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Abstract 

In this report a method for monitoring time series with cycles is presented. It is a non
parametric approach for detecting the turning point of the cycles. Time series of business 
indicators often exhibit cycles that can not easily be modelled with a parametric function. 
Forecasting the turning points is important to economic and political decisions. One approach 
to forecasting the business cycles is to use a leading indicator. The method presented in this 
report uses statistical surveillance to detect the turning points of a leading indicator. Statistical 
surveillance is a methodology for detecting a change in the underlying process as soon as 
possible. Observations on the leading indicator are gathered once a month and the change in 
the process is a turning point. Only a part of a series that contains one turning point at most 
will be investigated. The time series is assumed to consist of two additive components: a trend 
cycle part and a stochastic error part. No parametric model is assumed for the trend cycle, 
estimation is instead made by robust regression under different monotonicity restrictions. The 
aim is to detect a turning point as soon as possible, not to predict the value of the time series 
at the turning point. Evaluation of this surveillance method is done by means of simulation. 
The number of false alarms and the delay time are analysed. The evaluation shows that if there 
is no turning point then the median time to the first false alarm is five years, whereas if there 
is a turning point after three years, the median time to an alarm is 3 months. 

Keywords: Turning point detection, monitoring, leading indicator, non-parametric, robust 
regression 



1. Introduction 

By business cycles we generally refer to the major fluctuations over time in the total economy. 
Forecasting the business cycle is important, both for the players in the economic process and 
for economic policy. Several methodologies have been suggested that use a leading indicator 
to predict the turning points. A leading indicator represents activity that leads business cycle 
turning points for sound economic reasons. 

The report is an attempt to develop a system for early warnings of turning points in a leading 
indicator. This can be used to predict the turning points of the business cycle. Frisen (1994) 
showed that the times of the turning points of the Swedish business cycle and a lagged leading 
index have coincided remarkably well for a period of 30 years. In economic literature a system 
for early warnings can also be called monitoring, while in the statistical literature it is 
sometimes called statistical surveillance. 

It is important to distinguish between surveillance and, for example, a test of structural 
change. The latter case has a fixed null hypothesis and a fixed number of observations. The 
surveillance case, however, has no fixed null hypothesis and the number of observations is 
increasing. The surveillance continues, even if there has been no signal of change for a long 
time and the evidence for no change in the beginning is strong. Thus the null hypothesis is 
never accepted. 

The performance of a method of surveillance is not evaluated using Type I and Type II error 
probabilities. Instead evaluations can be made by investigating the delay time for an alarm, the 
predictive value of an alarm or different utility functions (Frisen and Wessman, 1998). For 
research regarding the theory of statistical surveillance and different kinds of optimality, see 
Frisen and de Mare (1991). 

Much research has been done in the area of statistical surveillance. Industrial quality control 
using control charts is one area where the theory of statistical surveillance is applied. Some 
control charts are designed to detect a sudden change in the mean or the standard deviation of 
the process, whereas others are designed to detect a slower change (Wetherill and Brown, 
1991). 

The aim of the method of surveillance presented here is to detect a turning point in the 
economic time series as soon as possible after occurrence. Observations are gathered and at 
each new additional observation there has to be a decision of whether there is enough 
evidence to conclude that a turning point has occurred. In a surveillance situation the number 
of observations are not fixed but increases at every new time point, thus improving the 
information about the time series. The timeliness of the detection is important. The 
observation of the time series at time t is denoted X(t). Based on the data available at time s a 
discrimination is made between two states: 1) that the turning point has occurred and 2) that 
the turning point has not yet occurred. This report presents an alarm statistic that can be used 
to discriminate between these two states. 

Business cycles, leading indicators and earlier suggestions of methods are discussed in Section 
2. In Section 3 the suggested new method is presented. Section 4 contains the results of a 
simulation study regarding the properties of the method. The results and plans for continuation 
of research in this area are discussed in Section 5. 
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2. Business cycles and leading indicators 

2.1 Business cycles - a review 

By business cycles we generally refer to the phenomenon that years of rapid expansion are 
followed by a period of slower growth or even contraction. These expansions and recessions 
affect both the performance of business firms and more general aspects of a nation's economy. 
Forecasting the business cycle, for example the time of the end of an ongoing recession is 
important as a basis for decisions regarding economic policy. Much research has been devoted 
to finding a method for predicting the business cycle. 

The definition of business cycles offered by Mitchell and Bums (1946) is: 

Business cycles are a type of fluctuation found in the aggregate economic 
activity of nations that organise their work mainly in business enterprise: a cycle 
consists of expansions occurring at about the same time in many economic 
activities, followed by similarly general recessions, contractions, and revivals 
which merge into the expansion phase of the next cycle; this sequence of 
changes is recurrent but not periodic; in duration business cycles vary from more 
than one year to ten or twelve years; they are not divisible into shorter cycles of 
similar character with amplitudes approximating their own. 

For a general review of research on business cycles, see OppenHinder (1997a, eds). 

Theories claim that business cycles can be caused by mechanisms within the economic system 
as well as external factors (Samuelson and Nordhaus, 1992). Most commonly accepted 
theories of the business cycle processes and mechanisms entail dynamic models. The so-called 
internal theories often focus on the internal dynamics of the economic system. Various 
exogenous shocks are also expected to propagate business cycles, such as war, population 
growth, migration and scientific discoveries (Westlund, 1993). Questions have also been 
raised as to whether business fluctuations in a country can be divided into two unobservable 
components, world business cycle and country specific business cycle (Bergman, 1992). 

Sometimes it is claimed that the standard practice is to adjust the original values for seasonal 
influences, irregular components and trend-related processes, see OppenHinder (1997b). 
However, Westlund (1993) says that separating trend and cycle components is always more or 
less judgmental. 

The most frequently used business cycle reference series are the Gross National Product and 
fudustrial Production series (Westlund, 1993). Apart from Gross National Product the 
production index for the manufacturing sector gives good information about the monthly 
developments of economic activity (Lindlbauer, 1997). Yet another possibility is to use the 
seasonally adjusted capacity utilisation in manufacturing industry (Kohler, 1997). 

When describing the business cycle the following characteristics are often used, namely the 
shape and magnitude of the turning points and the length and pattern of the upturns and 
downturns. As a rule a boom phase lasts longer than a recession phase. The shape of the 
period of economic boom could be called a crest or plateau whereas the recession phase is 
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characterised by a funnel shape (OppenHinder, 1997b). Neftci (1984) showed that the 
underlying process of economic time series in expansion periods is different from that in 
recession periods. 

A recession is among other things characterised by decreasing investments in machinery and 
equipment and decreasing labour demand (Samuelson and Nordhaus, 1992). 

2.2 Leading indicators - a review 

A business cycle indicator is a time series that can be used as an indicator for the business 
cycle. For a general review, see Lahiri and Moore (1991, eds). 

Moore (1961) classified business cycle indicators into three groups of leading, roughly 
coincident and lagging indicators. In OppenHinder (1997c) an even finer classification is made 
of the indicators into leading indicators (for example business expectations), tension 
indicators (for example change in order stocks), coincident indicators (for example change in 
production) and lagging indicators (for example change in number of employed). 

In Kohler (1997) it is said that the objective of leading indicator research is described as 
isolating those macroeconomic variables that have an especially long and stable lead relative 
to the business cycle. The reason that some time series are leading can be explained by the fact 
that for example opinions are formed in business before orders are placed and sales are 
achieved (OppenHinder, 1997c). The usefulness of leading indicators comes from the fact that 
they are often released more frequently and some indicators are available with a relatively 
short delay (Parigi and Schlitzer, 1997). 

The economic indicators are selected with respect to their performance according to a number 
of criteria, among others economic significance, length and consistency of the lead and 
freedom from excessive revisions (Westlund, 1993). 

A leading indicator can be quantitative or qualitative: The leading indicators published 
regularly by OECD (Organisation for Economic Co-operation and Development) are for 
instance to 40% based on judgmental and expectation variables. The lower turning points 
have been shown to be more difficult to predict. Also the lead times of the indicators may 
differ at upper and lower turning points. Good leading indicators for the upper turning points 
are often judgement regarding order stocks, finished goods inventories and the present 
business situation. The lower turning points are often indicated by export expectations, 
assessment of finished goods inventories and business expectations for the next six months 
(Nerb, 1997). The lead is often shorter for the upper turning point than for the lower 
(OppenHinder, 1997c). Indicators of business conditions and business expectations could be 
carried out in the form of a survey to companies. It should be considered that different 
companies do not evaluate the same constellations of economic data in the same way. 
Judgements and expectations are included in their assessments (Lindlbauer, 1997). 

The employment trends are considered to be lagged indicators because of social legislation 
and training costs. It is often more profitable to keep the staff even during periods of slacker 
demand even if they are under-employed. Money supply is considered a good early indicator. 
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Share index could be an early indicator, but due to the quickly response needed the investors 
often fall for rumours (Lindlbauer, 1997). 

One example of an index of leading indicators is the one consisting of 11 variables that is 
compiled by the U.S. Department of Commerce (Niemira, 1991). For Swedish data, a method 
to calculate an index for short time predictions was proposed by Lyckeborg, Pramsten and 
Ruist (1979). Another example of an index for the activity of the Swedish economy is the one 
that is calculated and published in SCB fudikatorer. This activity index consists of the four 
series of industrial production index, the development of the production volume for the energy 
sector, index of sales for the retail trade and number of hours worked in the public sector. 
These four time series are deseasonalised and weighted together to form the index. 

2.3 Some earlier suggestions of methods for the prediction of turning points in economic time 
series 

Much research has been done in the area of forecasting the turning points of business cycles 
and several methodologies use a leading composite index or individual leading indicators to 
predict the turning points. Some of the methods suggested are mentioned below. 

A sequential signal system was proposed by Zarnowitz and Moore (1982). The motivation is 
that a decline in the leading index rate is an early sign of an ongoing expansion that is starting 
to decelerate. A sustained decline of the growth rate in the leading index puts it below the 
average 3.3% line. If the leading index rate then falls below zero and the coincident index rate 
falls below 3.3% the probability of recession is heightened. Finally if the coincident index rate 
follows the leading index rate by turning negative chances are high that the slowdown is being 
succeeded by an actual decline in overall economic activity, that is, a recession. This method 
was applied on Swedish data by Frisen (1993) for the period between January 1960 to April 
1987. For this set of data the proposed method did not give clear-cut results. 

Chaffin and Talley (1989) proposes a test of diffusion indexes that can be used to predict the 
business cycles. A diffusion index may be defined as the number of series in a group that are 
rising, expressed as a fraction of the total number of series in this group. The equality of the 
diffusion index at time t-L and the diffusion index at time t-L-r is tested using the McNemar 
test. As an evaluation the method was applied to monthly data for thirty leading indicators for 
a period of fourteen years. 

Keen, as cited in Silver (1991), observed that the last eleven recessions were preceded by two 
months of negative and decelerating growth in the composite leading index. He suggested a 
signalling system based "the rule of two months of negative and decelerating growth in the 
composite leading index". 

One sequential analysis method was suggested by Neftci (1982), where the probability 
distribution of a leading indicator, X, can be either pO or Fl, depending on the regime (normal 
or downturn). The turning points are characterised by sudden switches in the distribution of X. 
A prior probability, concerning when downturns are expected to occur, has been developed 
from observing past cyclical downturns. The posterior distribution is used as an alarm 
statistic. This method was evaluated by an example. 
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Jun and Joo (1993) proposed a method for predicting turning points by detecting slope 
changes in a leading composite index, Z. The Z consists of a random level, L, and a white 
noise process, a. The level, L, is modelled L(t+ 1) = L(t) + T(t) + b(t+ 1), where b is a white 
noise process and the slope, T, follows a random walk process except at the turning point. At 
an unknown time a random slope change is represented by a random shock which will cause 
either a peak or a trough. A Bayesian approach is used so that if the posterior probability of 
the alternative hypothesis exceeds a limit, it is concluded that the leading index has passed 
through its turning point. Data on US leading and coincident composite index was used to 
evaluate the method. 

Lahiri (1997) refers to Hamilton's (1989, 1993) non-linear filter. This model postulates a data 
generating process with two different regimes - expansion and recession, respectively. The 
process is subject to discrete shifts by a two-state Markov process. The posterior distribution 
is used as an alarm statistic. In his article Lahiri (1997) applies Hamilton's filter to a time
series of interest rate spreads, that are the differences on a given date between interest rates on 
alternative financial assets. These interest rate spreads has been shown to be good predictors 
for the future economic activity. 

Koskinen and (mer (1998) proposed using a hidden Markov regime-switching model as a 
Markov-Bayesian classifier. The data generating process has two hidden classes and the 
regime posterior probabilities are used to signal a turning point. Parameter estimation and 
model selection are based on a probability score to minimise the turning point forecast error. 
The method was applied to Swedish and US data. 

2.4 Model discussion 

Much research has been done in the area of modelling and forecasting the business cycles. In 
Makridakis and Wheelwright (1979) econometric forecasting models are divided into single 
equation regression models, mUlti-equation models and time series models. The single 
equation regression model is one where the variable of interest is related to a single function 
of explanatory variables and an implicit additive error term. In the multi-equation models, the 
interrelationships among a set of variables are simultaneously accounted for. This is a more 
involved process than simply constructing and combining a set of individual regression 
equations. Among the models defined as time series models in this book, the most basic linear 
model is the ARMA model. 

In Christ (1996) econometric models are defined as systems of equations intended to 
determine a vector of endogenous variables in terms of a vector of exogenous variables, 
vectors of lagged endogenous variables, a matrix of parameters and a vector of stochastic 
disturbances. 

For the methods reviewed in Section 2.3 the use of models differ. The methods proposed by 
Zarnowitz and Moore (1982), Chaffin and Talley (1989) and Keen (s. s. Silver, 1991) do not 
demand any model for the data. The others use different parametric models for the behaviour 
before and after the turning point. 

One aspect of the time series, for which the method of surveillance presented in this report is 
intended, is that they are observed once a month and hence likely to contain seasonal 
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variation. For the methods reviewed in Section 2.3 the aspect of seasonality is only mentioned 
by Jun and Joo (1993). They assume the series to be free of seasonal variation. The method of 
surveillance presented in this report is based on the assumption that the turning points of the 
process under surveillance are unobservable because of random fluctuations, not because of 
both random and seasonal fluctuations. Therefore, in order to use the method proposed here, 
data must be seasonally adjusted prior to the surveillance. The topic of seasonal adjustment 
using moving average techniques has been treated by Andersson (1998). Here however the 
problem is considered solved and the time series is assumed to be free of seasonal variation. 

3. A non-parametric method for surveillance of cycles 

Many methods have been suggested for detecting changes in a time series process. Some of 
the methods used, for example in the results by Garbade (1977), concern a single decision and 
a fixed set of observations. This approach will not be considered in this report. When 
monitoring a time series in order to detect a change it is important to consider that the 
inferential situation is one of repeated decisions: we need to make a new decision with the 
entrance of each new observation. The methods in 2.3 are all designed for sequential 
decisions, but they are based on different methodology. The decision rules used by Zarnowitz 
and Moore (1982), Chaffin and Talley (1989) and Keen (s. s. Silver 1991) are based on rather 
ad-hoc assumptions, whereas Neftci (1982), Jun and Joo (1993) and Hamilton (1989) 
proposes to use the posterior distribution as an alarm function. This report proposes an alarm 
function that is developed using the theory of statistical surveillance. It was shown by Frisen 
and de Mare (1991) that the use of the posterior distribution is equivalent to the alarm statistic 
of the likelihood ratio method when there are only two states. This is the likelihood ratio 
method that will be applied below. Many sequential methods are based on assumptions of a 
parametric model where sometimes the estimation problem is not taken seriously. This report 
proposes a non-parametric estimation procedure that is based only on assumptions of 
monotonicity. Nearly all the method mentioned in Section 2.3 are evaluated by one or two 
examples. The method presented in this report will be evaluated by Monte Carlo techniques, 
using 16 000 replicates. An additional aspect that is important in the evaluation of sequential 
methods is using relevant measures of performance, for example the time to a false alarm and 
the delay time. The method proposed here will be evaluated by both these measures. 

3.1 Model 

This is a first investigation of how to use the theory of statistical surveillance and 
monotonicity conditions for turning point detection of a leading indicator. The ambition of the 
method presented here is not to predict the actual value of the time series at the turning point. 
Instead the method will be used to detect a turning point or, to be more specific, to decide 
whether the turning point has occurred or not after each new observation. Thus a very simple 
model for a leading indicator X is used. Only a part of X that contains one turning point at 
most will be investigated. The set of all data available at time s is denotedXs = {X(t): t = 1,2, 
... , s}. The time series X consists of two components: the trend cycle and the error term. Thus 
no decomposition of trend and cycle will be made. The trend cycle is not modelled as a 
stochastic process. If no other prior information is given this approach is often associated with 
modelling the trend cycle component as a polynomial function. This is not the case here. The 
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trend cycle function is unknown, apart from the important aspect of monotonicity and 
unimodality, which is not an assumption but follows from the definition of a turning point. 

The model used in this report for an observation of the time series at time t is 

X(t) = f.1(t) + e(t) (3.1) 

where f.1(t) E f.J, f.J is the family of all unimodal functions 

and e(t) are iid N(O; 0
2

). Without loss of generality 0
2 =1 is used. 

As mentioned in Section 1, at time s a discrimination is made between the two states 
C(s) = {1 ~ s} and D(s) = {1 > s}, where 1 is the unknown time of the turning point. The 
case treated in this report is when the aim is to detect the next peak. The opposite case is 
solved correspondingly. The first possible time for decision is set to t = 1 (see Section 3.1.1). 
Thus 

f.1(t -1) ~ f.1(t) for t <1 and 

f.1(t -1) ~ f.1(t) for t ~ 1 

where at least one inequality is strict in the second part. 

(3.2) 

The frame work is similar to that of Neftci (1982) and others. The distribution of X(t) is 
assumed to differ, depending on the state (the turning point having occured or not). Once a 
month a new observation is made on X(t), where 

{
Jlx(t)IC} 

X(t) - Jlx(t)ID} 
if1~r~t 

if r > t. 

3.1.1 The relation between the start of surveillance and the turning point 

(3.3) 

Surveillance is based on repeated decisions. At each new additional observation, a decision 
has to be made of whether the change has yet occurred. The system of surveillance presented 
here starts at the latest confirmed turning point (here a trough). In a realistic situation the 
confirmation is not likely to come directly after the occurrence of the turning point, thus 
producing a delay. However, this delay is not considered in this report. The following notation 
of the first time that a decision can be made is used. 

Denote the times after the latest confirmed turning point as t = 0, t = 1, etc, and 
denote the observations x(O), xU), etc. The first decision of 
whether a turning point has occurred, can be made at time t = 1. 

An illustration of the trend cycle near a confirmed trough is found below. 

8 



First 
decision time 

v 

0 
v 

0 

0 
0 • 

A 

A 

Confirmed 
turning point 
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Fig. 1. The figure shows the values of the (unobservable) trend cycle, f.1, near a confirmed 

trough. The first decision of whether a peak has occurred, can be made at time t = 1. 

Another important definition that is somewhat special to this application is the definition of 
the time of change, 'l . The change treated in this report is the event when the trend cycle 
starts to decline after an expansion. 

If the latest confirmed turning point is a trough and observations are made in 
order to detect the next peak, then 'l is defined as the first time the 
trend cycle is decreasing. By the notation above, 'l ;;::: 1. 

Examples of turning points at time 1 and 2 are shown in Figure 2. 

o 

-3 -2 -1 

", " . . . 

1:=1 

'."" 
, 

' ...... 

'. 
2 -3 -2 

Fig. 2. (a) Example where 'l =1; (b) Example where 'l =2. 

3.1.2 Estimation of the trend cycle 

o 

-1 

1:=2 

4 

In this report a non-parametric approach for turning point detection is suggested. No 
parametric model is needed to estimate the trend cycle component in (3.1). This component is 
estimated using only the knowledge that the monotonicity of the trend cycle is changed at a 
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turning point. There are several advantages with this approach. One advantage is that since the 
cycles are likely to be asymmetric and irregular and may contain plateaux, the task of finding 
a suitable function to fit such data is difficult. In this approach therefore the trend cycle is 
estimated using robust regression. Only the restriction implicit in the definition of 1 in Section 
3.1.1 is used. 

Thus the estimate of the trend cycle vector between a trough and a successive peak is 

pD : max f(xs l,u) , 
f.1E3 

where S is the family of fl such that fl(t) ~ fl(t + 1), t~1 

The estimate of the trend cycle vector, if there is a peak at time 1 , is 

(3.4) 

pCT : max f(xslfl) , (3.5) 
f.1E"'T 

where ~ 1 is the family of fl such that fl(1 - k) ~ fl(1 - k + 1)~ ... ~ fl(1 -1) 

and 
fl(1-1)~ fl(1)~ ... ~ fl(1 +m), 

where at least one inequality is strict in the second part and k, m> 1 

The trend cycle vector is estimated using a least square criterion under these monotonicity 
restrictions (Frisen, 1986 and Robertson, Wright, Dykstra, 1988). Under the conditions used 
in this report these estimates are also the maximum likelihood estimates. 

3.2 Surveillance 

As mentioned in Section 3.1 the observations available for the decision at time s are the vector 
Xs. The goal of the surveillance is to detect a turning point in the business cycle as soon as 
possible after occurrance. An alarm set, A(s), is constructed with the property that when Xs 
belongs to A(s) it is an indication that C(s) occurs. Optimal methods to discriminate between 
C and D are based on the likelihood ratios under different conditions (Frisen and de Mare, 
1991). A possible way to adapt the likelihood ratio method to the case of turning points was 
indicated by Frisen (1994). 

3.2.1 The alarm statistic 

The vectors J.l D and J.l Ct are unknown and thus the optimal likelihood ratio can not be used as 

an alarm function. Instead the maximum likelihood ratio statistic will be used. The properties 
of the maximum likelihood ratio statistic when used as an alarm function are not known. In 
this report some of its properties will be investigated. Thus, the alarm set consists of those Xs 
for which the ratio of the maximum likelihood functions exceeds a limit ks, i.e. 

(3.6) 
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The estimates of the trend cycle vector are the maximum likelihood estimates shown in 3.4 
and 3.5. Thus, for the case of independently normally distributed variables with standard 
deviation one and 1l j = P( 1, = j), the alarm statistic in (3.6) can be written as 

S Jr. =L J 
j=l P(t':::; s) 

TIs 1 {(X(U) - flCj )2} --exp -
u=l ~2Jr 2 

= 

TIs 1 {(X(U) - flD )2} 
--exp -

u=l ~2Jr 2 

S Jr. =L J 
j=l P(t':::; s) 

{ 
f (x(u) - flCj )2} 

exp - £..; 
u=l 2 

= 

{ 

S (x(u) _ flD)2} 
exp - L---'---

u=l 2 

where 
QCj = quadratic deviation from the best model with turning point at t = j 
~ = quadratic deviation from the best model with no turning point. 

(3.7) 

In the alarm function specified in (3.7) the distribution of the change point, 1, , is included. If 
the distribution of 1, is known it should be used. However, for the application in this report 
the distribution of 1, is not known and thus a robust approximation of the alarm function in 
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3.7 is used. It was shown by Frisen and Wessman (1998) that the method of surveillance 
called Shiryaev-Roberts method can be used as a good approximation of the likelihood ratio 
method. The Shiryaev-Roberts method uses equal weights for all components and the limit ks 
is constant. In this report the Shiryaev-Roberts approach will be used as an approximation to 
the alarm function (3.7). Thus the alarm function is given by 

s 1 1 
MSR(s) = Lexp(-QD --QCj) 

j=l 2 2 
(3.8) 

The time of the alarm, tA, is defined as 

tA = min[t: MSR(t) > k] (3.9) 

where the alarm limit, k, is a constant. 

3.2.2 The alarm limit 

The alarm limit, k, is determined so that the median run length to the first false alarm is 
known and fixed. Which value of the median run length to the first false alarm that is suitable 
depends on the application. The MSR method of surveillance presented in this report is 
developed to decide if a leading indicator has reached a turning point. The time from one 
turning point to the next among Swedish business cycles is rarely not longer than 4 years. In 
this illustration the median time to the first false alarm, named MedRLo, is set to a little over 5 
years. The reason for not using the median run length of exactly 5 years is that the simulations 
are very time consuming and calibrating the method to give a MedRLo equal to 60 months 
exactly would take a disproportionately long time. This is merely an illustration of the MSR 
method and the important thing has been to use a value for the MedRLo that is not considered 
too unrealistic. For a specific application great care must of course be taken in setting the 
correct MedRLo. The implication of setting MedRLo equal to 62 months is that if there is no 
turning point the median time to the first false alarm is a little over 5 years. 

Let RL represent the run length. 
The alarm limit k is the value 
for which P[(RL > 621 'Z = 00) ] = 112, i.e. MedRLo = 62 

Using this criterion the alarm limit, k, can be determined. 

RL = tA = min[t: MSR(t) > k]. 

In order to evaluate the MSR method a simulation study is made. 
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4. Evaluation 

4.1 Specifications 

Observations on the process X(t), described in Section 3.1, are simulated using a fixed 
MedRLo. The results from the simulation will be used to evaluate some of the properties of 
the MSR method for the situation described below. In order for the representation of the trend 
cycle to be realistic, the trend cycle structure used in the simulation is based on a part of a real 
Swedish time series (Fig 4). The false alarm probabilities are examined for the case of 
constant growth (Section 4.2.1.) and for the case of the observed growth (Section 4.2.2.). The 
expected delay of a justified alarm is investigated for the case of a peak after three years 
(Section 4.3). 

f.l 125 

100 

75 

.... '1i·i·ii'ii -

•••••••••• !!',! .• , .. ~.II'I'I ...... 
• •.•.••.• ; .• ;;.i ........ !~·~~·~~·~·~:·~:·~ .. ·· ........... . .... . 

~; ...... . 

50-l--_-.-_--... __ ..----_-,--_-..-_----._---l 
o 10 20 30 40 50 60 70 

Fig. 4. Part of a real Swedish time series ( ••• ) is used as the basis for the trend cycle 
structure. The case of constant growth is indicated by --. The vertical axis has 
been cut and the 2.5 and 97.5 percentiles are indicated at t = 45. 

Simulations are made only for the case when the surveillance starts at a trough and the aim is 
to detect the next peak. However, the result applies for the opposite situation too. 

4.2 Run length distribution for first false alarm 

4.2.1. A monotonically increasing trend cycle function with constant absolute growth 

The alarm limit, k, is the limit for which the median run length, MedRLo, is set to 62, i.e. the 
limit for which the probability P[(RL > 621 t = 00) ] equals 0.50. The alarm limit is 
determined by simulations. In order that a 95% confidence interval for the estimated 
probability P[(RL > 621 t = 00) ] should be of maximum length 0.016, the number of 
replicates used is 16 000. The distribution of the run length is presented below for the case 
when pet) is monotonically increasing and has a constant absolute growth (Fig 4). 
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Fig. 5. The run length distribution for the case when 1, = 00 and the trend cycle has a constant 
growth. The horizontal axis has been cut. 

The probability of a false alarm no later than at time t from the start is denoted by af"ISR for 

the MSR method. The maximum standard error of af"ISR, retrieved when af"ISR = 0.50, is 

0.004. Thus, the random error of the estimation is negligible. For the Shewhart method of 

surveillance (Frisen, 1992) the corresponding af = 1-(2 ¢ (g)-I)\ where ¢ is the normal 

probability distribution function. The at functions from the Shewhart method and the MSR 

method are compared in Figure 6 (see also Appendix A) . 
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Fig. 6. The probability of a false alarm no later than at time t is shown, for the Shew hart 
method and for the MSR method. 
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The probability of a false alarm can also be presented for each time t, P(tA = t). Some methods 
of surveillance have a relatively high probability of a false alarm at the start of the 
surveillance. For the Shewhart method with MedRLo = 62 the probability of a false alarm at 
t = 1 equals pS(tA = 1) = 0.011. For the situation described in Section 4.1 this probability is 
considerably lower for the MSR method. The corresponding false alarm probability is 

pMSR (t A = 1) = 0.00005 (see Appendix B). 

4.2.2. A special case: A monotonically increasing trend cycle function with plateaux 

The results presented in Section 4.2.1 are based on the trend cycle being represented by a 
constant absolute growth (Fig 4). An interesting topic for future research is to investigate how 
robust the MSR method is with regard to a deviation from an absolute constant growth. As an 
illustration, preliminary results regarding the robustness in question are presented in this 
Section. These preliminary results are based on 5000 replicates. A vector that is monotonic, 
but does not have constant absolute growth, see Fig 4, represents the trend cycle. The alarm 
limit used is the same as in Section 4.2.1. One interesting result from this preliminary 
investigation is that the run length distribution will show peaks. This is due to the fact that the 
trend cycle function in Fig 4 does not have a constant absolute growth. The alarm statistic 
assumes smaller values for the case when x(t) < x(t+ 1) than for the case when x(t) = x(t+ 1) 
(see Appendix C). The situation when x(t) = x(t+ 1) is a special case of a monotonically 
increasing function. 

2.5 7.5 12.5 17.5 22.5 27.5 32.5 37.5 42.5 47.5 52.5 57.5 62.5 

Run length 

Fig. 7. The run length distribution for the case when 1, = 00 and the trend cycle is a 
monotonically increasing function, but not with constant growth. The horizontal axis 
has been cut. 

The estimated probability of a false alarm no later than at time t from the start is shown in 

Figure 8. The maximum standard error of a~SR, retrieved when a~SR = 0.50, is 0.007. 
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Fig. 8. The probability of a false alarm no later than at time t is shown for the case when the 
trend cycle contains plateaux. 

For the illustration in Section, where the trend cycle is represented by a constant absolute 
growth, the median time to the first false alarm is 62 months. For a case when the trend cycle 
is represented by a vector that is monotonic but not constantly growing, illustrated by the 
observations in Fig 4, the estimated median run length is considerably shorter, 43 months. 

4.3. Expected delay 

An important aspect of a surveillance system used to detect the turning points of an economic 
time series is that the delay, i.e. tA- 'Z , is fairly short. The median delay time to a justified 
alarm is simulated for the MSR method, for the case of a peak 36 months after the start of the 
surveillance. The specifications are the same as in Section 4.1, with the exception of the trend 
cycle structure. The structure used for these simulations is shown in Figure 9. 

Il 125 

100 ......... 
.. ~ .. : .. : .. ~....... . -..... -.. ... -.... ~ ....... -..... ..•..•..•. 

75 +---...,----,.-----,------,,..------4 
o 10 20 30 40 50 

Fig. 9. The structure of the trend cycle function used for simulating the case of 'Z = 36. The 
vertical axis has been cut and the 2.5 and 97.5 percentiles are indicated at t = 20. 
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4.3.1 Run length distribution for the first alarm in the case of a peak after three years 

The probability of an alarm no later than at time t from the start is determined for the case 

when 'Z = 36. For the MSR method, denote this probability by 36 r~SR = pMSRUA ~ t l't = 36). 

In order that the length of a 95% confidence interval for the estimated probability 36 r~SR 
should be at most 0.016, the number of replicates used are 16 000. Since 0.016 is the 

maximum length of interval, retrieved when 36 r~SR = 0.50, the random error is negligible. 
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Fig. 10. The probability of an alarm no later than at time t is shown for the case when the 
trend cycle has a peak at time t = 36. 

From the results in Section 4.2.1 and 4.3 it can be concluded that if there is no turning point in 
the trend cycle then the median time to an alarm is 62 months. If there however is a turning 
point after three years the median time to an alarm is 3 months. 

5. Discussion 

A method for detecting turning points in a time series exhibiting cycles has been proposed. 
This method combines the field of surveillance and unimodal regression. In this study the 
proposed method was illustrated by one example. The results indicate that the maximum 
likelihood ratio can be used for surveillance of cycles to detect the turning points. 

In the sections of the time series where the trend cycle is monotonic, the median time to a 
(false) alarm is slightly longer than 5 years. If however there is a turning point in the trend 
cycle after three years, the median time to an alarm is 3 months. 

An approximation of the maximum likelihood ratio, using constant weights, is used as 
alarm function. In a more sophisticated model, a probability distribution for 'Z can be used. 

In this study a simple model is used, in which it is assumed that the observations are 
independent of each other. This can be questioned, but this study is made as a first illustration 
of how to use surveillance to detect changes in monotonicity. The next step is to evaluate and 
modify this proposed MSR method when the time series under surveillance is an auto-
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regressive process. Surveillance of an autoregressive process for the purpose of detecting a 
change in the mean has been investigated by Pettersson (1998). 

The application described in this study is that one leading indicator or one function of 
several leading indicators is monitored. The ability to predict the general business cycle is 
likely to increase if separate information on several leading indicators is available. In this 
situation a system for multivariate surveillance can be used. Results from the investigations 
made by Wessman (1998, 1999) concerning surveillance of multivariate processes might be 
applied. 
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Appendix A. The cumulative probability of a false alarm for the Shewhart method 

For the Shewhart method ARL = lip, where p = P( I XI I >g) (Frisen, 1992). 

Also at = 1 - (2¢ (g) -1)\ where ¢ is the normal probability distribution function. 

Setting MedRLo = 62 => a62 = 1 - (2¢ (g) _1)62 = 0.50 => at = 1 - (0.98888)t. 
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Appendix B. The probability of a false alarm at time 1, P(tA = 1 I D) 

The probability of a false alarm at time t=l equals P(tA = 1 I D) = P(MSR(l) > 68) 

At t = 1 we have observed x(O) and x(l). They can be related in three different ways: 

i) x(O) < x(l) 

Result: ft° = ft CI = {x(O),x(l)} => MSR(l) = 1 

ii) x(O) = x(l) 

Result: ft° = ft CI = {x(O),x(l)} => MSR(l) = 1 

iii) x(O) > x(l) 

Result: ft CI = {x(O),x(l)}, ft 0 = {x(O) + x(l) , x(O) + x(l)} 
2 2 

MSR(I) = ex{ (x(l)- ~D (I))' J 

There will be an alarm if exp 2 J.1 > 68. 
(

(x(l)- AO)2 J 

That is, there will be an alarm if => Ix(l) - ftDI > 2.905 

The distribution of X, conditional on D, is xl DE N(J.1°; 1) 

p(lx(l) - ft°l > 2.905) = p(IX(l); x(O) I > 2.905) 

X(t) IDE N(79.052+0.260129t; 1) 

p(lx(l); x(O) I > 2.905) = P(Z > 3.924) + P(Z < -4.292) "'" 0.0000524 
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Appendix C. The alarm function at monotonically increasing sections versus at strictly 
monotonically increasing sections. 

The alarm statistic assumes smaller values for the case when x(t) < x(t+ 1) than for the case 
when x(t) = x(t+ 1). The alarm statistic for these two cases is investigated for different 
numbers of observations. 

s = 1 en = 2) 

Xl = {x(O), x(l)} 

Case 1; 

Case 2; 

s = 2 en = 3) 

x(O) <x(l) 

Jl D = {x(O), x(l)} 

Jl CI ={x(O), x(l)} 

MSR(1)=1 

x(O) = x(l) 

Jl D = {x(O), x(l)} 

Jl Cl ={x(O), x(l)} 

MSR(l) = 1 

X2 = {x(O), x(l), x(2)} 

Case 1; x(O) < x(l) < x(2) 

Jl D = {x(O), x(l), x(2)} 

Jl CI ={x(O), ave~, ave~} 

Jl C2 = {x(O), x(l), x(2) } 

exp( QC1 12) 
MSR(2) = + 1 = a + 1, where a<l 

1 

Case 2; x(O) =x(l) 

Jl D = {x(O), x(l), x(2)} 

Jl CI = {x(O), x(l), x(2)} 

Jl C2 = {x(O), x(l), x(2)} 

MSR(2) = 1 + 1 = 2 
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s = j en = j+ 1) 

Xj = {x(O), x(l), ... , XU)} 

Case 1; 

Case 2; 

x(O) < x(l) < x(2) < ... < XU) 
P, D = {x(O), x(1), x(2), ... , xU)} 
A CI {"all I I I } Jl = XI' '/, ave j , ave j , ••• , ave j 

p, C2 = {x(O), x(1), ave j
2

, ••• , ave: } 

p, Cj = {x(O), x (1), x(2), ... , x(J)} 

ex (-Q cI /2) ex (_Q c2 /2) j-I 
MSRG)= P + P + ... +I=Lai+l,whereai<I,Vi 

1 1 i=1 

x(O) = x(l) = ... = XU) 
P, D = {x(O), x(1), x(2), ... , XU)} 

P, CI = {x(O), x(1), x(2), ... , xU)} 

P, C2 ={ x(O), x(1), x(2), ... , x(J)} 

p, Cj ={x(O), x(1), x(2), ... , xU)} 
j 

MSR(j) = Ll 
i=1 
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