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Summary 

Statistical surveillance is used for monitoring a sequence of data arriving step 
by step. These techniques have been applied in many places in society and lately 
the interest and need for rational methods to be used on environmental data have 
been growing. In many cases, both for environmental time series and time series 
from other applications, the data is not independent. This is a violation against 
the requirements for most standard tools that are used in practice and have to 
be handled in some way. 

This licentiat thesis consists of two parts: A case study on fish catches (1) 
and a study of the properties of some methods used to monitor time series (2). 

In the first paper, a case concerning past data from landed catches of six 
economically interesting fish species in Lake Miilaren in central Sweden is stud
ied. In 1990 the catches of vendace (Coregonus albula) suddenly dropped and 
the question discussed is whether statistical process control methods are useful 
for monitoring similar data. The data is examined from both univariate and 
multivariate viewpoints. In the univariate part, the construction of an alarm 
procedure for a change in the mean in an AR(l) process is briefly discussed, with 
this application in mind. The main conclusion is that statistical methods could 
have been useful for this application. 

In the second paper, comparisons between two methods often suggested in 
literature to be used for AR( 1) processes are presented. Further, comparisons 
are made with a direct Shewhart and a likelihood ratio based method. We can 
conclude that neither of the two main alternatives studied here is uniformly the 
best choice. The residual method works best for immediate detection. 

1. Pettersson, M. (1998). Monitoring a Freshwater Fish Population - Statisti
cal Surveillance of Biodiversity. Environmetrics. 9, pp 139-150. 

2. Pettersson, M. (1998). Evaluations of some methods for statistical surveil
lance of an AR(1) process. Research Report 1998:4, Department of Statis
tics, Goteborg University. 
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MONITORING A FRESHWATER FISH POPULATION: 
STATISTICAL SURVEILLANCE OF BIODIVERSITY 

MAGNUS PETfERSSON* 

Department of Statistics. Goteborg University. Box 660. SE-40530 Goteborg. Sweden 

SUMMARY 

Statistical surveillance comprises methods for repeated analysis of stochastic processes, aiming to detect 
a change in the underlying distribution. Such methods are widely used for industrial, medical, economic 
and other applications. By applying these general methods to data collected for environmetrical purposes, it 
might be possible to detect important changes fast and reliably. We exemplify the use of statistical 
surveillance on a data set of fish catches in Lake Miilaren, Sweden, 1964-93. A model for the 'in control' 
process of one species, vend ace (Coregonus albula), is constructed and used for univariate moni
toring. Further, we demonstrate the application of Hotelling's T2 and the Shannon-Wiener index for 
monitoring biodiversity, where a set of five economically interesting species serve as bioindicators for the 
lake. © 1998 John Wiley & Sons, Ltd. 

KEY WORDS vendace; recursive residuals; Shewhart test; AR process; Fourier series; species correlation 
matrix; Shannon-Wiener index; Hotelling's T2; Lake Miilaren; catch data 

1. INTRODUCTION 

There is a growing interest in studying fundamental changes in the earth's environment which 
is creating new opportunities for people dealing with environmental data. Often politicians, 
biologists and others try to find out if changes in our environment have occurred by monitoring 
one or more variables of ecological interest over time. Topics of interest include global warming, 
deterioration of water or soil quality, increasing incidence of cancer diseases caused by environ
mental factors, and changes in biodiversity. The increasing awareness and interest in the status of 
the environment has given rise to large data collection programmes. However, there is a risk that 
data are only being collected and stored and are not dealt with in a systematic way. 

The ordinary hypothesis testing approach is to divide the data into two disjoint sets: before and 
after a possible change point at an unknown time. However, these tests cannot be reused directly. 
Since we are monitoring data to be able to detect a possible change at an unknown time and make 
repeated analyses, we have to use statistical surveillance instead (Wetherill and Brown 1991). 
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140 M. PETIERSSON 

By using these techniques, it might be possible to design procedures for monitoring changes in 
the environment and to sound an alarm as a change in the system, quickly and accurately. 

This paper will give an introduction to the use of statistical surveillance in environmental 
science. We will study a case from a data set on fish catches in Lake MiHaren in Sweden, where we 
will be able to evaluate the usefulness of these statistical methods in monitoring the environment. 
We will study the detection of change in the level of one species, by using univariate monitoring 
procedures, and extend the model for monitoring the correlation between the species. The 
emphasis in the paper is bn identifying a useful model that can be used to transform the data into 
a form where standard SPC methods can be applied. 

Data from the catches of fish made by professional fishermen around Lake Miilaren in central 
Sweden have been collected since 1964 by the four regional authorities surrounding the lake. Of 
the species living in the lake, six have a major economic interest: burbot (Lota Iota), eel (Anguilla 
anguilla), perch (Perea fluviatilis), pike (Esox lucius), pike-perch (Lucioperea lucioperea) and 
vendace (Coregonus alhula). We will use five of them as indicators of the biodiversity in the lake 
and evaluate the performance of different monitoring procedures. The eel has been excluded since 
its population is dependent on artificial breeding, and is therefore increasing over time. We will 
not discuss the relevance of these specific species as bioindicators but instead concentrate on the 
statistical aspects of the problem. 

From 1987, the catch of vendace decreased. At first, this decline was considered part of an 
assumed 6-8 year cycle of all fish in the lake, but when the expected increase did not occur in 1990 
the authorities began searching for a possible cause. As we will see below, period lengths other 
than that assumed might better fit the data. No statistical analysis to detect departures from the 
'in control' pattern has been performed previously. We will study the data material, kindly 
provided by the Fresh Water Laboratory in Drottningholm, from different viewpoints. 

The aim of this paper is to evaluate, retrospectively, how different statistical models and 
methods may be applied to the current application. Although we are certain now that something 
happened in 1989 or 1990, we will go back in time and, without using this prior information, see 
what would have been done with the data available at each time point. As part of the technique in 
this situation, recursive residuals (Brown et al. 1975) will be used. 

The analysis described in this paper is based on the landed catches offish made by professional, 
mostly part-time, fishermen. Since we lack information about the effort, we will only use the catch 
data for analysis. Assuming that these figures are correlated with the abundance of each fish 
species, these catch data will suffice. Official statistics on the number of fishermen and the value of 
their equipment give reason to believe that the fishing activity has been fairly constant over time. 

In Section 2, we will give an overview of statistical surveillance methods. In Sections 3 and 4, a 
data set from Lake Miilaren is studied using different models for the data to show the impact of 
model selectio.n. Section 3 focuses on one species, vendace (Coregonus alhula), while Section 4 
discusses application of multivariate methods on five species at the same time. Finally, Section 5 
discusses the conclusions and ideas for further study. 

2. STATISTICAL SURVEILLANCE 

Often data arrive one by one or in groups at discrete time steps. When the system producing 
the sequence of measurements behaves in some predicted or prescribed way we say that it is 'in 
control'. We assume that at a stochastic time 1: the system leaves that state and goes 'out of 
control'. The aim of the surveillance procedure is to detect when the system goes 'out of control', 

ENVIRONMETRICS. VOL. 9, 139-150 (1998) © 1998 John Wiley & Sons, Ltd. 



FRESHWATER FISH POPULATION 141 

under some given performance criteria, e.g. fixed false alarm probability at a certain time. In 
many cases ad hoc methods are constructed or data are viewed by an expert, who decides whether 
to take action or not. Using methods of statistical surveillance makes the monitoring more 
accurate since the performance of the methods can be evaluated and different methods can be 
compared with each other. 

Statistical methods for detecting changes in the underlying distribution of a sequence of data 
have been used in many other applications. Examples from medicine, economics and forensic 
science can be found in Frisen (1992; 1994), Arnkelsd6ttir (1995), Svereus (1995) and Charnes 
and Gitlow (1995). Earlier among others Berthoux et al. (1978), Kjelle (1987), Settergren 
Sorensen and la Cour Jansen (1991) and Vaughan and Russell (1983) have applied SPC to 
environmental data. 

We have a process of stochastic variables X(t), t = 1, 2, ... , which can be univariate or 
multivariate, i.e. X(t) is a vector of dimension p x 1. Note that X(t) is monitored at discrete time 
points. Further, we define the cumulated process up to time s as Xs = {X(t), t = I, 2, ... , s}. 

At each time step s we will formulate two possible states that we want to distinguish between: 
D(s) and C(s), that is whether the system is 'in control' or 'out of control' at time s, respectively. 
Given the data Xs ' we will evaluate the evidence of C(s) versus D(s) to a specified level of 
certainty. Note that even if we use a formulation similar to hypothesis testing this is not the case. 

The 'out of control' alternative C(s) will be formulated differently for different applications. In 
this paper, we describe statistical surveillance in the case of a change in the mean of one species. 
The choice of critical event can have important effects on the performance of the surveillance 
procedure used (Svereus 1995). 

2.1. Recursive residuals 

The 'in-control' model can also contain parameters with unknown values that have to be esti
mated. Two natural ways to deal with these unknowns are to estimate them during a 'run-in 
period' or to update the estimates in each time step by using the cumulated data. The use of 
recursive residuals (Brown et al. 1975) is an example of the latter idea. Instead of monitoring the 
process {X(t)} we use the residual process 

R(t) = X(t) - itl_I(X(t», (1) 

where it
l

_ 1 (X(t» denote the expected value of X(t) estimated using XI_I' The new process, 
{R(t)}, is monitored with some univariate method. For example, when the mean level is constant, 
but unknown, 

1 I-I 

itl_I(X(t» = t _ 1 t; X(i). 

Similarly, an ARMA process can be monitored from the forecast errors, i.e. the residuals between 
the real values and their forecasts. For example, since the forecast errors are i.i.d. with the same 
distribution as e(t) (Wei 1990), an AR(I) process X(t) = 4>IX(t - 1) + e(t) can be monitored using 

R(t) = X(t) - E(X(t) I XI_I) = X(t) - 4>IX(t - 1), 

where 4>1 have been estimated during 'run-in'. 

© 1998 John Wiley & Sons, Ltd. ENVIRONMETRICS. VOL. 9, 139-150 (1998) 
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2.2. Methods 

Several methods for detecting the change in distribution have been designed. For univariate 
problems the first method was the Shewhart chart (Shewhart 1931), followed by CUSUM (Page 
1954), EWMA (Roberts 1959) and the likelihood ratio method (Shiryaev 1963; Frisen and de 
Mare 1991). Bayesian approaches can be found in Zacks (1983). In this paper, we will only use 
Shew hart tests on the residuals and forecast errors - not because it is the optimal method, but 
because it is easy to apply and therefore suitable for benchmarking. With the Shewhart method, 
an alarm is triggered when the last observation exceeds a critical limit, i.e. when I X(s) I > c. 
The limit c in traditional SPC literature is set to 3·09O'(s) or 3O'(s), where O'(t) = .JVar(X(t» 
(Wetherill and Brown 1991). 

For multivariate problems, two natural strategies are either to monitor each process separately 
(an alarm is triggered at the first alarm of an individual process) or to transform the data into a 
univariate sequence. The likelihood ratio method can equally well be applied for a multivariate 
sequence as for a univariate one. A survey of methods for detecting changes in more than one 
variable can be found in Wessman (1996). In this paper we will study the Hotelling's T2 statistic 
(Hotelling 1947) and the Shannon-Wiener index (Shannon and Weaver 1949). 

3. MODELLING AND MONITORING VENDACE 

In this section we will study the data for vend ace (Coregonus alhula) from a univariate point of 
view. We will suggest different models for the 'in control' state, compare them and discuss their 
performance on the data set. We will study models where the mean is considered to be constant or 
periodic. Further, we will use a model where we assume data to be an aperiodic ARMA(p, q) 
process. Ideally, the 'in control' state should be given by knowledge of the biological process, but 
in this paper we will have to use data to determine it. Further, we will re-estimate the parameters 
at each time to show the impact of re-estimation on the surveillance. 

For current purpose, we find it sufficient to describe the alternative models by the residual 
mean squares, RMS. Suppose we estimate I parameters in the model using {X(1), .. . , X(s - I)}; 
we denote the estimated expected value of X(l) by [L',s-I (X(i» and define 

RMS(Xs' s - 1) = ~ I t(X(i) - [L,.s_l(x(i»l 
s ;=1 

(2) 

Although the present data series only consists of 30 time steps, we see possible periodic 
patterns. Using a frequency domain approach, we can estimate the periodically varying mean. 
Assume we have an additive process with independent and known mean and constant variance, 
i.e. X(t) = Il!...t)+ e(t), where e(t) are i.i.d., N(O, a). Then the transformed process XC(t), defined 
by XC(t) = X(t) - Il~t), becomes a white noise process that can be used for surveillance. When 
4t) is unknown we will in the following use estip1ated values [L,(t), and when also I is unknown 
we estimate I first and then estimate Il~t) using I and get [Li(t). 

3.1. Modelling 

We will first study a model where the mean function is any function with period I, i.e. for some 
I we have 4t) = Il~t + I). For a given I we estimate Il, by using the disjoint time subsets 
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{I, I + I, 1+ 2/, .. . ~ s} and we define Ndt) = #{/, I + I, 1+ 2/, . .. ~ s}, for 1= 1, ... , l. The 
maximum likelihood estimate for I1li/), given I, becomes 

AI" () 111/1) = N (I) ~ Xi, 
I.s iE{I.I+I.I+2/ •... ,;; s} 

I = 1, ... , 1 - 1. 

The estimated variance (J2 using Xs for the estimation becomes 

&; = s - ~ - 1 t(X(i) - P-dX(i»/ = s _ ; _ 1 RSS, 
,=1 

(3) 

for s > 1 + 1, where RSS denotes the residual sum of squares. 
Instead of estimating a mean level for each part of the sample, we can fit a more parsimonious 

Fourier series of order 1 (see for example Tolstov 1962; Churchill and Brown 1987), i.e. 

111(/) = 11 + PI cos(2n7) + P2 sin(2n7). 

This model needs three parameters to be estimated for the mean (cf. 1 above) independent of l. 
Parameters are estimated using linear regression and the variance is estimated analogously 
with (3). 

In the time domain approach to the problem, we identify the process and estimate the 
parameters using the Box-Jenkins approach (Box and Jenkins 1966; or Wei 1990). As usual we 
define the ARMA(p, q) model with mean 11(/) as 

X(/) = 11(t) + (jJIX(t - 1) + '" + (jJpX(1 - p) - 81t:(1 - 1) - .,. - 8i(t - q) + t:(/), 

where t:(/) are i.i.d. and N(O, (J2). The one-step-ahead forecast errors will be i.i.d. with mean 0 and 
variance (J2 = var(t:(/», and can therefore be used for surveillance by for example the Shewhart 
method. We find that a suitable model would be the AR(l), having the three parameters shown in 
Table I. 

The sample mean and the Yule-Walker estimate are used for estimating 11 and (jJ1' respectively. 
The variance (J2 is estimated by &2 = var(X,)(1 - (PIPI)' The forecast errors are plotted in 
Figure 2. Diagnostic checking shows that the fit seems to be accurate enough, although there is an 
indication of a possible 9 year cycle. 

The RMS, defined using the general definition (2), are shown in Figure 1 and Table II. As 
expected, the i.i.d. have the maximum RMS. Adding only one parameter and using the AR(I) 
model would yield a notable improvement. Using reasonably low values of I, we get local minima 
for both Fourier series RMS(l) and periodic mean RMS(/) for 1 = 9 years. But it is obvious from 
Figure 1 that both the Fourier series model and the periodic mean model are sensitive to 
the choice of l. For 1 ~ 8 and 1 ~ 11 we get a better fit with the AR(I) model. There is also a 
disadvantage with the periodic mean model that we have to estimate 1 + 1 parameters. 

Estimated value 

© 1998 John Wiley & Sons, Ltd. 

Table I. Estimates of the AR(I) model 

Mean 

158 

Parameter 
CPI 

0·39 

SE 

31·2 

ENVIRONMETRICS. VOL. 9. 139-150 (1998) 
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Table II. Comparison between the RMS for the univariate models 

i.i.d.. 
AR(1) 
Fourier -series (I = 9) 
Periodic :mean (I = 9) 

Number of parameters 

2 
3 
4 

10 

RMS 

1077 
922 
708 
607 

145 

We conclude that there are many different models that might fit the data, and we therefore need 
better knowledge about the actual ecological model generating the data to be able to make a 
choice. If we consider a model with.a periodic mean, a periOd of 9 years seems to be suitable. We 
also find that the mod~ls with a small number of parameters, the AR and the Fourier series 
models, give a sufficient improvement of the goodness of fit. 

3.2. Monitoring 

We will now apply the models developed above for monitoring a change in distribution of the 
vendace population. We will only apply the Shewhart test to the data although other methods 
might give better performance. The mean and standard deviation are re-estimated at each time 
step, and the residuals are used for surveillance, using the formulation (1). Analogously, we 
define o-s_I(X(s», the standard deviation of the residual at s. The Shewhart test prescribes that an 
alarm is triggered at time s if I X(s) - Its-I (X(s» I > 30-s_1 (X(s». Using the models described 
above we would get an alarm in 1990. Table 3 shows the standardized deviation from the expected 
value, given the estimated mean and variance. 

Table III. The standardized deviation from 
the mean in 1990 

Model 

AR(I) 
i.i.d. 
Fourier series (I = 9) 
Periodic mean (I = 9) 

S (1990) 

-HI 
-3·68 
-5·71 
-5·84 

With the surveillance procedures we have used we would not get an alarm earlier than 1990. 
However, the Shewhart method is not always the optimal method to use, and another choice of 
method might have detected a change earlier. Although an alarm is triggered in 1990 for all 
models, the difference between the values in Table III for the considered models show us that 
depending on which model we choose we will get different detection power. 

Since the data material, owing to the long time steps of one year, will still be small for many 
years, ecological background or other prior information is needed to restrict attention to only a 
small number of possible models and interesting critical events. 

4. MONITORING FIVE SPECIES SIMULTANEOUSLY 

In this section we will attempt to compare the performance of different monitoring procedures, 
based on the information from five monitored species. The aim is to see whether it is possible to 

© 1998 John Wiley & Sons, Ltd. ENVIRONMETRICS. VOL. 9, 139-150 (1998) 
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detect a change earlier if all species have been monitored simultaneously. None of the species in 
the current material have a detectable changepoint earlier than 1990. A minimax procedure, 
which sounds an alarm whenever any of the processes change, would therefore not detect a 
change earlier than 1990. 

One way of combining the information from the multiple sources, and designing a common 
system for monitoring all at the same time, is by creating an index that can be used for surveil
lance. Statistical methods for surveillance of mUltiple processes have been suggested by many 
authors. We will use the often applied Hotelling's T2. 

4.1. Diversity indices 

Several indices of biodiversity with different statistical and demographic properties have been 
suggested. Overviews can be found in for example Colinvaux (1986), Magurran (1988), Noss 
(1990) or Pielou (1975). However, no universally accepted index exists. A widely used statistic for 
biodiversity is the Shannon-Wiener index (Shannon and Weaver 1949) H', originally designed 
for measuring information content. It is defined as 

H' = -"'LPi 10g(Pi)' 

where Pi is the proportion of species i measured by some suitable unit. For a given N, H' is 
maximized whenp;= l/Nfor i= 1, ... , N. When we measure diversity, any definition of 'amount' 
can be used that has a relevant meaning for the studied species. We will use the landed mass of each 
speCies. 

In Figure 3 standardized values of H' are plotted, based on estimated mean and variance of H' 
up to one year earlier than the current year, i.e. 

H"(t) = H'(t) - Et_I(H') 
&t_I(H') . 

We see that a Shew hart 3& limit will give no alarm at all. 

4.2. Hotelling's T2 

Hotelling's T 2-statistic (Hotelling 1947) is defined as 

T2(t) = (X(t) - J1)T"'L- 1(X(t) - J1), 

where J1 and "'L are the mean vector and covariance matrix, respectively. The T2-statistic can 
detect deviations from both mean and variance, but is most sensitive for changes in mean, 
especially when all the means are changing at the same time and direction. 

We assume that the data come from a multinormal distribution 

X(t) '" MN/J1(t), "'L), 

where the sequence is i.i.d. The dimension of X(t) and J1(t) is I x q and the dimension of"'L is 
q x q. The mean for ea~h process, estimated by using Xs' is denoted its. Further, we estimate "'L 
successively over time, "'Ls estimated using Xs' by 

is = _1_t(X(i) - its)T (X(i) - its) when s > q. 
s - q ;=1 

ENVIRONMETRICS. VOl. 9, 139-150 (1998) © 1998 John Wiley & Sons, Ltd. 
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Figure 3. Standardized Shannon-Wiener index. The standardization is made on the sample mean and standard 

deviation, i.e. H;_I' A value exceeding 3 would trigger an alarm with the Shewhart method 

In order to reduce the number of parameters, we group the correlations. Guided by Figure 4, we 
define three groups (4) and assume that the correlations are equal within the groups, thereby 
reducing the number of parameters from 15 to 8. 

Vendace Pike Pike-perch Perch Burbot 
Vendace A B A A 

Pike A B C C (4) 
Pike-perch B B A B 

Perch A C A C 
Burbot A C B C 

The estimated mean vector has a multinorm~1 distribution, Itt '" MN/fl, 'L/t), and the estimated 
variance matrix has a Wishart distribution, 'L t '" Wit - 1, 'L), which is a multivariate exte!.1sion 
of the X2-distribution (Crowder and Hand 1993). Approximating the distribution of 'Lt by 
Wit - I, 'L) we get 

q 2 approx 
..,-----"---:-T - F (t+ I)(t-q+ I) q,t-q+I' 

Using the re-estimated values of p. and 'L, i.e. 

T2(t) = (X(t) - Itt_I)T±~:I(X(t) - Itt-I)' 

© 1998 John Wiley & Sons, Ltd. ENVIRONMETRICS. VOL. 9, 139-150 (1998) 
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Figure 4. Pairwise correlation coefficients between species, estimated between 1964 and the current year. Correlations 
have been grouped into three groups (A, Band C) where the correlations are almost equal to each other 

we get the sequence of T2(t)-values shown in Figure 5. With the same false alarm rate as for a 
traditional Shewhart test, we would get an alarm in 1990. 

However, by accepting a higher false alarm rate, say!Y. = 0·05, the alarm limit is crossed already 
in 1989. Applying the same false alarm rate with the Shannon-Wiener index we would have had 
an alarm in 1990, but no earlier alarms for the univariate case. It could therefore be possible to 
detect some changes earlier if we take all species into account simultaneously. 

5. DISCUSSION AND CONCLUSIONS 

We see from the univariate analysis of the vendace (Coregonus albula) data that the choice of 
model is of great importance. When different cyclic patterns or autocorrelations are present, data 
have to be modified to take this into account. We find that goodness of fit can be improved by 
estimating cyclic patterns or autocorrelation. By using either of the four models studied in this 
paper, the Shewhart procedure would have detected a change by 1990. The weakest reactions 
come from the AR(l) and i.i.d. models. The periodic models both expected an increased catch by 
1990 and, because of that, the difference between the expected and actual catch in 1990 was 
magnified. 

As expected, the species of fish are correlated with each other. Thanks to that, the drop 
in vendace could either be explained by the other species behaving in the same way or else lead 
to a decreasing correlation between vendace and other species. Both scenarios are interesting 
as the ecological causes possibly have to be sought in different places. As with the univariate 
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Figure 5. Hotelling's T2-statistic based on mean and variance re-estimated at each time step. The variance matrix has 
been replaced by the reduced variance matrix f, where the covariances have been replaced by their arithmetic means 

within the correlation groups. The critical limits have been estimated using an approximated F-distribution 

problem above, the description of the critical event is crucial and is also affected by the 'in 
control' system. 

Neither the Shannon-Wiener index nor the variants of it studied in this paper sound any 
alarm at all. Hotelling's T2, however, detects a change already in 1989, one year earlier than the 
univariate procedures if we accept a higher false alarm rate. With the same false alarm rate as for 
the Shewhart test, the alarm is called in 1990. 

There is great potential and usefulness for statistical surveillance on environmental data. 
Throughout the world, enormous amounts of data are collected about the environment and 
stored for analysis. Quality control and statistical process control are used, as was mentioned 
earlier, in many places in society, and these techniques can also be useful for monitoring environ
mental data. 
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Abstract 

Statistical surveillance is used for fast and secure detection of a critical 
event in a monitored process. This paper studies the performance for 
AR(l) processes. 

Two often suggested methods for detection of a shift in the mean, the 
modified Shewhart and the residual method, are compared and evaluated. 
Further, comparisons are made with direct Shewhart and a likelihood ratio 
method. 

New evaluation measures, the probability for successful detection and 
the predictive value, are also applied together with the average run length 
and run length distributions. 

We conclude that neither the modified nor the residual methods is uni
formly optimal. The residual method is, however, optimal for immediate 
detection, but has inferior properties otherwise. For many parameter se
tups, the modified method will give the better performance. 



1. Introduction 

Statistical surveillance is used for systematic monitoring of a process with the 
purpose to detect an unwanted departure from a specified state. Methods for 
Statistical Process Control (SPC) have been widely used for industrial, medi
cal, economical, environmental and many other applications. Several textbooks 
have been published, for example Box and Luceno (1997), Montgomery (1997) 
or Wetherill and Brown (1991). Note the difference between hypothesis testing 
for a change-point on a fix set of data and surveillance: In both cases we do 
not know if something has happened and when. But statistical surveillance is 
used for situations where new data arrives at each time step. The procedure is 
repeated and there is no fixed hypothesis. 

One fundamental assumption required by standard methods is that the pro
cess is iid (Independent and Identically Distributed) - a requirement which is often 
not met in practise. Removing the assumption of independence will affect the 
performance of the surveillance procedures. 

A survey by Alwan and Roberts (1995) of 235 quality control applications, 
where less than 50% of the studied applications were independent and less than 
15% were iid, gives a good motivation for studying this problem. Further, Alwan 
and Roberts (1995) together with Caulcutt (1995) and the discussion following 
them, testified about the frustration they have met with engineers who tried to 
apply SPC methods to autocorrelated data since the resulting monitoring system 
does not have the wanted properties. Stone and Taylor (1995) also pointed out 
that sometimes not even the ARIMA model is sufficient for the description of the 
process. 

The robustness of CUSUM and EWMA applied directly on the observed pro
cess have been discussed by for example Bagshaw and Johnson (1975), Harris and 
Ross (1991), Johnson and Bagshaw (1974), Montgomery and Mastrangelo (1991), 
Schmid and Schone (1997), VanBrackle and Reynolds (1997) and Yashchin (1993). 

Among others, two solutions for the non iid case have been proposed by sev
eral authors: We will call them the modified Shewhart method and the residual 
method, respectively. The methods will be described in detail below. The mod
ified Shewhart method have been investigated by Vasilopoulos and Stamboulis 
(1978), for an AR(2) process. The residual method was suggested for ARIMA
processes by Berthoux et al. (1978) and Alwan and Roberts (1988). Since these 
methods are often suggested and used in practise it is interesting to compare them 
with each other. Furthermore, we will briefly ex amplify what will happen if the 
process parameters are estimated during run-in under an assumed iid situation. 
We will call this method the direct Shewhart. 
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Often comparisons between the methods are limited to average run length. 
We will extend the evaluation using the predictive value and the probability 
of successful detection suggested by Frisen (1992). We will in this paper also 
compare the modified Shewhart and the residual method with examples of the 
likelihood ratio method in order to further examine their properties. 

In Section 2 a specification of the situation which is studied is given. In 
Section 3 the methods compared in this paper are defined in detail. Section 4 
contains results on the evaluation measures considered. In Section 5 the results 
and conclusions are discussed. 
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2. Specifications 

Consider a process that is observed at discrete time steps, t = 1,2,.... The 
data observed at time t is a continous stochastic variable denoted by X (t). The 
cumulated data up to time t is denoted by X t = ( X (1) ... X (t) ). Consis
tently, the current value of any variable is denoted by time within parentheses, 
ego X (t), j1 (t), E (t) and w (t), while the cumulated sets are denoted by time in 
index, ego X t , j1t, Et and Wt. When the process behaves in the prescribed, wanted 
or expected way we say that it is "in control". Our general model for the in 
control part of the process is 

X (t) = f1 (t) + W (t), 

where 
W (t) = </J. w (t - 1) + E (t). (2.1 ) 

and the correlation I</JI < 1. The variable Et is normally distributed white noise 
with Var [E (t)] = ()"2 and E (t) is independent of Wt-l. Note that we are defining 
()"2 as the variance of the concealed error term, E. We will in this paper assume 
that </J, j1 and ()" are known and we can therefore without loss of generality set 
f1 (t) = 0 and ()" = 1. 

A t an unknown time, T, the process is disturbed and goes "out of control" . 
We study the case where a shift in j1 to a known value, 8, occurs, i.e. 

Hence the expected value of X is 

E [X (t)] = { 0 when t < T 
8 when t :.:::: T 

A t each time, s, we want to discriminate between two events, D (s) and C (s), 
where D (s) = {T > s} is the event of the process being in control. C (s) = 
{T = s} and C (s) = {T :S s} will be discussed. 

Figure 1 shows an example of an AR(I) process with a shift 8 = 10· ()" with 
T = 40. 
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3. Methods for Monitoring an AR(l) Process 

When the monitored process is not iid but autoregressive the properties of the 
standard methods are changed. In this paper we will study some methods that 
are often suggested in the literature for this case: "Direct Shewhart", where the 
time series structure is not taken into account; "Modified Shewhart", where the 
limits have been altered to give a specific average run length and" Residual She
whart" , where the forecast errors are used for monitoring. As a benchmark these 
methods will be compared with the likelihood ratio method. The name" modified 
Shewhart" was given by Schmid (1995) and exact limits for some processes have 
been given by Vasilopoulus and Stamboulis (1978). The residual method was 
suggested by Alwan and Roberts (1988) and Berthoux et al. (1978). 

We will in this paper restrict attention to the AR(I) process (2.1) with </; > o. 

3.1. Direct Shewhart 

If time dependence is not taken into account a user might estimate the mean 
and the variance during run-in. In the case of an iid process, X, the Shewhart 
procedure, suggested by Shewhart (1931), prescribes that an alarm is called when 

IX (t)1 > k· (]", 

where the constant k is set to give a certain proabability of calling a false alarm. 
In traditional SPC litterature k is often 3 or 3.09. However, for a stationary 
AR(I) process the variance of X becomes 

(]"2 

(]"; = Var [X (t)] = </;2 
1-

Estimating the variance with a very large number of observations and using the 
same constant k an alarm will be called when 

IX (t) I > k . (]" = k . (]" . 1 
x VI - </;2 

(3.1) 

Since (1 - </;2r1/2 > 1 these limits will become greater than the limits for an iid 
process with variance (]"2. 
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3.2. Modified Shewhart 

The direct Shewhart will, as we will see in later Sections, have some undesirable 
properties, ego an ARLo (Section 4.1) that is depending on ¢. A straightforward 
solution to that problem could be to adjust the control limits of the Shewhart 
chart to give the wanted ARLo. 

Define c (¢) as the factor adjusting the limits of the iid Shewhart so that an 
alarm is called when 

IX (t) I > k . (J • c (¢) . 

Since ¢ > 0 ~ Var [Xl> (J2 it follows that c (¢) > 1. In Table 3.1, the adjusting 
factors have been estimated by computer simulation to yield ARLo = 11, the 
limits are also plotted in Figure 3 together with the limits obtained by using the 
direct Shewhart (3.1) with ARLo = 11 for ¢ = o. 

¢ Modified Direct 
c (¢) (1 - ¢2rl/2 ARLo 

0.0 1.000 1.000 11.00 
0.2 1.014 1.020 11.26 
0.4 1.060 1.091 12.17 
0.6 1.155 1.250 14.36 
0.8 1.363 1.667 20.99 

Table 3.1: Comparison between the adjusting factors of the modifed and direct 
Shewhart. 

We see that c(¢) < (1-pr1
/

2
, i.e. the direct Shewhart is having higher 

alarm limits than the modified. Therefore it follows that that the ARLo is higher 
for the direct than for the modified Shewhart. 

3.3. Residual Method 

The idea ofthe residual method is that the current value, X (s), and its expecta
tion given the past value are compared and the difference is used for monitoring. 
A similar approach is used by the Food and Drug Administration (FDA) as a 
guideline in postmarketing surveillance of adverse effects of drugs, where con
sequtive quarters are compared (Svereus, 1995). Also the National Institute for 
Radiation Protection (SSI) uses differences in mean between consequtive 24 hour
period means to detect suddenly increasing background radiation levels (Kjelle, 
1987). Other examples of applications of the residual method can be found in 
Harris and Ross (1991), Montgomery (1997), Notohardjono and Ermer (1986) 
and Pettersson (1998). 
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Based on the second last observation, X (s - 1), a forecast of X (s) is 

X(t)=¢.x(t-1). 

The residual is here defined as the difference between the observed value and its 
forecast, i. e. 

R (t) = X (t) - X (t) = X (t) - ¢. X (t - 1). 

When t < 7 the residual R (t) = 6 (t). But generally the residual becomes 

R (t) = 6 (t) + 6 (t), 

where 

6 (t) = E [R (t)] = { ~ 
(1 - ¢) 6' 

when t < 7 

when t = 7 

when t > 7 

For a fixed value of 7 

VaT' [R (t)] = VaT' [6 (t)] = 0'2. 

and a Shewhart test used for R would call an alarm when 

[R (t)[ > k· 0', 

where k is a constant. 
When ¢ > 0, the expected value will decrease after 7 and 

E [R(t)] < E [R(7)], for t = 7 + 1,7 + 2, ... 

(3.2) 

In Figure 1 we see an example of an simulated AR(l) process, with a shift at 
t = 40 of the size 100'. Figure 2 shows the residuals, i.e. forecast errors, of 
the process in Figure 1, where E[R(40)] = 10 and E[R(t)] = 5 for t > 40. 
That have earlier been observed by among others Harris and Ross (1991), Ryan 
(1991), Superville and Adams (1994) and Wardell et al. (1994) and for time series 
analysis by among others Enders (1995), Fox (1972) and Wei (1990). 

3.4. Likelihood Ratio Method 

It is possible to derive a method which have certain optimality properties. For a 
fixed false alarm rate and a fixed time, an alarm set based on the likelihood ratio 
statistic (IT') have the highest probability of calling an alarm when the process 
have gone out of control (Frisen and de Mare, 1991). Sequential procedures with 
minimal expected delay are based on this statistic. This approach will not be 
studied in detail in this paper, except for some illustrative examples intended to 
give insight in the properties of the methods studied. 
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The likelihood ratio statistic, 11 (Xs), is defined as 

1 (X)=f( X s IC(3)) 
I s f(XsID(3))' 

where f (Xs I D (3)) and f (Xs I C (3)) is the probability density function of Xs 
under the in- and out-of control states, respectively. Since X (t) given X t - I is 
normally distributed with 

E [X (t) I X t- I ] = rP' X (t - 1) + 6. (t) 

and Val [X (t)] = CT 2 the probability distribution function becomes 

1 {I 2} fX(tlIX t - 1 (x (t), x (t - 1)) = !CL exp --2 (x - rP' x (t - 1) + 6. (t)) , 
V 27rCT 2CT 

where 6. (t) = 0 for t < T (3.2). Further, using that 

f (Xs) = f (X (3) I Xs- 1 ) . f (X (3 - 1) I Xs- 2 ) ..... f (X (1)) 

the 11 statistic for D (3) = {T > 3} and C (3) = {T = k S; 3} reduces to 

Cancelling constants and using the properties of the exponential function we find 
that the 11 statistic depends on the data only through 

s 

L: (X (i) - rP . X (i - 1) + 6. (i))2 - (X (i) - rP . X (i - 1))2 
i=k 

s 

= L: [2· X (i) .6. (i) - 2rP' X (i - 1) .6. (i)] 
i=k 

s s 

= 2 L: [X (i) - rP' X (i - 1)] . 6. (i) = 2 L: R (i) . 6. (i) . 

Now, using the specification (3.2) for 6. we find that the 11 statistic depends on 
the data only through 

s 

R(k)+(l-rP) L: R(i), 
i=k+1 

for C {T = k} when k < 3 and R (3) for C {T = 3}. Hence the likelihood ratio 
statistic for immediate detection, C (3) = {T = 3}, depends on the data only 
through R (3). However, for other specifications of C (3) this is no longer the 
case. The likelihood ratio statistic for C (3) = {T = k} becomes a function of 
R(k), ... ,R(3). 
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4. Results 

In this section numerical results comparing the methods are presented. To com
pare different methods, several evaluation measures have been suggested, see 
Frisen (1992) and Frisen and Wessman (1998) for overviews. The choise of which 
measure should be used as guidance has to be decided by using knowledge of the 
specific application. 

We will study an AR(I) process with parameter 0 < ¢ < 1 and without loss 
of generality we set fl = 0 and a- = 1. We will use a two-sided Shewhart test, with 
the limits set to give ARLo = 11. For many applications this might be too small 
but it will anyway show the impact of the autocorrelation on the surveillance 
procedures. 

The critical event is a shift in mean from 0 to 8 . a- occuring at time T. To 
calculate the predictive value and probability of successful detection we need 
knowledge of the run length given any value of T, which is an extension from 
earlier papers on this matter, where only the cases T = 1 or T = 00 have been 
considered. At calculation of the predictive value, we will a priori assume that T 

is geometrically distributed, 

iT (t) = 1/ • (1 - l/)t-l ,t = 1,2, ... , 

where 1/ is the failure rate or incidence, i.e. 1/ = P {T = tiT ~ t}, for t = 1,2, .... 

4.1. The Run Length Distribution 

The time to the first alarm, that is the run length, tA, is of special interest. When 
tA < T the alarm is false and otherwise it is true. The stochastic variable tA is 
a stopping time with outcomes in {I, 2, ... }. Figure 4 shows the the probability 
density function for the run length, itA' for the modified and residual method 
when fl (t) 0 which is denoted by T = 00. 

An often used summarizing value is the Average Run Length (ARL). More 
specifically, we define 

ARLo = E [tAl T = 00] , 

the average run length when the process is in control. In quality control literature, 
the ARLo is often compared with 

ARLl = E [t A I T = 1] . 

For the residual method, the probability of calling a false alarm at a specific 
time is 

po = P (I R (t) I > ka-) = 2 (1 - <I> (k )) , 
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where <I> denotes the cumulative probability density function for the standard 
normal distribution. The expectation E [R (t)] is depending on the time since 
the shift (3.2). The probability of calling an alarm for t ~ T becomes 

P AO = P (t A = T) = P (I R ( t) I > kit = T) = 1 - <I> (k - 8) - <I> ( - k - 8) 

and 

PAl = P (t A = tit > T) = 1 - <I> (k - 8 . (1 - 1;)) - <I> ( - k - 8 . (1 - 1;)) . 

The average run lengths ARLo and ARLI becomes 

and 

00 

ARLo = 2: i . P (t A = i I T = 00) 
i=l 

~ . (1 )i-l 1 w'/, . Po . - Po = -
i=l Po 

ARLI = 1· P (tA = 1 IT = 1) + E [tA ItA> 1]· P (tA > 1 IT = 1) 

PAO + (_1 + 1) . (1 - PAO) 
PAl 

1 - PAO + PAl 

PAl 

For the direct Shewhart the ARLo depends on 1; (Figure 5). Therefore it is not 
directly comparable with the other methods. It will be excluded from analyses 
with measurements of detection power. 

Figure 6 presents the ARLI for the residual and modified Shewhart where the 
values for the latter have been obtained using computer simulations. Comparing 
them, we find that they both have an ARLI that increases with 1;, but ARLI 
for the residual method is higher than the ARLI for the modified method. Using 
the run lengths would therefore favour the modified Shewhart method. When 
1; ~ 0.6 there is a substantial difference. 

These ARL functions have earlier been described by Schmid (1995), Wardell 
et al. (1994) and Zhang (1997). They found that the modified method has a 
smaller ARLI than the residual method, given a fixed ARLo. Also Schmid and 
Schone (1997) and Superville and Adams (1994) have found the same. 
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4.2. Probability of Successful Detection 

For some applications it is crucial that a change is detected within a certain 
time, say d time steps. If an alarm is called within d time steps, actions can be 
taken to prevent the negative effects of the change. A relevant measure for such 
applications is the Probability of Successful Detection (P SD). We define 

P{s<tA<s+dl7"=s} 
PSD(s,d,¢)=P{tA<S+dltA~S,7"=S}= P-{ I } 

tA ~ s 7" = S 

(Frisen, 1992). The P S D is generally a function of the time of the change, 7". The 
properties of the Shewhart test implies that the P S D for the residual method is 
constant over time: 

P SDres (d, ¢) = 1 - (1 - PAO) . (1 - PAl)d-l . 

Also the P S D for the modified Shewhart is constant over time and have been 
estimated by computer simulations. 

In the special case where d = 1, i. e. the probability of immediate detection, 
the residual is better than the modified (Figure 7). When ¢ = 0 the PSD for 
both the methods are equal. From Figure 8, where some values of the P S D for 
d > 1 are plotted, we see that the performance of both the residual and modified 
methods get worse when ¢ grows. Further, we can see that for values ¢ ~ 0.7 or 
smaller the modified method will have a higher probability of calling an alarm 
here. When ¢ is close to one, the P S D becomes higher for the residual method 
than for the modified depending on that it still has a high probability of calling 
an alarm at t = 7. 

4.3. Predictive Value 

As an alarm is called we want to know how certain we can be that a change has 
occured. A measure for this is the Predictive Value (PV), defined as 

PV(s) = P{7"::; S ItA = s}, 

(Frisen, 1992). It can be rewritten as the proportion of motivated alarms of all 
alarms at time s, i.e. 

P{tA=sl\7"::;S} PMA(s) 
PV(s) = P{tA = s} = PMA(s) +PFA(s)' 

when P {tA = s} > O. When PV is close to 1 the alarm is highly motivated. 
We define the Probability of a False Alarm (PFA) occuring at time s as 

P F A (s) = P {tA = s I 7" > s} . P {7" > s} . ( 4.1) 
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The Probability of a Motivated Alarm (PMA) is not only depending on the time 
of the alarm, s, but also on the actual time of the change, T, and the event to be 
detected. The PM A is calculated by conditioning on T and using the distribution 
of T 

8 

PM A ( s, 8) = 2: P { t A = SiT = t} . P {T = t} . (4.2) 
t=l 

To derive the PV for the residual method we find the P F A using (4.1) 

P F A (t) = po . (1 - Po) t-l . (1 - v) t , 

which is independent of ef. Secondly, we use (4.2) to find PM A 

8 

PMA(s) = 2:v(l-v)t-l.l(s,t,ef), 
t=l 

where I (s, t, ef) = P {tA = SiT = t} for t :::; s. For the residual method I (s, t, ef) 
can be calculated exactly and 

PMAre8 (s) = v· (1 _v)8-1. (1- Pot-I. PA (0) 
8-1 + I: v· (1 - V)t-l . (1 - PO)t-l (1 - PA (O)t-t-l . PA (1). 
t=l 

For the modified Shewhart the I-function, po and PA have been estimated by 
computer simulations. In Figure 9 PV for ef = 0, ef = 0.2 and ef = 0.9 of the 
residual and modified method are plotted. Often it is reasonable to choose an 
ARLo high enough to ensure that the monitoring stops before the t = ARLo 
when T = 1. When t < ARLo 

eft < ef" =? PV (t, eft) > PV (t, ef") , 

for the cases presented in the figure. Further, when t = 3,4, ... the predictive 
value for the modified Shewhart is higher than for the residual method. Initially 
the modified Shewhart is having a very poor PV, which is depending on the high 
£lase alarm probability at t = 1 (Figure 4). At t = 2 the methods are almost 
equal, but the modified method is better when ef = 0.9 and the residual when 
ef = 0.2. 
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5. Discussion 

The direct Shewhart method will have an ARLo which is increasing with cPo 

In order to obtain a constant ARLo the limits would have to be adjusted and 
set equivalent with the modified Shewhart. Hence direct Shewhart is not fully 
comparable with the others. 

The likelihood ratio method is optimal in the Neyman-Pearson sense, i.e. 
have the highest probability of calling a true alarm given a specific false alarm 
pro bability (Frisen and de Mare, 1991). When the method is optimized to detect 
a change immediately, i. e. when C (8) = {T = 8}, the lr method and the residual 
method become equivalent, and in the special case cP = 0 also the modified and 
direct Shewhart methods become equvivalent with the likelihood ratio. For other 
specifications of C (8), eg. an event occuring at a specified time, t < T, the lr 
statistic is not a function of R (8) or X (8) only. 

Apart from the case C (8) = {T = 8}, both the residual and the modified She
whart are suboptimal. As was seen above, the residual method is not monitoring 
the level of the mean, but instead the change in level of the mean. This effect 
have been observed and discussed by among others Harris and Ross (1991), Ryan 
(1991), Superville and Adams (1994) and Wardell et al. (1992,1994). Wardell 
et al. (1994) showed that the run length distribution after a shift has occured 
is almost equal to the in control run length distribution, one time step after the 
shift. 

Clearly, if we can identify the process under study and the requirements we 
have on the surveillance procedure, it might be possible to construct an optimallr 
procedure. However, reducing the data with the tranformations presented above 
will, except in a few special cases, lead to a loss of information and suboptimal 
procedures. Applying EWMA or CUSUM on the reduced data can not get that 
information back. 

Summarizing the findings about the ARLl, PSD and PV (for t < ARLo) 
we see that for most of the cases studied both the modified and the residual 
methods have worse performance for larger values of cPo For cP ~ 0.7 and smaller, 
the modified method will be better, except for immediate detection. The low 
PV (1) for the modified method is due to the high probability of a false alarm at 
t = 1. Zhang (1997) pointed out, as a rule of thumb, that the residual method is 
to prefer when 0 > 2 and cP > 0.8. 

As have been noted by many authors before, the residual chart does not 
give a full picture of the process and is only sufficient for some specifications 
of the considered process. To overcome the disadvantages of the residual and 
modified methods Adams et al. (1994) suggested that both the observed and 
residual processes should be used simultanously. Alwan (1992) compared the 
alarms given by either of the observed and residual process. This approach will 
lead to a multivariate monitoring problem, discussed by ego Jones et al. (1970), 
Kramer and Schmid (1997) and Wessman (1998). 

14 



From the results in the earlier Sections we find that one method is not always 
uniformly better than the other. Neither the residual nor the modified method 
are optimal except in a few special settings, for example the residual method for 
the situation of immediate detection of a shift. 
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Legend to Figures 

1. Simulated example of an AR(I) process (cjJ = 0.5) with a shift in mean, 
f1 (t) = 10·1 {t = 40,41, ... }. 

2. The residuals, R (t), from the process in Figure 1. 

3. The alarm limits for the direct (solid) and modified (dotted) shewhart for 
different values of cjJ. 

4. The pdf of the in control run length, ft (t), for the modified Shewhart 
(cross) and the residual method (ring) for a process with high autocorrela
tion (cjJ = 0.9). 

5. The ARLo for direct shewhart for different values of cjJ. The limits were set 
to make ARLo = 11 for cjJ = o. 

6. The ARLI for the modified Shewhart (dotted) and the residual method 
(solid) for different values of cjJ, where ARLo = 11. 

7. The PSD (1), i.e. the probability of immediate detection after a change, 
for the modified (dotted) and residual method (solid) for different values of 
cjJ, where ARLo = 11. 

8. The PSD (d), i.e. the probability of detection before d timesteps after the 
change, for the modified (dotted) and residual (solid) method for different 
values of cjJ, where ARLo = 11. The upper and lower pairs have d = 7 and 
d = 3, respectively. 

9. The PV (t), i.e. the predictive value of an alarm at time t, for the modified 
and residual method, where cjJ = 0.2 and cjJ = 0.9. The solid lines for the 
residual method and dotted for the modified Shewhart. (X) marks for the 
situation where cjJ = 0.2 and (0) for cjJ = 0.9. The dotted line without marks 
is for cjJ = o. The incidence v = 0.1. 
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