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Abstract 

Multitype spatial point patterns with hierarchical interactions are considered. Here hier
archical interaction means directionality: Points on a higher level of hierarchy affect the 
locations of points on the lower levels, but not vice versa. Such relations are common, for 
example, in ecological communities. 

Interacting point patterns are often modelled by Gibbs processes with pairwise 
interactions. However, these models are inherently symmetric, and the hierarchy can be 
acknowledged only when interpreting the results. We suggest the following trick allowing 
the inclusion of the hierarchical structure in the model. Instead of regarding the pattern as 
a realisation of a stationary multivariate point process, we build the pattern one type at a 
time according to the order of the hierarchy by using non-stationary univariate processes. 
As interactions connected to points x on a certain level are considered, the effect of the 
higher levels is interpreted as heterogeneity of the pattern x and the points on the lower 
levels are neglected owing to the hierarchical structure. 

Key words: Hierarchical interaction; Multitype point patterns; Non-stationary Gibbs point 
processes; Maximum likelihood estimation; Maximum pseudolikelihood estimation. 

1 Introduction 

We consider multitype spatial point patterns with interactions both within 
and between the types. Furthermore, we assume that the interaction between 
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the types is hierarchical: The points on a higher level of hierarchy affect the 
locations of the points on the lower levels, but not vice versa. For example, let 
us think of nest sites of two territorial animal species, one large and another 
small. If the smaller ones avoid the individuals of the large species but the 
large choose their nest sites independently of the smaller ones, we have a 
hierarchical interaction described above. Such relationships are common, for 
instance, in ecological communities. 

Some work on hierarchical interactions in spatial context does exist. Ford 
and Diggle (1981) model interaction between neighbouring plants as a spatial 
process taking the plant height into account. The interaction is regarded one
sided so that tall plants suppress small plants. Renshaw (1984) studies the 
same data by using two-dimensional spectral analysis. He has an example 
of a one-sided competition process. Mugglestone and Renshaw (1996) define 
cross-spectral functions, called gain spectra, which can be used if a causal 
relationship between the components of a bivariate process is suspected. 

We would like to model interactions within and between types by apply
ing point processes. A natural model for patterns with interacting objects is 
a Gibbs point process (see e.g. Diggle, 1983, or Stoyan et al., 1995). Each 
type of association can be described using an interaction function, usually 
parametric, and in order to find out the strength and the range of interaction
which are the ordinary targets-the respective unknown parameters are esti
mated. Gibbs models, however, assume symmetric interactions: If a point x 
affects the location of another point y, then also y equally affects x. The hier
archy can be taken into account only when interpreting the obtained results, 
not already in the modelling phase. In practice this means, for example, 
that the observed repulsion between two species is thought being due to the 
tendency of the lower level points to avoid the dominating points. 

Though we did not see how to include hierarchy into a Gibbs model, 
we can use Gibbs models as a basis to build a hierarchical system. Instead 
of regarding the pattern as a realisation of a stationary multivariate Gibbs 
process, we suggest to model the subpatterns type by type as realisations of 
non-stationary univariate processes. As interactions connected to points of 
a certain level are considered, the effect of the higher levels is interpreted as 
heterogeneity of this subpattern while the effect of the points on the lower 
level is neglected since they are not supposed to affect the higher levels. On 
the highest level the pattern is assumed to be a realisation of a stationary 
univariate Gibbs process. 
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The paper is organised as follows. In Chapter 2 we first recall the mul
tivariate Gibbs point process model and then construct a new model for 
hierarchical systems. Interaction parameters for a hierarchical model can be 
estimated by using means developed for Gibbs point processes. The max
imum likelihood (ML) method and the maximum pseudolikelihood (MPL) 
method are discussed in Chapter 3. We made a simulation study with hier
archical Strauss models to compare the performance of the two approaches, 
the traditional symmetric Gibbs model and our hierarchical model. Both 
the ML and the MPL estimation methods are applied. The results are pre
sented in Chapter 4. In Chapter 5 we assess the interactions of a two species 
ant community (cf. Harkness and Isham, 1983) by modelling their nest site 
patterns according to a hierarchical model. 

2 Two models for interaction 

Let us assume that in a bivariate pattern the points of type A are completely 
indifferent to the points of type B, but that the locations of the A points 
affect the locations of the B points. We are interested in estimating the 
strength and range of each kind of interaction within and between the types. 

2.1 Pairwise interaction model 

Multivariate Gibbs point processes are a basic tool in modelling patterns 
which consist of several types of interacting points. Characteristic for Gibbs 
processes is that points interact mutually only if they are "neighbours". The 
neighbourhood relation can be defined in several ways; we assume that the 
interaction is due to the locations and types of the points. The neighbour
hood relation is symmetric: If a point x is a neighbour to another point y, 
then also y is a neighbour to x. 

When introducing Gibbs processes it is necessary to make a distinction 
between a finite point process defined in a bounded subset of R2 and an 
infinite point process in R2. Finite processes are simpler but they can not 
be stationary due to edge effects. We consider point processes defined on a 
torus W (a bounded rectangle in R2 with opposite edges identified). Hence 
we have both the simplicity of finite point processes and the stationarity of 
the infinite ones. 
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We restrict ourselves to stationary and isotropic bivariate point processes 
with pairwise interactions. Generalisation to k types of points is obvious. 
The density of a bivariate pairwise interaction process (with respect. to the 
corresponding measure P) in W is given by 

f(x) = f(XA U XB) = 

_1_ bn(A)bn(B) II h ( ) 
Z 

A B A Xi, Xj 
AB 

i<j 

(1) 

II hB(Xi, Xj) II hAB(Xi, Xj), 

i<j 

where the simplified notation x = XA U XB stands for a realisation of the 
point process, XA and XB being the sub configurations formed by the points 
of type A and B, respectively, and 

ZAB = (2) 

J bnA(A)bnB(B) II h ( ) A Xi, Xj 

i<j 

is the scaling factor. Furthermore, the parameters bA and bB control the 
intensity of the subprocesses. The numbers of points in the subpatterns are 
denoted by n(A) and n(B). Last, hA' hB and hAB are the non-negative 
interaction functions within types A and B and between the types. In a 
stationary and isotropic case the interaction function is a function of the 
distance between the points alone, h.(Xi' Xj) = h.(d(Xi' Xj)). The interaction 
functions are typically of a parametric form. 

The conditional intensity is a useful tool when considering how adding a 
new point y to a pattern x affects the probability density function. In case 
of the symmetric model the conditional intensity can be written as 

(3) 
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2.2 Hierarchical model 

Instead of modelling all interactions hA' hB and hAB simultaneously by hav
ing a bivariate pairwise interaction model we suggest modelling one point 
type in turn according to the hierarchy. More specifically, we advocate to 
use a homogeneous univariate model for the higher level of hierarchy, and for 
the lower level a heterogeneous univariate model, where the heterogeneity is 
due to the points on the dominating level. In case of three or more types the 
lower level patterns are heterogeneous owing to all the superior levels. 

The density function corresponding to the hierarchical approach can be 
composed as follows. First, for the higher level process the density is 

f(XA) = ~ bnA(A) II h ( ) AXi,Xj, 
ZA 

(4) 

i<j 

where 

ZA = J bnA(A) II h ( ) P(d ) A Xi,Xj XA . 

i<j 

The conditional intensity is 

).A(Y; x) = bA II hA(y, Xi) (5) 
xiEXA 

(cf. conditional intensity (3) above). 
Second, given the dominating pattern XA, the density for the lower level 

process is 

(6) 

i<j 

where 

i<j 

5 



The conditional intensity is 

AB(Y; x) = bB II hB(y, Xi) II hAB(y, Xi), 
xiExB xiEXA 

which is equal to the corresponding conditional density of (3). 
According to densities (4) and (6) the "joint" density of the whole process 

can be written as 

i<j i<j 

Notice that the product ZA ZB(XA) above is not equal to ZAB in (2). 
An extremely hierarchical model, that is, each point representing a differ

ent type, corresponds to a sequential inhibition process, where the order of 
generation of points follows the hierarchy of the model. Hence such a process 
can be thought as a special case of the present hierarchical model. 

2.3 Comparison of the two models 

The fundamental difference between the symmetric and hierachical models 
for multitype point patterns is in the interpretation of the processes gener
ating the pattern. In the hierarchical model the process consists of two (or 
k, in general) consequtive subprocesses, one for each type of points, while 
the symmetric approach is based on one bivariate (or multivariate) process, 
where the point types affect each other. 

The difference between the models is not just philosophical, which can 
be seen by comparing the density functions (1) and (7), or the conditional 
intensities (3) and (5). The densities are equal up to the scaling factor. Notice 
that in the hierarchical case the integral with respect to XB is calculated by 
having one fixed realisation XA in the integrand. Hence, the two methods 
give, indeed, two different distributions. 

We emphasise that the assumption of hierarchy is based on prior knowl
edge concerning the structure of the pattern. It may not be possible to 
deduce the hierarchy from a single point pattern a posteriori, and, even 
more confusing, essentially different models may show a good fit to the data. 
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3 Estimation of interactions 

Our target in studying hierarchical multitype point patterns is to assess the 
strength and range of interaction within each type and between all pairs of 
types. In practice, this means estimation of the parameters of the respective 
interaction functions. We shall consider two estimation methods, maximum 
likelihood, which involves laborious approximation of ratios of scaling factors, 
and maximum pseudolikelihood, which is a common short-cut omitting the 
scaling factors. 

3.1 Maximum likelihood 

Maximum likelihood is a straightforward method to estimate the parameters 
involved. It requires approximation of the scaling factor, which may lead 
to heavy simulations (Geyer and Thompson, 1992, Geyer and M011er, 1994). 
Let us assume that the numbers of points of each type in the pattern are 
fixed. According to density (1) the log likelihood function for the symmetric 
model is 

where BA, BB and BAB are the parameters (possibly vectors) of the corre
sponding interaction functions h. Furthermore, we have used short-hand 
notations 

(8) 

and 
(9) 

(2: hB, I1 hA' I1 hB and I1 hAB are defined analogously). 
Differentiation with respect to BA, BB and BAB yields the estimation equa

tions 
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and 

all expectations being with respect to the density (1). 
For the hierarchical model the estimation can be done type by type 

according to the hierarchy. First, for the dominating type A the log like
lihood function can be written as 

and the corresponding estimation equation is 

,,8hA ,,8hA 

L.t 8e A = EOA L.t 8e A ' 

the expectation being with respect to the distribution (4) of XA. 

Given the A pattern, the log likelihood for the lower level B is 

and the estimation equations are 

and 

" 8hAB " 8hAB 

L.t 8e AB = Eo B hB L.t 8e AB ' 

where the expectations are with respect to the conditional distribution (6) 
of XB given XA. 

Notice that the ML estimation equations in these two cases, the sym
metric and the hierarchical one, are all different. The expectations are with 
respect to different distributions. 
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In the calculation of the expected values we encounter with the scaling 
factor ZAB((}A, (}B, (}AB) for the symmetric model and the factors ZA((}A) and 
ZB((}B, (}AB; XA) for the hierarchical model. To avoid direct estimation of 
the factor we apply the Markov chain Monte Carlo (MCMC) approximation 
method by Geyer and Thompson (1992). 

We have three likelihood functions: one for the symmetric model and two 
for the hierarchical one. Let us denote the likelihood function in general by 

1 
Lx((}) = Z g(x), (10) 

where g(x) is the unnormalised density of the process in question and Z 
is the corresponding scaling factor. In the symmetric case Lx ((}) is of the 
form (1). In the hierarchical case we have two likelihood functions. For the 
higher level Lx((}) is as in (4), and for the lower level, given the dominating 
pattern, of the form (6). 

Let POo be a probability distribution with density foo' where (}o is fixed. 
The scaling factor Z((}) can be written as 

J J g((},x) 1 
Z((}) = g((}, x) P(dx) = Z((}o) g((}o, x) Z((}o) g((}o, x) P(dx) 

J g((}, x) 
= Z((}o) g((}o, x) POo (dx), 

and hence 
Z((}) = Eo g((}, x) . 
Z((}o) 0 g((}o, x) 

Now the log likelihood function of (10) can be written as 

Z((}) 
£x((}) = log g(x) -log Z((}o) , 

(11) 

since adding a constant (with respect to (}) log Z((}o) does not affect the 
estimation. Using the MCMC approximation of the expectation in (11) yields 

(12) 

where the Xi, i = 1, ... , m, are samples from POo' 
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One advantage of the method is that we need simulations only from one 
distribution instead of having to simulate from a new distribution every time 
the value of e is updated. The method requires the initial value eo being 
close to the unknown true value of e. The pseudolikelihood estimates are 
usually good choices as initial values. 

3. 2 Maximum pseudolikelihood 

To avoid the laborious approximation of the scaling factor an estimation 
method called the maximum pseudolikelihood (MPL) has been developed 
(for marked point processes, see Jensen and M¢ller, 1991, and Goulard et 
al., 1996). 

The log pseudolikelihood function can be written as 

log PLxCB, e) = I: log A,6,e(Y; x \ {y}) - 1 A,6,e(~; x) d~, 
yEX W 

where /3 is a vector of the parameters b, e contains the parameters of the 
interaction functions and A,6,e('; .) is the conditional intensity function. 

For the symmetric model it holds that 

log PLx(/3, e) = n(A) log bA + n(B) log bB 

+ 2 I: log hA + 2 I: log hB + 4 I: log hAB 

- bA iw XiUA hA(Xi'~) XiUB hAB(Xi'~) d~ (13) 

- bB r II hB(Xi'~) II hAB(Xi'~) d~, 
iw xiEXB xiEXA 

where the short-hand notations are analogous to those in (8) and (9). 
Since we concentrate on cases where the numbers of points are fixed, we 

may get rid of bA and bB in (13) by maximising with respect to these terms. 
Furthermore, without loss of generality, the terms independent of e can be 
omitted in the sum. After these modifications we may write 

log PLx(/3, e) = 2 I: log hA + 2 I: log hB + 4 I: log hAB 

- n(A) log iw XiUA hA(Xi'~) XiUB hAB(Xi'~) d~ 

- n(B) log iw XiUB hB(Xi'~) XiUA hAB(Xi'~) d~. 

10 



We have three parameters to be estimated, ()A, ()B and ()AB' Differentation 
with respect to () A gives 

with respect to ()B 

and with respect to () AB 

The parameters for the hierarchical model can be estimated in two steps. 
First, we write the PL function for the dominating type A as 

The estimate for ()A is obtained as a solution of the equation 

fw 2:= alOg~:(Xi'~) I1 hA(Xi'~) d~ 
2 L a log hA = n(A) xiEXA A XiEXA (17) 

a()A fw I1 hA(Xi,~)d~ 
xiEXA 
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Second, the PL function for the type B can be written as 

log PLx (B B, B AB) = 2 I)og h B + 2 2: log h AB 

- n(B) log Iv II hB(Xi'~) II hAB(Xi'~) d~. 
W xiEXB xiEXA 

By differentiating with respect to BB we obtain the estimation equation 

and with respect to B AB 

(19) 

The equations (14) and (17) derived for the estimation of BB are equal for 
both models. Hence, if the estimates of B AB coincide for both models, then 
also the estimates of BB are equal. 

The estimation equation for B A, interaction within the dominating type, is 
different in these two cases if the two types interact mutually. The interaction 
between the types affects the estimation of B A in the symmetric case but not 
in the hierarchical case. 

The ML method, instead, preserves the scaling factor, and therefore the 
estimation equations for the hierarchical model differ from the corresponding 
ones for the symmetric model. 

4 Simulation study 

We carried out a simulation study to explore the performance both of the 
symmetric and the hierarchical model when true model is hierarchical. 
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Additionally, we were interested in comparing the ML and MPL estimation 
methods. 

We restrict ourselves to the simplest case, the bivariate Strauss model 

{

a, if d(x, y) = 0, 
hi(x, y; Oi) = Oi, if a < d(x, y) :S R, 

1, if d(x, y) > R, 

where the Oi, a :S Oi :S 1, i = A, B, AB, are the interaction parameters 
within and between the types, and R is the interaction radius. We used two 
values for the interaction parameters O( 0.7 representing weak repulsion and 
0.2 representing strong repulsion. In addition, we had two values for the 
interaction radius R, 0.05 corresponding to a medium range and 0.1 to a 
large range interaction. 

For the actual simulation of hierarchical patterns we chose to apply the 
spatial birth-and-death process with a fixed number of points (Ripley, 1977). 
The estimates of 0 A were calculated from 200 simulated A patterns consist
ing of 50 points, which were generated in the unit square mapped onto a 
torus. Before starting to record samples we ran 10 000 warm-up steps with a 
Poisson realisation as the initial pattern. To obtain approximate independ
ency among the samples only every 200th pattern was sampled. To calculate 
the estimates for OB and 0 AB we first simulated a realisation of 50 A points as 
above. Then, by conditioning on this A pattern, we produced 200 B subpat
terns of 50 points using a Poisson realisation as the initial pattern and having 
10 000 warm-up steps before sampling. Again, every 200th pattern was sam
pled. Having the A pattern fixed it was sufficient to approximate only one 
ratio of scaling factors. To approximate the ratios of normalising constants 
needed in the ML estimation (see formulae (11) and (12)) 10 000 samples 
were collected. The integrals in the MPL estimation equations (14)-(18) are 
approximated by using a 100 x 100 grid. 

The results presented in Tables 1 and 2 imply that both the ML and MPL 
methods give reliable and unbiased estimates if the model is correct, that is, 
hierarchical. Standard deviations are reasonable and, as expected, slightly 
smaller in the case of large range of interaction (R = 0.1). 

If we assume a symmetric model when hierarchy is present we get dif
ferent results. The MPL method gives almost the same estimates for OB 

and 0 AB under both the hierarchical and the symmetric model assumptions. 
This is plausible given the corresponding estimation equations (14), (17), (15) 

13 



and (18). The estimates of () A are different under different models. Symmetric 
model leads to underestimation of () A (or overestimation of the repulsion), 
especially, if the repulsion between the A points and B points is strong. The 
reason for different estimates of () A is that under the symmetric model the 
interaction between the types affects the estimation of () A while under the 
hierarchical model it does not. The ML method underestimates all interac
tion parameters if a symmetric model is assumed. 

The ratios of scaling factors used in the ML estimation are approximated 
from the simulations of the symmetric model applying the original parameter 
values. If the ML estimates are far from the true values the approximation of 
the ratio of scaling factors may be poor or even the likelihood function may 
not have a maximum. The latter occurred several times in the estimation; the 
empty entries in Tables 1 and 2 indicate that the maximisation algorithm did 
not converge. Further seeking for correct ML estimates did not seem relevant 
since we already have evidence of the difference between the estimates under 
the symmetric model and the hierarchical model. 

The simulation study reveals that if a symmetric model is applied when 
the truth is hierarchical, the estimation of the interaction becomes biased. 
This may lead to wrong conclusions of the intra- and intertype relationships. 
Therefore, it is important to recognise the hierarchical structure whenever it 
exists and to incorporate it into the model. 

5 Example: A community of two ant species 

Let us consider a bivariate point pattern of ants' nest sites studied first 
by Harkness and Isham (1983). The two species living in a 240ft x 250ft 
study area (Figure 1) in Greece, are Messor wasmanni with 45 nests and 
Cataglyphis bicolor with 15 nests. The Messors (species M for short) col
lect seeds for nutrition while the Cataglyphis ants (species C) feed upon 
dead insects, mostly dead Messor ants. Therefore, Harkness and Isham, in 
their study of the intra- and interspecific interactions in this community, pre
sumed that the Cataglyphis ants are attracted by the Messor ants and hence 
there should be a positive interaction between the nest locations of these 
two species. They concluded that the marginal pattern of Messor nests is 
inhibitive but the Cataglyphis nest pattern can be regarded as a realisation 
of a Poisson process. To estimate the interaction between the species they 
applied two methods, nearest neighbour measurements and the cross function 
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K MC (Lotwick and Silverman, 1982). The nearest neighbour measurements 
support the hypothesis of attraction, that is, the observed data include more 
Cataglyphis nests with a Messor nest as the nearest neighbour than it would 
be expected if the patterns were mutually independent. Contradictory, the 
estimated K MC function suggests independency between the species. 

Takacs and Fiksel (1986) fitted a pairwise interaction model to the same 
data. Their result was that the Cataglyphis nests form a rather strongly 
repulsive pattern while the Messor nests are nearly Poisson distributed. The 
interaction between the two species is repulsive but not as strongly as among 
the Cataglyphis ants. The goodness-of-fit of the model was not tested. 

A Strauss type model was fitted by Sarkka (1993) suggesting fairly strong 
repulsion among both species and weak repulsion between the species. How
ever, an L function (l-llinearisation of K) study reveals that the goodness
of-fit of the model is not satisfactory. Notice that both the model of Takacs 
and Fiksel and the one of Sarkka suggest weak repulsion between the species. 

In the studies reviewed above the interaction between the species was of 
main interest. According to Harkness and Isham we can not make any con
clusions owing to the contradictory results obtained by two different methods. 
Takacs and Fiksel did not test the fit of their model, and the model of Sarkka 
did not fit well to the data. 

The ecological relationship of the two species, that is, the Cataglyphis ants 
feeding upon dead Messor ants but not hunting for them gives an idea for a 
hierarchical model: The Messor nests affect the locations of the Cataglyphis 
nests but not vice versa. Before fitting a hierarchical model we recall the 
study of Sarkka to make it easier to compare the goodness-of-fit of the sym
metric model and the corresponding hierarchical model. In the estimation 
the MPL method was applied and the edge effects were taken into account 
by mapping the rectangular study region onto a torus. 

We fitted both a symmetric and a hierachical model applying Strauss 
type interactions to the data. Furthermore, to find out the goodness-of
fit of the models we calculated the empirical marginal L functions and the 
respective upper and lower envelopes by simulating the models identified by 
the estimated parameter values. This is a usual way to test the goodness
of-fit of such models. However, the L function is defined only for stationary 
and isotropic processes, and non-stationarity is an essential feature of our 
hierarchical approach. Since the dominating M points are assumed to be 
a realisation of a stationary process, the estimation and interpretation of 
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function LM and the cross function LMC estimated using only Messor nests 
as centre points are not problematic. Instead, the points on the lower level 
are regarded as a realisation of a non-stationary process, and thus Lc may 
not have an obvious interpretation. However, it can be used in testing the 
goodness-of-fit since it is estimated in the same way both from the data and 
from the simulated patterns so that it "measures" the same property in both 
cases. 

5.1 Symmetric model 

We fitted the symmetric model with Strauss type interactions presented in 
Section 2.1. The interaction function is of the form 

where the ri are the fixed hard-core radii and the ~ the fixed interaction 
radii, i = M, G, MG. 

We followed Takacs and Fiksel (1986) in choosing the minimum interpoint 
distances in the data as hard-core distances, that is, rM = 9.1ft, rc = 2.5ft 
and rMC = 5.5ft, and 45ft for all interaction distances R M, Rc and RMC . 
In general, taking the shortest observed interpoint distance as the hard
core radius of the process is maybe not recommendable. This may cause 
anomalities in simulations, since now our data, regarded as a realisation of 
the corresponding process, involves an outlier pair of points with an extremely 
short interpoint distance. 

The maximum likelihood method gives estimates OM = 0.31, Oc = 0.16 
and OMC = 0.65, while the corresponding MPL estimates are OM = 0.45, 
Oc = 0.40 and OMC = 0.88. The results indicate rather strong repulsion both 
within the Cataglyphis nests and within the Messor nests but only weak 
repulsion between the species. 

To test the goodness-of-fit of the model we did the following. First the 
marginal empirical functions LM and Lc , the cross LMC and the joint L 
disregarding the types of the points were calculated from the data. Then the 
corresponding upper and lower envelopes were calculated from 99 realisations 
which were simulated by using the respective model, that is, the bivariate 
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symmetric model with the estimated (ML and MPL) parameter values. Fig
ures 2 and 3 show that the symmetric models do not fit well to the data: The 
empirical functions L M, Lc and the joint L do not lie between the envelopes. 

5.2 Hierarchical model 

Finally, we fitted the corresponding hierarchical model with Strauss type 
interaction functions. The values of the hard-core and interaction radii were 
the same as for the symmetric model. 

According to the hierarchy the interaction within the M essor nests was 
estimate~ first. The ML method yields estimate eM = 0.43 and the MPL 
method ()M = 0.44. Both indicate repulsion within the Messors. Second, 
the locations of Cataglyphis nests were considered given the Messor pattern. 
Repulsion within the Cataglyphis nests is strong according to both the ML 
and the MPL estimate ec = 0.40, but the repulsion between the species is 
weaker, both methods giving eMC = 0.79. 

The goodness-of-fit of the model was tested by using the marginal func
tions LM and Lc and the cross L MC (see Figure 4). Concordant with the 
hierarchy, LMC is estimated using the Messor nests as centre points only. 
First we calculated the empirical L function for the Messor nests and then 
simulated 99 configurations using the univariate models with the estimated 
parameter values to get the upper and lower envelopes. The model seems 
to fit well to the data. Second, for the Cataglyphis nests we calculated the 
empirical Lc function from the Cataglyphis data and estimated the envelopes 
by simulating 99 Cataglyphis nest patterns conditioned on the true configu
ration of the Messor nests. The goodness-of-fit of this part of the model is 
also good. 

5.3 Comparison of the models 

Both models, the symmetric and the hierarchical one, give very similar 
results if only the parameter estimates are considered: There is rather strong 
repulsion within both species and weaker repulsion between the species. Fur
thermore, the order of the strenghts of interaction is the same in both models. 

The L function study shows that the hierarchical model fits well to the 
data, unlike the symmetric model. This supports the assumption of a hier
archical interaction. It is maybe surprising that, according to our results, 
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the Cataglyphis ants tend to avoid the vicinity of Messor nests when choos
ing their nest sites, as attraction has been anticipated. A possible ecological 
explanation might be that the Cataglyphis ants locate their nests reasonably 
close to many M essor nests instead of only one, and since the pattern of 
the Cataglyphis nests is repulsive itself, this leads to a repulsive inter-species 
configuration. 
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Table 1. Empirical means and standard deviations of the ML and the MPL 
estimates when R = O.l. 

Parameter True value ML (hier) ML (symm) MPL (hier) MPL (symm) 

()A 0.70 0.70 (0.17) 0.45 (0.23) 0.68 (0.16) 0.63 (0.15) 
()B 0.70 0.69 (0.14) 0.48 (0.21) 0.67 (0.14) 0.67 (0.14) 
()AB 0.70 0.71 (0.11) 0.49 (0.11) 0.71 (0.11) 0.72 (0.11) 

()A 0.70 0.70 (0.17) 0.78 (6.06) 0.67 (0.16) 0.33 (0.12) 
()B 0.70 0.69 (0.12) 0.67 (0.14) 0.68 (0.13) 
()AB 0.20 0.20 (0.05) 0.00 (0.00) 0.19 (0.05) 0.22 (0.06) 

()A 0.20 0.20 (0.07) 0.00 (0.00) 0.20 (0.07) 0.19 (0.07) 
()B 0.20 0.20 (0.07) 0.00 (0.00) 0.19 (0.07) 0.19 (0.07) 
()AB 0.70 0.73 (0.17) 0.31 (0.16) 0.71 (0.17) 0.71 (0.18) 

()A 0.20 0.21 (0.07) 0.20 (0.07) 0.10 (0.05) 
()B 0.20 0.21 (0.08) 0.19 (0.07) 0.19 (0.07) 
()AB 0.20 0.21 (0.06) 0.19 (0.07) 0.20 (0.07) 
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Table 2. Empirical means and standard deviations of the ML and the MPL 
estimates when R = 0.05. 

Parameter True value ML (hier) ML (symm) MPL (hier) MPL (symm) 

(JA 0.70 0.72 (0.30) 0.46 (0.24) 0.70 (0.28) 0.68 (0.27) 
(JB 0.70 0.67 (0.26) 0.48 (0.67) 0.65 (0.26) 0.65 (0.26) 
(JAB 0.70 0.72 (0.21) 0.45 (0.21) 0.71 (0.20) 0.71 (0.20) 

(JA 0.70 0.71 (0.28) 0.24 (1.40) 0.70 (0.27) 0.59 (0.23) 
(JB 0.70 0.73 (0.28) 0.70 (0.25) 0.70 (0.25) 
(JAB 0.20 0.20 (0.11) 0.00 (0.01) 0.20 (0.10) 0.20 (0.10) 

(JA 0.20 0.22 (0.17) 0.01 (0.02) 0.21 (0.15) 0.21 (0.15) 
(JB 0.20 0.21 (0.13) 0.00 (0.02) 0.20 (0.13) 0.20 (0.13) 
(JAB 0.70 0.71 (0.22) 0.13 (0.21) 0.71 (0.22) 0.71 (0.21) 

(JA 0.20 0.22 (0.19) 0.01 (0.06) 0.21 (0.14) 0.17 (0.12) 
(JB 0.20 0.19 (0.12) 0.00 (0.01) 0.19 (0.12) 0.19 (0.12) 
(JAB 0.20 0.21 (0.10) 0.00 (0.00) 0.21 (0.09) 0.21 (0.09) 

21 



Labels of figures 

Figure 1. Locations of ants' nests: Nests of Messor wasmanni are denoted 
by crosses and nests of Cataglyphis bicolor by circles. 

Figure 2. Estimated L functions (solid) and the upper and lower envelopes 
(dashed) from 99 simulations of the ML estimated symmetric model: 
a) marginal L for the Messor nests, b) marginal L for the Cataglyphis nests, 
c) joint L and d) cross LMC . 

Figure 3. Estimated L functions (solid) and the upper and lower envelopes 
(dashed) from 99 simulations of the MPL estimated symmetric model: 
a) marginal L for the Messor nests, b) marginal L for the Cataglyphis nests, 
c) joint L and d) cross L MC . 

Figure 4. Estimated L functions (solid) and the upper and lower envelopes 
(dashed) from 99 simulations of the estimated hierarchical model: a) marginal 
L for the Messor nests, b) marginal L for the Cataglyphis nests and c) cross 
L MC · 
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