

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, September 2010

Cloud Services Provider

By Xu Yuan

Supervisor: Rikard Lindgren

Master of Software Engineering and Management Thesis

Report No. 2010:114
ISSN: 1651-4769

 2

Acknowledgements

I would like to express my sincere gratitude to my supervisors, Dr. Rikard Lindgren in IT

University and Mr. jesper forslund in Logica for all the help, support and guidance

during my master thesis study.

I also would like to say thanks to my partner Changbin Wang, and all colleagues of

Pomodoro project team and practitioners in Logica. Without you, I cannot finish the

thesis work.

Furthermore, this is probably my final job of master study, as an international student, I

want to take this opportunity to say thank you to Sweden, Göteborg, Göteborg university

who supply high quality master education to me.

Finally, I would like to give my special thanks to my parents, my whole family and my

friends for their continuous love and support!

Göteborg, July2010

 3

Abstract

Context: Cloud computing as next generation computing paradigm has been accepted

widely with growing-up of Internet technology and success of World Wide Web, which

has the potential to transform a large part of IT industry, making software more attractive

and even change the way IT product is designed and purchased. Cloud computing is all

about services of various levels based upon Internet or Intranet including Software-as-a-

Service (SaaS), Platform-as-a-Service (PaaS) and Infrastructure-as-a-service (IaaS). The

most wonderful part of what's happening around the web and cloud computing is being

able to expose data in a very pervasive, scalable and uniform way. Enterprises around the

world can expose their data through web services loose-coupling and efficiently, in

which way we can build more powerful and interesting applications once data is liberated

from different organizations. WS-* and REpresentational State Transfer (REST) as two

dominant integration methodologies are supporting implementation of those web services,

which is being used to supply widespread cloud services .

Objective & Method: This paper introduces a design-oriented case study with objective

of evaluating new integration technology REpresentational State Transfer (REST) and

how to design and development RESTful web services on Software-as-a-Server (SaaS) in

the cloud environment based on evaluation from software architecture‘s perspective. In

addition to, the paper presents security solution for RESTful Web services as well as

some critical decisions and main concerns for implementation of successful and real

RESTful web services. Meanwhile, the paper reports on literature study about cloud

computing and theoretical comparison between two integration methodologies –

REpresentational State Transfer and WS-*.

Results: A RESTful web service will be designed and implemented to show that REST

as cloud-based integration method can be used to support cloud services. And a

qualitative comprehensive comparison will be contacted during research as well to

answer why there are more and more RESTful web services on web currently.

Conclusion: Based on study on cloud computing, web service, integration method, and

implementation of RESTful web services as well as comprehensive comparison between

two most popular integration methods REST and WS-*, we found that REST has a bunch

of advantages of many areas, but not perfect, which shows that there is no permanent

best solution of building applications, it really depends on our requirements.

Keywords: REpresentational State Transfer (REST), web services, Integration method,

OAuth, cloud computing, WS-*, Software architecture, Software architectural style.

 4

Table of Contents

Acknowledgements ... 2

Abstract ... 3

1. Introduction ... 6

2. Related works .. 8

3. Research method .. 9

3.1. Research Setting .. 9

3.2. Determine and define the research questions .. 10

3.3. Select case ... 10

3.4. Data collection and analysis .. 10

3.5. Evaluation ... 10

4. Background ... 11

4.1. Cloud Computing .. 11

4.2. Web services ... 14

4.2.1. Why we need web services? .. 14

4.2.2. What are web services? ... 14

4.3. Integration methods ... 15

4.4. CORBA versus SOAP ... 16

4.5. REpresentational State Transfer .. 17

4.6. Resource-Oriented Architecture .. 19

4.6.1. Resource Oriented Model .. 19

4.6.2. Resource-Oriented Architecture .. 20

Resource definition ... 20

Uniform Resource Identifier ... 21

The Uniform Interface ... 21

Representations ... 22

Hypermedia as the Engine of Application State ... 23

Self-Descriptive message .. 24

Addressability ... 25

Statelessness .. 25

4.7. WS-* Versus ROA .. 25

4.8. Data interchange format .. 26

4.9. Authentication & Authorization Methods ... 28

4.10. RESTful web service Frameworks .. 31

4.11. Database and data persistence ... 32

 5

5. Design ... 33

5.1. Domain model ... 34

5.2. Database design ... 34

5.3. Functional requirements .. 35

5.4. Use cases design .. 37

5.5. RESTful web services Design principle .. 38

5.6. High-level architecture design .. 39

6. Implementation.. 41

6.1. Overview of the project ... 41

6.2. Figure out data set ... 42

6.3. Resource & name the resources & expose the uniform interface 42

6.4. Design the representation accepted from and served to the client 44

6.5. Integrate this resource into existing resources, using hypermedia links and forms 48

6.6. Consider the typical course of events and error conditions ... 49

6.7. OAuth authorization protocol implementation .. 49

7. Evaluation .. 52

7.1. iPhone .. 52

7.2. Web framework ... 52

7.3. Android ... 53

8. Discussion .. 54

8.1. Granularity .. 54

8.2. Recommended architecture for RESTful web services ... 54

9. Conclusion ... 56

Reference ... 57

 6

1. Introduction
Gartner (2008) [1] says cloud computing will be as influential as E-business and the

confusion and contradiction that surround the term cloud computing also indicts the

potential to changing the status quo in the IT market. Market-research firm IDC (2008)

[2] expects IT cloud-services spending will grow from about $16 billion in 2008 to about

$42 billion by 2012. IDC (2008) [2] also predicts cloud-computing spending will account

for 25 percent of annual IT expenditure growth by 2012 and nearly a third of the growth

the following year. Even up to now, there is no consensus in the cloud computing

definition. Cloud Computing has been talked about [3], blogged about [4], written about

[5] and been featured in the title of workshops, conferences, and even magazines.

Nevertheless, confusion remains about exactly what it is and when it‘s useful, causing

Oracle‘s CEO to vent his frustration:

“The interesting thing about Cloud Computing is that we’ve redefined Cloud Computing

to include everything that we already do.... I don’t understand what we would do

differently in the light of Cloud Computing other than change the wording of some of our

ads.”

Larry Ellison, quoted in the Wall Street Journal, September 26, 2008

These remarks are echoed more mildly by Hewlett-Packard‘s Vice President of European

Software Sales:

“A lot of people are jumping on the [cloud] bandwagon, but I have not heard two people

say the same thing about it. There are multiple definitions out there of the cloud.”

Andy Isherwood, quoted in ZDnet News, December 11, 2008

Although there are still some different sounds, criticisms and natural obstacles [6] about

cloud computing many IT industry leaders such as Google, IBM, Microsoft and Amazon

have landed in this new continent to catch the trend. We can say, in many ways, cloud

computing is simply a metaphor for the internet and the increasing movement of compute

and data resources onto the Web [7].

New Web development and deployment platforms are arising based on Cloud computing

and Software-as-a-Service. These new Internet-enabled platforms had appeared enabling

open collaboration and creation. These platforms introduce a new method of delivering

software applications. Customers access the application over the Internet using industry-

standard browsers or Web Services clients [8]. Online software delivery is now

conceived and defined as Software-as-Service (SaaS). It is growing into a mainstream

option for software-based solutions and this will impact most of the enterprise IT

departments in the next three years [9]. Chou [10] declares that SaaS is the next step in

the software industry, because it fundamentally alters the economics of software.

“Something momentous is happening in the software business. Bill Gates of Microsoft

calls it “the next sea change”. Analysts call it a “tectonic shift” in the industry. Trade

publications hail it as “the next big thing”.” [11] This market will be growing in the next

years, according to Gartner; trends in SaaS business are [12]: By 2011, 25% of new

business software will be delivered as SaaS. By 2012, business process management

 7

suites (BPMSs) will be embedded in at least 40% of all new SaaS offerings. By 2012,

more than 66% of independent software vendors (ISVs) will offer some of their services

as SaaS. Also, IDC estimates customers spending on SaaS solutions to increase to $14.8

billion by 2011 [13]. After focusing on these crucial business aspects and previous

prediction, we can aware that the importance and quantity about software that will be

delivered with SaaS in Cloud computing.

Web Service is a subset of Service and exposes a set of APIs to the client that can be

accessible on the Web. [16] Traditionally, WS-* (big web services) that consists of a set

of protocols and standards such as SOAP and WSDL etc. dominates implementation of

web service on web (application layer) level. SOAP (Simple Object Access Protocol) is

defined for the interactive mode between programs. WSDL (Web Services Description

Language) document describes a Web Service‘s interfaces, data type and provides users

with a point of contact. UDDI (Universal Description Discovery and Integration) offers

users a unified and systematic way to find service providers through a centralized

registry of services. [17] But the Web Service constructed by WS-* still faces some

difficulties. That those UDDI centers maintained by IBM and Microsoft are closed is an

obvious signal. [21] Thus, web API is a development in web services where emphasis

has been moving away from WS-* based services towards Representational State

Transfer (REST) [15].

Roy Thomas Fielding (2000) [18] first introduces REpresentational State Transfer

(REST) architectural style in his PhD dissertation. REST is a coordinated set of

architectural constraints that attempts to minimize latency and network communication,

while at the same time maximizing the independence and scalability of component

implementations. [19] The first edition of REST was developed between October 1994

and August 1995, primarily as a means for communicating Web concepts while

developing the HTTP/1.0 specification and the initial HTTP/1.1 proposal. We can say

REST‘s all built around the web, thanks to web‘s success, and the web is all around us.

So REST as integration methodology gives us an alternative to construct SOA.

According the statistical figures of Programmable web [31] in May 2010 REST as

dominator integration protocol has had 72% market share.

In light of previous study, literature review and comparison, we concluded that WS-* has

natural disadvantages of some areas needed to be addressed. We therefore formulated the

following research question: REST as alternative of cloud-based integration

methodology can be used to provide cloud services using JSON as data interchange

format as well as OAuth as authorization protocol.

 8

2. Related works

Ever since Fielding (2000) coined REpresentational State Transfer 10 years ago, [18]

increasing attention has been paid to this new terminology. Fielding called this idealized

model as REST architecture style which became the foundation for the modern Web

architecture. REST architectural style came up during the period in which Field and

Internet Engineering Taskforce was defining HTTP 1.1 protocol. [19] Thus, to some

extent, REST can be seen the design principles of HTTP 1.1 protocol.

In 2007, Leonard Richardson and Sam ruby firstly and systematically introduced REST

from web services perspective of view in their book, RESTful Web Services. [20] In the

book, they introduced an architecture following the REST architecture style – Recourse

Oriented Architecture which can be used for implementing RESTful web services.

After that, more and more attention both of academic circles and industrial focuses on

REST architectural style. One of hot topics is comparison of REST and WS-*(SOAP).

Upon this, Hagen Overdick (2007) outlined the concepts of resource-oriented application.

[37]

Another mainstream is how to make dominated integration REST and WS-* work

together. Yuan Liu et al. gave us a solution that introduced how to reengineer legacy

system with RESTful web services [39] and Yu-Yen Peng et al. described a framework

to integrate SOAP services and RESTful services. [40]

Moreover, the research focuses on how to use REST as integration method. Wang Junye

et al. proposed a resource-oriented enterprise information integrated platform framework.

[41] Jian Meng et al. gave us the concepts of how to use RESTful web services to

integration distributed data among different enterprises. [38]

ACM held First International Workshop on RESTful Design in April of 2010 when I was

developing the Pomodoro RESTful web services. The content of conference gave me a

more clear idea how to implement RESTful web services. Leonard Richardson talked

hypermedia and OAuth. [42] Marc Hadley introduced how to use Jersey (JAVA RS-311)

to explore hypermedia. [43] Savas Parastatidis et al. gave the role of hypermedia in

distributed system development [44] and so on.

For industry, though there are big amount of RESTful web services running online like

mainstream social networks Twitter, Facebook, most of them have offered REST API.

However, as HTTP predates REST which does not enforce strict adherence, there are in

fact most of applications of REST today clearly violating the concepts of

Representational State Transfer according to our investigation following REST style

constraints.

According to literature review and investigation, we carry out a design-oriented case

study that evaluates how to use REST architectural style to implement web services. In

the next part of the paper, I will outline the design-oriented case study used for

evaluating REST.

 9

3. Research method

3.1. Research Setting

The design-oriented case study reported in this paper was conducted between March

2010 and June 2010. The research depends on the project Pomodoro [22] which is a

collaborative study proposed by Logica [23] cooperating with Chalmers University [25]

and Web2Aid [32]. The implementing of Pomodoro technology
TM

 [24] is chosen for

evaluating new technologies. Cloud Computing Service Provider as a sub-project that

supports different services through open APIs under cloud computing environment is

involved in the project, Pomodoro. Service Provider is the data owner of the Pomodoro

consumers including iPhone mobile application, Android mobile application and

mainstream web frameworks and its job is to publish an open API that others can use to

access and work with that data.

This project will develop the same product on different platforms and integrate with a

central service provider. As an end user you can switch between working with this

application on your computer to your phone in no time, without any data loss. The

structure of this project is descripted by the following illustration.

Figure3.1 overview of Pomodoro project

Case study research excels at bringing us to an understanding of a complex issue or

object and can extend experience or add strength to what is already known through

previous research. Case studies emphasize detailed contextual analysis of a limited

number of events or conditions and their relationships. Many well-known case study

researchers such as Robert E. Stake, Helen Simons, and Robert K. Yin have written

about case study research and suggested techniques for organizing and conducting the

research successfully. This introduction to case study research draws upon their work and

proposes five steps that should be used:

 Determine and define the research questions

 Select the cases

 Collect data in the field

 Evaluate

 Prepare the report

 10

3.2. Determine and define the research questions

The first step in case study research is to establish a firm research focus to which the

researcher can refer over the course of study of a complex phenomenon or object. The

researcher establishes the focus of the study by forming questions about the situation or

problem to be studied and determining a purpose for the study. My research question will

be based on study on cloud computing, web services, integration methodology, data

interchange format, and authentication and authorization method and the comparisons

between different integration methods. More detailed information is on background part

3.3. Select case

During the design phase of case study research, the researcher determines what

approaches to use in selecting single or multiple real-life cases to examine in depth.

Implementing Pomodoro project as mentioned above is chosen as the design case of

design-oriented case study. More specific information, see section design and

implementation.

3.4. Data collection and analysis

Concurring with research process, our data collection involved several data sources

including project meeting, pre-study, literature review, interview with practitioners, and

final seminar held by Logica. Throughout the whole project, we have a total of 8 regular

meetings with company practitioners (supervisor in company) as well as numerous

unofficial meetings with other groups of the project. Since other groups use our web

services to implements Pomodoro clients, so our cooperation and interaction are very

important. Pre-study, literature review was produced during the project process including

the study and research of a list of key technologies involved in the project such as

integration method (REST, WS-*) and so son. The goal interview with practitioner is to

locate the current problem in industrial. The aim of final seminar of the project is to

popularize the Pomodoro project for Logica. During the seminar, Logica invited relevant

customers. For us this is good opportunity to see the reflection of our project of real

industrial business.

3.5. Evaluation

The evaluation is based on integrating Pomodoro web service with different platform

including iPhone, Android, web framework and collect data and reflections which could

be improved. More detailed information will be at evaluation part.

 11

4. Background
The background is based on project meeting, pre-study, literature review and interview

with practitioners, which focus on Cloud computing, integration methodology, data-

interchange format, security solution and so on. This focus was motivated by enormous

commercial benefits of cloud computing [1, 2, 3, 12] and emergence of multiple web

services [31] based on REST and WS-* (SOAP etc.). According to study in these areas,

we have basic idea how REST and WS-* work. Traditionally, WS-* plays main role in

enterprise integration field. However, REST is coming as a complement gaining more

and more attention. Even IBM, such a proponent of WS-*, has developed new product

Project Zero using REST architectural style in 2008[33].

4.1. Cloud Computing

Cloud computing may be the hottest word in today‘s IT field. cloud computing is huge

area that almost covers every concern of modern network even entire IT field so it is hard

to say exactly what cloud is (the definition of cloud computing on Wikipedia has been

edited 350+ in 2009). Basically the cloud model is composed of five essential

characteristics, three service models. Everyone talk about it, and almost all major IT

industrial leader company said they will focus on it in the next 5 years. In fact cloud

computing conception is more about economy rather than technological revolution, it not

only is the evolution of the IT technologies but also will change the thinking mode when

we talk about the computer, the Internet and the way we use them. So what is ―cloud

computing‖? The ―cloud‖ as the metaphor of Internet exists a long time, but when it

combined with ―computing‖ the meaning gets bigger and fuzzier. The NIST published

the draft of the NIST working definition of cloud computing give the definition of cloud

computing:

―A computing capability that provides an abstraction between the computing resource

and its underlying technical architecture (e.g., servers, storage, networks), enabling

convenient, on-demand network access to a shared pool of configurable computing

resources that can be rapidly provisioned and released with minimal management effort

or service provider interaction.‖

The definition may be still confusing, but it gives the most important characteristics of it.

1. On-demand self-services: customers can provision computing capabilities, such as

storage, server time, as needed automatically without requiring human interaction

with each service‘s provider.

2. Broad Network access: capabilities are available over the network and accessed

through standard mechanisms that promotes use by heterogeneous thin or thick

client platform, such as mobile phones, laptops, and PDAs

3. Resource pooling: The provider‘s computing resources are pooled to serve

multiple consumers using a multi-tenant model, with different physical and

virtual resources dynamically assigned and reassigned according to consumer

demand.

 12

4. Rapid elasticity: Capabilities can be rapidly and elastically provisioned, in some

cases automatically, to quickly scale out and rapidly released to quickly scale in.

To the consumers, the capabilities available for provisioning often appear to be

unlimited and can be purchased in any quantity at any time.

5. Measured Service: Cloud systems automatically control and optimize resource

use by leveraging a metering capability at some level of abstraction appropriate to

the type of service

When deploy the cloud there are four models exist:

Figure 4-1 Four models of cloud computing

1. Private cloud

This cloud infrastructure is owned by the sole organization and it can be managed

by the organization or a third party but only the organization members can access

the services.

2. Community cloud

This cloud infrastructure can be shared by several related organizations. It also

can be managed by these organizations or a third party and may exist on premise

or off premise.

3. Public cloud

This cloud infrastructure is made available to the public to access the services

provided by the cloud, the cloud may be owned by anyone who selling the

services.

4. Hybrid cloud

The cloud infrastructure is a composition of two or more clouds which may be

included public cloud and private cloud. All the clouds in the infrastructure are

bounded together to provide the service to general public and the organization

internal use.

 13

When people embrace the ―cloud computing‖, their concerns are all about the cloud will

provide what benefits to them and what kind of services can be provided by it.

Essentially there are 10 service models:

1. Cloud Software as a Service(SaaS)

The capability provided to the consumer is to use the provider‘s applications

running on a cloud infrastructure. The applications are accessible from various

client devices through a thin client interface such as a web browser (e.g., web-

based email). The consumer does not manage or control the underlying cloud

infrastructure including network, servers, operating systems, storage, or even

individual application capabilities, with the possible exception of limited user-

specific application configuration settings.

2. Cloud Platform as a Service(PaaS)

The capability provided to the consumer is to deploy onto the cloud infrastructure

consumer-created or acquired applications created using programming languages

and tools supported by the provider. The consumer does not manage or control

the underlying cloud infrastructure including network, servers, operating systems,

or storage, but has control over the deployed applications and possibly

application hosting environment configurations.

3. Cloud Infrastructure as a Service(IaaS)

The capability provided to the consumer is to provision processing, storage,

networks, and other fundamental computing resources where the consumer is able

to deploy and run arbitrary software, which can include operating systems and

applications. The consumer does not manage or control the underlying cloud

infrastructure but has control over operating systems; storage, deployed

applications, and possibly limited control of select networking components (e.g.,

host firewalls).

The above three are the essential models of the cloud computing but others is also

emerged during the cloud computing grows.

4. Storage as a service

The capability provided to the consumer is use the storage from the remote

servers as from the local storage. Some of this model provide the database storage

others provide the storage used to store and retrieve any files. This model is used

in almost every cloud service.

5. Information as a service

The capability provided to the consumer is the consumer can retrieve the

information (traffic state, stock price, weather and so on) through public API.

 14

6. Process as a service

The capability provided to the consumer is the business process which can easily

compose several different systems on your demand through the manage tools,

you can use it as a system and change it agilely.

7. Integration as a service

The capability provided to the consumer is delivery the Enterprise application

integration technology as the service and can be accessed anytime and anywhere.

8. Security as a service

The capability provided to the consumer is delivery the security system through

the Internet.

9. Management as a service

The capability provided to the consumer is delivery the hardware and network

states of the system to consumer and the consumer can use this information to

manage their remote system.

10. Testing as a service

The capability provided to the consumer is delivery the service can be used to test

their remote application or local application.

These models (or we can call it cloud service patterns) can be combined to provide a

more sophisticated service.

The cloud computing is still in the early stage, these patterns is not the complete list, it

could be change when the industrial find new ways to put their services in the cloud and

find a new model to change the legacy system to cloud service.

4.2. Web services

4.2.1. Why we need web services?

Our group in the Pomodoro project is response to provide the web service as a cloud. Our

responsibility is to offer APIs that enable developers to exploit functionality over the

Internet, rather than delivering full-blown applications. So this type of cloud computing

combine the software as a service pattern, storage as a service pattern and platform as a

service which provide application through web and mobile platform, the user can put

there information on the remote server which can be access from anywhere and anytime.

It also provides the public APIs make other developer to use it the agile way.

4.2.2. What are web services?

Web services are typically application programming interfaces (API) or web APIs that

are accessed via Hypertext Transfer Protocol (HTTP) and executed on a remote system

 15

hosting the requested services. Web services tend to fall into one of two camps: Big Web

Services (WS-*s) and RESTful Web Services. [Wikipedia]

Based on the definition of web service, we got that web service is protocol which allow

programs written in different language on different platform to communicate with each

other. Roy fielding said, ―The modern Web architecture emphasizes scalability of

component interactions, generality of interfaces, independent deployment of components,

and intermediary components to reduce interaction latency, enforce security, and

encapsulate legacy systems.‖, according to his idea, we should focus on how the different

components of different services interact, how efficient add new component to the

system and how to improve the system‘s performance. So the problems fall into the

integration.

Generally there are three common style of to achieve the goal, one is remote procedure

calls (RPC), and the second is service oriented architecture (SOA), the last is

representational state transfer (REST).

4.3. Integration methods

Web service is designed for the communication between different organizations or

between different parts of an organization, such as Enterprise Application Integration

(EAI) and Cross-Organization Integration, EAI is used for integrate legacy software

systems within an organization in order to allow the systems to have a more complete

and consistent world-view. B2B is used for allow partners and customers to interact with

internal systems in a programmatic fashion. So how to solve these problems is the key

for the modern enterprise use.

Basically, there are three strategies doing these integrations [roots of soap vs rest]:

First is customizing the new protocol, this strategy is always based on top of exist

transport level protocol such as TCP, UDP or based on the application level protocol

such as HTTP, SMTP. When the new protocol is based on the application level protocol,

designer usually uses these protocols just for transport the message ignoring other

functionality. Then the developers will study the problem domain and design a solution

for the particular problem. Because developers will not spend the time and money to

develop the common infrastructure, it is difficult to be reused and communicate with

other organizations. Also it is hard to design and maintain even by the experts. But there

is strength for this kind of approach that it does not need to wait for any other

standardization project.

Second is building the protocol framework. This approach is based on the first strategy.

Because different problem domain will need the different integration method, it makes

sense to establish a common framework; Pre-XML technologies like COBAR and SOAP

use this method. The advantages of this strategy are it allows the developers of the

framework community design the new protocol more intellect and talent and it also make

the common infrastructure become true, it can provide the toolkit for developers who use

 16

this protocol. The obstacle of this approach is it must waiting for the standard. In general

it will need a long time. This thesis will discuss this strategy in detail later.

Third is the horizontal protocols approach, instead developing the new domain specific

protocol we can use the general purpose protocol to transfer domain specific information.

So we not only use the general purpose protocol as transport method, but also use its all

build in functions. Hypertext Transfer Protocol (HTTP) can be a good example. The

Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed,

collaborative, hypermedia information systems. It is a generic, stateless, protocol which

can be used for many tasks beyond its use for hypertext, such as name servers and

distributed object management systems, through extension of its request methods, error

codes and headers. A feature of HTTP is the typing and negotiation of data

representation, allowing systems to be built independently of the data being transferred.

HTTP allows an open-ended set of methods (―GET‖,‖PUT‖,‖POST‖,‖DELETE‖) and

headers that indicate the purpose of a request. It builds on the discipline of reference

provided by the Uniform Resource Identifier (URI), as a location (URL) or name (URN),

for indicating the resource to which a method is to be applied. Messages are passed in a

format similar to that used by Internet mail as defined by the Multipurpose Internet Mail

Extensions (MIME). [RFC2616]. As we can see from the HTTP protocol, this strategy‘s

most important benefits is interoperability which is not only between the applications but

also between the resources. It also have some other benefits that cannot be ignored, I will

discuss it in detail when introduce REST (representational state transfer) which is the

best example of this strategy.

After analyzing these strategies of integration, the first custom new protocol can be used

in the organization inside but web service‘s goal is for the global usage, so nowadays less

and less organizations use this strategy. Since the advantages of the second strategy in

the integration between organizations, it dominates the web service development for a

long time. The common example is CORBA and SOAP. Because recently more and

more developers and organizations perceived the limitations of CORBA and SOAP, the

third strategy gained a rapid growth. This thesis will make a detailed discussion of the

last two strategies of integration through different point of view.

4.4. CORBA versus SOAP

As I mentioned above, lots of organization want to build a framework for the integration

problem, the most famous and widely used framework is CORBA and SOAP. In fact we

should compare the CORBA with web services instead of SOAP, because SOAP is kind

of RPC mechanism which is at the same level of CORBA. Our project is focus on the

web services‘ integration method, so here I will give a short description between these

two frameworks.

 The next table shows the corresponding parts of web services and CORBA [web

services/SOAP and CORBA]:

Item Web services/SOAP CORBA

 17

Protocol SOAP, HTTP, XML

Schema, JSON

IIOP, GIOP

Location identifiers URLs IORs, URLs

Interface specification WSDL IDL

Naming, directory UDDI Naming service, Interface

Repository, Trader service

Table4-1 SOAP vs. CORBA

 Naming Issues:

In CORBA, people use the naming service, interface repository and trader service to

publish the services and discover each other and define how to interact over the Internet.

The web services/SOAP uses the UDDI (Universal Description Discovery and

Integration) to do the same job. The difference is in the CORBA each server will manage

a graph of names with an initial naming context and is initially independent of any other

servers, but the UDDI provide a globe services. Although CORBA can federate different

organizations‘ naming services, it is not automatic.

 Reference issues:

CORBA uses IORs as its object reference. It is used as an Internet-wide object reference

as the URL, but the IOR is understood only by the interface repository that stores that

definition of the corresponding type, which will limit the globe scalability.

 Ease to use

CORBA platform is large and complex software, it need installation and careful support.

Web services usually use HTTP and XML which already install on almost every

operating system and it is well-understood by developer.

CORBA was designed for use within a single organization or between a small numbers

of collaboration organizations. It is hard to use for public interoperable environment, our

project is for provide a software for public using. CORBA is not the suitable integration

solution for our project.

4.5. REpresentational State Transfer

The third approach is the horizontal protocols. REST (representational state transfer) is

the outstanding example which is first introduced by Roy Fielding in 2000. Here I will

elaborate what REST is, how it works and its benefits compare with the SOAP.

REST was designed based on the HTTP/1.0 and developed concurrently with the

HTTP/1.1. It is introduced by Fielding who is also the designer of HTTP/1.1. The best

well known example of REST is the WWW (World Wide Web) which is a system of

interlinked hypertext documents accessed via the Internet and it also the most famous

and successful Internet technology in the world.

 18

REST is a hybrid style derived from several of the network-based architectural style and

combined with additional constraints that define a uniform connector interface. [Fielding

thesis]

4-2 derivation of REST

Here I will descript the each constraints and network-based architectural style based on

these constraints.

 Client-Server

Because separating the user interface from the data storage we can improve the

portability of the user interface across multiple platforms and scalability of the server

components which lead to the client- server architectural style.

 Stateless

The communication between server and client must be stateless in nature, which lead to

the client-stateless-server (CSS) style. This constraint make each request of client should

have all information needed by the server which means the session state is kept by client

entirely. The advantage is it improves the visibility, reliability, and scalability. In

opposite, it may reduce the network performance because it need send repetitive

information. But in the current Internet environment the bandwidth is good enough to

handle this obstacle.

 Cache

The advantages of this constraint are they may partially or completely eliminate some

interactions, improving efficiency, scalability and user-perceived performance. To

achieve this response should implicitly or explicitly label cacheable or non-cacheable

 Uniform Interface

Uniform interface means using the general interface between components. The

advantages are, first, it makes intermediaries know more about the interactions between

components which makes securing the protocol possible and extending/enhancing

anticipated protocol semantics possible. Second, it improves scalability because

 19

interfaces stay static. Third, a small and fixed set of semantics lowers the cost of

coordination between uncoordinated actors. Fourth, it improves the simplicity and

visibility of interaction. There are four interface constraints which are used to obtain a

uniform interface: identification of resources; manipulation of resources through

representations; self-descriptive message; and, hypermedia as the engine of application

state.

 Layered system

Layered system constraint is used popularly. It will further improve behavior for

Internet-scale requirement. By separating the system into hierarchical layers, it is easy to

encapsulate legacy services and move simplifying components to intermediary. Also

intermediary can be used to improve system scalability by enabling load balancing of

services across multiple networks and processors.

 Code-On-Demand

REST allows client functionality to be extended by downloading and executing code in

the form of applets or scripts. It will simplify clients‘ implementation but will deduce the

visibility, so it is the optional constraint.

These constraints make REST as the common integration architecture. It not only used in

the web service but also can be used in other distributed system. But this thesis will focus

on how it works in web services environment. Because it is derived concurrently with

HTTP1.1, HTTP1.1 does very well on the criteria of REST. Next I will introduce the

resource-oriented architecture which follows these constraints, how it works, how to

implement it.

4.6. Resource-Oriented Architecture

4.6.1. Resource Oriented Model

The Resource Oriented Model focuses on those aspects of the architecture that relate

to resources. Resources are a fundamental concept that underpins much of the Web and

much of Web services; for example, a Web service is a particular kind of resource that is

important to this architecture.

The ROM focuses on the key features of resources that are relevant to the concept of

resource, independent of the role the resource has in the context of Web services. Thus

we focus on issues such as the ownership of resources, policies associated with resources

and so on. Then, by virtue of the fact that Web services are resources, these properties

are inherited by Web services. [W3C Web Services Architecture]

http://www.w3.org/TR/ws-arch/#resource

 20

Figure 4-3 Resource Oriented Model

4.6.2. Resource-Oriented Architecture

Due to the description of resource-oriented model, we know it is basically coupled with

the web. REST is a general design criterion of architecture for integration. It can be used

based on many platforms. But the most suitable one is Web because of the REST‘s

history. Resource-oriented architecture is a specific set of guidelines of an

implementation of the REST architecture based on the web platform.

Resource definition

The resource is anything that your system wants to expose, if your system ―wants to

create a hypertext link to it, make or refute assertions about it, retrieve or cache a

representation of it, include all or part of it by reference into another representation,

annotate it, or perform other operations on it.‖[Architecture of the World Wide Web,

Volume One] In common web service usually exposes the following kinds of resources:

1. Predefined one-off resources

This kind of resource usually is used as top-level directories such as the web site‘s home

page which contains all the resources provided by this service. It is important for REST‘s

constraint Uniform interface which contains one of four interfaces constraints called

hypermedia as the engine of application state. This concept will introduce it later in this

chapter.

2. Individual items of data

Any kind of object can be a resource to expose.

3. The result of algorithms

 21

This kind of resource could be the output of a specific algorithm or could include

collection resources based on some criteria which usually the results of queries.

Sometime this kind of resources‘ number could be infinite.

Uniform Resource Identifier

The uniform resource identifier has been successfully deployed as means to share

information since the creation of the web. There are lots of substantial benefits using

URIs which are linking, bookmarking, caching, and indexing by search engines. Due to

the advantage of it, it could be a perfect solution to identify a resource. Each resource of

a service must have at least one distinct URI address. For example:

Resources URIs

All activities of a user http://demo.pomodoroproject.net/Pomodoro/api/{userID}/activities/

All project of a user http://demo.pomodoroproject.net/Pomodoro/api/{user}/projects/

Table 4-2 example of Uniform Resource Identifier

The Uniform Interface

Although each resource has its own identifier, how to use it become a question. As the

description in HTTP1.1 specification, every resource supports the common interface or

called common method: GET, POST, PUT, DELETE, HEAD, and OPTION.

These methods are used to communicate between client and server, the client could use

these methods to retrieve and manipulate the resource on the server through Internet, the

implementer of the service should be careful that the client might take unexpected action

on server. In particular, the convention has been established that the GET and HEAD

methods SHOULD NOT have the significance of taking an action other than retrieval.

These methods ought to be considered "safe". This allows user agents to represent other

methods, such as POST, PUT and DELETE, in a special way, so that the user is made

aware of the fact that a possibly unsafe action is being requested. [RFC2616 safe method]

Some methods also can have the property of idempotence which can be called

idempotent method. Idempotence method means the side-effects of N > 0 identical

requests is the same as for a single request. The method GET, HEAD, PUT, DELETE

and OPTIONS are idempotence method, which means it can resend several times but

without side effect.

Safety and idempotence is a very important properties in these methods, because it let a

client could make reliable HTTP requests over an unreliable network.

Next I will give a detail description of each method and how to use it in the resource-

oriented architecture.

HTTP GET method is used to retrieve the resource presentation identified by the URI,

the most useful situation in this method is it support the ―conditional GET‖ if the request

message includes an If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match,

 22

or If-Range header field. It is the crucial technic for the service can use the cache to

improve the performance.

HTTP PUT method is used to modify the resource identified by the URI, and the request

usually contain the entity body descript the new information about this specific resource.

The state code in response can be used to check the operation‘s state.

HTTP DELETE method is used to delete the resource identified by the URI. As the PUT

method, It can also use the state code to decide whether delete operation success or not.

HTTP POST is the most complicated method because it can be used in many situations,

but the most common case is creates a new resource under the given URI. As described

in RFC2616 about this method: POST is designed to allow a uniform method to cover

the following functions:

 Annotation of existing resources;

 Posting a message to a bulletin board, newsgroup, mailing list, or similar group of

articles;

 Providing a block of data, such as the result of submitting a form, to a data-

handling process;

 Extending a database through an append operation.

As a result, the POST method‘s actual function is determined by the server and

dependent on the request-URI.

HTTP HEAD is used for retrieve a metadata-only representation and HTTP OPTIONS is

used to check which HTTP methods a particular resource supports.

Representations

A representation is data that encodes information about resource state. [Architecture of

the World Wide Web, Volume One]Representations of a resource may be sent or

received using interaction protocols. These protocols in turn determine the form in which

representations are conveyed on the Web. HTTP, for example, provides for transmission

of representations as octet streams typed using Internet media types.

After the system construct the appreciated URI for each resource, there is a problem arise.

The resource is not the data. The resource is determined by the system designer, so it

cannot send directly. The system only could send a series of bytes about the current state

of a resource, in a specific file format, in a specific language, which is called the

representation.

There are lots of data format can be used to represent the resource, the most used are

XML, JSON and their variant. XML is document oriented and JSON is data oriented,

they can use in different situation depend on your system.

 23

Hypermedia as the Engine of Application State

In order to develop a system that works in harmony with the Web, one needs to carefully

model distributed application state, business processes that affect that state, distributed

data structures which hold it, and protocols that drive interactions between the different

parts of the system. HATEOAS (hypermedia as the engine of application state) is a

design pattern that can greatly help building software to meet these demands.

HATEOAS (hypermedia as the engine of application state) refers to the use of hyperlinks

in resource representations as a way of navigating the state machine of an application.

An application uses a set of interactions as an application protocol to achieve its goal.

The application state is a snapshot of the execution of such an application protocol. It

defines the interaction rules in a system. So the application state is also the snapshot of

the system.

According to the application protocol each resource representation contains links which

is transferred between the participants. Each link in the representation advertises one

resource of the system, for example, when the client submits the initial request to the

system:

Request:

GET /Pomodoro/api/1 HTTP/1.1

Response:

 24

We can find that the system‘s all father resource is contained by this initial request

response. The client could choose the links and interact with server with this specific

URI in order to transition to next application state.

Figure 4-4 work flow of HATEOAS

Self-Descriptive message

Self-descriptive messages describe how we view and interact with a resource. First, the

message should be able to easily examine a representation of a resource to understand the

structure and content, and use this information to intelligently manipulate the resource.

 25

Second, the message should also contain the extra information about the resource such as

cache ability, attribution information. For example:

GET /api/1 HTTP/1.1

User-Agent: SomeClient

Host: pomodoroproject.net

Accept: json/application

If-None-Match: "234902340932423432"

If we follow the RFC2616 to construct the message, it will be the self-descriptive

message and the intermediate will know how to handle it.

Addressability

An application‘s addressability is a very important feature. In ROA, resources expose

themselves with the help of the URIs. According to this, client can easily overlook and

work with any piece of resource they want.

Statelessness

The second important feature of ROA is statelessness which means every HTTP request

happens in complete isolation. [restful web service] each request possess all of the

necessary information for server. So clients keep track of any state information. This

simplifies the server needs, which can result in easier scalability and performance

enhancements. With statelessness, the server never has to worry about the client; it is

much easier to distribute an application across load-balanced servers; it is easy to cache.

For example, with statelessness, it isolates the client against changes on the server as it is

not dependent on talking to the same server in two consecutive requests. A client could

receive a document containing links from the server, and while it does some processing,

the server could be shut down, its hard disk could be ripped out and be replaced, the

software could be updated and restarted — and if the client follows one of the links it has

received from the server, it won‘t notice.

The ROA‘s benefit is almost inherited from HTTP, it is successful used all over the

world, why not use this great and mature platform to do the integration of applications.

4.7. WS-* Versus ROA

In general, ROA‘s most important benefit is it is simpler than WS-* and other integration

methods. It used the well-known technology as the foundation. It is easily to understand

and just need a short learning curve which also very important in the enterprise

environment. Here I will give a roughly comparison based on the non-functional

requirement.

 Network performance: WS-*: No explicit focus on coarse grained (document

oriented) messages, accidental design towards fine grained or control messages

can degrade network performance. REST: Coarse-grained, document oriented

messages are encouraged. And SOAP using the XML wrapper around every

request and response. But in REST, every request needs to send all necessary

information which will reduce the performance.

 26

 Network Efficiency: WS-*: The lack of any visibility completely removes the

ability to use caching. Responses should always be marked as non-cacheable to

avoid that existing HTTP caches negatively impact the application. REST:

Visibility enables caching which improves network efficiency.

 Visibility: WS-*: No visibility because meaning of message depends on

understanding action. The effect on trust will usually be that the filtering party

blocks all requests to the single service endpoint. REST: Messages are self-

describing and can be understood by intermediaries. This is the foundation for

caching and trust (firewall admins can understand the messages and allow exactly

the traffic they want to let through).

 Evolvability: WS-*: Tight coupling of client and server prohibits independent

evolution. REST: Coupling between client and server is removed, server owners

need not know about client particularities to evolve the servers without breaking

clients.

 Simplicity: REST: Maximized by uniformity of connectors and identifiers. The

web service can easily be accessed by the URI which is already well know and

widely used. The developer can easily create and modify the URI to access the

different web resources. The response also is simple. For example the POX,

JSON, the developer can read the response and phase it.

 Scalability: WS-*: Server statelessness not guaranteed by a constraint. Scalability

depends on application design. REST: Message self-descriptiveness constraint

mandates message statelessness which in turn mandates the stateless server

constraint. The latter guarantees scalability.

Security: WS-*: WS-Reliability and WS- Security almost guaranteed the security, but

lacking of visibility make it difficult to set up the peripheral firewall. REST: REST calls

could go over HTTPS, the administrator (or firewall) can discern the intent of each

message by analyzing the HTTP command used in the request.

4.8. Data interchange format

The choice of an adequate data interchange format can have significant consequences on

data transmission rates and performance. So it is a key architectural decision following

integration method. Naturally, SOAP only uses XML as its data interchange format and

REST can use numerous MIME (Internet media type) types such as JSON. JSON and

XML are most popular interchange data formats being used today. Following that, our

research focuses on JSON and XML.

The Extensible Markup Language (XML) [45] is a subset of the Standard Generalized

Markup Language (SGML) [46] and evolved as a result of the complexity of SGML. The

intent of an XML document is self-evident and embedded in its structure. The

fundamental design considerations of XML include simplicity and human readability.

Amongst the design goals of XML, the W3C specifies that “XML shall be

straightforwardly usable over the Internet” and “XML documents should be human-

legible and reasonably clear.” [45]

 27

The primary uses for XML are Remote Procedure Calls (RPC) [47] and object

serialization for transfer of data between applications. XML is a language used for

creating user-defined markups to documents and encoding schemes. XML does not have

predefined tag sets and each valid tag is defined by either a user or through another

automated scheme. Vast numbers of tutorials and user forums provide wide support for

XML and have helped create a broad user base. XML is a user-defined hierarchical data

format. An example of an object encoded in XML is provided following

<address>

 <country>Sweden</country>

 <city>Gothenburg</city>

 <street>Uppstigen</street>

</address>

JSON is designed to be a data exchange language which is human readable and easy for

computers to parse and use. JSON is directly supported inside JavaScript and is best

suited for JavaScript applications; thus providing significant performance gains over

XML, which requires extra libraries to retrieve data from Document Object Model

(DOM) objects. JSON is estimated to parse up to one hundred times faster than XML [48]

in modern browsers, but despite its claims of noteworthy performance, arguments against

JSON include lack of namespace support, lack of input validation and extensibility

drawbacks. The code following describes an example where JSON is used to encode an

address object.

{

 address : {

 ―country‖: ―Sweden‖,

 ―city‖ : ―Gothenburg‖,

 ―street‖ : ―Uppstigen‖

 }

}

In light of the research of comparison the differences of two current data interchange

formats (JSON and XML) of Nurzhan Nurseitov et al. [49], the result indicates that

JSON is faster and uses fewer resources than its XML counterpart as showed following:

 28

Figure 4-5 Performance comparison between XML and JSON

Overall, JSON is data-structure-based data interchange format and XML is document-

based. According to the Pomodoro project requirements - the structure of data set is not

complicated, plus JSON has a great performance advantage, finally we chose JSON as

data interchange format.

4.9. Authentication & Authorization Methods

Security solution is one of main concerns of the project as well. Security is an absolute

need in today‘s software applications. Since the trend is to use web-based software,

thanks to cloud computing, new security issues arise. Software does not run anymore in

a small and manageable environment but rather in an environment with many

uncertainties concerning the users, the participating parties and systems. Thus, the

application itself must address security and provide adequate mechanisms.

Figure 4-6 Level of security mechanisms [50]

As showed in figure 4-6, low-level security addresses the secure transmission of data

through an untrusted networking, using cryptography like digital signatures and

communication security mechanisms like SSL/TLS. At high level, the security is

intended to protect the application itself by defining a security model. R. Sandhu et al.

(1996) presented the model that comprises several mechanisms to enforce the desired

security policy

 Authentication: establishes the identity of one party to another. Thus,

authentication needs to prove the identity of a certain user to the system.

 Access Control: determines whether a user (subject) is allowed to access an object

or not. This decision is based on the authorization of the system wide security

policy.

 Auditing: gathers data about activity in the system and analyzes it to discover

security violations and diagnose their cause.

Our research concentrates on the how to provide authorization solution in a cloud-based

3-leggged web services environment. And for authentication, since the data of the project

is all private that makes solution for authentication relatively simple. So we decide to

implement identity management by ourselves.

 29

Traditional authorization method (2-legged) is not suited for the project. With the

increasing use of distributed web services and cloud computing, third-party applications

(consumers) require access to server (services provider) -hosted resources (3-legged).

These resources are usually protected and require authentication using the resource

owner's credentials (typically a username and password). In the traditional client-server

authentication model, a client accessing a protected resource on a server presents the

resource owner's credentials in order to authenticate and gain access. For 3-legged web

application, Resource owners (user) should not be required to share their credentials

when granting third-party applications (consumers) access to their protected resources

hosted by servers (service providers). They should also have the ability to restrict access

to a limited subset of the resources they control, to limit access duration, or to limit

access to the methods supported by these resources. Following figures show the

differences between these two.

Figure 4-7 traditional web application

Figure 4-8 3-legged web application

For handling 3-legged web application authorization, actually there are several choices

including OAuth, AuthSub(Google), OpenAuth(AOL). According our study, OAuth has

been widely adopted by industrial. Google, Facebook and Twitter have applied OAuth as

their basic authorization method.

OAuth began in November 2006, at the 73rd Internet Engineering Task Force (IETF)

meeting in Minneapolis in November of 2008, an OAuth BOF was held to discuss

bringing the protocol into the IETF for further standardization work. [52] On 2009-04-23

a security flaw in the 1.0 protocol was announced. It affects the OAuth authorization

flow (also known as ‗3-legged OAuth‘) in OAuth Core 1.0 Section 6.[53] So our

implementation of OAuth authorization protocol follows OAuth 2.0 version whose

specification is being developed within the IETF OAuth WG and is expected to be

finalized by the end of 2010.[52]

OAuth provides a method for making authenticated HTTP requests using a token – an

identifier used to denote an access grant with specific scope, duration, and other

 30

attributes. Tokens are issued to third-party clients by an authorization server with the

approval of the resource owner. OAuth defines multiple flows for obtaining a token to

support a wide range of client types and user experience. [54] In other words, The OAuth

protocol enables a website or application (known as a service consumer) to access

protected resources from a web service (known as a service provider) through an API.

The API does not require users to disclose their service provider credentials to consumers.

For example, a web user (resource owner) can grant a printing service (client) access to

his/her protected photos stored at a photo sharing service (resource server), without

sharing her username and password with the printing service. Instead, he/she

authenticates directly with the photo sharing service (authorization server) which issues

the printing service delegation-specific credentials (token). [54] Following figure shows

how OAuth works with 3-legged web application on high level:

Figure 4-9 OAuth works with 3-legged web application

As figure 4-10 showed, OAuth protocol specifies following steps:

Figure 4-10 OAuth work flow [53]

 31

According to reported study above, we, Pomodoro service provider, chose OAuth to be

the protocol to deal with 3-legged web application authorization issues.

4.10. RESTful web service Frameworks

Unlike WS-*, REST is not a mature industry standard, so we have few frameworks that

can support REST development. During our evaluation, we mainly focused on three

frameworks including:

 Restlet [55]: Restlet is a lightweight, comprehensive, open source REST

framework for the Java platform. Restlet is suitable for both server and client

Web applications. It supports major Internet transport, data format, and service

description standards like HTTP and HTTPS, SMTP, XML, JSON, Atom, and

WADL. A GWT port is also available. The Restlet framework is composed of

two main parts. First, there is the "Restlet API", a neutral API supporting the

concepts of REST and facilitating the handling of calls for both client-side and

server-side applications. This API must be supported by a Restlet implementation

before it can effectively be used. Multiple implementations could be provided

(open source projects or commercial products).

 RESTEasy [56]: RESTEasy is a JBoss project that provides various frameworks

to help you build RESTful Web Services and RESTful Java applications. It is a

fully certified and portable implementation of the JAX-RS specification. JAX-RS

is a new JCP specification that provides a Java API for RESTful Web Services

over the HTTP protocol.

 Jersey [57]: Project Jersey is an open source community that is building the

production quality reference implementation of JSR-311: JAX-RS - Java API for

RESTful Web Services. Jersey implements support for the annotations defined in

JSR-311, making it easy for developers to build RESTful web services with Java

and the Java JVM. Besides implementing the JSR-311 API, Jersey provides an

additional API not specified by JSR-311 so that developers can extend this JSR to

suit their specific needs.

During the investigation, we separately implemented simple cases using 4 standard

HTTP methods (GET, POST, PUT, and DELECT) to manipulate data presentation for

the three frameworks mentioned above. We found that they all have advantages and

disadvantages such as RESTEasy have a good document support but don‘t have support

for OAuth, and Restlet source code is easy to study and understand but it is supported by

small community (few people), and there is almost no update for long time. Finally we

chose Jersey including following considerations:

 Implementation of JSR-311 (JAX-RS: Java API for RESTful Web Services)

 Supported by good community (Java community)

 Open source

 Good documentation

 32

 Good support for OAuth authorization protocol

4.11. Database and data persistence

In the project, we chose MySQL [57] database to store the application data. The MySQL

database has become the world's most popular open source database because of its

consistent fast performance, high reliability and ease of use. It's used by industry leaders

such as Yahoo!, Alcatel-Lucent, Google, Nokia, YouTube, and Zappos.com. [57]

Not only is MySQL the world's most popular open source database, it's also become the

database of choice for a new generation of applications built on the LAMP stack (Linux,

Apache, MySQL, PHP / Perl / Python.) MySQL runs on more than 20 platforms

including Linux, Windows, Mac OS, Solaris, HP-UX, IBM AIX, giving you the kind of

flexibility that puts you in control.

For data persistence of the application, we chose Hibernate [58] of JBoss Community.

Hibernate is concerned with helping your application to achieve persistence. Hibernate

offers us following brilliant features:

 Natural Programming Model: Hibernate lets you develop persistent classes

following natural Object-oriented idioms including inheritance, polymorphism,

association, composition, and the Java collections framework.

 Transparent Persistence: Hibernate requires no interfaces or base classes for

persistent classes and enables any class or data structure to be persistent.

Furthermore, Hibernate enables faster build procedures since it does not introduce

build-time source or byte code generation or processing.

 High Performance: Hibernate supports lazy initialization, many fetching

strategies, and optimistic locking with automatic versioning and time stamping.

Hibernate requires no special database tables or fields and generates much of the

SQL at system initialization time instead of runtime. Hibernate consistently offers

superior performance over straight JDBC coding.

 Reliability and Scalability: Hibernate is well known for its excellent stability and

quality, proven by the acceptance and use by tens of thousands of Java developers.

Hibernate was designed to work in an application server cluster and deliver a

highly scalable architecture. Hibernate scales well in any environment: Use it to

drive your in-house Intranet that serves hundreds of users or for mission-critical

applications that serve hundreds of thousands.

 Extensibility: Hibernate is highly customizable and extensible.

 Comprehensive Query Facilities: Including support for Hibernate Query

Language (HQL), Java Persistence Query Language (JPAQL), Criteria queries,

and "native SQL" queries; all of which can be scrolled and paginated to suit your

exact performance needs.

 33

5. Design
According to the research question prescribed in the introduction section, we then set out

to develop a Pomodoro web services based on REpresentational state transfer (REST)

architectural style. It uses REST as integration method instead of using WS-* to integrate

with different platform including web platforms, iPhone application, Android application

and uses Pomodoro technique as prototype according to the requirement of Logica.

Before detailed introduction of project I would like to describe the prototype Pomodoro

Technique™: The Pomodoro Technique™ is a way to get the most out of time

management. Turn time into a valuable ally to accomplish what we want to do and chart

continuous improvement in the way we do it.

This Pomodoro technique is used as a reference product for testing new languages,

technologies and frameworks. By implementing the Pomodoro Tool a reference

implementation of the current language, technology or framework will be produced that

can be used for comparing the development projects effort compared to other

implementations of the same product. The features included in the product are selected to

explore a wide range of commonly needed functionality for both desktop and mobile

platforms. [59]

Francesco Cirillo created the Pomodoro Technique™ in 1992. It is now practiced by

professional teams and individuals around the world.

The basic unit of work in the Pomodoro Technique™ can be split in five simple steps:

 1. Choose a task to be accomplished

 2. Set the Pomodoro to 25 minutes (the Pomodoro is the timer)

 3. Work on the task until the Pomodoro rings, then put a check on your sheet of

paper

 4. Take a short break (5 minutes is OK)

 5. Every 4 Pomodoros take a longer break

More about the Pomodoro Technique can be found at the web site:

http://www.pomodorotechnique.com/

In light of Pomodoro Technique™, following section we will introduce the domain

model and functional requirements which have been fully implemented in Pomodoro

web services:

http://www.pomodorotechnique.com/

 34

5.1. Domain model

5-1 Pomodoro domain model

 Account: The account object represents a user and the users‘ information.

 Project: A project act as a container for activities, each project contains a set of

activities. Project is similar to a workspace or group where several users can share

activities.

 Activity: The activities that are selected when executing a Pomodoro.

 TypeOfActivity: User defined types for activities.

 Pomodoro: The timebox representation that are connected to a user and one or

several activities.

 Interruption: Interruptions, internal or external, that occurs during a Pomodoro.

 Language: User selected language for the interface.

5.2. Database design

Our database design was following domain model. Each object and each relationship of

objects are presented in a relational database. Following is Entity-Relationship diagram:

 35

Figure 5-2 Pomodoro project E-R diagram

As you have noticed in the E-R diagram, besides the objects of domain model, there are

two additional entities called oauth_consumer and token, these two is specially for

implementing OAuth. Since RESTful web service inherits the stateless constraint of

REST architectural style, we need to record authorization information in the database for

further use instead of storing in session in which way traditional web application dose.

5.3. Functional requirements

Execute a Pomodoro [60]

 1) Define Activity for the current Pomodoro

 2) Start the Pomodoro timer, set to default 25 minutes

 3) Alert user when Pomodoro timer reaches 0

 4) Stop the Pomodoro timer, a break count up starts

 5) Mark Activity as done

 6) Archive Activity when marked as done

 7) Inform user every 4 Pomodoro for a longer break

Activity lists

 8) CRUD Activity to To Do Today list

 9) CRUD Activity to Activity Inventory list

 10) CRUD Activity to Unplanned & Urgent list

 11) View To Do Today list

 12) View Activity Inventory list

 36

 13) View Unplanned & Urgent list

 14) Move Activity from To Do Today list to Activity Inventory

 15) Move Activity from Activity Inventory to To Do Today

 16) Move Activity from Unplanned & Urgent list to To Do Today or Activity

Inventory

 17) Sort on columns for To Do Today and Activity Inventory List

Connect to cloud

 18) Authenticate user with the cloud

 19) CRUD operations in the cloud

 20) Create and read Pomodoro Statistics in the cloud

Records and estimations

 21) Set estimated Pomodoros for an Activity

 22) Track number of Pomodoros executed for an Activity

Interruptions

 23) Note an internal interruption, increase the value for the current Pomodoro

 24) Note an external interruption, increase the value for the current Pomodoro

 25) Create Activity to Unplanned & Urgent list

Settings

 26) Change the length of a Pomodoro

 27) Change the length of the break between Pomodoros

 28) Change the number of Pomodoros before a longer brake

 29) Change login information for the cloud service

Next section I will introduce the use cases design according to functional requirements

mentioned here.

 37

5.4. Use cases design

5-3 use case design

 38

5.5. RESTful web services Design principle

Our design principle follows procedure introduced by Leonard Richardson and Sam

Ruby (2007) in their book RESTful Web Services [20]:

 1. Figure out the data set: This is the data set you‘ll be exposing and/or getting

your users to build, in our case, Pomodoro technique would be exposing in

different services to consumers.

 2. Split the data set into resources: Then we need to decide how to expose the

data as HTTP resources. A resource is anything interesting enough to be the

target of a hypertext link. For example, in our case a Pomodoro is kind of

resource web service would expose.

For each kind of resource:

 3. Name the resources with URIs: After identifying resources, each of them needs

a unique name which can be used to locate the resource in the Internet. RESTful

web service use URI to be the identifier of resource.

 4. Expose a subset of the uniform interface: When user can find the resources

exposed by web services using URI you need to tell users what they can do. In

RESTful web services; basically, we use 4 stand HTTP methods as uniform

interfaces: GET, POST, PUT, DELET. We use GET to acquire resources, POST

to add new resources, PUT to update existed resources and DELET to remove

resources.

 5. Design the representation(s) accepted from and served to the client: Just as the

name implies, REpresentational State Transfer, in REST we transfer

representation to change the state of client. In other words, we use representation

of resource to operate this resource. So design the representation of resource is

important part of implementation of RESTful web services. Here we need to

consider which data inter-change format we will use, for example JSON & XML,

then how to use the selected data inter-change format to represent the resource

(data) and what form of data inter-change format we can accept from the user.

 6. Integrate this resource into existing resources, using hypermedia links and

forms: Link to other resources is referred to Hypermedia As The Engine Of

Application State (HATEOAS), which is key constraint of REST.

“REST APIs must be hypertext-driven”

Roy T. Fielding, 2008 [61]

After design the presentation of a resource we need to consider all the related

resources and list them following the original resource presentation.

 7. Consider the typical course of events: what‘s supposed to happen? It means

what will happen when server gets a usual HTTP request? We need to decide

which numeric response code the response will have, and what HTTP headers

and/or entity-body will be provided. We also need to consider how the request

will affect resource state. For example, when we successfully finish an operation

we will send HTTP code 200 (―OK‖) to client who sent the request.

 39

 8. Consider error conditions: what might go wrong? A request that creates,

modifies, or deletes a resource has more failure conditions than one that just

retrieves a representation. Even a simple GET method that retrieves a

representation also has unpredictable failure condition. For example, server

cannot connect to database. In many cases, HTTP code is not enough; we need to

give the consumer who are using our web service more specific information so

that consumer can handle the failure much easier.

5.6. High-level architecture design

5-4 High-level architecture of Pomodoro web service

The high-level architecture design is based on study of REST architectural style, OAuth

and the designs mentioned above. By dividing project into different layers, in which each

layer concentrates on their own job, we can have loose-coupling system that is flexibility,

maintainability. For example, we implemented business logic by ourselves, but in fact

Spring framework now is supporting RESTful web services and gives us better solution.

So if we want to use Spring which is better well-designed than what we have done in our

business logic layer of the project, we can do that very easy. Moreover, the

implementation needs to be fulfilled the constraints of REST such as stateless, cacheable,

and so on.

REST API: On the top level, this layer is responsible for integrating with iPhone Android

mobile application, web application and desktop application using JSON as data inter-

change format. URLs are our open APIs.

Filter: We implemented OAuth protocol in this layer. The task of this layer is to filter

request using OAuth protocol. Those requests that have not passed the OAuth

authorization will be denied in this layer.

 40

Mapping URI: After filtering request, we need to match those validated requests to

corresponding resources. We chose Jersey (JAVA RS-311) framework that helps us to

build RESTful API easier and efficiently.

Business logic: In this layer, we combined original data set, and then we use JSON to

represent the resource, make it ready to be exposed. This layer also handles the received

the JSON and parse the JSON into usual built-in data structure of programming language,

in our case, Java.

Data Persistence: Persistence deals the interaction with database. In the layer, we use

Hibernate to handle data persistence.

Following I will go detailed to introduce how we implemented the Pomodoro web

services in action taking part according to the designs mentioned in action planning

phase above.

 41

6. Implementation
In this section, firstly, I would like to introduce the implementation of architecture. Then

I will present the implementation of the project based on the RESTful web services

design principle mentioned in design phase. And then the implementation of OAuth

protocol will be introduced.

6.1. Overview of the project

6-1 Overview of project

As you can see in figure 6-1, in the project, we use Eclipse as IDE, SVN as version

management tool, and JUnit for unit test. The project consists of 7 main components to

handle different requirements. I will introduce some main components from bottom to

top according to architecture introduced in last phase:

Persistent: it implements data persistent layer of architecture. Its main task is to

encapsulate and maintain data objects retrieving from database.

 42

Business: it stands for the Business logic layer of architecture. Its primary goal is to work

with Json component to deal with business logic, In other words, it is used to make

original data set meaningful and representation-able.

Controller: it serves as a component used to map URLs to resources. It delivers different

requests to corresponding business logic objects. Meanwhile it is responsible for entity

management which restricts invalid users to visit resource that don‘t belong to the user.

OAuth: It is the filter in the architecture, implementing OAuth authorization protocol.

Before accepting the request must be checked to show that the request is sent by a valid

consumer and have been authorized by owner of resource.

6.2. Figure out data set

From now on I will elaborate how we deign RESTful web services step by step.

Earlier I said that the data set would be Pomodoro technique
,
 as I introduced before,

Pomodoro project has 7 objects including: User, Project, Activity, TypeOfActivity,

Pomodoro, Interruption, and Language. For some functional further uses, we added two

search and setting into data set.

6.3. Resource & name the resources & expose the uniform interface

We have generated an API file online to describe resources, their names and valid

operations on them; the API file includes all the information for future development.

 User:

 Search

 Setting

 Language

 43

 Activity

 Project

 Pomodoro

 Interruption

 TypeOfActivity

 44

6.4. Design the representation accepted from and served to the client

As I mentioned before, the presentations of resources in Pomodoro Project use JSON as

data inter-change format. Following is the representation design of each resource:

 User

 Setting

 45

 Activity

 46

 Project

 47

 Pomodoro

 Interruption

 TypeOfActivity

 48

6.5. Integrate this resource into existing resources, using hypermedia links and

forms

I would like to use the representation of User resource to show how Hypermedia As The

Engine Of Application State works.

As you can see, the user representation consists of not only the basic information of the

specific user but also all the URLs that are linked to several other representations which

have relationship with the user. For example, we can go to see how many projects the

user has, what are the activities of the user and so on.

 49

6.6. Consider the typical course of events and error conditions

For improving robustness and cooperation between server and client, we identified

following exceptions:

6.7. OAuth authorization protocol implementation

As I mentioned before, in the traditional client-server authentication model, the client

uses its credentials to access its resources hosted by the server. OAuth introduces a third

role to this model: the resource owner. In the OAuth model, the client (which is not the

resource owner, but is acting on its behalf) requests access to resources controlled by the

resource owner, but hosted by the server. In order for the client to access resources, it

first has to obtain permission from the resource owner. This permission is expressed in

the form of a token and matching shared-secret. The purpose of the token is to make it

unnecessary for the resource owner to share its credentials with the client. Unlike the

resource owner credentials, tokens can be issued with a restricted scope, limited life-time

and revoked independently.

OAuth is a protocol which gives us a set of standard procedures to follow. In the

Pomodoro project, we implemented the OAuth protocol as followed:

Assume we have a consumer with following information:

 consumer key: test

 consumer secret: e10adc3949ba59abbe56e057f20f883e

The information is generated by the server when consumers register in the server

(resources owner, in our case, Pomodoro services provider).

And the user with following credentials:

 50

 Username: test@pomodoro.com

 Password: test

 userID:1

The user credentials above are forced to input by the server when users register in the

server (resources owner, in our case, Pomodoro services provider).

1. When a user want to use third-part (consumer) application to access the resource

on server (Pomodoro services provider), the third-part application first check

whether there is a access token available, if not, the third-part application should

send the HTTPS request to the server like this:

2. Then the server will verify the consumer key, the timestamp and signature, if it

passed, the server will generate the response include:

3. After the consumer received the response, the token and secret can be used to

construct next step message. Then the consumer send the HTTPS request:

https://demo.pomodoroproject.net/oauthtest/api/oauth/authorize?oauth_token=d

8ead0d56060b1358ae21b0a18153b96

4. The server receives the request and then checks whether this token exists, if yes,

it will response 307(temporary redirect) and redirect the user to log in page.

5. The user enters the user name and password then log in. if successful; Server will

redirect the user to authorization page.

6. If the user allow the consumer access his/her information, the user will click

allow access button, after this the server will redirect the user to the callback

address with the token and verifier, if the callback address does not include in the

first step it will use the default call back address which is record when the

consumer registered. For example,

http://printer.example.com/ready?null&oauth_token=d8ead0d56060b1358ae21b

0a18153b96&oauth_verifier=1coxcsxmq2gmb

 51

7. Then the consumer uses the verifier and token received above to construct the

request for access token.

8. When the server receives it, it will verify all information, if passed; it will

generate the access token, secret and the user's id.

9. Finally, the consumer can use the access token and secret to access the user‘s

resources on the Pomodoro services provider.

 52

7. Evaluation

The Pomodoro web service was evaluated between 2010 May and 2010 June. In total, the

evaluation consisted of projects of other three groups including evaluation on iPhone,

Android, and Web framework. We hope that our web service could be working with

these platforms properly. However, during Evaluation phase, other teams gave us a

series of good suggestions of how to improve a web service from consumer‘s standpoint.

We worked together in Logica office in Gothenburg, Sweden, which makes our

communication more effectively and efficiently.

7.1. iPhone
iPhone team used the Pomodoro web services implementing Pomodoro technique on

Iphone platform using objective-c language, foundation framework and UIKit framework.

The functionalities they implemented includes

 Create, update and delete activities

 Pomodoro timer

 Tracking interruptions

 Integration with REST web service with OAuth authentication

 Online/offline mode: Offline account

Figure 7-1 Pomodoro technique on iPhone [62]

7.2. Web framework

Web team used the Pomodoro web services implementing Pomodoro technique on web

based on Grails web framework and Java language.

 53

Figure 7-2 Pomodoro technique on web [63]

Web team fully implemented Pomodoro technique functions based on Pomodoro web

services.

7.3. Android

Android team used the Pomodoro web services implementing Pomodoro technique on

Android platform using Java language. They implemented some functions, but they

don‘t have a finished user interface.

 54

8. Discussion

This paper reports a design-oriented case study with the objective of evaluating,

developing and testing REpresentational State Transfer (REST) software architectural

style for handling cloud-based integration, which can be used to provider cloud services

using JSON as data interchange format as well as OAuth as authorization protocol.

Through the collaboration with practitioners from Logica, basically we have done a full

research cycle including an interview study, REST design principles study, a cloud-based

web service implementation, and a 1-month evaluation involving integration with three

platform iPhone, web framework and Android.

8.1. Granularity

During our research, we found that we need to be careful when developing web services

that need to be cooperated with different devices that have different capacities, which

related to presentation granularity.

Since mobile and computer have different ability such as the power of CPU, the capacity

of memory and so on. So we need to consider granularity issue when we want to supply

web services to them. For example, we have presentation of a resource; this JSON equals

1K, it is not a problem for both web server and mobile phone application. Meanwhile we

need to think about if this JSON string equals 1M, web server still can handle it easier,

but it is very hard for mobile application with limited CPU and memory to deal with.

Users may need to wait for a long time to get response from a mobile phone for handling

big amount of data.

In our project, thanks to limited data, we offered separate web services, dividing big data

set into relatively small data for mobile and giving big data set directly to web server

(computer) to deal with this issue. But this is still an open issue in academic circles, since

technically we cannot predict how data set changes, which result in that it is very difficult

to design those services. As of development of the Pomodoro project, separating web

services was still best choice for us.

Accompanying with improvement of mobile phone hardware performance, in future, I

believe that this would not be an issue for us.

8.2. Recommended architecture for RESTful web services

During our development phase, we chose implementing logic business layer by ourselves,

which time-consuming. In fact, if we can use mature framework to handle the layer, that

would be more productively and efficiently.

So according to our experience from the Pomodoro project, I would like to recommend

following high-level architecture:

 55

Figure 8-1 Recommended architecture for RESTful web services

Here, Spring framework helps us to handle business logic, and for our project we only

offer web services, but in real world, every famous public web services has their own

web site, so we suggest that there should a component (Strutes/JSF) on Presentation layer

to handle this. In REST world, one of hottest topic is how to integrate with legacy system.

In the recommended architecture we put legacy system in data store tier; integration with

legacy system task should be handled here.

 56

9. Conclusion

This paper investigates the some issues of WS-* integration method in some

circumstances. Though WS-* have been widely adopted and dominates enterprise web

services integration, it lacks of interoperability and scalability. Alternatively, in the paper

I introduced another integration method REpresentational State transfer, REST, which is

presented as a network interaction architectural style including following primary

constraints, client-server, stateless, cacheable, uniform interface, identification of

resources, manipulation of resources through representations, self-descriptive messages,

hypermedia as the engine of application state, and layered system. Then we used REST

software architecture style to implement RESTful web services, Pomodoro services

provider, intended to integrate with various platforms including iPhone, Android, web

framework. Following that, we evaluated the Pomodoro services provider with those

platforms. We also recommended high-level software architecture for implementing

RESTful web services according to our experience. Compared to the SOAP-based

integration approach, REST has many advantages such as service is addressable and can

be connected to, interface is consistent, and resources can be cached. Moreover, Restful

Web services is the Web services which has simple description of the document and is

easy to release.

Future research in this area could possibly focus on security issues of REST and

approach of resource discovery. Meanwhile, since REST has not been a standard

industrial standard, so the pattern of how to design a REST application needs to be

considered.

 57

Reference

1. Gartner‘s web site. 2008. Available from http://www.gartner.com/it/page.jsp?id=707508

2. Is cloud Computing Really Ready for Prime Time. IEEE Computer 42(1), 2009, pp. 15-20.

3. BECHTOLSHEIM, A. Cloud Computing and Cloud Networking. Talk at UC Berkeley,

December 2008.

4. CARR, N. Rough Type [online]. 2008. Available from: http://www.roughtype.com.

5. SIEGELE, L. Let It Rise: A Special Report on Corporate IT. The Economist. October 2008.

6. Michael, A et al. Above the Clouds: A Berkeley View of Cloud Computing. February 10,

2009

7. Sun Microsystems. Cloud Computing. March, 2009

8. Jacobs, Jean. Enterprise software as service. July 2005. Queue, Volume 3 Issue 6.

9. Natis, Yefim V. Introducing SaaS-Enabled Application Platforms: Features, Roles and

Futures. 2007 Gartner, Inc.

10. Chou, Timothy. The End of Software. Sams Publishing, USA, 2005.

11. The Economist. Universal Service? Proponents of ―software as a service‖ say it will wipe out

traditional software. April 20th, 2006.

12. Predicts 2007: Software as a Service Provides a Viable Delivery Model. 2006 Gartner, Inc.

13. Wolde, Erin Ten, Research Analyst, IDC. August 2007.

14. Wikipedia [online]. Available from: http://www.wikipedia.org.

15. Benslimane, Djamal, Schahram Dustdar, and Amit Sheth. Services Mashups: The New

Generation of Web Applications. IEEE Internet Computing, vol. 12, no. 5. Institute of

Electrical and Electronics Engineers. 2008. pp. 13–15

16. David Sprott, Lawrence Wilkes. Understanding Service-Oriented Architecture. CBDI Forum,

23 September 2003.

17. Francisco Curbera et al. Unraveling the Web Services Web an Introduction to SOAP, WSDL,

and UDDI. IEEE Internet Computing, March-April 2002, 6(2): 86-93.

18. Roy Thomas Fielding. Architectural Styles and the Design of Network-based Software

Architectures. Doctoral Dissertation, University of California, Irvine, CA, 2000.

19. R. T. Fielding and R. N. Taylor. Principled Design of the Modern Web Architecture. ACM

Transactions on Internet Technology, Vol.2, No.2, May 2002, pp.115–150.

20. Leonard Richardson, Sam Ruby. RESTful Web Services. Sebastopol, California, USA:

O‘Reilly Media, Inc. May 2007

21. Jin Zhang et al. On Web Service Construction Based on REpresentation State Transfer. IEEE

International Conference on e-Business Engineering. 22-24 Oct. 2008. pp. 665 – 668.

22. http://www.pomodoroproject.net

23. http://www.logica.com

24. http://www.pomodorotechnique.com/

25. http://www.chalmers.se

26. Schein, E. (1987). The clinical perspective in fieldwork. Beverly Hills: Sage.

27. Lewin, K., 1947. Frontiers in group dynamics. Human Relations, pp. 5–41

28. Davison, R. M., Martinsons, M. G., and Kock, N. Principles of Canonical Action Research.

Information Systems Journal 14(1), 2004. pp. 65-86.

29. Baskerville, R., Pries-Heje, J. Grounded action research: a method for understanding IT in

practice. Accounting, Management & Information Technologies (9), 1999, pp. 1–23.

30. Ola Henfridsson, Rikard Lindgren. Multi-contextuality in ubiquitous computing:

Investigating the car case through action research. Information and Organization 15, 2005, pp.

95–124

31. http://www.programmableweb.com/apis

32. http://www.web2aid.org/

http://www.gartner.com/it/page.jsp?id=707508
http://www.roughtype.com/
http://www.wikipedia.org/
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2008/09&file=w5gei.xml&xsl=article.xsl
http://dsonline.computer.org/portal/site/dsonline/menuitem.9ed3d9924aeb0dcd82ccc6716bbe36ec/index.jsp?&pName=dso_level1&path=dsonline/2008/09&file=w5gei.xml&xsl=article.xsl
http://www.pomodoroproject.net/
http://www.logica.com/
http://www.pomodorotechnique.com/
http://www.chalmers.se/
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFY-3W06TRD-1&_user=645615&_coverDate=01%2F31%2F1999&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1333230536&_rerunOrigin=google&_acct=C000034678&_version=1&_urlVersion=0&_userid=645615&md5=c52255af83f2be6753965fe8fc86072a#bb16
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6VFY-3W06TRD-1&_user=645615&_coverDate=01%2F31%2F1999&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1333230536&_rerunOrigin=google&_acct=C000034678&_version=1&_urlVersion=0&_userid=645615&md5=c52255af83f2be6753965fe8fc86072a#bb17
http://www.programmableweb.com/apis
http://www.web2aid.org/

 58

33. http://www.projectzero.org/

34. ―The NIST Definition of Cloud Computing‖. Version 15 10-7-09

35. Natis, Yefim V. ―Introducing SaaS-Enabled Application Platforms: Features, Roles and

Futures‖. 2007 Gartner, Inc

36. Paul Prescod. Roots of the REST/SOAP Debate

37. Hagen Overdick. The Resource-Oriented Architecture, 2007 IEEE Congress on Services

38. Jian Meng; Shu junMei; Zhao Yan. RESTful Web Services: A solution for distributed data

integration. Computational Intelligence and Software Engineering, 2009. International

Conference 11-13 Dec. 2009 pp.1-4

39. Yan Liu; Qing lingWang; Mingguang Zhuang; Yunyun Zhu; Computer Software and

Applications, 2008. COMPSAC '08. 32nd Annual IEEE International, 2008 , Page(s): 785 –

790

40. Yu-Yen Peng; Shang-Pin Ma; Lee, J.; Service-Oriented Computing and Applications

(SOCA), 2009 IEEE International Conferenceon Digital Object 2009 , Page(s): 1 – 4

41. Wang Junye; Mao Lirui; Cai Hongming; Computer Science-Technology and Applications,

IEEE, IFCSTA'09.International Forum , Page(s): 219 – 223

42. Leonard Richardson, Developers Like Hypermedia, But They Don't Like Web Browser, the

first international workshop on RESTful Design, ACM, 2010, pp: 4-9

43. Marc Hadley, Santiago Pericas-Geertsen, Paul Sandoz. Exploring Hypermedia Support in

Jerse, the first international workshop on RESTful Design, ACM, 2010, pp: 10-15

44. Savas Parastatidis, Jim Webber, Guilherme Silveira, Ian S. Robinson. The Role of

Hypermedia in Distributed System Development, the first international workshop on

RESTful Design, ACM, 2010, pp: 16-22

45. Extensible markup language (xml) 1.0 (fourthedition). W3C, 2006.

http://www.w3.org/TR/2006/REC-xml-20060816

46. J. F. E. v. d. V. D. A. J. D. A. W. L. M. David Hunter, Jeff Rafter, ―Beginning xml,‖ 4th

edition, pp. 6-8, 2007.

47. U. Hilger, ―Article: Client/server with java and xml-rpc,‖ 2005.

48. JSON. json.org. http://www.json.org

49. Nurzhan Nurseitov, Michael Paulson, Randall Reynolds, Clemente Izurieta. Comparison of

JSON and XML Data Interchange Formats: A Case Study. Department of Computer Science

Montana State University – Bozeman Bozeman, Montana, 59715, USA

50. Thomas Ziebermayr, Stefan Probst. Web Service Authorization Framework. IEEE

International Conference on Web Services, 2004

51. R. Sandhu, P. Samarati; Authentication, Access Control, and Audit. ACM Computing

Surveys,

Vol. 28, No. 1, March 1996

52. http://en.wikipedia.org/

53. "OAuth Security Advisory: 2009.1".

54. http://datatracker.ietf.org/doc/draft-hammer-oauth2/

55. http://www.restlet.org/documentation/1.0/tutorial

56. http://www.jboss.org/resteasy/

57. http://www.mysql.com/why-mysql/

58. http://www.hibernate.org/about/orm.html

59. Pomodoro Project - case file, Jesper Forslund, Logica, 2010

60. Pomodoro Project – domain model. Jesper Forslund, Logica, 2010

61. Blog of Roy T. Fielding, http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-

driven, 2008

62. Presentation of iPhone team of Pomodoro project on Logica open seminar, 8, June, 2010

63. Presentation of web team of Pomodoro project on Logica open seminar, 8, June, 2010

64. http://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm

http://www.projectzero.org/
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5384535
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5384535
http://www.w3.org/TR/2006/REC-xml-20060816
http://www.json.org/
http://en.wikipedia.org/
http://datatracker.ietf.org/doc/draft-hammer-oauth2/
http://www.restlet.org/documentation/1.0/tutorial
http://www.jboss.org/resteasy/
http://www.mysql.com/why-mysql/
http://www.hibernate.org/about/orm.html
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
http://www.ischool.utexas.edu/~ssoy/usesusers/l391d1b.htm

