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Abstract 

Construction of saturated designs for different types of second order models are discussed. Also 

a comparison between two types of saturated designs for the full second order model is 

presented. 
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1 Introduction 

The complemented simplex design, see Claes Ekman [1994], have good properties when 

estimating a second order surface with a known maximum up to 6 dimensions. It can be made 

rotatable and it is at least as good as a fractional factorial design with a star with respect to the 

alphabetic optimality criteria's. In this paper we discuss how saturated de,Signs, i.e. designs 

having equally many design points as parameters to estimate, can be constructed when 

estimating a second order surface. 

We assume that the underlying surface has a maximum. The maximum point mayor may not be 

known. We may also let any predictor interact or not interact with any other predictor. 

A simplex is defmed by k + 1 points in k dimensions. A regular simplex is a simplex where all 

points are at the same distance from the center of the simplex and the distance between each 

pair of points is the same. The complemented simplex design is defined by having one design 

point in each comer of the simplex, called simplex points, and one design point on each ray that 

goes from the center of the simplex and between each pair of simplex points, called 

complement points. The simplex points are denoted Pi' i = 1, ... ,k + 1, and the complement 

points are denoted Pij' i = I, ... ,k, j= i + I, ... ,k + 1. The design point Pij is the complement 

point on the ray that goes between the simplex points Pi and Pj' 
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2 The Models And The Designs 

In the following subsections are saturated designs for some different types of second order 

models described. 

2.1 Second Order Model With Unknown Maximum Point 

The second order model looks like 

k k k k-l 

E[Y] = 130 + Ll3iXi + Ll3iiX~ + LLl3ijxixj 
i=l i=l i=l j=l 

where Y is the response variable and Xl, ..• ,Xk are the predictors. This model has 

(
kJ 3k k

2 

l+k+k+ =1+-+-
2 2 2 

parameters. The complemented simplex design has 

(
k+l) 3k k 2 

k+l+ =1+-+-
222 

design points and is therefore a saturated design. 

2.2 Second Order Model With Known Maximum Point 

When the maximum point is known, the model can be simplified by doing an origin shift. The 

model can now be written as 

k k k-l 

E[Y] = 130 + Ll3ijx; + LLl3ijxjxj . 
i=l i=l j=! 

This model has 

(
kJ k k

2 

l+k+ =1+-+-
2 2 2 

parameters. Consider the design consisting of one center point and the complement points in a 

complemented simplex design. This design has 
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(
k+l) k k
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1+ =1+-+-
2 2 2 

design points and is therefore saturated. 

2.3 When Some Predictors Do Not Interact With The Other 

The first case to consider is when one predictor does not interact with any of the other 

predictors. We will now fmd a saturated design for this type of model. Start with the saturated 

design for the model with the k -1 interacting factors. Each design point in this design is of the 

type p = {VI' ... , Vk_I}, say. The design for the model where one predictor does not interact with 

the other predictors consist of the design points of the type p = {VI' ••. ' Vk_1 ,OJ, and one or two 

additional points. Two additional points are required if we do not know the maximum point, 

and therefore need both the linear and quadratic term in the model. If the maximum point is 

known, it is enough to have the quadratic term in the model. If two additional points are 

needed, take them as {O, ... ,O,±u}, if only one is needed, any of the two will do. 

If we have two predictors not interacting with the others, the design consist of the points of the 

type p = {VI' •.• ' Vk- 2 ,O,O} and also the points {O, ... ,O,±u,O} and {O, ... ,O,O,±u}. Further extension 

is obvious. 

We could also think about a more messy situation when we allow all predictors to interact or 

not interact with any other predictor. If the simplex is constructed as described in Claes Ekman 

[1994] the design may be reduced in the following way. 

The design point P ij is the complement point that contains most information about the 

interaction between Xi_I and Xj-I. Therefore, if there is no interaction between X i_l and Xj-l' Pij 

is removed from the design. This means that the complement points that are left in the design, 

are those that contains most information about the interaction terms in the model. 

4 



3 Anotber Saturated Design 

It is not easy to fmd examples of saturated designs in the literature for models in general. 

However, for polynomial models there exist saturated designs called Koshal designs, see 

Koshal[1933]. The idea behind the construction of such design is very intuitively. How to 

proceed is best shoWn through an example. 

Assume we are working in three dimensions. The model looks like 

There are 10 parameters to estimate, so we are looking for a design with 10 design points. Take 

one observation in the origin, (0,0,0), to estimate the intercept term. Next, to estimate the linear 

terms, take observations in (1,0,0), (0,1,0) and (0,0,1). To estimate the quadratic terms, take 

observations in (2,0,0), (0,2,0) and (0,0,2). Finally, the interaction terms are estimated by 

observations in (1,1,0), (1,0,1) and (0,1,1). The design matrix D looks like 

(0 ° 01 
11 ° 0 1 

1o 1 01 
1o ° 11 
12 ° 01 
1 o 2 0 1 

I I 
10 ° 21 
11 1 01 

11 ° 11 lo 1 1) 
This design is very asymmetrical around the origin, but can be substantially improved. First, the 

design points used for estimating the quadratic terms can be exchanged with the points (-1,0,0), 

(0,-1,0) and (0,0,-1). Second, the design points used for estimating the interaction terms can be 

more spread out by exchange them with the points (1,1,0), (-1,0,1) and (0,-1,-1). The D 

matrix for this new design looks like 
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( 0 0 0) 
I 1 0 0 1 

\ 0 1 0\ 
I 0 0 11 
1-1 0 0 1 
1 0 -1 0 1 
I I 
I 0 0 -11 
I 1 1 01 
I 0 11 
l-~ -1 -lj 

The design points for estimating the interaction terms in the improved design, are constructed 

by following rules. 

• If the number of explanatory variables is odd, then change the "interaction points" in the 

original Koshal design so that each coordinate is represented with equally many 1 as -1. 

• If the number of explanatory variables is even, then change the "interaction points" in the 

original Koshal design so that the coordinates for half of the explanatory variables is 

represented with one more 1 than -1. The other half is represented with one more -1 than 1. 

The already described example illustrates the idea when k is odd. When k is even, say k = 4, 

the following "interaction parts" of the original Koshal design and the improved design are 

obtained 

(I 1 0 0) ( 1 1 0 0) 
11 0 1 0 1 1-1 0 -1 0 1 

\ 1 0 0 1 \ I 1 0 0 
1 

I -11 
10 1 1 01' I 0 -1 1 01' 

l~ 1 0 ~J l ~ 1 0 j 0 1 0 -1 
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4 A Measure On Rotatability 

One aspect of interest when looking at designs is whether the design is rotatable or not. When 

comparing two non-rotatable designs, one might ask which one is most rotatable? 

Designs for the special model we wish to compare here, that is the full second order model, are 

rotatable just when the infonnation matrices are of a special fonn. What this fonn looks like is 

exemplified for the special case when k = 2, extension to higher dimensions is straightforward. 

The matrix is symmetric, therefore is only the upper triangle shown. 

(y 0 0 8 8 01 
1 ~ 0 0 0 01 
1 . 

01 
{rol;j =1 : ~ 0 0 

3)", ).., 01 

l: 
3A ~J 

Assume now we have a design D and its relating X-matrix. Further assume that the infonnation 

matrix, X t X, for this design looks like 

(all a l2 aJ3 a l4 a l5 a l61 
1 a22 a 23 a 24 a 25 1 
1 a26 1 
1 

a 33 a 34 a 35 a 36 1 

1 a 44 a45 a46 1 

l: 
a 55 aS6J 

a 66 

The question we asks us is how much does this infonnation matrix deviate from a rotatable 

design's infonnation matrix? Let 

Ao = {aijl{roLj = 0, \;f i andj ~ i} 
Ao = {aijl{ro}ij = 8, \;f i andj ~ i} 
Af, = {aijl{ro}ij = s, \;f i andj ~ i} 

A, = { ~ Ilm},j = k1c,k E {1,3}, 'if i and j <: i} 
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Let the number of elements in At be nl , f E {8,~A}. Now form 

The measure of rotatability is now defmed as 

The design is rotatable whenever Rot = o. 
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5 The Improved Koshal Design V s. The Complemented Simplex Design 

The complemented simplex design is naturally divided in two sets of experimental points, the 

simplex points and the complement points. Also the Koshal design can be divided in a similar 

way, by the interaction points, the star points and the center point. In the following when the 

two designs are compared, we allow the different sets of experimental points to be at any 

distance from the origin. Of course, we cannot have design points outside the region over which 

the model is valid. For simplicity, assume the model is valid only over the unit sphere. 

The primary criteria used when comparing the two designs is the D-criteria. A design is said to 

be D-optimal if it maximizes the determinant of the information matrix. This means that the 

joint confidence ellipsoid for the parameter estimates is minimized. The two designs are 

constructed so the determinants of their respectively information matrices is maximized. 

Thereafter are the measures of deviation from a rotatable design found. 

The results up to 6 dimensions are summarized in the following tables. Det stands for the 

determinant of the information matrix, Rot stands for the measure of deviation from a rotatable 

design. In the simplex design, d(O,s) is the distance from the origin to the simplex points in the 

D-optimal design and d(O,c) is the distance from the origin to the complement points. In the 

Koshal design, d(O,s) is the distance from the origin to the star points and d(O,i) is the distance 

from the origin to the interaction points. 

SIMPLEX KOSHAL 

Dim d(O,s) d(O,c) Det Rot d(O,s) d(O,i) Det Rot 

2 0.77 1 1.63 0.50 1 1 4 2.63 

3 0.87 1 0.25 1.73 1 1 1 4.06 

4 0.91 1 0.012 6.47 1 1 0.062 10.6 

5 0.93 1 1.7 10-4 15.1 1 1 9.810-4 13.5 

6 0.95 1 7.610.7 28.7 1 1 3.8 10-6 24.1 
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We can see from the table that the improved Koshal design is superior the complemented 

simplex design with respect to Det. However, in 2,3 and 4 dimensions the complemented 

simplex design has a smaller value on Rot, and will therefore provide a more uniform 

information of the response surface. In 5 and 6 dimensions is the improved Koshal design better 

than the complemented simplex design with respect to Rot. 

The complemented simplex design suffer from the lack of a center point. Let us see what 

happens if an extra center point is added to each design. 

SIMPLEX KOSHAL 

Dim d(O,s) d(O,c) Det Rot d(O,s) d(O,i) Det Rot 

2 1 1 30.4 0 1 1 8 2.63 

3 1 1 9.36 3.06 1 1 2 4.06 

4 1 1 0.72 8.97 1 1 0.12 10.6 

5 1 1 0.015 18.6 1 1 2.010-3 13.5 

6 1 1 9.2 10-5 32.6 1 1 7.61O-Q 24.1 

Now is the complemented simplex design superior the improved Koshal design with respect to 

Det. With respect to Rot is the complemented simplex better than the improved Koshal in 2,3 

and 4 dimensions. Specially, in 2 dimension is the complemented simplex design rotatable. In 5 

and 6 dimensions is the improved Koshal design still better than the complemented simplex 

design with respect to Rot. From this one can conclude that a center point is valuable for a 

design. 

Saturated designs do not allow estimation of the error, and should therefore be handled with 

care. By adding one or several center points, this drawback is eliminated. 
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