Research Report

Department of Statistics
Göteborg University
Sweden

SEQUENTIAL ANALYSIS OF SIMPLE HYPOTHESES WHEN USING PLAY-THE-WINNER ALLOCATION

ANNA EKMAN

SEQUENTIAL ANALYSIS OF SIMPLE HYPOTHESES WHEN USING PLAY-THE-WINNER ALLOCATIONS.

By Anna Ekman
Department of Statistics
Göteborg University

Abstract

Play-the-winner allocations aim to place more subjects on the better treatment. The subjects enter the study sequentially. In this paper, a method for analyzing a dichotomous response, when using the randomized play-the-winner allocation and the modified play-the-winner allocation, is studied. The method is based on Wald's sequential probability ratio test. The properties of the method and of the allocation rules are studied for the case of simple hypotheses. The expected sample sizes and the expected numbers of subjects assigned to the inferior treatment are estimated by simulation.

Keywords: Play-the-winner randomization, response dependent allocation, sequential probability ratio test, restricted randomization, sequential medical trials.

TABLE OF CONTENTS

1 INTRODUCTION 2
2 PLAY-THE-WINNER ALLOCATION RULES 4
3 WALD'S SEQUENTIAL PROBABILITY RATIO TEST 6
3.1 The test 6
3.2 Some important properties 6
4 SPRT FOR A RESPONSE DEPENDENT ALLOCATION 11
4.1 The \log likelihood ratio 11
4.2 Some properties 12
4.3 Properties when using RPW and MPW 14
4.3.1 RPW 14
4.3.2 MPW 16
5 COMPARISON OF THREE ALLOCATION RULES 18
5.1 Description of the simulation study 18
5.2 Results of the simulations 20
6 DISCUSSION 25
ACKNOWLEDGMENTS 27
APPENDIX 28
REFERENCES 30

1 Introduction

Consider an experiment where two treatments, say T_{1} and T_{2}, are compared. The response to the treatment is dichotomous, namely success or failure. Patients arrive sequentially at the experimental site and have to be treated immediately. The question arises how to allocate patients to the two treatments.

A simple allocation rule is to choose randomly a treatment for each patient. To fulfill ethical requirements Play-the-winner allocations have been suggested, first by Zelen (1969). Characteristic for the Play-the-winner allocations is that the probability for a treatment increases as the number of successes for the treatment increases. Therefore, we can assume that less patients are allocated to the inferior treatment than to the superior one.

For a sequential analysis of the experiments we can use Wald's sequential probability ratio test, SPRT, for simple hypotheses,

$$
\mathrm{H}_{0}: \mathrm{p}_{\mathrm{T}_{1}}=\mathrm{p}_{\mathrm{T}_{2}}=\mathrm{p}_{\mathrm{T}_{1} 0}=\mathrm{p}_{\mathrm{T}_{2} 0} \quad \text { versus } \quad \mathrm{H}_{1}: \mathrm{p}_{\mathrm{T}_{1}}=\mathrm{p}_{\mathrm{T}_{1} 1}, \mathrm{p}_{\mathrm{T}_{2}}=\mathrm{p}_{\mathrm{T}_{2} 1} .
$$

It will be assumed that

$$
\mathrm{p}_{\mathrm{T}_{1} 0} \neq \mathrm{p}_{\mathrm{T}_{1} 1} \text { and } \mathrm{p}_{\mathrm{T}_{2} 0} \neq \mathrm{p}_{\mathrm{T}_{2} 1}
$$

Wald's SPRT is originally presented in the case of independent and identically distributed random variables. If a play-the-winner allocation is used the variables are not independent and identically distributed: the treatment of the current patient depends on the treatment, and the response to treatment, of one or more of the previous patients. Therefore, the original Wald's SPRT can be used for sequential analysis. We will present a generalization of the test that is suitable for this more complicated situation. We will assume immediate responses, to simplify the calculations.

The paper is organized as follows. Three Play-the-Winner allocation rules, Play-thewinner (PW) allocation, modified Play-the-winner (MPW) allocation and randomized Play-the-winner (RPW) allocation, are summarized in Section 2. In Section 3 we recall Wald's SPRT and some of its basic properties, and in Section 4, the test is generalized to our experimental situation, where the random variables are not independent and identically distributed. As main result we show that the error probabilities are bounded, for inference based on Wald's SPRT, when the RPW allocation rule is used
in the experimental setting of allocating patients to the two treatments. In Section 5 we compare two Play-the-Winner allocation rules, the RPW and the MPW, and total randomization (TR), when using the SPRT, by means of expected sample size and expected number of patients allocated to the inferior treatment. TR assigns treatment T_{1} with probability $1 / 2$ and treatment T_{2} with probability $1 / 2$, each time a patient arrives. Hence, TR represents an allocation rule for which the random variables are independent and identically distributed. Note that, in the case of immediate responses, the PW and the MPW are identical (see Section 2). The expectations are calculated through simulations.

2 Play-the-winner allocation rules

The first Play-the-winner allocation was introduced by Zelen (1969). Zelen's allocation, denoted by PW, is best described by an urn. In the urn we for each success of a treatment put a ball representing the treatment, and for each failure put a ball representing the other treatment. When a patient is to be allocated to a treatment we draw a ball from the urn, without replacement. If the urn is empty, as it is at the start, each treatment has probability $1 / 2$. This method allows the responses to be delayed, but if many responses are delayed for substantial time treatments will mostly be assigned with probability $1 / 2$ each.

In the same paper Zelen introduced another allocation rule, where the responses were assumed to be immediate. When allocating the first patient, the treatments have probability $1 / 2$ each to be assigned to the patient. For the following allocations one keeps on assigning the same treatment until it gives a failure, then switches to the other treatment and keeps on assigning this one until it gives a failure. The allocation is continued in this manner until the experiment is stopped. This allocation rule is denoted by MPW, modified play-the-winner. Note that, with immediate responses the MPW allocation is identical to the PW allocation.

Later, a randomized Play-the-winner allocation was introduced by Wei and Durham (1978). Now we can think of an urn in which we, at the start, have ω_{1} balls representing treatment T_{1} and ω_{2} balls representing treatment T_{2}. When a patient is to be allocated to a treatment a ball is drawn from the urn, with replacement. If the response "success" is received, from a patient allocated to treatment T_{1} (or T_{2} respectively), we add $\rho \mathrm{T}_{1}$-balls to the urn. If the response is a "failure" we add $\rho \mathrm{T}_{2}$ balls to the urn. Note that here, the history of successes and failures will affect every allocation, even if the responses are delayed. This last allocation rule is denoted by $\operatorname{RPW}\left(\omega_{1}, \omega_{2}, \rho\right)$. A special case of the $\operatorname{RPW}\left(\omega_{1}, \omega_{2}, \rho\right)$ is when $\omega_{1}=\omega_{2}$, which is denoted by $\operatorname{RPW}(\omega, \rho)$.

The statistical analysis of results from experiments where $\operatorname{RPW}(\omega, \rho)$ allocation rules have been used has been discussed by several authors. Wei and Durham (1978) suggested an inverse stopping rule for deciding which one of the two treatments is the
better one. They also compared the $\operatorname{RPW}(0,1)$ with the PW , with respect to, the expected number of patients treated by the inferior treatment, the average sample size and the estimated probabilities of correct selection of the inferior treatment. The comparison of the average sample sizes was done when the inverse stopping rule was used. Wei and Durham concluded that the $\operatorname{RPW}(0,1)$ seemed to be approximately equal to the PW for practical use.
Wei (1988) used the inverse stopping rule to stop the experiment, and proposed a fixed sample permutation test for the analysis. For comments on the work of Wei (1988), and general comments on difficulties with the inference after using the $\operatorname{RPW}(\omega, \rho)$ allocation, the discussion introduced by Begg (1990) is recommended. In Wei, Smythe, Lin and Park (1990) exact conditional, exact unconditional and approximate confidence intervals were studied. One of their conclusions were that the design should not be ignored in the analysis. However, the suggested analysis ignores the stopping rule and therefore ignores part of the design.

3 Wald's Sequential Probability Ratio Test

In this section Wald's sequential probability ratio test and some of its basic properties, are described. The theory below follows unpublished lecture notes, Holm (1990). A good introduction to the theory of sequential analysis can be found, for example, in Govindarajulu (1981) or Siegmund (1985).

3.1 The test

We are interested in discriminating between two simple hypotheses

$$
\mathbf{H}_{0}: \theta=\theta_{0}, \mathbf{H}_{1}: \theta=\theta_{1} \quad, \text { where } \theta_{0} \neq \theta_{1},
$$

with a sequential probability ratio test, with desired significance level α and desired power in the alternative $1-\beta$, and the test is constructed as follows.

Assume that X_{1}, \ldots, X_{n} are independent identically distributed random variables with probability distribution function $f_{\theta}(\cdot)$, and with joint probability distribution function $f_{n, \theta}(\cdot)$. Then the likelihood ratio λ_{n} can be written as

$$
\lambda_{n}=\frac{f_{n, \theta_{1}}\left(x_{n}\right)}{f_{n, \theta_{0}}\left(x_{n}\right)}
$$

Let A and B be absorbing barriers. Then we have three possibilities:
$\mathrm{B}<\lambda_{\mathrm{n}}<\mathrm{A}$ continue with an additional observation
$\lambda_{n} \leq B$ stop the experiment and accept H_{0}
$\lambda_{n} \geq A$ stop the experiment and reject H_{0}
Often it is more practical to work with the \log likelihood ratio, $\ln \lambda_{n}, a=\ln A$ and $b=\ln B$. In the following we will use the notation $\{\mathbf{X}\}_{1}^{i}=\left\{X_{1}, \ldots, X_{i}\right\}$.

3.2 Some important properties

The following results enable us to choose the bounds A and B, so that the true significance level, α^{*}, and the true power under the alternative, $1-\beta^{*}$, will be close to the desired ones. Equations 3.2 .1 and 3.2.2 give us the bounds of the true α^{*} and 1- β^{*}, while α and 1- β are desired.

The proofs of the propositions below are included to illustrate that the proof of Proposition 3.2 is the only one that requires the assumption of independent and identically distributed random variables.

Proposition 3.1: Assume that $P(N<\infty)=1$. Then for given A and B

$$
A \leq \frac{1-\beta^{*}}{\alpha^{*}} \text { and } B \geq \frac{\beta^{*}}{1-\alpha^{*}},
$$

where α^{*} and β^{*} are the true type-I and type-II errors.

Proof: Let

$$
\mathrm{R}_{\mathrm{n}}=\left\{\{\mathbf{x}\}_{1}^{\mathrm{n}} ; \mathrm{N}=\mathrm{n}, \lambda_{\mathrm{N}} \geq \mathrm{T}_{1}\right\} .
$$

Therefore, the R_{n} 's are mutually disjoint. Now we can write

$$
\alpha^{*}=P_{\theta_{0}}\left(\lambda_{N} \geq T_{1}\right)=\sum_{n=1}^{\infty} P_{\theta_{0}}\left(R_{n}\right)=\sum_{n=1}^{\infty} \int_{R_{\mathrm{e}}} f_{n_{n}, \theta_{0}}\left(x_{n}\right) d x_{n} .
$$

Remembering that

$$
\frac{\mathrm{f}_{\mathrm{n}, \theta_{1}}}{\mathrm{f}_{\mathrm{n}, \theta_{0}}} \geq \mathrm{T}_{1}
$$

on R_{n} we obtain

Hence,

$$
\mathrm{T}_{1} \leq \frac{1-\beta^{*}}{\alpha^{*}}
$$

Similarly we can show that

$$
\mathrm{T}_{2} \geq \frac{\beta^{*}}{1-\alpha^{*}}
$$

Proposition 3.2 : If $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ are independent and identically distributed random variables and

$$
\mathrm{P}\left(\ln \frac{\mathrm{f}_{\mathrm{\theta}_{\mathrm{i}}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\mathrm{t}_{\mathrm{a}}}\left(\mathrm{X}_{\mathrm{i}}\right)}=0\right)<1 \quad \forall \mathrm{i},
$$

then

$$
\mathrm{P}(\mathrm{~N}<\infty)=1 .
$$

Proof: Let $\Delta>0$. Then

$$
\mathrm{P}\left(\ln \frac{\mathrm{f}_{\theta_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\mathrm{\theta}_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}=0\right)=\lim _{\Delta \rightarrow 0} \mathrm{P}\left(-\Delta \leq \ln \frac{\mathrm{f}_{\mathrm{t}_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\mathrm{\theta}_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)} \leq \Delta\right)<1 \quad \forall \mathrm{i}
$$

implies that

$$
\exists \Delta ; \mathrm{P}\left(\left|\ln \frac{\mathrm{f}_{\mathrm{\theta}_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\mathrm{\theta}_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}\right| \leq \Delta\right)=\gamma<1 \text { for some } \gamma>0, \forall \mathrm{i} .
$$

Furthermore,

$$
\begin{aligned}
\mathrm{P}\left(\left|\ln \frac{\mathrm{f}_{\theta_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\theta_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}\right|>\Delta\right) & =\mathrm{P}\left(\ln \frac{\mathrm{f}_{\theta_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\theta_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}<-\Delta\right)+\mathrm{P}\left(\ln \frac{\mathrm{f}_{\theta_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\theta_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}>\Delta\right) \\
& \leq 2 \max \left\{\mathrm{P}\left(\ln \frac{\mathrm{f}_{\theta_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\mathrm{\theta}_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}<-\Delta\right), \mathrm{P}\left(\ln \frac{\mathrm{f}_{\theta_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\mathrm{\theta}_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}>\Delta\right)\right\}, \forall \mathrm{i},
\end{aligned}
$$

and hence,

$$
\max \left\{\mathrm{P}\left(\ln \frac{\mathrm{f}_{\mathrm{\theta}_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\theta_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}<-\Delta\right\} \mathrm{P}\left(\ln \frac{\mathrm{f}_{\mathrm{f}_{1}}\left(\mathrm{X}_{\mathrm{i}}\right)}{\mathrm{f}_{\theta_{0}}\left(\mathrm{X}_{\mathrm{i}}\right)}>\Delta\right)\right\} \geq \frac{1-\gamma}{2} \quad, \forall \mathrm{i} .
$$

Let

$$
\mathbf{n}_{0}=\left[\frac{\mathrm{a}-\mathrm{b}}{\Delta}\right]+1 .
$$

Then

$$
\begin{aligned}
P\left(\sum_{i=1}^{n_{0}} \ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)} \notin(b, a)\right. & \geq P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}<-\Delta, \forall i\right)+P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}>\Delta, \forall i\right) \\
& \left.=\prod_{i=1}^{n_{0}} P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}<-\Delta\right)+\prod_{i=1}^{n_{0}} P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}>\Delta\right)^{2}\right) \\
& =\left(P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}<-\Delta\right)\right)^{n_{0}}+\left(P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}>\Delta\right)\right)^{n_{0}} \\
& \geq\left(\max \left\{P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}<-\Delta\right) P\left(\ln \frac{f_{\theta_{1}}\left(X_{i}\right)}{f_{\theta_{0}}\left(X_{i}\right)}>\Delta\right)\right)^{2} \geq\left(\frac{1-\gamma}{2}\right)^{n_{0}}>0 .\right.
\end{aligned}
$$

Furthermore, let us denote

$$
\varepsilon=\left(\frac{1-\gamma}{2}\right)^{n_{0}} .
$$

We now have that

$$
\mathrm{P}\left(\mathrm{~N}>\mathrm{kn}_{0}\right) \leq(1-\varepsilon)^{\mathrm{k}},
$$

that implies

$$
\lim _{\mathrm{k} \rightarrow \infty} \mathrm{P}\left(\mathrm{~N}>\mathrm{kn}_{0}\right)=0 .
$$

Therefore

$$
\mathrm{P}(\mathrm{~N}<\infty)=1 .
$$

Proposition 3.3 : Assume that $\mathrm{P}(\mathrm{N}<\infty)=1$. If A and B are chosen to be

$$
A=\frac{1-\beta}{\alpha} \text { and } B=\frac{\beta}{1-\alpha}
$$

where α and β are the desired levels of the error probabilities, then the true level of significance, α^{*}, and the true power under the alternative, 1- β^{*}, satisfy

$$
\alpha^{*}+\beta^{*} \leq \alpha+\beta
$$

Proof: As $\mathrm{P}(\mathrm{N}<\infty)=1$ is assumed, the requirement of Proposition 3.1 is satisfied. Hence,

$$
\left\{\begin{array}{l}
A \alpha^{*} \leq 1-\beta^{*} \\
\beta^{*} \leq \mathrm{B}\left(1-\alpha^{*}\right)
\end{array}\right.
$$

Now it follows that

$$
\left\{\begin{array}{l}
\frac{1-\beta}{\alpha} \alpha^{*} \leq 1-\beta^{*} \\
\beta^{*} \leq \frac{\beta}{1-\alpha}\left(1-\alpha^{*}\right)
\end{array}\right.
$$

which implies that

$$
\left\{\begin{array}{l}
\alpha^{*}(1-\beta) \leq \alpha\left(1-\beta^{*}\right) \\
\beta^{*}(1-\alpha) \leq \beta\left(1-\alpha^{*}\right)
\end{array} .\right.
$$

Furthermore,

$$
\alpha^{*}(1-\beta)+\beta^{*}(1-\alpha) \leq \alpha\left(1-\beta^{*}\right)+\beta\left(1-\alpha^{*}\right)
$$

and finally

$$
\alpha^{*}+\beta^{*} \leq \alpha+\beta
$$

Note that Proposition 3.2 implies Proposition 3.1, which implies Proposition 3.3.
The allocation rule TR, where the two treatments are allocated with probability $1 / 2$ each, satisfy the requirements for Propositions 3.1-3.3, as the random variables in this case are independent and identically distributed.

By using Propositions 3.1 and 3.3 we obtain

$$
\begin{gather*}
\frac{1-\mathrm{B}}{\mathrm{~A}^{+}-\mathrm{B}} \leq \alpha^{*} \leq \frac{1-\mathrm{B}^{-}}{\mathrm{A}-\mathrm{B}^{-}} \tag{3.2.1}\\
\text {and } \\
\mathrm{A}^{+} \frac{1-\mathrm{B}}{\mathrm{~A}^{+}-\mathrm{B}} \leq 1-\beta^{*} \leq \mathrm{A} \frac{1-\mathrm{B}^{-}}{\mathrm{A}-\mathrm{B}^{-}}, \tag{3.2.2}
\end{gather*}
$$

where A^{+}is the maximum value of the likelihood ratio, when stopping and rejecting H_{0}, and B^{-}is the minimum value of the likelihood ratio, when stopping and accepting H_{0}.

4 SPRT for a response dependent allocation

We investigate allocation rules that create dependence between the random variables. Therefore we need to generalize the theory of Wald's SPRT to this situation. We do this for our specific experimental setting, where we want to compare two treatments that both have two possible responses, success and failure.
In Section 4.1 we derive the \log likelihood ratio, $\ln \lambda_{\mathrm{n}}$, and in Section 4.2 we show that the properties, discussed in Section 3.2, are true also for the generalized SPRT. These properties enable us to construct a generalized test in the same way as the ordinary Wald's SPRT is constructed.

4.1 The log likelihood ratio

To simplify the calculations immediate responses are assumed.
From now on we use the following notations :

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{T}}=\text { the success probability of treatment } \mathrm{T} \\
& \mathrm{~S}_{\mathrm{T}(\mathrm{i}-1)}=\text { number of successes of treatment } \mathrm{T} \text { among the } \mathrm{i}-1 \text { first patients } \\
& \mathrm{F}_{\mathrm{T}(\mathrm{i}-1)}=\text { number of failure of treatment } \mathrm{T} \text { among the } \mathrm{i}-1 \text { first patients }
\end{aligned}
$$

where T is either T_{1} or T_{2}.
Furthermore, it is assumed that $0<\mathrm{p}_{\mathrm{T}_{1}}<1,0<\mathrm{p}_{\mathrm{T}_{2}}<1$ and that $\mathrm{p}_{\mathrm{T}_{2}} \leq \mathrm{p}_{\mathrm{T}_{1}}$.
Simple hypothesis of the following kind are considered

$$
\mathrm{H}_{0}: \mathrm{p}_{\mathrm{T}_{1}}=\mathrm{p}_{\mathrm{T}_{2}}=\mathrm{p}_{\mathrm{T}_{1} 0}=\mathrm{p}_{\mathrm{T}_{2} 0} \quad \text { versus } \mathrm{H}_{1}: \mathrm{p}_{\mathrm{T}_{1}}=\mathrm{p}_{\mathrm{T}_{1} 1}, \mathrm{p}_{\mathrm{T}_{2}}=\mathrm{p}_{\mathrm{T}_{2} 1}
$$

It is assumed that

$$
\mathrm{p}_{\mathrm{T}_{1} 0} \neq \mathrm{p}_{\mathrm{T}_{1} 1} \text { and } \mathrm{p}_{\mathrm{T}_{2} 0} \neq \mathrm{p}_{\mathrm{T}_{2} 1}
$$

Our response variables are

$$
\begin{aligned}
& Y_{i}=\left\{\begin{array}{l}
1 \text { if patient } i \text { was allocated to treatment } T_{1} \\
0 \text { if patient } i \text { was allocated to treatment } T_{2}
\end{array}\right. \\
& X_{i}=\left\{\begin{array}{l}
1 \text { if the treatment on patient } i \text { was a success } \\
0 \text { if the treatment on patient } i \text { was a failure }
\end{array}\right.
\end{aligned}
$$

The likelihood function can be determined as

$$
\begin{aligned}
\mathrm{L}_{\mathrm{N}}= & \mathrm{P}\left(\mathrm{Y}_{1}=\mathrm{y}_{1}, \mathrm{X}_{1}=\mathrm{x}_{1}\right) \\
& * \prod_{\mathrm{i}=2}^{N}\left\{\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}} \mid\{\mathrm{Y}\}_{1}^{\mathrm{i}-1}=\{\mathrm{y}\}_{1}^{\mathrm{i}-1},\{\mathrm{X}\}_{1}^{\mathrm{i}-1}=\{\mathrm{x}\}_{1}^{\mathrm{i}-1}\right) \mathrm{P}\left(\mathrm{X}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \mid \mathrm{Y}_{\mathrm{i}}=\mathrm{y}_{\mathrm{i}}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& =P\left(Y_{1}=y_{1}\right) \prod_{i=1}^{N} p_{T_{1}}^{y_{i} x_{i}}\left(1-p_{T_{1}}\right)^{y_{i}\left(1-x_{i}\right)} p_{T_{2}}^{\left(1-y_{i}\right) x_{1}}\left(1-p_{T_{2}}\right)^{\left(1-y_{i}\right)\left(1-x_{i}\right)} \\
& \quad * P\left(Y_{i}=1 \mid\{Y\}_{1}^{i-1}=\{y\}_{1}^{i-1},\{X\}_{1}^{i-1}=\{x\}_{1}^{i-1}\right)^{y_{1}}\left(1-P\left(Y_{i}=1 \mid\{Y\}_{1}^{i-1}=\{y\}_{1}^{i-1},\{X\}_{1}^{i-1}=\{x\}_{1}^{i-1}\right)\right)^{\left(1-y_{i}\right)} .
\end{aligned}
$$

Hence, the likelihood ratio is

$$
\lambda_{\mathrm{N}}=\prod_{\mathrm{i}=1}^{N}\left(\frac{\mathrm{p}_{\mathrm{T}_{1} 1}}{\mathrm{p}_{\mathrm{T}_{1} 0}}\right)^{\mathrm{p}_{1} \mathrm{x}_{\mathrm{i}}}\left(\frac{1-\mathrm{p}_{\mathrm{T}_{1} 1}}{1-\mathrm{p}_{\mathrm{T}_{1} 0}}\right)^{\mathrm{y}_{\mathrm{i}}\left(1-\mathrm{x}_{\mathrm{i}}\right)}\left(\frac{\mathrm{p}_{\mathrm{T}_{2} 1}}{\mathrm{p}_{\mathrm{T}_{2} 0}}\right)^{\left(1-\mathrm{y}_{\mathrm{i}}\right) \mathrm{x}_{\mathrm{i}}}\left(\frac{1-\mathrm{p}_{\mathrm{T}_{2} 1}}{1-\mathrm{p}_{\mathrm{T}_{2} 0}}\right)^{\left(1-\mathrm{p}_{i}\right)\left(1-\mathrm{x}_{\mathrm{i}}\right)} .
$$

The test statistic we use is the log likelihood ratio, the same as in Wald's SPRT. It can be written as
$\ln \lambda_{N}$
$=\sum_{i=1}^{N}\left[y_{i} x_{i} \ln \left(\frac{p_{T_{1} 1}}{p_{T_{1} 0}}\right)+y_{i}\left(1-x_{i}\right) \ln \left(\frac{1-p_{T_{1} 1}}{1-p_{T_{1} 0}}\right)+\left(1-y_{i}\right) x_{i} \ln \left(\frac{p_{T_{2} 1}}{p_{T_{2} 0}}\right)+\left(1-y_{i}\right)\left(1-x_{i}\right) \ln \left(\frac{1-p_{T_{2} 1}}{1-p_{T_{2} 0}}\right)\right]$
$=\mathrm{S}_{\mathrm{T}_{1}(\mathrm{~N})} \ln \left(\frac{\mathrm{p}_{\mathrm{T}_{1} 1}}{\mathrm{p}_{\mathrm{T}_{1} 0}}\right)+\mathrm{F}_{\mathrm{T}_{1}(\mathrm{~N})} \ln \left(\frac{1-\mathrm{p}_{\mathrm{T}_{1} 1}}{1-\mathrm{p}_{\mathrm{T}_{1} 0}}\right)+\mathrm{S}_{\mathrm{T}_{2}(\mathrm{~N})} \ln \left(\frac{\mathrm{p}_{\mathrm{T}_{2} 1}}{\mathrm{p}_{\mathrm{T}_{2} 0}}\right)+\mathrm{F}_{\mathrm{T}_{2}(\mathrm{~N})} \ln \left(\frac{1-\mathrm{p}_{\mathrm{T}_{2} 1}}{1-\mathrm{p}_{\mathrm{T}_{2} 0}}\right)$.

4.2 Some properties

Assuming that Condition 1 below holds we will show Proposition 4.1, the correspondence for Proposition 3.2. This implies Proposition 3.1, which implies Proposition 3.3.

Condition 1:

$$
\begin{gathered}
P\left(Y_{i+1}=1 \mid N>i\right) \leq P\left(Y_{i+2}=1 \mid N>i, Y_{i+1}=1, X_{i+1}=1\right) \leq \ldots \\
\leq P\left(Y_{i+m}=1 \mid N>i,\{Y\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) \\
\text { and } \\
P\left(Y_{i+1}=0 \mid N>i\right) \leq P\left(Y_{i+2}=0 \mid N>i, Y_{i+1}=0, X_{i+1}=1\right) \leq \ldots \\
\leq P\left(Y_{i+m}=0 \mid N>i,\{Y\}_{i+1}^{i+m-1}=\{0\}_{i+1}^{i+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) \\
, \forall m
\end{gathered}
$$

Proposition 4.1 : If Condition 1 is satisfied, then $\mathrm{P}(\mathrm{N}<\infty)=1$.

Proof : The following is true for all values of i.
Let $\mathrm{m}=\left[\frac{\mathrm{a}-\mathrm{b}}{\mathrm{t}}\right]+1$, where $\mathrm{t}=\min \left[\begin{array}{l}\text { the absolute values of the possible } \\ \text { increases of log likelihood, in one step }\end{array}\right]$.
By assumptions $\mathrm{p}_{\mathrm{T}_{1} 0} \neq \mathrm{p}_{\mathrm{T}_{1} 1}$ and $\mathrm{p}_{\mathrm{T}_{2} 0} \neq \mathrm{p}_{\mathrm{T}_{2} 1}$, we have that

$$
\mathrm{t}=\min \left[\left|\ln \left(\frac{\mathrm{p}_{\mathrm{T}_{1} 1}}{\mathrm{p}_{\mathrm{T}_{1} 0}}\right)\right|, \ln \left(\frac{1-\mathrm{p}_{\mathrm{T}_{1} 1}}{1-\mathrm{p}_{\mathrm{T}_{1} 0}}\right),\left|\ln \left(\frac{\mathrm{p}_{\mathrm{T}_{2} 1}}{\mathrm{p}_{\mathrm{T}_{2} 0}}\right)\right|, \ln \left(\frac{1-\mathrm{p}_{\mathrm{T}_{2} 1}}{1-\mathrm{p}_{\mathrm{T}_{2} 0}}\right)\right]>0 .
$$

Let us denote

$$
\mathrm{C}_{\mathrm{T}_{1}, i+1}=\left\{\left(\mathrm{Y}_{\mathrm{i}+1}=1, \mathrm{X}_{\mathrm{i}+1}=1\right), \ldots,\left(\mathrm{Y}_{\mathrm{i}+\mathrm{m}}=1, \mathrm{X}_{\mathrm{i}+\mathrm{m}}=1\right)\right\}
$$

and

$$
\mathrm{C}_{\mathrm{T}_{2}, i+1}=\left\{\left(\mathrm{Y}_{\mathrm{i}+1}=0, \mathrm{X}_{\mathrm{i}+1}=1\right), \ldots,\left(\mathrm{Y}_{\mathrm{i}+\mathrm{m}}=0, \mathrm{X}_{\mathrm{i}+\mathrm{m}}=1\right)\right\} .
$$

Therefore

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{C}_{\mathrm{T}_{1}, i+1} \cup \mathrm{C}_{\mathrm{T}_{2}, i+1} \mid \mathrm{N}>\mathrm{i}\right)=\mathrm{P}\left(\mathrm{C}_{\mathrm{T}_{1}, i+1} \mid \mathrm{N}>\mathrm{i}\right)+\mathrm{P}\left(\mathrm{C}_{\mathrm{T}_{2}, i+1} \mid \mathrm{N}>\mathrm{i}\right) \\
& =P\left(Y_{i+1}=1 \mid N>i\right) P\left(X_{i+1}=1 \mid Y_{i+1}=1\right) \\
& * \prod_{\mathrm{j}=2}^{\mathrm{m}} \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+\mathrm{j}}=1 \mid \mathrm{N}>\mathrm{i},\{\mathrm{Y}\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{j}-1}=\{1\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{j}-1},\{\mathrm{X}\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{j}-1}=\{1\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{j}-1}\right) \mathrm{P}\left(\mathrm{X}_{\mathrm{i}+\mathrm{j}}=1 \mid \mathrm{Y}_{\mathrm{i}+\mathrm{j}}=1\right) \\
& +\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=0 \mid \mathrm{N}>\mathrm{i}\right) \mathrm{P}\left(\mathrm{X}_{\mathrm{i}+\mathrm{j}}=1 \mid \mathrm{Y}_{\mathrm{i}+1}=0\right) \\
& * \prod_{j=2}^{m} P\left(Y_{i+j}=0 \mid N>i,\{Y\}_{i+1}^{i+j-1}=\{0\}_{i+1}^{i+j-1},\{X\}_{i+1}^{i+j-1}=\{1\}_{i+1}^{i+j-1}\right) P\left(X_{i+j}=1 \mid Y_{i+j}=0\right) .
\end{aligned}
$$

As a result of Condition 1 we obtain

$$
\mathrm{P}\left(\mathrm{C}_{\mathrm{T}_{\mathrm{i}}, i+1} \cup \mathrm{C}_{\mathrm{T}_{2}, i+1} \mid \mathrm{N}>\mathrm{i}\right) \geq \begin{cases}\left(\frac{1}{2} \mathrm{p}_{\mathrm{T}_{1}}\right)^{\mathrm{m}} & \text { if } \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=1 \mid \mathrm{N}>\mathrm{i}\right) \geq \frac{1}{2} \\ \left(\frac{1}{2} \mathrm{p}_{\mathrm{T}_{2}}\right)^{\mathrm{m}} & \text { if } \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=0 \mid \mathrm{N}>\mathrm{i}\right) \geq \frac{1}{2}\end{cases}
$$

and furthermore

$$
\mathrm{P}\left(\mathrm{C}_{\mathrm{T}_{1}, \mathrm{i}+1} \cup \mathrm{C}_{\mathrm{T}_{2}, \mathrm{i}+1} \mid \mathrm{N}>\mathrm{i}\right) \geq \min \left(\left(\frac{1}{2} \mathrm{p}_{\mathrm{T}_{1}}\right)^{\mathrm{m}},\left(\frac{1}{2} \mathrm{p}_{\mathrm{T}_{2}}\right)^{\mathrm{m})}\right.
$$

Note that the events $\mathrm{C}_{\mathrm{T}_{1},+1}$ and $\mathrm{C}_{\mathrm{T}_{2}, i+1}$ are two possible events, but not the only ones, for hitting a boundary in m steps.

Hence,

$$
\begin{aligned}
P(N=\infty) & \leq P\left(N>n_{0}+m, N>n_{0}+2 m, \ldots\right)=\lim _{r \rightarrow \infty} P\left(N>n_{0}+m\right) \prod_{j=2}^{r} P\left(N>n_{0}+j m \mid N>n_{0}+(j-1) m\right) \\
& =\lim _{r \rightarrow \infty}\left(1-P\left(N \leq n_{0}+m\right)\right) \prod_{j=2}^{r}\left(1-P\left(N \leq n_{0}+j m \mid N>n_{0}+(j-1) m\right)\right) \\
& \leq \lim _{r \rightarrow \infty} \prod_{j=2}^{r}\left(1-P\left(C_{A, n_{0}+(j-1) m+1} \cup C_{B, n_{0}+(j-1) m+1} \mid N>n_{0}+(j-1) m\right)\right) \\
& \leq \lim _{r \rightarrow \infty}\left(1-\min \left[\left(\frac{1}{2} p_{A}\right)^{m},\left(\frac{1}{2} p_{B}\right)^{m}\right]\right)^{r-1}=0 .
\end{aligned}
$$

We then have that

$$
\mathrm{P}(\mathrm{~N}=\infty) \leq 0,
$$

and hence

$$
\mathrm{P}(\mathrm{~N}<\infty)=1 .
$$

Above it was proved that $\mathrm{P}(\mathrm{N}<\infty)=1$, under Condition 1. This implies Proposition 3.1. We can now construct the SPRT in the same way as the original Wald's SPRT.

4.3 Properties when using RPW and MPW

In the subsections, 4.3.1 and 4.3.2, we show that Condition 1 is satisfied for RPW and MPW, and for PW which is identical to MPW in the case of immediate responses.

4.3.1 RPW

At the start of the experiment we have ω balls representing each treatment in the urn. When receiving a response ρ balls are added to the urn : balls of type T_{1} if we received a success for treatment T_{1} or a failure for treatment T_{2} and balls of type T_{2} if we received a failure for treatment T_{1} or a success for treatment T_{2}.
In the RPW case the probability of allocating a patient to treatment T_{1} is

$$
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}}=1\right)=\frac{\omega+\rho\left(\mathrm{S}_{\mathrm{T}_{1}(\mathrm{i}-1)}+\mathrm{F}_{\mathrm{T}_{2}(i-1)}\right)}{2 \omega+\rho(\mathrm{i}-1)} .
$$

To see that Condition 1 is satisfied for the RPW allocation we need to check both inequalities. To show that the first one holds we first write

$$
\begin{aligned}
P\left(Y_{i+1}=1 \mid N>i\right) & =\frac{P\left(Y_{i+1}=1 \mid N>i\right)(2 \omega+\rho i)+\rho P\left(Y_{i+1}=1 \mid N>i\right)}{(2 \omega+\rho(i+1))} \\
& \leq \frac{P\left(Y_{i+1}=1 \mid N>i\right)(2 \omega+\rho i)+\rho}{(2 \omega+\rho(i+1))} \\
& =P\left(Y_{i+2}=1 \mid N>i, Y_{i+1}=1, X_{i+1}=1\right),
\end{aligned}
$$

and, for $\mathrm{j}=2,3, \ldots$,

$$
\begin{aligned}
& P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+j-1}^{i+m-1}=\{1\}_{i+j-1}^{i+m-1},\{X\}_{i+j-1}^{i+m-1}=\{1\}_{i+j-1}^{i+m-1}\right)= \\
& \frac{P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+1}^{i+j-1}=\{1\}_{i+j}^{i+j-1},\{X\}_{i+1}^{i+j-1}=\{1\}_{i+1}^{i+j-1}\right)(2 \omega+\rho(i+j))}{(2 \omega+\rho(i+j))} \\
& \leq \frac{P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+1}^{i+j-1}=\{1\}_{i+j}^{i+j-1},\{X\}_{i+1}^{i+j-1}=\{1\}_{i+1}^{i+j-1}\right)(2 \omega+\rho(i+j-1))+\rho}{(2 \omega+\rho(i+j))} \\
& =P\left(Y_{i+j+1}^{i}=1 \mid N>i,\{Y\}_{i+1}^{i+j}=\{1\}_{i+j}^{i+j},\{X\}_{i+1}^{i+j}=\{1\}_{i+1}^{i+j}\right) .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=1 \mid \mathrm{N}>\mathrm{i}\right) & \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+2}=1 \mid \mathrm{N}>\mathrm{i}, \mathrm{Y}_{\mathrm{i}+1}=1, \mathrm{X}_{\mathrm{i}+1}=1\right) \leq \ldots \\
& \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+\mathrm{m}}=1 \mid \mathrm{N}>\mathrm{i},\{\mathrm{Y}\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{m}-1}=\{1\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{m}-1},\{X\}_{i+1}^{\mathrm{i}+\mathrm{m}-1}=\{1\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{m}-1}\right)
\end{aligned}
$$

Now, to see the second part of Condition 1, we can write

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=0 \mid \mathrm{N}>\mathrm{i}\right) & \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+2}=0 \mid \mathrm{N}>\mathrm{i}, \mathrm{Y}_{\mathrm{i}+1}=0, \mathrm{X}_{\mathrm{i}+1}=1\right) \leq \ldots \\
& \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+\mathrm{m}}=0 \mid \mathrm{N}>\mathrm{i},\{\mathrm{Y}\}_{\mathrm{i}+1}^{\mathrm{i}+\mathrm{m}-1}=\{0\}_{i+1}^{\mathrm{i}+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) .
\end{aligned}
$$

The above inequality is equivalent to

$$
\begin{aligned}
1-P\left(Y_{i+1}=1 \mid N>i\right. & \leq 1-P\left(Y_{i+2}=1 \mid N>i, Y_{i+1}=0, X_{i+1}=1\right) \leq \ldots \\
& \leq 1-P\left(Y_{i+m}=1 \mid N>i,\{Y\}_{i+1}^{i+m-1}=\{0\}_{i+1}^{i+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) .
\end{aligned}
$$

Note that

$$
\begin{aligned}
P\left(Y_{i+1}=1 \mid N>i\right) & =\frac{P\left(Y_{i+1}=1 \mid N>i\right)(2 \omega+\rho i)+\rho P\left(Y_{i+1}=1 \mid N>i\right)}{(2 \omega+\rho(i+1))} \\
& \geq \frac{P\left(Y_{i+1}=1 \mid N>i\right)(2 \omega+\rho i)}{(2 \omega+\rho(i+1))} \\
& =P\left(Y_{i+2}=1 \mid N>i, Y_{i+1}=0, X_{i+1}=1\right) .
\end{aligned}
$$

Furthermore, for $\mathrm{j}=2,3, \ldots$, we have

$$
\begin{aligned}
& P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+j-1}^{i+m-1}=\{0\}_{i+j-1}^{i+m-1},\{X\}_{i+j-1}^{i+m-1}=\{1\}_{i+j-1}^{i+m-1}\right) \\
& =\frac{P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+1}^{i+j-1}=\{0\}_{i+j}^{i+j-1},\{X\}_{i+1}^{i+j-1}=\{1\}_{i+1}^{i+j-1}\right)(2 \omega+\rho(i+j))}{(2 \omega+\rho(i+j))} \\
& \geq \frac{P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+1}^{i+j-1}=\{0\}_{i+j}^{i+j-1},\{X\}_{i+1}^{i+j-1}=\{1\}_{i+1}^{i+j-1}\right)(2 \omega+\rho(i+j-1))}{(2 \omega+\rho(i+j))} \\
& =P\left(Y_{i+j+1}=1 \mid N>i,\{Y\}_{i+1}^{i+j}=\{0\}_{i+j}^{i+j},\{X\}_{i+1}^{i+j}=\{1\}_{i+1}^{i+j}\right) .
\end{aligned}
$$

and hence,

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=0 \mid \mathrm{N}>\mathrm{i}\right) & \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+2}=0 \mid \mathrm{N}>\mathrm{i}, \mathrm{Y}_{\mathrm{i}+1}=0, \mathrm{X}_{\mathrm{i}+1}=1\right) \leq \ldots \\
& \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+\mathrm{m}}=0 \mid \mathrm{N}>\mathrm{i},\{\mathrm{Y}\}_{i+1}^{i+m-1}=\{0\}_{i+1}^{i+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) .
\end{aligned}
$$

Hence, it is proved that Condition 1, and therefore Propositions 4.1, 3.1 and 3.3, are satisfied for the RPW allocation.

4.3.2 MPW

In the MPW case the probability of allocating a patient to treatment T_{1} equals 1 given that the previous treatment was T_{1} and the response a success or if the previous treatment was T_{2} and the response a failure, and for the probability of allocating a patient to treatment T_{2}, respectively. Therefore it is easy to see that the MPW, and therefore also the PW, satisfies Condition 1, as shown below.

To show that the first inequality of Condition 1 is satisfied we write

$$
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=1 \mid \mathrm{N}>\mathrm{i}\right) \leq 1=\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+2}=1 \mid \mathrm{N}>\mathrm{i}, \mathrm{Y}_{\mathrm{i}+1}=1, \mathrm{X}_{\mathrm{i}+1}=1\right)
$$

and, for $\mathrm{j}=2,3, \ldots$,

$$
\begin{aligned}
& P\left(Y_{i+j}=1 \mid N>i,\{Y\}_{i+j-1}^{i+m-1}=\{1\}_{i+j-1}^{i+m-1},\{X\}_{i+j-1}^{i+m-1}=\{1\}_{i+j-1}^{i+m-1}\right) \\
& =P\left(Y_{i+j}=1 \mid N>i, Y_{i+j-1}=1, X_{i+j-1}=1\right)=1 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
P\left(Y_{i+1}=1 \mid N>i\right) & \leq P\left(Y_{i+2}=1 \mid N>i, Y_{i+1}=1, X_{i+1}=1\right) \leq \ldots \\
& \leq P\left(Y_{i+m}=1 \mid N>i,\{Y\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) .
\end{aligned}
$$

To show that the second part of Condition 1 holds, we note that

$$
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=0 \mid \mathrm{N}>\mathrm{i}\right) \leq 1=\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+2}=0 \mid \mathrm{N}>\mathrm{i}, \mathrm{Y}_{\mathrm{i}+1}=0, \mathrm{X}_{\mathrm{i}+1}=1\right)
$$

and, for $\mathrm{j}=2,3, \ldots$,

$$
\begin{aligned}
& P\left(Y_{i+j}=0 \mid N>i,\{Y\}_{i+j-1}^{j+m-1}=\{0\}_{i+j-1}^{i+m-1},\{X\}_{i+j-1}^{i+m-1}=\{1\}_{i+j-1}^{i+m-1}\right) \\
& =P\left(Y_{i+j}=0 \mid N>i, Y_{i+j-1}=0, X_{i+j-1}=1\right)=1 .
\end{aligned}
$$

Hence,

$$
\begin{aligned}
\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+1}=0 \mid \mathrm{N}>\mathrm{i}\right) & \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+2}=0 \mid \mathrm{N}>\mathrm{i}, \mathrm{Y}_{\mathrm{i}+1}=0, \mathrm{X}_{\mathrm{i}+1}=1\right) \leq \ldots \\
& \leq \mathrm{P}\left(\mathrm{Y}_{\mathrm{i}+\mathrm{m}}=0 \mid \mathrm{N}>\mathrm{i},\{\mathrm{Y}\}_{i+1}^{i+m-1}=\{0\}_{i+1}^{i+m-1},\{X\}_{i+1}^{i+m-1}=\{1\}_{i+1}^{i+m-1}\right) .
\end{aligned}
$$

Therefore, Condition 1 is satisfied also for the MPW allocation rule.

5 Comparison of three allocation rules

We know that the $\operatorname{RPW}(\omega, \rho)$ allocates more patients to the treatment that, during the experiment, seems to be better. We would also like to know if the $\operatorname{RPW}(\omega, \rho)$ allocates fewer patients to the inferior treatment, than to the treatment superior in reality.

Each allocation to the treatment inferior in reality can be viewed as a loss. It is therefore of interest to minimize the number of patients allocated to that treatment.

Another important question is how the expected sample size behaves when one uses an $\operatorname{RPW}(\omega, \rho)$ allocation, compared to other allocation rules.

We compare the $\operatorname{RPW}(\omega, \rho)$ with the MPW and with total randomization, TR. TR is the simplest randomized allocation rule used and it satisfies the requirements for Wald's SPRT (independent identical distributed random variables). MPW, on the other hand, is one of the simplest play-the-winner allocation rules, but given that the response from the previous patient is known, the next allocation is deterministic. $\operatorname{RPW}(\omega, \rho)$ is response dependent, but not deterministic.

We study the differences between the allocation rules by means of the expected sample size, $\mathrm{E}[\mathrm{N}]$, and the expected number of patients allocated to the inferior treatment, $E\left[N_{B}\right]$. These expectations are complicated to compute for the MPW and RPW, since we do not have independent and identically distributed random variables. The probability that patient i is allocated to treatment T_{1} depends on all the earlier allocations and responses. Simulations were therefore conducted to investigate the behavior of the expected values $\mathrm{E}[\mathrm{N}]$ and $\mathrm{E}\left[\mathrm{N}_{\mathrm{B}}\right]$.

5.1 Description of the simulation study

The RPW was simulated with five different combinations of the parameters ω and ρ, namely RPW $(100.000,1), \operatorname{RPW}(10,1), \operatorname{RPW}(1,1), \operatorname{RPW}(1,10)$ and RPW $(1,100.000)$.

At the start of the experiment the allocation probability is $1 / 2$ for each treatment, for every value on ω and ρ. The larger the ratio $\frac{\rho}{\omega}$ is, the faster the response affects the allocation probability.

Large response dependency, in the early states of the experiment, could be hard to get accepted when the allocation rule is used in a real practical setting, but to get a good understanding of how the RPW allocation behaves, extreme response dependency is included.

As ω increases the RPW gets closer to total randomization. High values of ω let the play-the-winner quality come slower into the experiment. Correspondingly for ρ, the RPW gets closer to the MPW as ρ increases.

For each of the three allocation rules two different hypothesis cases were tested, namely

$$
\text { 1. } \mathrm{H}_{0}: \mathrm{p}_{\mathrm{T}_{1}}=\mathrm{p}_{\mathrm{T}_{2}}=0.7 \text { versus } \mathrm{H}_{1}: \mathrm{p}_{\mathrm{T}_{1}}=0.8, \mathrm{p}_{\mathrm{T}_{2}}=0.6
$$

and
2. $\mathrm{H}_{0}: \mathrm{p}_{\mathrm{T}_{1}}=\mathrm{p}_{\mathrm{T}_{2}}=0.6$ versus $\mathrm{H}_{1}: \mathrm{p}_{\mathrm{T}_{1}}=0.8, \mathrm{p}_{\mathrm{T}_{2}}=0.4$.

Hypothesis case 1. represents a small treatment difference while 2. represents a larger treatment difference. Simulations were done in these two cases both under the assumption that H_{0} is false and H_{1} is true and under the assumption that H_{0} is true and H_{1} is false.

We used Wald's sequential probability ratio test, with significance level $\alpha=0.05$ and power under the alternative $1-\beta=0.95$.

The true significance level α^{*} and the true power under the alternative $1-\beta^{*}$ are bounded as below (see equation 3.2.1 and equation 3.2.2).

Hypothesis case 1 :

$$
\begin{gathered}
0.0375 \approx \frac{54}{1441} \leq \alpha^{*} \leq \frac{55}{1081} \approx 0.0509 \\
0.9493 \approx \frac{4104}{4323} \leq 1-\beta^{*} \leq \frac{1045}{1081} \approx 0.9667
\end{gathered}
$$

Hypothesis case 2 :

$$
\begin{gathered}
0.0333 \approx \frac{36}{1081} \leq \alpha^{*} \leq \frac{37}{721} \approx 0.0513 \\
0.9491 \approx \frac{1026}{1081} \leq 1-\beta^{*} \leq \frac{703}{721} \approx 0.9750
\end{gathered}
$$

For each of the four cases, two hypothesis under two different assumptions, 500.000 independent experiments were simulated.

5.2 Results of the simulations

For Hypothesis case 1. (see figure 1), the sample sizes were about the same for total randomization and $\operatorname{RPW}(100.000,1)$. The sample size seems to decrease with decreasing ω. Values of ρ seem not to affect the sample size in a major way: when ω is held constant , $\omega=1$, and ρ is increasing there is no difference in sample size for the chosen values of ρ.

The results for Hypothesis case 2. were similar, see figure 2, but the differences in the average sample sizes were so small that they are perhaps not of practical importance.

Figure 1 The mean, and two times the standard errors, of the sample sizes from the 500.000 simulations of hypothesis case 1 , for the different allocation rules. On the x axis the following allocation rules are represented: TR, $\operatorname{RPW}(1000.000,1)$, $\operatorname{RPW}(10,1), \operatorname{RPW}(1,1), \operatorname{RPW}(1,10)$, RPW(1,100.000), MPW. Furthermore, a represents the situation when H_{1} is true and b the one when H_{0} is true.

$$
\mathrm{H} 0: \mathrm{pa}=\mathrm{pb}=0.7, \mathrm{H} 1: \mathrm{pa}=0.8, \mathrm{pb}=0.6
$$

Allocation rule

Figure 2 The mean, and two times the standard errors, of the sample sizes from the 500.000 simulations of hypothesis case 2 , for the different allocation rules. On the x axis the following allocation rules are represented: TR, RPW $(1000.000,1)$, RPW(10,1), RPW(1,1), RPW(1,10), RPW(1,100.000), MPW. Furthermore, a represents the situation when H_{1} is true and b the one when H_{0} is true.

$$
\mathrm{H} 0: \mathrm{pa}=\mathrm{pb}=0.6, \mathrm{H} 1: \mathrm{pa}=0.8, \mathrm{pb}=0.4
$$

Note that the sample size follows approximately the same pattern both under the null hypothesis and under the alternative hypothesis, but that it is a little smaller under the null hypothesis. That is, the sample size is smaller when the treatments are as good than when there is a true difference between them.

Note that treatment T_{2} is the inferior treatment when there is a treatment difference.
The behavior of the number of patients allocated to treatment T_{2} follows a different pattern than the sample size, see figures 3 and 4, except for total randomization and RPW(100.000,1). These two allocation rules behave quite similarly, and they are the allocation rules that allocate more patients to treatment T_{2} than the others, both when T_{2} is inferior and equal to T_{1}.

When there is a treatment difference MPW seems to allocate the least number of patients to treatment T_{2}, and the number of patients allocated to the inferior treatment decreases with increasing $\frac{\rho}{\omega}$, which was expected.

When there is no difference between the treatments one could think that the number of allocations to treatments T_{1} and T_{2} would be the same. This is true for the total randomization and for the $\operatorname{RPW}(100.000,1)$ allocation. On the other hand, the other four RPW allocations and the MPW allocation still allocate fewer patient to treatment T_{2} than to T_{1}. This can be understood by looking at the Wald statistic for the RPW and the MPW and by remembering that we have simple hypothesis. Note that because of the simple alternative it is enough that the data shows that one of the statements, $p_{A}=0.7, p_{B}=0.7, p_{A}=0.8$ or $p_{B}=0.6$, is not true, to be able to either accept or reject H_{0}. This is an interesting and important fact: if we want to test $H_{0}: p_{A}=p_{B}=0.7$ it is not fair towards H_{0} to have a simple alternative unless this simple hypothesis and the simple alternative are the only likely truths.

Figure 3. The mean, and two times the standard errors, of the 500.000 simulations of hypothesis case 1 , for the sample sizes from the different allocation rules. On the x axis the following allocation rules are represented: TR, RPW $(1000.000,1)$, RPW (10,1), RPW(1,1), RPW(1,10), RPW(1,100.000), MPW. Furthermore, a represents the situation when H_{1} is true and b the one when H_{0} is true.

Allocation rule

Figure 4 The mean, and two times the standard errors, of the 500.000 simulations of hypothesis case 2, the sample sizes from for the different allocation rules. On the xaxis the following allocation rules are represented: TR, $\operatorname{RPW}(1000.000,1)$, $\operatorname{RPW}(10,1), \operatorname{RPW}(1,1), \operatorname{RPW}(1,10), \operatorname{RPW}(1,100.000)$, MPW. Furthermore, a represents the situation when H_{1} is true and b the one when H_{0} is true.

For all allocation rules the true significance level and the true power under the alternative are close to the intended quantities (see the tables in the appendix). Note also that for all allocation rules the standard errors of the expected values seems to be small (see the figures and the tables in the appendix).

Some interesting remarks are that the RPW gets closer to total randomization as ω increases, and for small treatment differences the sample size is larger for total randomization than for the allocations with response dependency, even under H_{0}. It means that even if there is no treatment difference we obtain a smaller sample size by using a response dependent allocation rule rather than the total randomization.
For large treatment differences the sample sizes are about the same for all allocation rules compared, but there is a large difference in the number of patients allocated to the inferior treatment.
Note also that for the case with less treatment difference, $p_{A}=0.8$ and $p_{B}=0.6$, the actual number of patients allocated to the inferior treatment differs more between the
allocation rules than in the case with greater treatment difference, $p_{A}=0.8$ and $p_{B}=0.4$.

6 Discussion

Wald's sequential probability ratio test is originally presented for independent and identically distributed random variables. As shown in Section 4 some important properties of the test, hold for a certain class of response dependent allocation rules, like RPW and the MPW.

We compare the RPW allocation rule to the MPW allocation rule and to total randomization. Two important questions are the expected sample size and the number of patients allocated to the treatment inferior in reality. However, both expectations are hard to derive theoretically, and, thus, they were estimated by simulations.

Regarding the expected sample size and the expected number of patients allocated to the inferior treatment, the MPW is slightly better than the others, for the cases studied, and after the MPW comes the RPW. There are, however, some negative characteristics of the MPW to be considered. The MPW allocation is non-random in the following sense: Given that the response from the previous patient is known, the next allocation is deterministic. In addition, the MPW requires immediate responses.

Non-randomness could, for example, lead to selection bias. By selection bias we mean that when the experimenter knows for certain which treatment will be assigned to the next patient he may, consciously or unconsciously, bias the experiment by deciding beforehand who is or is not a suitable experimental subject.

One could argue that the disadvantages, non-randomness and immediate responses, could be solved by using Zelen's PW allocation. It allocates the treatments with probability $1 / 2$ if there are a lot of delayed responses, and it tends to be close to the MPW allocation if there are few delayed responses.

The $\operatorname{RPW}(\omega, \rho)$ allocation rule ($\operatorname{RPW}(10,1), \operatorname{RPW}(1,1), \operatorname{RPW}(1,10), \operatorname{RPW}(1,100.000))$ was quite good, both in terms of the expected sample size and in terms of minimizing the number of patients allocated to the inferior treatment, and it does not have the disadvantages of Zelen's MPW allocation rules mentioned above.

A general remark on the comparisons, in the cases with simple hypotheses, shown here, is that if the responses are allowed to affect the allocation enough the play-thewinner rules not only decrease the number of patients allocated to the inferior
treatment, but also decrease the sample size, compared to the total randomization. For the $\operatorname{RPW}(1,1)$ and for the rules with even more response dependence, the simulations indicated the statement above.

ACKNOWLEDGMENTS

I would like to thank my supervisor Sture Holm, for supporting and guiding me in this work. I also would like to thank Göran Broström, for sharing his knowledge about FORTRAN, and Aila Särkkä for valuable comments on the draft manuscript.

APPENDIX

In the tables to follow the arithmetic mean and the standard error of the mean, of the simulated values, is given for $\mathrm{N}, \mathrm{N}_{\mathrm{B}}$ and $\mathrm{P}_{\mathrm{H}_{1}}\left(\right.$ rej. $\left.\mathrm{H}_{0}\right)$.

Table 1:
$H_{0}: p_{A}=p_{B}=0.7$ versus $H_{1}: p_{A}=0.8, p_{B}=0.6$ when H_{0} false and H_{1} true.

	$\mathrm{P}(\mathrm{Y}=1)=1 / 2$	$\begin{gathered} \text { RPW } \\ (100.000,1) \end{gathered}$	$\begin{aligned} & \hline \text { RPW } \\ & (10,1) \end{aligned}$	$\begin{aligned} & \hline \text { RPW } \\ & (1,1) \end{aligned}$	$\begin{aligned} & \hline \text { RPW } \\ & (1,10) \end{aligned}$	$\begin{gathered} \text { RPW } \\ (1,100.000) \end{gathered}$	MPW
E [N]	114.82	114.76	113.53	112.69	112.55	112.42	110.77
$\sqrt{\hat{\sigma}_{\hat{\mathrm{E}}[\mathrm{N}]}}$	0.12	0.12	0.11	0.11	0.11	0.11	0.11
$\hat{\mathrm{E}}[\mathrm{Nb}]$	57.40	57.39	49.51	44.64	42.97	42.58	38.46
$\sqrt{\hat{\sigma}_{\hat{E}[N b]}}$	0.06	0.06	0.05	0.05	0.05	0.05	0.04
$\hat{\mathrm{P}}_{\mathrm{H}_{1}}\left(\mathrm{rej} . \mathrm{H}_{0}\right)$	0.955872	0.955538	0.955976	0.955760	0.956034	0.955692	0.952918
$\sqrt{\hat{\sigma}_{\hat{P}_{H_{1}}\left(r e j \cdot H_{0}\right)}}$	0.000290	0.000292	0.000290	0.000291	0.000290	0.000291	0.000299

Table 2 :

$H_{0}: p_{A}=p_{B}=0.7$ versus $H_{1}: p_{A}=0.8, p_{B}=0.6$ when H_{0} true and H_{1} false.

	$\mathrm{P}(\mathrm{Y}=1)=1 / 2$	$\begin{gathered} \text { RPW } \\ (100.000,1) \end{gathered}$	$\begin{aligned} & \hline \text { RPW } \\ & (10,1) \end{aligned}$	$\begin{aligned} & \hline \text { RPW } \\ & (1,1) \end{aligned}$	$\begin{aligned} & \hline \text { RPW } \\ & (1,10) \end{aligned}$	$\begin{gathered} \text { RPW } \\ (1,100.000) \end{gathered}$	MPW
$\hat{E}[\mathrm{~N}]$	112.37	112.32	111.51	111.10	111.03	111.12	109.41
$\hat{\sigma}_{\hat{E}[\mathrm{~N}]}$	0.12	0.12	0.11	0.11	0.11	0.11	0.11
$\hat{\mathrm{E}}[\mathrm{Nb}]$	56.19	56.15	52.97	51.82	51.53	51.52	53.34
$\hat{\sigma}_{\hat{E}[\text { [N] }]}$	0.06	0.06	0.05	0.05	0.05	0.05	0.04
$\hat{\mathrm{P}}_{\mathrm{H}_{1}}\left(\mathrm{rej} . \mathrm{H}_{0}\right.$	0.045782	0.045936	0.045710	0.045922	0.046012	0.046292	0.047334
$\hat{\mathrm{O}}_{\hat{\mathrm{H}}_{1}\left(\mathrm{rcj} . \mathrm{H}_{0}\right)}$	0.000296	0.000296	0.000295	0.000296	0.000296	0.000297	0.000300

Table 3 :
$\mathrm{H}_{0}: \mathrm{p}_{\mathrm{A}}=\mathrm{p}_{\mathrm{B}}=0.6$ versus $\mathrm{H}_{1}: \mathrm{p}_{\mathrm{A}}=0.8, \mathrm{p}_{\mathrm{B}}=0.4$ when H_{0} false and H_{1} true.

	$\mathrm{P}(\mathrm{Y}=1)=1 / 2$	RPW $(100.000,1)$	RPW $(10,1)$	RPW $(1,1)$	RPW $(1,10)$	RPW $(1,100.000)$	MPW
$\hat{\mathrm{E}}[\mathrm{N}]$	33.34	33.33	32.94	32.52	32.30	32.30	31.88
$\hat{\sigma}_{\hat{\mathrm{E}[\mathrm{N}]}}$	0.03	0.03	0.03	0.03	0.03	0.03	0.03
$\hat{\mathrm{E}}[\mathrm{Nb}]$	16.66	16.67	14.15	11.42	10.24	10.03	9.12
$\hat{\sigma}_{\hat{\mathrm{E}}[\mathrm{Nb}]}$	0.02	0.01	0.01	0.01	0.01	0.01	0.01
$\hat{\mathrm{P}}_{\mathrm{H}_{1}}\left(\right.$ rej. H_{0}	0.959464	0.959676	0.959786	0.959530	0.960056	0.959102	0.957672
$\hat{\sigma}_{\hat{\mathrm{P}}_{1}\left(\mathrm{rej} . \mathrm{H}_{0}\right)}$	0.000279	0.000278	0.000278	0.000279	0.000277	0.000280	0.000284

Table 4 :
$H_{0}: p_{A}=p_{B}=0.6$ versus $H_{1}: p_{A}=0.8, p_{B}=0.4$ when H_{0} true and H_{1} false.

	$\mathrm{P}(\mathrm{Y}=1)=1 / 2$	$\begin{gathered} \hline \text { RPW } \\ (100.000,1) \end{gathered}$	$\begin{aligned} & \hline \text { RPW } \\ & (10,1) \end{aligned}$	$\begin{aligned} & \hline \text { RPW } \\ & (1,1) \end{aligned}$	$\begin{aligned} & \hline \text { RPW } \\ & (1,10) \end{aligned}$	$\begin{gathered} \text { RPW } \\ (1,100.000) \end{gathered}$	MPW
$\hat{E}[\mathrm{~N}]$	31.26	31.34	31.08	30.82	30.79	30.85	30.46
$\hat{\sigma}_{\hat{E}[\mathrm{~N}]}$	0.03	0.03	0.03	0.03	0.03	0.03	0.03
$\hat{E}[\mathrm{Nb}]$	15.29	15.66	14.62	13.84	13.68	13.69	14.27
$\hat{\sigma}_{\hat{E}[\text { [Nb] }}$	0.03	0.02	0.01	0.01	0.01	0.01	0.01
$\hat{\mathrm{P}}_{\mathrm{H}_{1}}\left(\mathrm{rej} . \mathrm{H}_{0}\right.$	0.042368	0.042310	0.042254	0.04288	0.042574	0.04342	0.042822
$\hat{\sigma}_{\hat{\mathrm{P}}_{1}\left(\text { rej } \mathrm{H}_{0} \text {) }\right.}$	0.000285	0.000285	0.000285	0.000286	0.000285	0.000288	0.000286

REFERENCES

BEGG, B. (1990). On inference from Wei's biased coin design for clinical trials. Biometrika. 77, 467-84

GHOSH. (1970). Sequential tests of statistical hypotheses. Addison-Wesley.
HOLM, S. (1990). Unpublished lecture notes. Department of Mathematics, Chalmers University of Technology and University of Göteborg.

SIEGMUND, D. (1985). Sequential analysis. Tests and confidence intervals. SpringerVerlag.

WEI, L.J. (1988). Exact two-sample permutation test based on the RPW. Biometrika. 75, 603-6

WEI, L.J. \& DURHAM, S. (1978). The randomized play-the-winner rule in medical trials. J. Am. Statist. Ass. 73, 830-43.

WEI, L.J., SMYTHE, R.T., LIN, D.Y. \& PARK, T.S. (1990). Statistical Inference With Data-Dependent Allocation Rules. J. Am. Statist. Ass. 85, 156-62.

ZELEN, M. (1969). Play-the-winner rule and the controlled clinical trial. J. Am. Statist. Ass. 64, 131-46

Research Report

$1994: 1$	Frisén, M	Statistical surveillance of business cycles.
1994:2	Frisén, M	Characterization of methods for surveillance by optimality.
1994:3	 Cassel, C	Visual evaluations of statistical surveillance.
$1994: 4$	Ekman, C	A comparison of two designs for estimating a second order surface with a known maximum.
$1994: 5$	Palaszewski, B	Comparing power and multiple significance level for step up and step down multiple test procedures for correlated estimates.
$1994: 6$	Åkermo, G	Constant predictive value of an alarm.
$1994: 7$	Åkermo, G	On performance of methods for statistical surveillance.
$1994: 8$	Palaszewksi, B	An abstract bootstrap based step down test procedure for testing correlated coefficients in
linear models.		

