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ABSTRACT 

Surveillance can be viewed as continual observation in time where the goal is to detect a 
change in the underlying process as soon as possible after it has occurred. In many 
applications, such as post marketing surveillance, it is of special interest to detect gradual 
changes in the underlying process. When a drug has been marketed one needs a continuous 
surveillance of adverse drug reactions. This is now done by different statistical methods 
suggested by the Food and Drug Administration (FDA), among others. 

The ability to detect a linear increase by different methods of surveillance is analysed. This 
is compared to the case where a sudden change to a constant level occurs. Often, as in the 
FDA recommendations, repeated significance tests are made and this technique of 
surveillance is identical to the Shewhart method. Different significance tests correspond to 
different transformations of the observations to the variable to be used in the Shewhart 
test. This method is evaluated by different measures of goodness as the false alarm 
probability, the probability of successful detection and the predicted value, for different 
cases of the critical event. Evaluations of the transformations suggested by the FDA are 
done in the case of the critical event being a sudden shift to a constant level and for the 
case of a linear increase. Considerable differences are demonstrated. 

A method which is optimal to detect a linear increase is derived. It takes into consideration 
all the data up to the decision time. A linear approximation of this method is derived and 
the weights in this approximation are studied. A comparison with the linear approximation 
of the method which is optimal to detect a sudden shift, is made. For the cases studied the 
Shewhart method approximates the optimal method better when the critical event is a 
linear change than when it is a shift. 

Keywords: Surveillance, Gradual changes, Linear increase, Post Marketing, 
Adverse Reactions, False alarm probability, Successful Detection, 
Predictive Value, Likelihood Ratio. 
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1. INTRODUCTION 

The aims of this work is to contribute with some new ideas and methods in the area of post 

marketing surveillance and to develop methods that can detect gradual changes in the 

surveillance. The description of practical aspects of post marketing surveillance of adverse 

drug reactions and how these are handled today was obtained through studies of the 

medical literature in the field, interviews and discussions with WHO staff. This is described 

in Section 2. 

In Section 3 the common praxis in this area is described with the problems of data quality 

in Section 3.1. The statistical methods proposed for post marketing surveillance of adverse 

drug reactions by the FDA, are given in Section 3.2. In Section 3.3 the methods suggested 

by Praus (1993) et aI, by Moussa (1978), and by Mandel et al (1976) are described. 

In Section 4 the characteristics of surveillance in general are given. 

One other important aim of this work is to develop methods to detect gradual changes 

through surveillance and also to evaluate these methods. A stochastic model used for 

describing the surveillance situation at hand is formulated in Section 5. In this model I 

assume that the change in the process occurs at the stochastic point 'to 

Different measures of performance and optimality criteria are described in Section 6. The 

measures of goodness chosen in this work are the Average Run Length (ARL) in Section 

6.1, the probability of false alarms in Section 6.2, the probability of successful detection in 

Section 6.3 and the predictive value in Section 6.4. 

The performance of the type of methods suggested by the Food and Drug Administration 

(FDA) has been evaluated in Section 7 by the ARL (see Section 7.1), the probability for 

false alarm (see Section 7.2), the probability for successful detection (see Section 7.3) and 

the predicted value of an alarm (see Section 7.4). 
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An optimal method for post marketing surveillance is derived in Section 8.1, applying the 

Likelihood Ratio technique when the critical event is a linear increase and where all 

changes before the decision time point are of interest. This technique which was suggested 

by Frisen and De Mare (1991) was in that paper applied to the case where the critical event 

is a shift to some level JlI. A linear approximation of the method is given in Section 8.2. 

An evaluation of the transformations of the data to achieve a test statistic suggested by the 

FDA is made in Section 9. The expected values are calculated in Section 9.1. To examine 

if successive values of the transformed variables are independent the covariances are 

calculated in Section 9.2. 

Concluding remarks are given in Section 10. 
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2. THE NEED FOR POST MARKETING MONITORING 

New drugs are registered on the basis of data from clinical trials usually involving less than 

3000 patients. It is almost impossible to include enough patients in clinical trials to detect 

uncommon adverse reactions. Such clinical trials consist of certain types of exposed 

population and exclude some groups of patients, e.g. the very young, pregnant women and 

patients with severe diseases. 

Adverse drug reactions which occur a long time after the start of the use of the drug or 

which are very rare can often go undetected until after the drug is on the market. Further 

surveillance is therefore required once marketing approval is obtained. A system of post 

marketing surveillance (PMS) is therefore essential to determine the safety profile of 

medicines when used in clinical practice. 

This need is recognized by the World Health Organization (WHO) with a Collaborative 

Research Centre at the Drug Regulatory Authority of Sweden in Uppsala. The aim of this 

WHO program is to develop the existing signal generation potential and to ensure that 

analysis and investigation of all important safety signals proceeds consistently. 
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3. COMMON PRAXIS OF POST MARKETING SURVEILLANCE 

The surveillance for adverse drug reactions (ADR) in Europe rests almost exclusively on a 

spontaneous reporting system for practicing physicians established according to the 

recommendations of the WHO. Spontaneous reports of ADR's are systematically collected 

by the phannaceutical company and reported to regulatory authorities or are directly 

reported to regulatory authorities by the physician. At present 40 countries are 

participating and the national centres send their ADR reports to the WHO centre. The 

infonnation on an individual case transmitted to the centre is the case identification, the 

patient data, the description of the adverse reaction and infonnation about administered 

drugs. Finally, the background data and comments by the national centre are given. 

The WHO centre, at present, apply a procedure whereby after every two ADR's a signal is 

given. To date no extensive statistical evaluation of the method used in the WHO centre 

has been made. 

The 1992 revised Draft Guideline for Post marketing Reporting of Adverse Drug 

Reactions was published by the Office of Epidemiology and Biostatistics, Centre for Drug 

Evaluation and Research, Food and Drug Administration (FDA) in the USA. This 

guideline includes the definition of "reporting interval", "comparison interval" and the 

statistical procedure for detennination of whether a significant increase in the reporting of 

ADR's has occurred. 

What we require is to quantify the number of ADR's and the population at risk. In the 

literature much attention is paid to the measure of the number of ADR's. How do we 

count ADR's? Norwood and Sampson (1988) propose that "ADR's be counted in the time 

interval in which they were reported rather than the time interval in which they occurred if 

these periods differ. This avoids the bias that would occur in the current period because of 

ADR's that have actually occurred but have not yet been reported. In other words, in 

doing so, we do not bias the results by a comparison of the current period rate, with a 

necessarily short follow-up period, to a historical rate inflated by a longer follow-up." 
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Several aspects of drug usage have potential importance in the determination of ADR 

incidence. Some adverse reactions occur primarily upon initial use of a drug; some occur 

only on subsequent drug usage; while others only occur after long-term use. The 

appropriate measure of drug usage to monitor a particular ADR depends on knowledge of 

its relationship to drug use. 

In most cases we have no direct measure of any of these parameters of drug usage, 

although a variety of indirect measures are available. Manufacturers' sales volume is often 

used to monitor ADR's. The use of estimated numbers of new prescriptions available from 

those ADR's that occur with fIrst time use is one other measure. Attainment of suitable 

indirect measures of subsequent usage of long-term use poses even greater diffIculties. 

It is important to classify the ADR's according to labelled categories and that a historical 

database exists with which one can compare current rates. 

3.1. Data Quality 

The data we need for the surveillance are the number of ADR's and the population at risk. 

The biases which can influence the number of ADR's through the spontaneous reporting 

system according to Sachs and Bortnichak (1986) are: 

- Length of time a drug has been on the market. In general an increase of ADR reporting 

can be observed in the fIrst few years during a drug has been on the market. Thereafter 

a decrease is detectable regardless of the sales volume. 

- Country specifIc differences. Spontaneous reporting of ADR's is affected by differences 

in the reporting procedures and differences in the compliance to a reporting system. 

Reporting environment. Several extraneous factors including scientifIc and other 

publications concerning a certain drug with ADR lead to an increased level of publicity 
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and an increase in the spontaneous report of ADR's. Furthermore, changes in the 

reporting system itself can affect the number of ADR reports. 

- Extent of interaction between physicians and manufacturer's sales force. The field sales 

force comprises the manufacturer's representatives who have closest contact with the 

physicians. and a high percentage of ADR's are directly reported to them. The amount 

of time they spend with physicians or in giving special training may lead to an increase 

in ADR reports. 

Spontaneous reporting schemes have significant limitations as a consequence of 

"underreporting" of suspected reactions. Therefore the spontaneous reporting system 

should not be used to estimate the number of ADR's but used to detect rare or delayed 

adverse effects. It is best suited as a signal generator i.e. an early warning system for ADR. 

However if we want, for some reason, to estimate the number of ADR, we need to 

estimate the amount of "underreporting". This issue is handled by Haramburu (1993) in 

his article "Estimation of underreporting". 

In measuring the population at risk it is assumed that the patients, have actually been 

treated with the drug. The bias we will get if we use the manufacturer's sales volume or 

number of prescriptions as the measure of population at risk is that all drugs sold or 

prescribed have not necessarily been consumed. This may lead to an over-optimistic 

measure. 

One way to solve the problem of "underreporting" and to obtain better measures for the 

population at risk is suggested by Inman (1981) by Prescription Event Monitoring (PEM) 

system. The aims of this system may be summarized according to Waller (1991) as follows: 

To monitor all new chemical entities that are used in general practice in the United 

Kingdom. 

To study a cohort of at least 10 000 patients. 

To generate hypotheses about adverse reactions. 

To test specific hypotheses. 
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To measure the frequency of adverse events after exposure to a new drug. 

To complement the existing spontaneous reporting system. 

When a pharmacist dispenses a drug for a National Health Service patient, he or she must 

send the prescription to the Prescription Pricing Authority if he or she wishes to be 

reimbursed the cost. All prescriptions for a drug are photocopied and sent to the Drug 

Safety Research Unit (DSRU). This is done until a cohort of sufficient size has been 

identified. The copies are processed so as to identify the patient, doctor and the fact that 

drug exposure has occurred. The next step is to find out what happened after the drug was 

prescribed. This is done by means of a standard questionnaire that is mailed to the 

prescribing doctor. The PEM system is limited in time which implies that the adverse 

reactions that occurs a long time after the use of the drug will never be discovered. Since it 

is a cohort we could use hypothesis and standard statistical procedures. The situation 

described in Section 4 is intended for surveillance and is not intended for this system. 

The spontaneous reporting system is the one most used today. In the future one may 

expect higher quality in the data collected for the purpose of PMS since considerable 

effort is placed on this issue among medical researchers. It is therefore important to 

develop statistical methods with nice properties that can generate signals for ADR's. 
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3.2. FDA Guidelines 

In the FDA guidelines we can find the defmition of "reporting interval", "comparison 

interval" and a statistical procedure for determination of whether a significant increase of 

ADE's (ADR) has occurred. For drugs marketed for less than three years, the "reporting 

interval" is the most recent quarter of marketing and the "comparison interval" is the 

interval from initial marketing until the day preceding the "reporting interval". For drugs 

marketed for three years or longer, the "reporting interval" is the most recent year of 

. marketing and the "comparison interval" is the year preceding the "reporting interval". 

This distinction is made due to the fact that the practicing physicians are more alert during 

the first years the drug is released on the market and as a consequence more ADR's are 

reported. When the drug is marketed for three years or longer it is difficult with the 

recommended procedure to detect an increase of ADR's when there is a small increase 

annually, which is discussed in Section 9. 

Let 

Y(i)= the random variable of the number of ADR's reported in quarter or year i. 

f(i)= the estimate of sales volume in quarter or year i, concidered as non-random. 

When the drugs are marketed for less than three years the hypothesis is: 

1-1 1-1 

(
Y(t») ~Y(i) (Y(t») ~Y(i) 

Ho:E f(t) = E :ff(i) and the alternative H1:E f(t) > E ff(i) 

i=l i=l 

The transformation suggested by this hypothesis is (see Section 9.1 for more details): 
1-1 

Y(t) ~Y(i) 
Z A (t) = -- - :-l , which implies that flo is equivalent to E[ z(t) ]=0 

f(t) Lf(i) 
i=l 

A similar test statistic was suggested by Finney (1973). 
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When the drugs are marketed for three years or longer the hypothesis is: 

H :E(Y(t») = E(Y(t -1»)and the alternative H :E(Y(t»)> E(Y(t -1») 
o f(t) f(t -1) 1 f(t) f(t -1) 

The transformation suggested for this situation is (see Section 9.1 for more details): 

ZB(t) = Y(t) - Y(t -1), which implies that Ho is equivalent to E[Z(t)]=O 
f(t) f(t -1) 

In the article by Tsong (1992) a description of 6 statistical procedures are given for testing 

the above hypothesis. One of these is the statistical procedure provided in the 1991 version 

of the FDA Draft Guideline for Reporting Adverse Drug Reactions. This procedure is 

based on the normal approximation test proposed by Norwood and Sampson (1988). The 

letter proposed the normal approximation of the binomial test through Fisher's Exact test 

under the assumption that the sales volume is sufficiently large. It can also be obtained as 

the upper 0.05 critical level of the regular normal approximation test for comparing two 

proportions. 

By use of these methods we ignore the fact that repeated decisions have to be taken. When 

we take this into account, this is equivalent to the Shewhart method proposed by Shewhart 

(1931). In this method an alarm is triggered for the first time t for which IX, - Jl 01> g 

where g is a constant and for the definition of Jl 0 see Section 5. 

It will be assumed that the variables Y(t) are independent and approximately normally 

distributed in accordance with other papers in this area. 

3.3. Some Other Methods 

Most papers on post marketing surveillance concentrate on data qUality. However, some 

statistical articles have handled some suggestions on statistical methods within this area. 
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Mandel (1976) modified the method corresponding to the statistica ZA(t) to make it more 

sensitive to trends. This test statistic compares the last observation with the sum of the 

three preceding observations. 

Moussa (1978) and Prauss et al (1993) suggests the use of the cumulative sum scores 

(CUSUM) technique introduced initially by Page (1954). The CUSUM method is often 

used in industrial process control and later proved to be a useful method for the monitoring 

of birth defects or other rare diseases. We assume that the background incidence level ko 

of reported ADR's per unit of sales volume is known, together with its standard deviation. 

Let k, >ko be an increased incidence level which is considered to be the alert or rejection 

level. The CUSUM score Si for the period i is then defined in relation to its value at i-J by 

S, = max( O,Sl-I + ~: - k, ) for i> 0, where So = 0 

Here k" where ko < k, < k" is called the reference level and is usually taken as the mean 

of ko and k,. Whenever Si exceeds a certain detection boundary h, an increased incidence 

is suspected. The equations defming this detection boundary h cannot be solved explicitly 

but tables for practical use are available. 

Moussa (1978) also adresses the case of subpopulations. The method proposed issues a 

local signal in the jth subpopulation, if Sij > hj' and a general signal is triggered on a 

national level if Sij > hj for allj=l, 2, .. ,s. 
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4. SURVEILLANCE IN GENERAL 

Surveillance can be viewed as continual observation in time where the goal is to detect a 

change in the underlying process as soon as possible after it has occured. In terms of 

statistical inference we have a situation with four characteristics: 

The number of observations is increasing. 

Decisions must be made gradually. 

The "catastrophe" under surveillance might occur at any time. 

The hypotheses undergo gradual change since at time t we are interested in the 

hypothesis that no change has occurred before t, while at time t+ 1 change before 

t+ 1 is of interest. 

This situation arises in different areas of medicine. Each surveillance situation is unique and 

needs to be evaluated in the light of consequences of an alarm, the necessary timeliness, 

how data is measured, if an individual or a population is under surveillance etc. Examples 

of different situations are surveillance of fetal heart rate during labour, regular health 

controls, post marketing surveillance of drugs and surveillance of congenital 

malformations. When conducting the statistical analysis the fact that repeated decisions will 

be made and that no fixed hypothesis is of special interest is often ignored. Several 

methods which take into consideration the sequential structure of the surveillance situation 

are available e.g. CUSUM or Shewhart. Optimality in surveillance, as well as evaluation of 

the performance of surveillance methods has been discussed in the literature, cf. Frisen 

(1994). 
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5. STATISTICAL MODEL 

The variable under surveillance isX = {X(t):t = 1,2, .. }, where the observation at time t is 

X(t). X(t) is considered univariate, in the sence that only one adverse reaction at a time is 

considered. For surveillance in the multivariate case see Wessman (1995). 

Let us assume that the sequence X(t) consists of independent and normally distributed 

observations with constant variance assumed to be one, without loss of generality,. If the 

adverse reaction is very rare then a discrete distribution would be more appropriate. A 

discrete distribution is studied by Amkeldottir (1995). The variable X(t) at time point t 

could, for example, be based on a recursive residual such as 

I-I 

Y(t) :?:Y(i) Y(t) Y(t -1) 
--- I-I or------I-I , 
f(t) If(i) f(t) f(t-1) 

i=1 

where Y(i) and f(i) are observed variables (see Section 3.2). The random process which 

determines the state of the system is denoted Jl = {Jl(t):t = 1,2 ... }. E[X(t)] = Jl(t). 

The time point of a change is denoted 'to The critical event of interest at decision time t is 

denoted C(t)= {'t ::;; t} and the alternative D(t)= {t > t}. Two types of critical events will 

be studied below. For the first type it is assumed that if a change in the process occurs, it is 

a linear change in time t. If the change occurs at time 't we have 

{Jl(t) = (t - 't + 1)b} if t ~ 't, b > 0 

and 

The second type I have used as a comparison for the measures of performance is when the 

critical event C is a sudden change to another constant level. That is: 

{Jl(t) = JlI} if t ~ 't 

and 

{Jl(t) = Jl O} if t < 't. 

14 



It is assumed that the level Jl 0 is known and without loss of generality it is assumed that 

this value is zero. When X(t) is a recursive residual then E[X(t)]=O, that is Jl 0=0, see 

Section 9.1. 
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6. MEASURES OF PERFORMANCE IN POST MARKETING 

SURVEILLANCE 

It is essential to evaluate different statistical methods in a way that takes into account the 

dependence on the length of the period of surveillance and the time point where the change 

occurs. The fact that the change can be gradual will also influence these measures of 

performance. This is not the case with the usual measures, such as the significance level 

and power of a test's performance that need to be generalized. Measures which take the 

above into account and chosen in this work are presented in Sections 6.1-6.4. 

How a method of surveillance performs is dependent on the time 't between the start of the 

surveillance and the time of the change. We can express the performance as a function of 't, 

as in Frisen (1992). Sometimes we want to have a single criterion of optimality in order to 

get an index which is independent of't. One way is to consider a probability distribution of 

't and use summarizing measures over this distribution. 

In quality control optimality is often defined as minimal ARE / ARLo, see the definition in 

the next section. One other suggested way is to find a method that minimizes ARE for 

fixed ARLo . Drawbacks with these two criteria are discussed by Frisen (1994). 

Two other important optimality criteria are: 

a) Find the method which maximizes the detection probability for a fixed false alarm 

probability for each decision time. 

b) Find the method which maximizes the expected utility. One important specification 

of utility is given by Girshick and Rubin (1952) and Shiryaev (1963). They treat the 

case where the gain of an alarm is a linear function of the difference 't - t A between 

the time of the change and the time of an alarm. The loss of a false alarm is a 

function of the same difference. 

The method suggested in Section 8 fulfills these criteria. 
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6.1. The Average Run Length 

A measure often used in industrial process control is the average run length (ARL) until an 

alarm is given. The Run length (RL) is defined as the number of time points from the start 

of the surveillance until we get an alarm .. The ARLo is the average number of runs until an 

alarm when there is no change in the system under surveillance. The average run length for 

the alternative hypothesis, ARE, is the average number of decisions that must be taken to 

detect a true change in the system that occurred at the same time the inspection started, 

that is t=O. These measures has the obvious disadvantages of being sensitive to skew run 

length distributions. One other disadvantage is that, when the true change in the system 

occurs at another time point than t=O, which is most realistic in continual surveillance, we 

have little use of ARE as defined above. 

The average run length is the expected value of the run length (RL). That is: 

-
ARL = E[RL] = ~> ·P(RL = i) 

;=1 

In Section 7.1 this measure will be calculated for the Shewhart method in the case where 

the critical event, is a linear increase is compared to the case of a sudden shift to a constant 

level fl1. 

ARL is used here in order to calculate the coefficient b in the linear increase. Let us first 

decide a constant level fl1 for the sudden shift and calculate ARLO and ARE. Then we 

want to find a value for the coefficient b in the case of a linear increase such that the 

ARLo and ARE are the same as in the case of a shift. 

6.2. The False Alarm Probability 

One measure of performance is the probability of a false alarm at time point t, conditioned 

that it has not been an earlier alarm. This measure is important for post marketing 
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surveillance, since an alann will indicate an increase of adverse reactions. If this signal is 

false considerable effort will be put on further research with high costs as a consequence. 

Let us define the conditional probability of a false alann at the time point t as 

a(t} = p(RL= tID(t},RL ~ t) = P(A(t}\D(t},At
C_1) where ~ = A(1)UA(2)U ... UA(t) and 

~C its complement. A(t) is the event: "alann at decision time t". 

The probability of a false alann no later than at time t from the start is also of interest. A 

cumulative false alann probability can then be defined by 

at = P(RL::; tID(t)) = P(~IDt) = 1-p(~cIDt)where Dt = D(1)nD(2)n. .. nD(t) 

Then at = 1- P(AC(1)\Dt,A;) ... P(AC(t)IDt'~~1) 

When D(t) = {t > t} it can be simplified to 

at = 1- P(Ac(1~D(1),A;} .... P(AC(t~D(t)'~~l) 

In Section 7.2 this measure will be calculated for the Shewhart method for t=I, ... , 100 (see 

Figure 7.2.1) . 

6.3. The Probability of Successful Detection 

The distance between the change and the alann is important to calculate for various 

methods. In the PMS area it is crucial to quantify this probability. If we have a serious 

adverse reaction we have to detect the change within some time period in order to avoid 

suffering or death. Thus it is important to calculate this probability for different time units 

d. 

In these cases the probability to get an alann within d time units from the change has 

occurred, given that there was no alann before the change, that is the probability of 

successful detection (PSD), is of interest. The PSD is a function of the time distance d, the 

time of the change t and ~(t). 

PSD(d,t,J!(t)) = p(RL::; t + dlRL ~ t) = P(~+d-l\~~l''t = t) 
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6.4. The Predictive Value 

The predictive value (PV) is an important criterion of evaluation used by Frisen (1992), 

Frisen and Akermo (1994) and Frisen and Cassel (1994). The probability that a change has 

occurred, given that there is an alarm, is even more important for the PMS area. The trust 

you should have in an alarm is important for the decision-maker in order to judge which 

decision is appropriate. 

This criterion measures how strong an alarm is as an indication of a change. It can be 

interpreted as the relative frequency of motivated alarms among all alarms at t, and is 

defined as: 

PV(t) = p('t ~ tlRL = t) = P(C(t)IA(t)'~~1) = PMA(t) 
PMA(t) + PFA(t) 

where PMA and PFA are defined below. The unconditional probability of a false alarm at t 

is 
t 

PFA(t) = p(A(t)n't > t) = (at -at-l)· rr(l-y J 
j=1 

where y the incidence, is the probability that the stochastic time 't for the change takes the 

value t, given that there has been no change before t . 

The probability of a motivated alarm at tis: 

PMA(t); p(A(t)n,:> t); t( fi (1- r,) }rj • p(A(t)nA;_,I-r; t) 

Let us assume that this incidence is constant. Then 

t . 

PFA(t) = (at -at-l)· (l_y)t and PMA(t) = I,(1-y ),-1 .y . p(A(t)n~~1~ = t) 
j=1 

In order to get easy interpretations of alarms we could construct methods with a constant 

predicted value. This is studied by Akemo, (1994). 
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7. RESULTS ON THE PERFORMANCE OF THE SHEWHART 

METHOD, GRADUAL CHANGES AND SUDDEN SHIFTS 

As was discussed in Section 3.2, the Shewhart method is of special relevance for the 

methods used in post marketing surveillance, if we take into account the fact that repeated 

decisions have to be taken. In Section 9 these results will be used as a base for the 

discussions about the methods suggested by the FDA. 

The fact that the change can be gradual will influence the measures of performance. I have 

calculated these measures under the assumption of a linear increase as described in Section 

5. As a comparison I also calculated these measures for a sudden change to another 

constant level Ill. 

7.1. The Average Run Length 

Two types of critical events for the statistical model are considered, described in Section 5. 

One is when the critical event C is a sudden shift and one is when we have a linear increase 

in time. The ARLo is the same for both these situations since no change has occurred. For 

the Shewart method, with the limit g, the run length (RL) follows a geometric distribution 

with the parameter p(X(t) > g) = (1- <I>(g)). 

ARLO = Ii ·P(RL = i) = Ii{<I>(g)t . p(l-<I>{g)) = ( 1 ( ) 
;=1 ;=1 1- <I> g) 

where <I>(g) is the standardized normal probability distribution function. 

For the average run length for the alternative hypothesis, ARE, we have for the case of a 

sudden shift to a constant level III and the parameter p((X(t) -Ill) > g -Ill) 

= (1- <I>(g - Ill)) for the geometric distribution: 
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For the case of a linear change in time we have different parameters for every i in the 

distribution for the RL. That is: 

i-l 
P(RL = i) = II(l- P(X(k)-b·k > g-b.k)).P(X(k)-b. i > g -b·i) = 

k=l 
i-l 
II ( <I>(g - b . k») . (1- <I>(g - b . i») 
k=l 

This means that: 
DO 00 i-I 

ARE = '}) ·P(RL = i) = L,i·II (<I>(g - b· k»)· (1- <I>(g - b· i») 
i=l i=l k=l 

In order to compare these two situations above I have chosen Jll=l and g=1.64 and 

obtained for ARLo=20 and ARE=3.8 in case of a sudden shift,. In order to get a 

comparable situation for the linear case let g=1.64, ARLo=20 and ARE=3.8 also in the 

case of critical event is a linear increase. This will give us the value b=0.33 which will be 

used in the calculations. 

7.2. The False Alarm Probability 

The probability of a false alarm and the cumulative false alarm probability is the same for 

the two situations mentioned in Section 7.1. 

The false alarm probabilities are the same for alIt. The limit g=1.64 gives: 

a(t) = 0.05 

As we could see in Section 6.2 the cumulative false alarm probability could be simplified 

to: 

The variables X(i) are normally distributed and independent as specified in Section 5. For 

the Shewhart method that implies that all events A(t) are also independent. Thus: 

a , = 1- (<I>(g)y 

where <I>(g) is the standardized normal probability distribution function. 
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In Figure 7.2.1 we could see the probability of a false alarm for g=1.64 and t=I, ... ,100. 
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Figure 7.2.1: The cumulative probability of false alarm where g=1.64 and t=I, .. ,100 

22 



7.3. The Probability of Successful Detection 

For the Shewhart method and when we study the case of the critical event being a sudden 

shift the probability of successful detection is: 

PSD(d,t,J!(t) = 1- (P(AC(t~J!' = J!1). P(AC(t + 1~J!' = J!l)-.... P(AC(t + d -1)1J!' = J!1)) = 

= 1- (<t>(g - J!l)t 

If we look at the case when the change is linear we have: 

PSD(d,t,Jl(t) = 1- (p(AC(t)IJl' = b)· P(AC(t + l)IJl' = 2b )-.... P(AC(t + d -l)IJl' = bet + d))) = 

= 1- (<I>(g - b)· <I>(g - 2b} ... ·<I>(g - db») 

For g=1.64 and b=0.33, J!1=1 in Figure 7.3.1 we could see a comparison of these two 

cases above. 
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Figure 7.3.1: The probability for successful detection for g=1.64 in case of a sudden shift 

to a level J!1=1 and a linear increase with b=O.33. 
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7.4. The Predictive Value 

For the Shewhart method and when we study the case of the critical event being a sudden 

shift the probability for false alarm is: 

PFA(t) = (1-'Y)' . (ct>(g»)t-l . (1- ct>(g») 

and the probability for motivated alarm 

t j-l . 

PMA(t) = I,(I-'Y )j-l .'Y . (ct>(g») . (ct>(g - Jll )tJ 
• (1- ct>(g - Jll)) 

j=1 

The probability of false alarm for the Shewhart method when a linear increase is of interest 

we have the same probability of a false alarm as in the case of a sudden shift. 

The probability of motivated alarm in this case is: 

t j-l t-l 

PMA(t) = I,(I-'Y i-I .'Y . (ct>(g») . IT(ct>(g - b· (i - j + 1»)). (ct>( -g + b· (t - j + 1»)) 
j=1 i=j 

In Figure 7.4.1 with g=1.64, b=0.33, Jll=1 and y=O.01 a comparison of these two cases is 

made for different values of t. In Figure 7.4.2 a comparison of the two cases above is made 

for different values of t for the same values of the parameters as above, except for the 

incidence )'=0.1. 

As we can see the choice of the incidence 'Y is very crucial for the predicted value. A 

medical knowledge about the drug under surveillance is important. 
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Figure 7.4.1: The predictive value for g=1.64 and the incidence y=O.01 in case of a 

sudden shift to a level J..ll = 1 and a linear increase with b=0.33. 
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Figure 7.4.2: The predictive value for g=1.64 and the incidence y=O.1 in case of a sudden 

shift to a level J..ll=1 and a linear increase with b=0.33. 
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8. THE LIKELIHOOD RATIO METHOD 

The Likelihood Ratio method which is optimal according to conditions a) and b) as 

described in Section 6, to detect a change, is constructed by Frisen and de Mare (1991). 

To meet optimality condition a) in Section 6 we will have an alarm if the alarm function 

p{xJ> G/ where p(x/) is the likelihood ratio. 

This method is also exemplified for the normal distribution for the shift case. That is when 

we assume unit variance and ~o = 0 as described in Section 5: 

The method derived below is the likelihood ratio method but it is optimal to detect a linear 

increase (see Section 5). 

8.1. The Likelihood Ratio method for gradual changes. 

Let us consider the situation where all changes before time t are considered and 't is a 

generalized random variable with known density P('t=k) as described in Section 5. That is: 

C(t) = {t ~ t} 

and the alternative 

D(t) = {t > t} 

We obtain the alarm function 

( _ f. P('t =k)rr' f{X(u)IJl(u)=(u-k+l)b} 
p x,) - £.J {I O} 

k=1 P('t ~ t) .. =k f X(u) Jl(u) = Jl 

If we assume a normal distribution with unit variance and ~o = 0 as described in Section 5 

we have 
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p(x) = t P('t ;::: k)rrexp(-'HX(u)-b(u -k+ 1»2 = 
, k",1 P('t S t) u=k exp( -t(X(U)? 

, P('t - k)' (1 ) L - IT exp --( -2b(u ~ k + I)X(u) + b2(u - k + Ii = 
k=1 P('t ~ t) u=k 2 

l' ('. l' ) = Ip(t =k)exp Ib(u-k+l)X(u)-~b2I(u-k+l)2 = 
pet S t) ,t .. l u=k 2 _k 

_1_±p(t = k)exp(tb(U - k+ I)X(u) __ b
2 

.((t - k+ 1) ·(t - k + 2)· (2 ·(t - k)+ 3))) 
pet S t) k=1 u=k 12 

Let us factorise p(x,) in: 

p(x,) = g(t)p,(x,) 

where 

1 
get) = P('t ~ t) 

and 

p,(x,) = Ip(t = k)exp Ib(u- k + I)X(u)-_·(t- k+ 1)·(t- k +2)· (2·(t- k) + 3)) , ( 'b
2 

) 

w ~ 12 

Let us assume that the incidence y is constant. Then t has a geometric distribution. That is 

P('t = k) = (1-"( )"-1 ."( 

Then 

p,(x,) = L(1_y)t-l. y ·exp Lb(u- k + 1)X(u)-_.(t- k + 1)· (t- k+2) .(2·(t- k)+3)) , ( 'b
2 

) 

k=l u=t 12 

To achieve the optimal error probabilities according to condition a) in Section 6, an alarm 

should be given as soon as p, (x,) > G, . 

If we also wish to achieve maximization of the utilities as described in Section 6 condition 

b), it is also required that an alarm is given as soon as p(x,) > G. In this case we must also 

consider the function get). 

27 



8.2. Linear approximation of the Likelihood Ratio statistic 

To obtain a method which is easier to use, a linear approximation of Pr(xr) is of interest. 

The exponential functions will be approximated by linear functions. In order to get a good 

approximation of the limit of an alarm the Taylor expressions around values that might 

cause an alarm are important. If tight limits of an alarm are used then a Taylor expression 

around 0 is appropriate. 

The Taylor expression around 0 is: 

eX~b ~(U - k + l)X(U») = 1 +b ~(U - k + l)X(u) 

If we put this approximation in Pr(xr) we get: 

p;(x,) = i:(1_y)k-1. y -exp(- b
2 

-(t-k + 1) -(t-k +2) -(2 -(t-k)+ 3)))(1 + b i:(u- k + l)X(U») = 
k=l 12 IFk 

i:(l-y)k-1 -y -exp(- b
2 

·(t-k + 1)- (t- k + 2)-(2-(t-k)+ 3)))+ 
k=l 12 

L(1-y)k-1 -y ·exp --.(t-k + l)·(t- k + 2) ·(2 -(t-k)+ 3)) -b· L(u- k + l)X(u) , ( b
2 

) , 

k=l 12 r-k 

The fIrst term in the expression is not depending on X. We rewrite the second term as: 

p;- (x,) = b· iX(O±(i - j + 1)· {l-y )i-1
• y . exp(- b

2 

• (t - j + 1)· (t- j + 2)· (2. (t- j) + 3))) = 
w i~ 12 

I 

b·y· 'LX(Om(i,t), where 
i=l 

m(i,t) = ±O -j + I)· (l_y)i-1
• exp(_ b

2 

• (t- j + I)· (t- j +2)· (2·(t- j) +3))) 
~1 12 

If we now look at the quotient between m(2,t) and m(l,t) we get: 

m(2,t) ( ) (I 2 2) --'-~=2+ I-y ·exp -b ·t 
m(l,t) 2 

This indicates that the larger t the larger weight we put on time point two than on time 

point one. 
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If we also calculate the quotient between m(t,t) and m(t-l,t) we get: 

(l-y t l 
. exJ !b2

) 

m(t,t) = 1 + ~2 
m(t-l,t) ~(.) (1 )j-l (b 2 

( • 1) ( . 2) (2 ( .) 3)) £.J t-j· -y ·exp --. t-j+ . t-j+ .. t-j + 
~ 12 

For b=O.33, ,,(=0.01 and t=2 this quotient is 3.23. For the same values for the parameters, 

but for t=5 this quotient is 1.97. 

Let us compare it with the approximation of the Likelihood Ratio method optimal to detect 

a sudden shift to a constant level, suggested by Frisen (1994). 

This approximation is: 
t 

Pt"(xt) =y . LX(i) m(i) 
;=1 

where 

If we, for this approximation, look at the quotient between m(2) and m(l) we get: 

m(2) =1+(I_y).exp((Jl
l t) 

m(l) 2 

This indicates that we put larger weight on time point two than on time point one but the 

difference is not so great as for the approximation of the Likelihood Ratio method optimal 

to detect a linear change. As we can see these weights above are independent of t. 

The calculation for the quotient between m(t) and m(t-l) for this approximation is: 

_m---:....(t~) = ~~1-1 where d = (1-y) . (ex~(_(Jl_l t)) 
met -1) d -1 1. 2 

For Jll=l, y=O.OI and t=2 this quotient is 2.63. For the same values for the parameters, but 

for t=5 this quotient is 1.74. 
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The Shewhart method applies the weight zero for all points up to the last one where we 

put the weight one. Thus we could see for the examples that this method approximates the 

optimal one better at linear changes than at sudden shifts. 
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9. EVALUATION OF THE FDA RECOMMENDATIONS 

9.1. The expected values for the statistics of the FDA recommendations 

The transformation of the data suggested by FDA to sUlVey adverse reactions as described 

in Section 3.2 are as follows: 

For a drug marketed for less than three years: 

/-1 

Y(t) ~Y(i) 
Z A (t) = --- ~:~ , where every i denotes one quarter 

f(t) "ff(i) 
i=1 

The variance for ZA (s) is: 

[ ( )] 
2 1 t-1 

Var ZA t = (J' ~(t) + (/-1 )2 
I "fl(i) 

i=1 

In order to get a unit variance we have to divide Z(s) with its standard deviation. That is: 

XA(t) = ZA(t) . 
~Var(ZA(t)) 

This transformation will, in the following, be called transformation A. 

For a drug marketed for three years or longer: 

Z (t) = Y(t) _ Y(t -1) 
B f(t) f(t -1) 

where t and t-1 denotes the most recent year and the year preceding respectively. 

The variance for ZB(t)is: 

r(Z (] 2 ( 1 1 J Va B t) =(j . -f-2(-t) +-f-2(-t--1) 
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For the same reason as above we have to divide ZB(t) with its standard deviation. That is: 

x (t) - ZB(t) 
B - ~Var(ZB(t») 

This transfonnation will, in the following, be called transfonnation B. 

It is of interest to evaluate these two transfonnations when the change occurs at time 't for 

the variable under surveillance yet) for the two situations: 

I. {E[Y(t)] = (t -'t + 1)·b} if t 2::'t,b > 0 

{E[Y(t)] = Jl O} if t < 't 

II. {E[Y(t)] = Jll} if t 2::'t 

{E[Y(t)] = Jl O} if t < 't 

What happens with the transfonnation A when we want to detect a linear increase at time 't 

for E[Y(t)]? Could we also detect a linear increase with the transfonnation E[X(t)]? The 

same question arises for the situation II. If the purpose is to detect a sudden shift with 

E[Y(t)] would we, with the transfonnations suggested, detect a sudden shift or not. 

We now assume, for simplicity, that the sales volumes are constant in time. Thus f(t) == f. 

In all calculations below t>2. 

Let us calculate the expected values for transfonnations A and B for the situations I and II. 

For transfonnation A the expected value for the case of no change in the process, that is 

when t<'t, is: 

E[ X (t)] = f . (Jl 0 

_ (t -1) . Jl 0 J = 0 
A cr . ~ t f (t -1) . f 

t-1 

The expected value for the situation I, when t 2:: 't , for transfonnation A is: 
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b (~ 1'-1'2_2) _. -yt.(t-l)+--.==== 
2·(1 ~t.(t-l) 

When t ~ 00 and t is small we will get the approximation: E[X A (t)] = ~. t 
2·0" 

(IA) 

If we assume unit variance this means that the regression coefficient is E[XA(t)] = b/2. 

In Figure 9.1.1 and 9.1.2 we could see E[Y(t)] and the transformation E[XA(t)] as in the 

equation IA for b=0.33, a=1 and t=1,5,20 . 

E[Y(t}] 

o 10 20 30 40 50 60 

t 

I 't: 1 fr-e--e 

Figure 9.1.1: The expected value for the variable yet) when the critical event is a linear 

increase (b*(t-t+ 1» with b=0.33. The time t denotes the time of the 

change. 
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E[X(t)] 
10 

o 10 20 30 40 50 60 

I 't: -- 1 -0--9-'" 5 .. -- 20 I . 

Figure 9.1.2: The expected value for the transformed variable XA(t) by transformation A 

when the critical event is a linear increase (b*(t-t+ 1» with b=0.33. The time 

t denotes the time of the change. 

The expected value for situation II, when t ~ 't , for transformation A is: 

E(XA(t)]= f .(J..l
1 
_(t-'t). J..ll)= J..ll·(t-l) 

cr.J t f (t-l)· f cr . .J(t-l).t 
t-l 

When t -7 00 and t is fixed we will get the approximation: E[ X A (t)] = J.ll . (t - 1) 
t .(5 

(IIA) 

In Figure 9.1.3 and 9.1.4 we could see the result for J11=1, a=1 and t=5,20 for E[Y(t)] 

and the transformation as in the equation IIA. 
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Figure 9.1.3: The expected value for the variable Y(t) when the critical event is a sudden 

shift to the level J.1. 1 = 1. The time 't denotes the time of the change. 
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Figure 9.1.4: The expected value for the transformed variable XA(t) by transformation A 

when E[Y(t)] has a sudden shift to the level J.1.1=1 • The time 't denotes the 

time of the change. 
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The expected value for the case of no change in the process, that is when t < 't for 

transfonnation B is: 

The expected value for the situation at I, when t ~ 't for transfonnation B is: 

E[X (t)]=_f_.(b.(t-1: +1) b.(t-1:»)=_b_ 
B cr . .J2 f f cr·.J2 (IB) 

In Figure 9.1.5 we could see the result for b=O.33,0"=1 and 1:=5,20 for E[Y(t)] and the 

transfonnation as in the equation ffi. 

2.0 

1.5 

1.0 

0.5 

r------------------------------------------- 4 

o.0-l;===;:==:;===¢-:.:.::--:.:.::--:.:.::--=-:-_:-' ---,---,-----r--,-----,.. 

t 

-- E[Y(t)) fr-B--G E[X(t)] 

Figure 9.1.5: The expected value of the variable Y(t) when the critical event is a linear 

increase (b*(s-'t+ 1)) for b=O.33, compared to the transfonned variable by 

the transfonnation B. The time 't denotes the time of the change. 
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For the situation II and transfonnation B we have to calculate the expected value for t='C 

and t>'t. 

For t='C: 

f J.lI J.lI E(x (1)]=-.-=-
B cr . .J2 f cr . .J2 (IIB) 

For t>'t: 

E[X (t)]=--. --- =0 f (J.1
1 

J.1
1

) 

B cr.J2 f f 
(lIB') 

In Figure 9.1.6 and Figure 9.1.7 we could see the result for fll=l, cr=1 and 't=5,20 for 

E[Y(t)] and the transfonnation as in the equations ITB and lID'. 
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Figure 9.1.6: The expected value of the variable Y(t) when the critical event is a sudden 

shift to the level fll = 1. The time 't denotes the time of the change. 
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Figure 9.1.7: The expected value of the transfonned variable XB(t) by the transfonnation 

B when E[Y(t)] has a sudden shift to the level Jll=1. The time 't denotes the 

time of the change. 

Now we need the results from Section 7. For example for transfonnation B we have to 

detect a sudden shift in E[X(t)] when there is a linear increase in E[Y(t)]. From Section 7 

we could see that the predicted value is much lower for the shift situation than the linear 

case. However, the correlation structure described in the next section will also influence 

the perfonnance. 
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9.2. The correlations for the statistics of the FDA recommendations 

As stated in Section 3.2 we assume that Y(t) and Y(t+ 1) are independent and normally 

distributed with expected value Il(u) and variance a 2
• 

For ZA(t) in Section 9.1 we will get the following dependence: 

1 1-1 

where/(t -1) = -LI(i). 
t-l i =1 

If all f{i) == f, that means that the sales volume is constant for all i, then the covariance 

will be zero as you can see below: 

cov(Y(t) __ 1_. f Y(i); Y(t+ 1) _!. I Y(i») = _!. a: + 1 . (t -1). a: = 0 
f t -1 i=1 1 f t i=1 1 t 1 (t -1) . t 1 

If I(i) is not constant for every i, in order to get an approximately covariance of zero we 

must have a small value for 

a
2 (1 1 J 

I/(i) I(t -1) I(t) 
i=1 

The data in Norwood and Sampson (1988) suggest that this is usually the case. 

For ZB(t) , the covariance of ZB(t) and ZB(t + 1) is: 

cov(Y(t) _ Y(t -1) . Y(t + 1) _ Y(t») = _ (}"2 

1 I' f 1 12 

The evaluations of methods such as the probability of a false alarm, the probability for a 

successful detection and the predicted value are dependent of that the correlations are 

zero. The measures of performance calculated are therefore valid only for transformation 

A. 
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10. CONCLUDING REMARKS 

The assumption of normality made in this report may not always be appropriate for post 

marketing surveillance. If the adverse reaction is a rare event, which is often the case, a 

discrete distribution would be more appropriate to use. However, the assumption of 

normality is an approximation often used and the main issue in this paper was to study the 

consequences of gradual changes. 

Gradual changes in adverse reactions is a more realistic critical event than the change to a 

constant level. These gradual changes could be of different arts. Here, I have chosen 

changes of a linear shape. 

The formulas for different measures of performance are illustrated by some examples. The 

limit for an alarm corresponds to that of the present FDA (Food and Drug Administration) 

method. The values of the linear increase (b=0.33) and the sudden shift (Jll=l) are chosen 

to give the same ARLo=20 and the same ARI!=3.8. 

The cumulative probability of a false alarm is tending to grow fast. As an example see 

Figure 7.2.1. At the decision time 4, the false alarm probability is 0.20. When the time 

lapse between every decision time is a quarter, this corresponds to one year of surveillance. 

If a more efficient and faster way to gather ADR's is developed ,say the decision time is 

every month, then the false alarm probability after a year is DAD. This means that we reach 

a rather large false alarm probability after just a few decision times. This kind of 

information is necessary for a realistic view on a surveillance system. 

The probability of successful detection (PSD) for the Shewart method is slightly higher for 

the critical event of a sudden shift to a level Jll=1 than the linear increase with b=O.33 for 

d=I, ... ,4. For d=5, ... ,14 the PSD is higher for the critical event of a linear increase with 

b=O.33 than of a sudden shift to a level Jll=1. This demonstrates differences in the power 

to detect changes which are not disclosed if only the conventional ARL measures are used. 

For d>14 the PSD is close to 1 for both cases (see Figure 7.3.1). 
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