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Abstract 

The need of a measure of rotatability is discussed and exemplified through some examples. 

The examples also shows the difficulties with measuring rotatability. A graphical technique for 

exploring the variance function is discussed. 
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Introduction 

When constructing designs, rotatability is one property that has to be considered. A 
design is said to be rotatable if there exist a point Xo ( the designs center point) such 

that the variance of a predicted value in a point x, Var(y{x)), only depends on the 

distance between Xo and x, and of course on the experimental error. See Box and 

Draper [1987]. 

For some classes of models, rotatable designs can always be constructed. Especially 

this is true for polynomial models (Box and Draper [1987]). For other types of models, 

or when blocked designs are used, it may not be possible to find an exact rotatable 

design. Another situation when a rotatable designs not can be found is when the 

experimenter cannot afford to run the number of experiments that are required. 

This leads us to the problem of measuring rotatability. This is a fairly new topic in the 

theory of construction of designs and has its origin in two articles from 1988, Khuri 

[1988] and Draper and Guttman [1988]. These two articles deals with single number 

measures ofrotatability. A design's departure from a rotatable design can take many 

forms. Also is the departure different at different distances from the design center. This 

complexity makes it impossible, which is also mentioned by Draper and 

Guttman[ 1988], to describe the degree ofllack of rotatability with a single number. 

Giovanitti-lensen and Myers [1989] suggest a graphical method of assessing the 

degree offlack of rotatability, using what they call a variance dispersion graph. 

In next section we will study an example to emphasize the complexity of rotatability. 

Thereafter is the graphical method presented together with an alternative method for 

constructing such graphs. The last section includes a brief discussion of the problem 

with measuring rotatability, and some words abouta related property to rotatability, 

but by no means not so well understood or examined. 
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An Example of a Non-Rotatable Design 

Consider following situation. We have a response variable Y and two explanatory 
variablys XI and x2. Over a well defined region we want to detennine the functional 

relationship between the response variable and the explanatory variables. The usual 

assumptions of i.i.d. normally distributed measurement errors are assumed. We know 

that the relationship is on one of the two forms; 

(i) E[Y] = f30 + f3l xI + f32 x2 
(ii) E[Y] = f30 + f31 XI + f32 X 2 + f31l x; + f3 22 x; + f312 XI X 2 

Now assume that the collection of data is of such nature that changing the levels of the 

explanatory variables and the preparations for a set of runs are connected with great 

costs. Because of this we like to perform only one set of runs, minimum of six 

observations to be able to estimate model (ii), and to use as few levels as possible. One 

possible design meeting these criteria's is the design with design matrix 

r 0 0, 
0 I 11 

DJ 0 -11 
-I 1 01· 

1-1 
l 1 

01 

d 
What this design looks like is shown in next figure. As seen, the design has an 

x2 

1 • 

--------...------.... xl 
-1 1 

-1 

asymmetrical pattern, and we would not expect it to be rotatable. Intuitively one would 

guess that the variance of the predictions is lower when both XI and X 2 are greater than 
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zero, compared with other points at the same distance from the origin. The variance of 

a predicted value in any point x, can be shown to be 

Var(y{x)) = xt(XtXtl x rI 

where X is the designs X-matrix and rI is the variance of the experimental error and 

y(.) is the fitted model. 

We are now interested in studying Var(Y{·)) at fixed distances from the origin. To do 

this, introduce polar coordinates 

{

Xl = r cos(t) 

X 2 = r sin(t) 

where r E (0, (0) and t E (0,21t). Now, hold r fixed and let t go from 0 to 21t. By 

constructing graphs for some different values of r, we will get a good picture of how 

Var(y'(-)) behaves in different directions and how this behavior depends on r. 

Let us now examine model (i) and model (ii) one by one. 

Examination of the first order model 

For r = 0.25 we obtain the following graph. Not surprisingly, the best predictions are 

r=0.25 T First order model 

0.23 

o Pi 2 Pi 

t 

made in the direction t = 1t /4, i.e. in the direction towards the "extra" design point 

(1,1). The worst prediction are made in the opposite direction, t = 51t / 4. When 

r = 0.5, next graph, Var(Y(·)) looks somewhat different. The best predictions are still 

made in the direction of t = 1t /4. However, the worst predictions are now made in 
two new directions, t = 51t / 4 ± t r , r = 0.5. When r gets large, t r tends to 1t / 2. 
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r=O.5 T First order model 

0.32 

o Pi 2 Pi 

t 

From a practical point of view it is of interest to study Var(Y{·» for moderate values 

of r (r not much larger than the distance from the design center to the outermost design 

point), but from a theoretical viewpoint also larger values of r are of interest. The two 
following graphs shows the behavior of V ar(Y(·» when r = 1.5 and r = 100. 

r=1.5, First order model 

o Pi 2 Pi 

t 

r=100, First order model 

o Pi 2 Pi 

t 
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The last graph, r = 100, does not show the values of Var(y{·)). What is interesting is 

the shape of Var(y{)). The best predictions are made in the two directions t = 1t /4 

and t = 51t / 4, for large r, and the worst predictions are made in the two directions 

t = 31t /4 and t = 71t /4. Notice that for small values ofr, t = 51t /4 is the worst 

direction for predictions, but as r gets larger the predictions are better and better 

(relative other directions) and asymptotically it is the best direction together with 

t = 1t /4. 

We have seen that even for the simplest of models, the degree offlack of rotatability 

will not be easily described. Let us now examine the second order model. 

Examination of the second order model 

This model is somewhat more complicated than the first order model. Still, intuitively, 

it is reasonable to believe that predictions are made with greater accuracy in the 
direction t = 1t / 4. By studying the graph of V ar(Y(·)) when r = 0.25 we see that this is 

not true, 

r=0.25, Second order model 

0.98 

<~o. 94 

O.86~ ______ =-______ ~~~ 

o Pi 2 Pi 

t 

for small values of r. In fact, the best predictions are made in the directions 
t = 57t / 4 ± t

f
, r = 0.25. When r tends to zero, it can be shown that t

f 
tends to 1t / 2. 

Further, when r is small, Var(y(t = 7t /4)) ~ Var(y(t = 5n /4)), and t = 1t / 4 and 

t = 51t / 4 are the worst directions of predictions. So compared with the first order 

model is the situation very different. 

By introducing polar coordinates, and then study Var(y{x)) = xt(xtxtlx d, for 

small values of r, one will gain a mathematical understanding of the behavior of 
Var(y(·)) close to the origin. However, it is not easy to see intuitively why Var(y(-)) 

behaves as it does in the graph above. So even in this trivial example with a simple 
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design and a well understood model, the behavior of V ar(Y(·» at fixed distances from 

the design center is not easy to grasp. 

What follows is a sequence of graphs for some different values of r, namely r = 05, 

r = 0.75 and r = 1. The purpose is to show how different Var(Y(·» looks at different 

distances, and also to show the complexity of Var(Y(·» at some fix distances. 

r=O.5 T Second order model 

1 

O.6~------~~--__ ~~--J 
o Pi 2 Pi 

t 

r=O.75 T Second order model 

1.2 

<:>. 1 

1-1 
(I) 
:> 0.8 

O.6~ ________ =-____ ~ __ ~ 

2 

<£;1. 5 
1-1 
(I) 

:> 

o Pi 2 Pi 

t 

r=lT Second order model 

o Pi 2 Pi 

t 
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The shape of Var(Y(·)) for the second order model, remains more and more of the 

shape of the corresponding function for the first order model, when r gets large. This is 
verified by studying Var(y(·)) when r = 100. One can see that the curves of Var(Y(·)), 

r = 100, for the first order model and the second order model have the same 

characteristics, even if they not are exactly identical. 

r=100, Second order model 

o Pi 2 Pi 

t 

Mathematical examination of the variance functions 

As seen, the form of Var(y(-)) can be very complex at some distances and will not be 

easily expressed in mathematical terms. When r tends to zero or infInity the expression 
of Var(Y(·)) is simplified, and it is worthwhile to study these special cases to learn 

more about the behavior of the function. 

Let V; denote Var(y(·)) in the fIrst order case, and V2 the same function in the second 

order case. The following results are easily verifIed. 

v; ~ a j + a; sin(t + 1t/4) as r ~ 0, 

V; ~ b j + b; sin(2t) as r -+ 00, 

V2 ~ ~ +a~ sin(2t) as r ~ 0, 

V2 ~ b2 + b~ sin(2t) (1- sin(2t)/2) as r -+ 00 

This explains why V2 is so flat when 2t is close to 1t / 4 and 51t / 4 for large r in the 

second order model. To see this, let u = 2t. A Taylor expansion of sin(u) around 

u = 1t /4 (the case u = 51t /4 is similar), gives sin(u) ~ 1- (u - 1t / 4)2 /2. Therefore is 

sin(u) (1- sin(u) / 2) ~ 1/2 - (u -1t /4t /8. That is, in a neighborhood of u = 1t / 4 can 

the function be approximated with a fourth order polynomial function with multiple 

roots in 1t / 4. 
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The Variance Dispersion Graph Approach 

A design is said to be rotatable if Var(y(-)) is constant on spheres of radius r, all r > 0, 

centered at the designs center. This means that a non-rotatable design is not constant 

on spheres, and a natural way of measuring the departure from rotatability is to find 
max{Var(Y(·))} and min{Var(y(·))} on the spheres. 

We can now construct a variance dispersion graph by plotting (max {V ar(Y(·)) } , 

min{Var(Y(·))}) against r for some appropriate chosen values ofr. 

The problem is to fmd max{Var(y(·))} and min{Var(y(·))}, for a given r. We have 

seen in the previous section, that even in a simple situation, V ar(Y(·)) can have a 

rather complex form. 

Giovanitti-lensen and Myers [1988] suggest two different solutions depending on if 

the model is of first order or second order. In the first order case it can be shown that 

max{Var(Y(·))} = (1/ N + Amall2)ci and min{Var(Y(·))} = (1/ N + Aminr2 )ci where Amax 
and Amin are the largest and the smallest eigenvalues of (Xtxt1 

. In the second order 

case they use a search algorithm (not described in the paper) to fmd an optimum. The 

problem with using such algorithm is commented upon by the authors in their paper 

and their reflection of this problem is partly reproduced in the following quotation. 

"In many situations, multiple locations exist for the maximum value of the variance 

on a particular sphere. As in the case of many optimization routines in which one 

has nonlinear equality constraints and the objective function is this complex, there is 

no guarantee of fmding the global optimum." 

This is a problem that not should be underestimated. Consider the graph of the second 

order model when r = 1. There is local optimum at the point t = 11: / 4. If the value of 
V ar(Y(·)) in this point is reported as max {V ar(Y(·)) }, this will of course affect the 

variance dispersion graph negative. 

What we need to do is to fmd all local maxima and minima on the sphere and then fmd 

out which ones are the global ones. This can be done using Lagrange multiplicator. 

After solving the nonlinear equation system 

aL 
-=0 ax1 

aL 
-=0 axk 

aL _. =0 
aA 
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where L = V ar(y( x)) - A(L~=I x~ - r2 ), it is easily verified which of the optimum 

values that are global. 

It is also useful in the variance dispersion graph, for each r, plot the mean of Var(y(·)) 

on the sphere. If \fir is the surface area of the sphere Ur-at distance r, the mean is found 

as \fI~1 t Var(y(x)) dx. Below is shown what this graph looks like for the two 
r 

examples in the previous section. 

First order model 

1.2 

1 
~0.8 

~ 0.6 
!> 0.4: 

0.2 
0 

0 0.5 1 1.5 2 

r 

Second order model 

3 

<~ 
-2 
\.-t 
oJ 
:>1 

0 

0 0.5 1 1.5 2 

r 

For studying the characteristics of a design, with respect to rotatability, the variance 

dispersion graph is useful. When coming to a situation when a visual examination of 

the graphs not is enough for discriminating between several designs, one need a 

measure of the degree offlack of rotatability to be able to pick one of the proposed 

designs. A measure close related to the variance dispersion graphs is the area between 

the upper and the lower curve. The smaller the better and an area equals zero means 

that the design is rotatable. 
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Discussion 

Rotatability is a property which is important when predictions in all directions are of 

equal interest. In many situations it is not possible to construct an exact rotatable 

design, but it shows that in many situations you can often fmd an almost rotatable 

design, without suffering (to much) from other nice properties of the design. It is 

therefore of interest to learn how to compare designs with respect to rotatability, and 

learn how to construct almost rotatable designs in different situations. 

The examples shows the difficulties in understanding the behavior of Var(y(-». Also 

one can understand the difficulties in measuring the degree offlack of rotatability with 
a single value_ In a rotatable design is Var(y(·» constant for each fIxed value ofr, i.e. 

the graphs in section 2 had been straight lines parallel to the x-axis. It is not hard to 

imagine that the departure from rotatability can take many forms. 

Rotatability implies constant variance on spheres centered at the design center. Taking 

. this one step further, one would wish constant variance on all spheres. That is, constant 

variance over the whole region of interest. Is it possible to construct such designs? 

This is a problem that has not been discussed in the literature. 

A rotatable design is represented as a single curve in the variance dispersion graphs. A 

design with constant variance over the whole region of interest, would be represented 

as a line parallel to the x-axis. With this knowledge, one can construct measures of 

how close a design is to meet the condition of a "constant variance design", and this is 

a fIrst step in the search of designs with this desired property. 
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