Simulate £1*, e2*, ... , en* independently and '" N(o,a). 

New observations are found as Ynew = a + X(3' + e*= and the new 
estimate is found as ~*=SYnew =Sa + SXf3' + Se* = f3' + Se* . 
Find the (3' for which ~*=~ <=> (3' + Se*= SY <=> f3' = SY - Se* = S(Y-e*) 

This is the generating variable which can be used for Simulating the 
likelihood function. Observe that (3' is normally distributed with the 
mean SY and the variance a2• Confidence limits found by simulations 
are expected to be the same as found by ordinary Normaldistribution 
theory. The simulation error will be very small if we compute a large 
number of resamples, which is easily done with some computer 
power. Of course simulations are not necessary in this trivial case. 
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5. A BALANCED ABSTRACT BOOTSTRAP METHOD FOR 
TREATING THE GRAND MEAN 

5.1 The balanced abstract bootstrap method 
The model Y = a + ~ + e contains a grand mean which we have not 
treated yet. At first sight this seems to be impossible because of a 
twofold reason. Firstly, our new abstract observations (Ynew = a + X~ + 

e* = a + X~ + Y*-a-X*~ = X~ + y* - X*~) do not contain the a and 
secondly there is a ~ dependence! But, by using a balanced resample 
it is possible to treat this problem as an ordinary translation problem. 

The estimate we use is the average Y , this means that our estimation 
matrix ,(vector) is S= (1 , ... , 1) , where n is the total number of Y:s. 

n n 

Assume that SX~=O, (orthogonality between a and ~ parts). As pivot 
statistic we will use ~-E[~] = ~-a . Our bootstrap estimate is ~*= SYnew 

=SX~ + Sy* - SX*~ ,but SX~=O and the term SX*~ will be equal to 0 if 
we balance our resampling and choose the same number of Y:s from 
each series. 

This is possible in replicate models, for example simple linear 
regression with replicates, one way and two way analysis of variance. 
We balance the variation part out. by choosing equal numbers of 
observation from each level. and get the average without factor 
influence. In fact we have changed the problem to be an ordinary 
average study for treating the mean in a translation model. see 
example 6 in 3.2. Observe that our chosen observations can be placed 
anywhere in the bootstrap series. This balance condition, that 
observations shall occur the same number of times from each level is 
easily achieved by a random permutation. Example: Assume that we 
have four different levels and that five observations shall be taken 
from each level. Write the string: 
12341234123412341234 representing the series that we shall choose 
an observation from. Permutating this string gives a random order 
like: 
21223443112341433214 which means that we shall start with 
choosing an observation randomly from series 2 and then choose an 
observation randomly from series 1, and so on. 
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In the balanced method SX*f3 =0 and the bootstrap estimate ~*=SY*. 

The corresponding pivot statistic is: 

~*-E*[~] = ~*-SE*[Y*]=~*-SE*[e*]-Sa-SE[X*f3]= 
A A A 
a*-S'E -Sa=a*-S'E -Sa=a*-'E -a 

For finding the a of interest let the two pivots be equal: 

~-a= ~*-'E-a = SY*- Sl( !..IT (Y-a-Xf3))-a= SY*-SY => 
n 

a=SY-SY*~=2SY-SY* 
This is the generating variable which should be studied in order to 
obtain a confidence interval, the limits are found by using the 
minimum unlikelihood method (2.6). This confidence interval is 
comparable with the confidence interval created by the ordinary 
bootstrap method in the translation example. 

5.2 Balanced method, usual bootstrapping. 
The balanced method described above is also possible to apply when 
using the usual bootstrap methods. 
Example: One-way analysis of variance. 
Model Yij= a + f3i + eij , i=l, ... ,k and j=l, ... ,m (replicate), with the 

k 
restriction L f3i =0. The grand mean is estimated by the average and if 

i=l 

we balance the bootstrap sample, the bootstrap estimate will not be 
affected by the different factor levels. By balancing we can treat the 
grand mean as the mean in an ordinary translation problem, example 
6 in 3.2. 

5.3 Theoretical aspects of balancing. 
Observe that in the bootstrap method there are two 
approximations involved, first the statistical approximation using 
the empirical distribution function as an estimate of the true 
distribution function and secondly the use of Monte Carlo 
simulation which is a numerical approximation. 
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Davidson et al. (1986) have shown that by using this type of balancing 
it is possible to reduce the simulation error, specially in bias 
estimation. This is so because many estimates have a large linear 
component. Furthermore Hinkley et al. (1990) extends the 
methodology to second order balance, which principally affects 
bootstrap estimation of variance. 

The balanced method forces the resample to contain the same number 
of observations from each group, but note that there are no limitations 
in which observations we choose in a group, this means that we can 
choose the same observation in a group more than one time. A 
stronger balancing would be that an observation can be chosen just 
one time. If the bootstrap sample is of the same size as the original 
sample balance gives in fact a permutation. We will now show the 
close relation between permutation methods and bootstrap methods. 
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6. A PERMUTATION METHOD 

6.1 The permutation method 
The balanced methods described above are examples of bootstrapping 
with some kind of restriction. An even stronger restriction is to 
resample without replacement Le. use permutations. We will study 
here a permutation method for linear regression presented in 
Maritz( 1984). The basic idea is to use the exchangeability of LLd 
residuals. New observations are found by permutating the residuals: 

Model Yj= a + (xrx)j3 + Ej , j=1,2, ... ,n 

The residuals are assumed to be Li.d and to have expectation O. Thus 

analysing trends of the residuals, Ej (j3)=Yra -(xrx)j3, tests accuracy 
of the parameter j3 . The general class of test statistics are 

n 

T(j3,'P,H,Y,X)= ~'P(Xj)H[Ej(j3)] 
j=l 

n n 
Example: Let T(j3,'P,H,Y,x)=}: (XrX)Ej = }: (xrx)(Yra-(xrx)13) 

j=l j=l 

To test Ho=j3=j3o evaluate all n! permutations of the Ei:S and for each 
permutation calculate the T value. Each of these T values have 
probability lin! in the null distribution. If our original observed T 
value is extreme in this distribution the hypothesis is rejected. A 
confidence interval is created by finding the set of j3:s that we can not 
reject. Let 

n n 
Tq(j3)=}: (xrX)Enj = }: (xrx)(Ynra-(xnrx)j3) 

j=l j=l 
denote one of the n! possible permutations of T(j3). Let Q be the set of 
all permutations excluding the observed one. Let N(j3) denote the 
number of Tq(j3) ; qEQ that are smaller than our observed T(j3). If 
N(j3»r and N(j3)<n!-r then the j3 can not be rejected in a two-sided test 
with significance level r In!. 
Therefore a confidence interval is found by examining the values of 
N (j3) as j3 varies j3 varies from -00 to +00. 
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Represent N(~) as: 

N(~) = ~ I [~ (xrx)(Yra -(xrx)~) - ~ (xrx)(Ynra -(xnrx)~) > 0] 
qeQ q 

n 
~ (Xj -x)(YrYnj) . 

= ~ I [ i=:; > ~] ,assuming that i (Xj -X) (xrXnj) >0 
qeQ ~ (Xj -x)(xrXnj) j=l 

j=l 

N(~) change value whenever ~ equals one of the slope estimates 

n 

~ (Xj -x)(YtYnj) 
j=l 
n 

~ (Xj -x)(XtXnj) 
j=l 

Thus confidence limits can be found by calculating the slope estimate 
for each permutation, sorting these values in order and then choosing 
the upper and lower percentile as confidence limits. 
Observe that the generating variable above is exactly the same as 
found with the abstract bootstrap method in 4.2. This is natural 
because the variable above is also deduced in an abstract manner. 
Each resample (permutation) gives a possible true parameter, namely 
the parameter which makes the resampled estimate equal to the 
original one. In linear regression the abstract bootstrap method and 
the permutation method are closely related. in fact the only difference 
between the two methods is the resampling procedure. with or 
without replacement. 

n 
The test statistic T(~) = ~ (Xtx)£j has in both methods conditional 

j=l 

expectation equal to O. Conditionally Var[T in the abstract method] = 
n~l Var[T in the perm. meth.]. Thus the two methods have the same 

asymptotic properties. Further theoretical comparisons will not be 
considered in this paper, but we will discuss the use of different 
resampling methods from a pr~ctical point of view. 
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7 . COMPARISONS 
The ordinary bootstrap method, the abstract bootstrap method and 
the permutation method are all resampling methods. In many 
situations the choice of method depends on different practical 
pro blems. In some models there are non -existence problems in 
several points or even worse, a method does not work at all. These 
kinds of problems will now be illustrated in some examples. 

Example 7. Translation, parameter of interest: the mean ~=E[X]. 
Model Yj= ~ + Ej , j=1,2, ... ,n 
The abstract bootstrap method sometimes fails in step 2, that is 
finding the generating variable, the variable that makes the bootstrap 
estimate equal to the original one. Sometimes this variable. does not 
exist, like in this very simple model: 
E*= y*- ~* = y* - ~ , new observations: Ynew = ~ + E* = ~ + y* - ~ = y* 
Observe that the new observations do not contain the parameter ~, 
and of course it is not possible to find any generating variable. Thus 
the abstract method does not work in this case. But observe that 
resampling the true residuals, in this case, gives new observable 
observations. These new observations are just the observations found 
by using the ordinary bootstrap method. Thus the ordinary method 
works but the abstract method does not. Using the ordinary bootstrap 
method usually means that we have to use the estimated residuals 
and the estimated model for resampling, but in this simple model it 
works anyway. The permutation method does not work either, for two 
reasons. Firstly all permutations give the same average and secondly 
the generating variable does not exist. 

The three methods can be separated in two parts. On the first 
side the ordinary bootstrap method, which gives observable 
observations directly. On the other side the abstract bootstrap 
method and the permutation method, both methods generate non 
observable observations but by finding the generating variable a 
confidence set can be constructed. The problem is that in some 
resamples the generating variable does not exist. The most 
obvious resample is the one which is identical with the original 

. * one I.e. E = E. 
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If the generating variable, the variable that makes the bootstrap 
estimate equal to the original one, had been existing for this resample, 
it would have been too good to be true, because in that case the 
generating variable would be equal to the true parameter of the 
model! Unfortunately this is not always the only resample for which 
the generating variable does not exist, there may be others. 

The number of resamples for which the generating variable does not 
exist may be the de terming factor for which model to use. In the 
simple model above the generating variable did not exist for any 
resample at all and thus the abstract bootstrap- and permutation 
method did not work. It is also worth noting that in the resamples 
with non existing generating variable, we get an observable new 
observation and thus an ordinary bootstrap estimate. 

In linear models (except the simple model in the example above), the 
disadvantage with the ordinary bootstrap method is that we have to 
use the estimated residuals (which are not i.i.d), and the estimated 
model for resampling, remembering that: Ynew = ~ + X~ + e* , where e* 
is a resample from the estimated residuals. The disadvantage with the 
abstract bootstrap- and the permutation method is the problem with 
non existing generating variables. But the number of resamples with 
this non existence is in most models relatively small even when the 
number of observations is moderate. 

Example 8. Simple linear regression, Yj= a + Xd:3 + Ej , i=1,2,3 
and Xl=-2 X2=-1 X3=3. 
To use the ordinary bootstrap method we have to use the estimated 
model for resampling. We will instead examine the two other 
methods: 
The generating variable is equal to: 

(:3= (~ ~ (Xj-X)2 - ~ (XrX)Yi*) / (~ (XrX)2 
i=l i=l i=l 

The generating variable does not exist when: 
n _ n _ 
~ (Xj_X)2 - ~ (Xj-X)Xi* = 0 ¢> 14 = -2Xl* - X2* +3X3* 

i=l i=l 
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There is only one resample which fulfils the equation above namely 
the obvious resample E*= E <=> Xi*=Xi V i. In the abstract bootstrap 
method this is one out of 27 resamples and in the permutation 
method this is one out of 6 resamples. 
Suppose that we increase the model to the design: 
Xl=-3 X2=-2 X3=-1 X4=0 Xs=l X6=2 X7=3. 
Observe that this design includes the origin and thus the residual 
number four does not affect the estimate and thus just by changing 
residual number four to anyone of the others we will get a resample 
for which the generating variable does not exist. Totally there will be 
non existence for 742 resamples out of 823543 (~0.0009), in the 
abstract bootstrap method. In the permutation method there will be 
non existence for 7 out of 5040 (~0.0014), (results from a computer 
simulation) . 
Thus even if the number of observation is moderate the probability of 
getting a resample with a non existing generating variable is small. 
Observe that the 742 resamples with non existing generating variable 
contains information, these resamples give observable new 
observations and new estimates possible to treat according to the 
ordinary bootstrap method. 
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8. DISCUSSION 

Which method to use, the ordinary bootstrap, the abstract bootstrap, 
the balanced abstract bootstrap or the permutation method, is a 
rather difficult question, it depends on several circumstances, for 
instance: 

1. The model: When studying the mean in the simple translation 
model the ordinary bootstrap method was the only applicable. 
2. The parameter of interest: Studying the grand mean in a linear 
model, a balancation of the resamples was necessary to avoid 
influence from the variation part. 
3. The design and the total number of observations: These factors 
affect the probability of the non existence problem in the abstract 
bootstrap- and the permutation method. 

The abstract procedure for creating a confidence set is a useful 
technique for resampling methods. In linear models this technique 
makes it possible to resample the true residuals. The abstract 
bootstrap- and the permutation method use the true model for 
resampling. This is an advantage compared with the ordinary 
bootstrap method which use the estimated model for resampling and 
thus has more approximations involved. 

The abstract bootstrap- and the permutation method are closely 
related, in the linear model the only difference is how to 
resample, with or without replacement. The two methods have 
the same asymptotic properties. To recommend one of these 
methods is difficult, because on one side the abstract bootstrap 
method seems to have a lower probability of the non existence 
problem, but on the other side balanced resampling may reduce 
the simulation error. 
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9. FURTHER DEVELOPMENT. 

Even if the distribution is known there can be reasons for using 
abstract resampling, for instance if the statistic is complex and it is 
difficult to analytically calculate the likelihood function. This is the 
case of the interesting theory of generalized linear model, McCullagh & 
Nelder( 1989). 

Model E[Y]=~ , g(E[y])= g(~)=X~ for some function g. An estimate of 
~ is found by iterating 

X~k = WXTz until ~k-~k-l < 0.0001 

Where W is a weight matrix W-1k-l= [bgb~) ]2 Vk-l , and Vk-l is the 

variance function evaluated at ~k-l. 

The variable z= g(~k-l) + (Y-~k-l)( b~~) )k-l ,is a linearized form of 

the link function applied to the data, g(y)=:l g(~) + (y~)g' (~) . 
~ k bg(~) . 

Furthermore Pk-Pk-l = (XTWX)-lWXT(Y-~k_l)( b~ )k-llS called the 

adjustment part. 

It may be possible to create confidence set in this model as well. For a 
known distribution of Y, for instance binomial (logit link), simulate an 
abstract sample. Next step is to find the parameter which makes the 
resampled estimate equal to the original one. Let ~k be the start point 
and find the parameter which makes the adjustment part small i.e. so 
small that the iteration stops at once. Then the new estimate is equal 
to the original one. 

There are, however, still some problems to solve, for instance if 
the known distribution is discrete the generating parameter will 
not be unique, this is a difficult problem especially if the 
parameter is multidimensional. 
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