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In a dose finding study the aim is to attain a safe and efficient drug ther­

apy in a certain population. By a dose finding study we generally refer to a 
study where the dosage is successively adjusted after analyzing the respond­

ing concentration in e.g. the blood. Measurements of interest are e.g. area 

under curve, time to peak, peak value, time to zero and tolerance limits. 

The estimates obtained from the pharmacokinetical data are compared with 
the known safety and efficiency profiles of the drug, and the dosage may be 

adjusted to attain a satisfactory result. 
Different estimation approaches have to be used depending on the safety 

and efficiency profiles of the drug. When estimating tolerance limits there 
are roughly two different approaches, one intended for drugs with severe 

side effects and one intended for drugs with harmless side effects. However, 

sometimes the approaches are used as interchangeable resulting in misleading 

estimates. 

It is also important to consider the data utilization. A variety of estima­

tion techniques are used in pharmacokinetics. Some of the proposed estima­

tors use cross sectional data and the more advanced ones use the longitudinal 

structure of the data to different extents. The benefits of the latter are often 

considerable, especially for small sample sizes common in pharmacokinetics. 

For crude data where we can not assume fixed regression parameters flexible 

regression models tend to be superior. 



This licentiate thesis consists of two parts: 

I. A comparative study of some approaches for constructing tolerance 
limits, by Max Petzold. 

II. Estimating in non-linear monotone response curves using random re­

gression techniques, by Robert Jonsson and Max Petzold. 

In Report I two different estimation approaches for tolerance limits are 

considered: the conservative approach intended for drugs with severe side 

effects and the closeness approach intended for drugs with harmless side 

effects. It is obvious, but rarely discussed, that the conservative approach 

tends to result in less efficient drug therapies than the closeness approach. In 

the case with severe side effects this disadvantage may be well motivated by 

safety aspects. However, this approach is sometimes also proposed for drugs 

with harmless side effects. In Report I it is shown in a simulation study 
that the conservative approach can be considerably less efficient and some 

examples are given. Both parametric and non-parametric cross sectional 

estimators are used in the study. 
In many applications data is based on repeated observations over time. In 

Report II this longitudinal structure of the data is taken into consideration. 

A flexible model which after linearization has a random intercept and a fixed 

slope is proposed. The model is flexible in the sense that the time dependence 

is modeled by tP where t is the time value and p is an unknown parameter. 

A two-step estimation approach is proposed where p is estimated in the first 

step, and the rest of the parameters are estimated in the second step by using 

standard regression techniques. The effects of first estimating p upon the rest 

of the estimators are demonstrated by a simulation study. It is concluded 

that bias and precision of estimators of the variance components and the 

dependent variable remain quite unaffected by the two-step procedure, as 
well as bias of the slope and intercept parameters. However, the precision 

of the latter estimators may be poor for small values of p, provided that the 

variance of the measurement errors is large. 
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Abstract 

In a dose finding study the aim is to come up with a safe and efficient drug 

administration. By comparing the obtained tolerance limits with predeter­

mined desired concentration limits, i.e. the therapeutic window, one may 

be able to adjust the drug dosage. For drugs with a therapeutic window 

situated at high concentrations close to toxic levels, one has to balance be­

tween attaining a high proportion of the population at efficient high levels 

on one hand and the risks of an overdose on the other hand. In such cases it 

is important to use the proper estimation approach for the upper tolerance 

limit. Here a conservative estimation approach intended for a drug with 

potentially adverse side effects with minor overdoses is compared with an 

approach intended for a drug with harmless side effects. It is shown that the 

conservative approach can be considerably less efficient when used in the lat­

ter case, a disadvantage that is rarely discussed when proposing conservative 

estimators. 

The properties of the two approaches are evaluated using welHmown 

parametric and non-parametric estimators in a simulation study for small 

and moderate sample sizes. 



1 Introduction 

The question of how much drug should be used and how it should be adminis­

tered for a given therapeutic purpose can not readily be answered. Basically 

two different methods have been used to answer the question in a population: 

empirical and population kinetic. The latter is to be discussed in this paper. 

The kinetic method is based on the hypothesis that therapeutic and toxic re­

sponses are related to the amount of drug in the body or to the plasma drug 

concentration. By studying pharmacokinetic data following a single dose, 

the tolerance limits of the concentrations in a population may be obtained. 

The tolerance limits can then in turn be used to modify the dosage regimen 

according to the known relationships among concentration levels, therapeutic 

response, and toxic effects. 

The idea of tolerance limits and tolerance intervals has to be explained in 

order to get the right interpretation. Historically, ordinary tolerance inter­

vals arose in response to engineers' concern with mass-production processes. 

For example, industry-wide specifications might dictate that any component 

which measures less than VI or greater than V2, i.e. the ordinary tolerance 

limits, is to be considered as unsatisfactory. The variability in the inter­

val [Vb V2] is tolerated due to design considerations or economical reasons 

etc. The probability that the measurement Xi of a single component i will 

fall in the interval indicates how successful the production process is. As a 

check on the true distribution of the production process one may take sample 

data and estimate the statistical tolerance interval, which is to be compared 

with the ordinary tolerance interval [VI, V2]. The statistical tolerance limits 

provide information about where the population sampled is likely to be con­

centrated, and from this, the production process can be calibrated to get a 

high proportion of the population within the desired interval [Vb V2]' (Sta­

tistical) tolerance limits and tolerance intervals are frequently used today in 

both production and research. The terms tolerance limit and percentile may 

be used interchangeably depending on the area of research. 

In this paper a principal question of how to obtain the upper tolerance limit 

for a particular drug is discussed. In section 2 a conservative estimation 

approach based on probability restrictions and an approach based on close-
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ness of the estimators are introduced. In each approach one parametric and 

one non-parametric estimator are considered. The parametric estimators 

are based on the normal distribution and the non-parametric estimators are 

based on continuous data. The original drug concentration is assumed to have 

the lognormal distribution at each time point, but all results are based on 

the normal distributed logarithmic scale. All the estimators are well-known 

but arbitrary for the actual question. In section 3 some consequences of the 

two approaches when used in a dose finding study are described. The results 

of the simulation studies are presented in section 4 followed by a discussion 

in section 5. The simulation model and parameter settings can be found in 

the Appendix. 

2 Two approaches for obtaining the tolerance 
limits 

In this paper two approaches for obtaining the upper tolerance limit are 

compared: the conservative approach and the closeness approach. Note that 

the terminology for tolerance intervals has not been standardized and the 

proposed names may be interpreted differently in other papers, see Mee [7] 

for a discussion. In the conservative approach, let a single measurement be 

represented by a random variable Xi, and let w be the upper tolerance limit. 

Then one requires that 

(1) 

If X = (Xl, ... , Xn) represents a sample of n measurements, then the esti­

mator of w can be written w = w (X). Over all possible samples one may 

require that 

(2) 

The expression (2) defines a one-sided statistical {3-content tolerance interval 

at the confidence level 'Y. The interpretation of (2) is that at least 100 x {3% 

of the population is covered by the tolerance interval with a probability of 
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at least 'Y. Equality is obtained in the continuous case. The upper limit 

W of the ,8-content tolerance interval is interpreted as a conservative toler­

ance limit, i.e. the limit indicates what extreme value that covers at least 

100 x ,8% of the population with confidence 'Y. Expression (1) and (2) may 

easily be exemplified by assuming Xi to have the exponential distribution 
with mean and variance A-I. From (1) we have 1- exp(-Aw) =,8 which 

defines W = - A-I In (1 - ,8). Here one may take W = - X In (1 - ,8) which in 

(2) gives P[l- exp (-Aw (X)) ~ ,8] = 'Y, i.e. the probability over all samples 

should be 'Y. Important results in the area are due to Wilks [19], Wald [16] 

and Thkey [14]. In the simulation study some estimators were to be chosen. 

Since the principle difference between the two approaches is independent of 

the estimators, some well-known but arbitrary estimators were chosen. In 

the parametric case, under normality assumption, the conservative tolerance 

limit was estimated by W (X) = /1 + Ka. The constant K is determined by 

Px [Tn - 1 (ylnZl-,B) ~ ylnK] ~ 'Y where Tf (8) is a non-central t variable with 

f degrees of freedom and non-centrality parameter 8, see Kotz&Johnson [5] 

for a detailed description. In the non-parametric case, Wilks' [18] conser­

vative estimator based on the beta distributed coverage b'etween succeeding 

order statistics from a continuous distribution was used. The tolerance limit 

is estimated by the upper order statistic of the ,8-content tolerance inter­

val. The limiting order statistic is chosen with a step function of n, and the 

confidence level will attain its minimal level 'Y at the shifts of order statis­

tics. This estimator has been proposed by e.g. Gillespie&Srinivasan [2] to 

obtain a normal range for screening purpose in clinical medicine, Walsh [17] 

to compare two samples and Nickens [8] for analyzing safety data in popu­

lation pharmacokinetics. AB the coverage and the confidence both tend to 

1, increasingly larger sample sizes are required to achieve informative limits. 

The minimum required sample size for a one-sided tolerance interval would 

e.g. increase from 59 to 459 when both ,8 and 'Y increase from 0.95 to 0.99. 

Sample size tables for one-sided and two-sided tolerance intervals are given 

by Somerville [12]. In all simulations in the present paper 'Y = 0.95 was used. 
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In the closeness approach, one requires 

(3) 

i.e. closeness in coverage over all samples. The approximative requirement in 

expression (3) makes it possible to choose the estimator with minimal vari­

ance V [$] and with small bias E [$ - w]. Here, under normality assump­

tion, the parametric estimator $ (X) = Ii + v(n + 1) /nCitn - 1;1-(3 proposed 

by Wilks [18] was used. In the non-parametric case, let j and 9 be the integer 

and the decimal part of n x {3, respectively. Then the 100 x (3% tolerance 

limit was estimated using the quantity $ (X) = (XU) + XU+!)) /2 if 9 = 0, 
and $ (X) = XU+!) if 9 > O. This is one out of five sample percentile defi­

nitions included in the statistical software packages SAS(r) and SPSS(r), see 

[11] and [13] respectively. Sample percentile definitions are frequently used 

to establish reference intervals in determining abnormality, see e.g. Ooi et al 

[9]. 

3 Consequences of the two approaches in a 
dose finding study 

In a dose finding study, the obtained tolerance limits are compared with 

the limits of the therapeutic window, i.e. the desired concentration range 

where the chance of successful therapy is high. The information relating 

concentration to response can be obtained at three levels: through in vitro 

experiments, animal studies and investigations in human. Once the distri­

bution of therapeutic and toxic effects at different concentration levels for 

a drug is obtained, it is possible to obtain a utility curve by weighting and 

adding the probabilities of the different therapeutic and toxic effects. The 

probabilities of adverse side effects are weighted with large negative values, 

and vice versa for the probability of desired effects, e.g. recovery. The util­

ity curve has an optimum concentration at which therapeutic success is most 

likely, and there is a range of concentrations in which the chances of success­

ful therapy is high. This is the therapeutic window. Precise limits are not 

definable, particularly considering the subjective nature of the utility curve, 
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but approximate limits will be determined by the location of the maximal 

efficacy and the slope of the curve. The shape of the curve may differ for 

different populations and even between objects, which must be taken into 

consideration in a study. For a further introduction to therapeutic response 

and toxicity, see Rowland&Tozer [10]. The utility curves and the therapeu­

tic window for the two types of drugs discussed in this paper are shown in 

Figure 1. Note that the upper limit of the therapeutic window is close to 

toxic concentration levels and the different shapes of the two utility curves. 

Standardized 
utility 

1 

o 

-1 

Therapeutic window 

Cone 

\'~'- -
\ Drug 2 
; , , , 

\'"Drug 1 
'~~"'" --, ---

Figure 1: Utility functions of the concentration for Drug 1 and Drug 2. At 
positive values, the expected outcome is a successful therapy, e.g. well-being 
and recovery, and vice versa for negative values. The therapeutic window is 
the desired drug concentration interval. The weights are standardized for an 
outcome in the interval [-1,1]. 

The appropriate approach must be chosen depending on the utility function 

of the drug at hand. For Drug 1, the conservative approach is appropriate. 

When calibrating the dosage regimen for Drug 1, it is important not to un­

derestimate the upper tolerance limit. The reason for this is that an obtained 

estimate lower than the upper limit of the therapeutic window indicates that 

the dosage should be increased. When based on an underestimate, the in­

creased dosage will have the result that a larger than desired proportion of 

the population will receive unacceptably high concentrations. At these levels 

of concentration the risks of adverse side effects rapidly increase for Drug 1. 

Even a minor overdose may result in death. Using the conservative approach, 
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one may control for these risks. The coverage and the confidence level are 

chosen depending on the shape of the utility curve. However, requiring high 

coverages and confidence levels the dosage regimen tends to be low. This 

may result in a non-optimal dosage regimen where a larger than desired pro­

portion of the population receives inefficient concentrations to the left of the 

therapeutic window. This is the disadvantage of the conservative approach, 

which may be well motivated by the side effects. With Drug 2, the expected 

outcome of an overdose is harmless, e.g. discomfort, and the non-optimal 

dosage regimen attained by the conservative approach is no longer justifiable 

by the side effects. In this case, the closeness approach may be more ap­

propriate. The closeness criterion makes it possible to calibrate the dosage 

regimen to attain a large proportion of the population within the therapeutic 

window. 

4 Results 

Irrespective of which estimator is being used (parametric or non-parametric), 

the distributions of the estimates for the two approaches will principally dif­

fer in the same way. For the conservative approach the distribution will be 

skewed to the right due to the confidence criterion in expression (2). The 

skewness will increase with an increased confidence level. However, for the 

closeness approach the distribution of the estimates is less skewed. This is 

illustrated in Figure 2 where the obtained distributions of iii when estimating 

the 95% tolerance limit using the two non-parametric estimators are plotted. 

The true tolerance limit is marked with a straight vertical line at 10.67. In 
this particular simulation, a proportion of only 4.9% were underestimated 

using the conservative estimator due to the confidence criterion 'Y 2: 95%. 

Using the closeness estimator, a proportion of 43% was underestimated. No­

table is the difference in variance, which for the closeness approach was 39% 

of the variance for the conservative approach. 
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Figure 2: The distributions of the non-parametric iii when estimating the 
95% tolerance limit, marked with a vertical line at 1O.67,when n = 59. For 
the closeness approach, solid line, the distribution of iii is almost centered 
around the true limit but is highly skewed to the right for the conservative 
approach, dashed line. The number of replicates was 100.000. 

4.1 Proportion of underestimates, bias and variance 

The differences between the two approaches will principally be reflected by 

the proportion of underestimates and the bias when estimating the upper 

tolerance limit. The choice of confidence level for the conservative approach 

will to a large extent determine these differences with a maximum as the 

confidence is limiting to 1. Also the variance will be influenced in the same 

way by the confidence leveL As could be seen from Figure 2, the differences 

may be considerable for the non-parametric estimators. A simulation study 

was carried out to illustrate how the two approaches differ for some f3 toler­

ance limits and some sample sizes using both parametric and non-parametric 

estimators. The sample sizes chosen are the minimal sample sizes where ex­

pression (2) still holds true for Wilks' non-parametric estimator. For these 

sample sizes the upper conservative limit is estimated with X(n)' The results 

are given as X /Y / Z in Table 1 and Table 2 where X is the proportion of un­

derestimates and Y and Z are the bias and the variance, respectively, given 

as percentages of the corresponding values for the conservative approach. In 

Table 1, for example, it can be seen that using the closeness approach the 

bias and variance are 9.0% and 79% respectively compared to the use of the 

conservative approach for estimating the 95% tolerance limit when n = 59. 
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AB expected, the bias and the variance are considerably smaller for the close­

ness approach than for the conservative approach. Using the closeness ap­

proach, it will be possible to obtain a relative stable estimate near the true 

tolerance limit. This would be preferable for drugs like Drug 2. For the two 

parametric estimators an increased sample size will monotonically lower the 

bias and the variance. However, the bias will decrease faster for the close­

ness approach than for the conservative approach, implying an increasing 

difference in bias. The opposite relation is true for the variance. 

For the non-parametric estimators there will be a somewhat different re­

lation. The bias and variance of the two non-parametric estimators will not 

decrease monotonically with an increasing sample size. Using order statis­

tics as estimators the bias and variance will be determined by the positive 

relation between the expected value of an order statistic and the sample size. 

Both the non-parametric estimators use step functions of n for including and 

excluding order statistics. However, increasing the sample size, the bias will 

monotonically increase up to the next shift of order statistic, e.g. X(n) to 

X(n-l), where there is a decrease in one "jump" to a new lower level. This 

process will continue and the bias will asymptotically be zero. The variance 

also will not be a monotonically decreasing function of n. 
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Table 1: The performances of the conservative (CON) and the closeness 
(CLO) approach using the parametric estimators are compared. The per-
centage values X/Y/Z are interpreted as the proportion of underestimates 
/ the bias compared to the bias of CON / the variance compared to the 
variance of CON. 

n {3: 97.5% 95% 90% 80% 
119 CON 5.0/100/100 5.0/100/100 5.0/100/100 5.0/100/100 

CLO 44/8.6/84 46/6.5/85 47/4.5/86 48/2.6/89 
59 CON 5.0/100/100 5.0/100/100 5.0/100/100 5.0/100/100 

CLO 42/12/79 44/9.0/79 46/6.2/81 48/3.5/84 
29 CON 5.0/100/100 5.0/100/100 5.0/100/100 5.0/100/100 

CLO 38/16/71 41/12/71 44/8.4/73 46/5.0/76 
14 CON 5.0/100/100 5.0/100/100 5.0/100/100 5.0/100/100 

CLO 33/22/61 37/17/60 41/11/61 45/6.5/65 

Table 2: The performances of the conservative (CON) and the closeness 
(CLO) approach using the non-parametric estimators are compared. The 
percentage values X / Y / Z are interpreted as the proportion of underestimates 
/ the bias compared to the bias of CON / the variance compared to the 
variance of CON. 

n {3: 97.5% 95% 90% 80% 
119 CON 4.9/100/100 1.6/100/100 4.0/100/100 4.2/100/100 

CLO 43/10/37 45/5.5/42 47/5.1/71 48/2.9/84 
59 CON 4.8/100/100 1.5/100/100 3.5/100/100 

CLO 43/9.5/39 45/4.9/46 47/3.8/75 
29 CON 4.7/100/100 1.3/100/100 

CLO 44/8.6/42 46/3.8/51 
14 CON 4.4/100/100 

CLO 45/6.9/47 
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4.2 Attained efficiency 

Until now, focus has been on safety and the upper concentration limit of 

the therapeutic window. To achieve an efficient dosage regimen, i.e. a large 

proportion of the population within the therapeutic window, one also has 

to consider the lower limit. Calibrating a dosage regimen in a repeated 

study, one will successively increase the dosage from a low level until the 

obtained 100 x {3% tolerance limit equals the upper limit of the therapeutic 

window. Assuming a constant variance of the concentration, this equality will 

be attained at different dosage levels for the two approaches. As can be seen 

from the comparisons of bias in the previous subsection and from Figure 2, 

the conservative approach is expected to reach an agreement at lower dosage 

levels than the closeness approach. Consequently, a higher proportion of 

the population will attain the inefficient concentration levels to the left of 

the therapeutic window for the conservative approach than for the closeness 

approach. This is the price of safety, which may be well motivated for Drug 

1. For Drug 2, the risks of an overdose are negligible and it is then possible 

to use the closeness approach that does not control the risks of an overdose. 

The choice of approach depends now only on the expected efficiency which 

in some situations may be considerably higher for the closeness approach. 

A simulation study of the difference in attained efficiency was performed 

for the parametric estimators, defining efficiency as the proportion of the 

population within the therapeutic window. The true 95:th percentile of the 

expression (5) in the Appendix was used as the fixed upper limit UL95 of 

the therapeutic window, and the lower limit LLp was chosen as some p:th 

percentiles where p < 95. For each sample replicate the sample variance a2 

was calculated. Utilizing the fact that the estimators have the same structure 

Welo /l + gelo (0:) 

Weon - /l + gcon (a) 

a dose finding study was imitated by calculating 

/lelo - U L - gelo (a) 

/leon - U L - geon (a) 
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The parameters /lelo and /leon correspond to the attained doses where the 

estimated tolerance limit equals the upper limit of the therapeutic window 

in a real dose finding study. Assuming constant variance a 2 from expression 

(5) the difference in efficiency D was calculated for each replicate as: 

where Xelo rv N (/lelo; ( 2) and Xcon rv N (/leon; ( 2 ) • These distributions agree 

with the logarithmic concentration distributions that would be obtained in 

a dose finding study. 

As can be seen in Table 3, the closeness approach will on the average attain 

a larger proportion within the window. When increasing UL or decreasing 

the sample sizes, the differences will increase. The standard deviation seems 

to have a more complex dependence on ULp and the sample size, but is not 

further analyzed. For the difference there will be an optimal LLp depending 

on the underlying distribution. In this case the differences will decrease for 

increasing p > 40. 

Table 3: The mean of fj when using the parametric estimators. The standard 
deviation is given within brackets. 

n\p 5 10 30 
14 0.14 (0.12) 0.19 (0.11) 0.24 (0.069) 
29 0.058 (0.056) 0.098 (0.056) 0.16 (0.043) 
59 0.025 (0.022) 0.052 (0.026) 0.10 (0.023) 
119 0.011(0.001) 0.030(0.012) 0.067(0.012) 

For the non-parametric estimators the simulation study had to be done in a 

different way. Using the same therapeutic window as before, a successively 

increased dosage was simulated letting the mean value of Xi in expression 

(5) successively increase from a low level until the estimated tolerance limit 

on the average was equal to UL95 . This was done independently for the 

two approaches, and the obtained means /lelo and /leon were used as in the 

parametric case to calculate the difference in efficiency. From Table 4 it can 
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be seen that the difference is considerable also for relative large sample sizes 

when using the non-parametric estimators. The difference was found to have 

the same dependences on UL, LLp and the sample size as in the parametric 

case. 

Table 4: The mean of jj when using the parametric estimators. 

n\p 5 10 30 
119 0.054 0.10 0.17 
59 0.072 0.12 0.20 

It is now obvious that a proper usage of the two approaches is important. 

To avoid overdoses of Drug 1, one has to use the conservative approach, but 

this approach would often be too inefficient to be motivated for Drug 2. 

5 Discussion 

The importance of using the appropriate efficiency and safety approach in 

dose finding studies was discussed. It was shown that an appropriate ap­

proach for a drug with adverse side effects with minor overdoses might be 

inappropriate for a drug with harmless side effects. The performance of two 

common approaches, the closeness and the conservative approaches, were 

compared for some relevant tolerance limits. Using the conservative ap­

proach, one will only risk that a certain proportion of the population attains 

overdoses. The drawback is that the resulting dosage tends to be low, with 

the consequence that an undesired large proportion of the population attains 

inefficient concentrations. In many papers though conservative tolerance lim­

its are proposed without a discussion of the consequences of an inappropriate 

use, see e.g. the discussions in Nickens [8] and Holst&Christensen [3]. Here, 

efficiency was defined as the proportion of the popUlation within the thera­

peutic window. A more detailed study taking the exact form of the utility 

curve into account would be valuable. 

A simulation study showed that the estimates of the true tolerance limits 

obtained with the closeness approach attain relative low bias and variance. 

Such properties offer opportunities to adjust the dosage to obtain a large 
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proportion of the population within the therapeutic window, i.e. where the 

chance of successful therapy is high. With this approach the confidence cri­

terion in expression (2) may not be fulfilled, and consequently it is more 

appropriate in dose finding studies for drugs with harmless side effects with 

minor overdoses. However, for diseases with very harsh outcomes, e.g. AIDS, 

this approach may still be motivated ethically, even if there is a high prob­

ability of adverse side effects with minor overdoses. Here the proportion 

within the therapeutic window is the most important property. In the oppo­

site situation, when treating a harmless disease, no drug with any side effects 

may be ethical. 

Although this paper does not primarily discuss the estimators, some general 

comments may be done. Within both approaches there are several possible 

estimators. In applied research the underlying data generating process is 

never or seldom known and distributional assumptions may be questioned. 

The Food and Drug Administration [1] states that distributional assump­

tions should be done with restraint, which motivates the consideration of 

non-parametric estimators in this paper. There may be drawbacks with 

these simple estimators, e.g. relatively high and not monotonically decreas­

ing variance and bias. In this paper the only assumption made for the non­

parametric estimators was continuous data. When making more assumptions 

about the data, there are of course many possibilities to perform better. One 

possibility to make improvements is to introduce restrictions about the shape 

of the data, e.g. strictly increasing or decreasing functions. Such minor re­

strictions open a wide field of more efficient non-parametric methods. Also 

under distributional assumptions the estimates may be improved by using the 

longitudinal structure of the data. Cross sectional analysis is still dominat­

ing in pharmacokinetics, and an important task is to introduce longitudinal 

models. 
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Appendix: The simulation model 

The following model was used in the simulations when estimating the studied 
tolerance limits: 

i=1,2, ... ,n (5) 

where 

Xi the logarithm of the drug concentration for person i. 

~ level factor specific to person i (metabolism, weight, sex, age). 

Bi change factor specific to person i (metabolism, renal clearance). 

t the time value 
Ui error term person i. 

Letting Ai and Bi have the normal distribution with the parameter settings 

from Table 5, cov (Ai, Bi) = 0.01 and t = 1, then Xi will have the normal 

distribution with Jl = 9 and (J2 = 1.03. The software SAS(r) 6.12 IML was 
used for the simulations with 200.000 replicates at each sample size giving a 

stable outcome. Further, the computer clock was used as random seed, and 

for the conservative approach the confidence level 'Y was set to 95%. 

The original concentration scale exp (Xi) will have the lognormal distribu­
tion which is a common assumption for drug concentrations. The multiplica­

tive model exp (Xi) has been used in pharmacokinetics when estimating area 
under curve, see Jonsson [4], Mandallaz&Mau [6] and Vuorinen&Turunen 

[15]. 

Table 5: Parameter settings for the simulations. 

Mean Variance 
Ai 10 0.5 
Bi -1 0.01 
Ui 0 0.5 
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Abstract 

Conventional estimation methods in pharmacokinetics for estimating tolerance limits make 

use of cross sectional data. However, utilising the longitudinal structure of the concentration 

data the precision may be improved considerably, especially in drug testing situations where 

the number of subjects seldom exceeds 20. To this end a flexible model with random intercept 

and fixed slope is introduced. Here, the time t is replaced by a function t P where p is an 

unknown parameter. A two-step estimation approach is proposed where p is estimated in the 

first step, and the other parameters are estimated in the second step by using standard 

regression techniques. The effects of first estimating p upon the rest of the estimators are 

discussed and results from simulation studies are given. It is concluded that bias and precision 

of the estimators may remain quite unaffected by the two-step procedure. However, the 

precision of the slope and intercept estimators can be poor for small values of p, provided 

that the variance of the measurement errors is large. 



1. Introduction and notations 

A wide class of time-response data can be analysed by using the general model 

Here F;j is the measured response at the time ti for the j:th subject, which is composed of three 

random components. The random level Aj reflects factors which are specific for the j:th 

subject, such as body mass, and is supposed to not change with time during the interval 

[t1' tT ]. BY), BY), ... are random factors which express the change over time and l( ) is a linear 

function of BY), By) , ... and also of functions of tj , where p is an unknown parameter. Uij is 

a residual which summarises all the effects which have not been included in the model. The 

multiplicative structure of (1) is motivated by the fact that in many cases the variations 

between subjects seem to be more apparent at times when the responses are larger. A simple 

special case of the model above is 

F;j = exp{ Aj + /3tj + U ij} , (1) 

The latter contains only one factor which changes over time, and furthermore is constant for 

all subjects. The expression in (1) is intended for monotone responses in time, which can be 

found e.g. when studying the increase of a concentration in body, or the decreasing 

concentration of a drug at absorption site(l. 

Figure 1a below shows examples of typical, decreasing realisations of (1) for some values 

of p, and Figure 1b shows examples of real data having a structure which agrees very well 

with the model in (1). Notice especially the large variations between subjects and the 

multiplicative structure of the data. The variance of the higher values at the start is about 4 

times larger than the variance of the smaller values at the end. 
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Figure 1. a) Examples of decreasing curves intended to illustrate typical realisations of (1) 

disregarding the random variations. b) Measurements of the concentration of a drug in the 

plasma from 16 humans at 9 time points. Here p was estimated as 0.92 by using methods to be 

considered below. 

By taking the logarithm of (1) and putting Xi = t( , the model can be written 

(2) 

which has the structure of a simple random effect model in which only the intercepts are 

variable (C.f. Ch.3 in Hsiao(2). 

Models like (1) can be used as the basis for estimating population characteristics such as 

the tolerance limits, in situations where series of measurements are obtained from a relatively 

small number of subjects. Conventional methods for estimating the tolerance limits of the 

response in the population only make use of the cross sectional data, and do not utilise the 

longitudinal structure (C.f. Nickens(3 with references). In drug testing situations where the 

number of subjects seldom exceeds 20, it is to be expected that much can be gained in 

precision if the longitudinal structure of the data is used. Estimators from longitudinal data for 

the tolerance limits based on the model in (1), have been presented earlier(4. When p is 

allowed to vary, the model becomes more flexible. But on the other hand the estimation of p 

can be expected to have an influence on the precision of the rest of the estimated parameters 

of the model. 
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It is the purpose of this paper to study whether the parameters of the model in (1) can be 

estimated by first estimating p, and then utilising known results from the regression theory for 

estimating the rest of the parameters. The study is mainly based on simulations and results are 

presented where p ranges from 0.5 to 3. Results for p = 3 will also hold for values of p larger 

than 3. For 0 < p < 0.5 the responses in (1) will tend very slowly to zero as t tends to infinity, 

and with negative values of p the responses will never reach the zero level. The latter two 

cases will be of less practical interest and are therefore omitted. 

2. Assumptions and some results from the regression theory 

In (2) it will be assumed that the Aj 's are independent and identically distributed (iid) with 

mean and variance a and 0' ~ , respectively. The U ij 's are iid with mean 0 and variance (J' ~ 

and furthermore, the Uij's are independent of Aj' j = L.n, i = L.T. When normal 

distributions are assumed for Aj and Uij it follows that the vector y j = (~r.YTj)' has a T-

dimensional normal distribution with mean vector «a+ {Jx1) ... (a+ {Jx,)) , and dispersion 

matrix 

Since each Y;j is normally distributed, it follows that the measured response F ij has a 

lognormal distribution with mean (C.f. Johnson and KotZ(5) 

(3) 

The latter function may be called the mean curve and shows how the mean response changes 

with time. The lower and upper 95% tolerance limits of the response at time ti (i.e. the limits 

within which 95% of the responses are found) are easily seen to be 
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exp{ a + {Jx; ± 1.96~ O'~ + O'~ } , with x; = tj (4) 

When the primary interest is to study how the bunch of time-response curves behave in the 

population, i.e. without taking the measurement errors into consideration, (j~ in the last two 

expressions are put equal to zero. 

By estimating the parameters a, {J, O'~ and (j~ it is possible to estimate the mean curve 

and the tolerance interval (see Jonsson(4, for details). When p is known the optimal estimators 

are obtained in the following way(2: 

Let aj and /Jj be the ordinary least squares estimators of a and {J which are obtained by only 

using the data from the j:th subject. Then 

,..I n " A In,.. 
a=-Laj, {J=- L{Jj· 

n j=1 n j=1 
(5) 

T T n n T 

Put: X = Lx;/T, ¥; = LY;j/T, Y = L¥;/n, Wyy = LL(Y;j-¥;)2 
;=1 ;=1 j=1 j=1 ;=1 

n T n 

WxY = L L(X; -X )(Y;j - ¥;), B = L(¥; _y)2 . 
j=1 ;=1 j=1 

Then 

" 2 B a- 2 " 2 W yy - /Jw xY 
O'A=------'O'U= . 

n -1 T neT -1) -1 
(6) 

The simulated values for the vector Y j were obtained by using the normality assumption with 

the following parameter values: a = 1, {J = -1, O'~ = 0.05 and (j~ = 0.1. The values of the 

variance components were chosen by practical experience, even though the value 0.1 for the 

error variance is very large. The number of subjects (n) was 8 and 16, while the number of 

time points (n were 5 and lO, equally spaced on the interval [l,lO]. Each simulation was 

based on lO4 replicates with the computer clock as random seed, and no step in order to 

supervise the simulated responses was taken. In this way some simulated data sets may 

contain realisations with very heavy fluctuations, which are far from realistic. 
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3. Estimation of p 

The parameter p may be estimated in different ways. A Maximum Likelihood (ML) estimate 

of p might be found by trying to maximise the Likelihood directly, but this approach would 

not be suitable for a large-scale simulation study where the aim is to study the properties of 

the estimator. In the latter case it is preferable to work with closed expressions for the 

estimation equations which are as simple as possible. The Likelihood of the observations in 

(2) can be written (C.f. Ch 3 in Hsiao(2) 

(a 2T + a 2) 2 a -n(T-l) • exp _-=L.J=----:-J __ :--_ --!!. {-T~ (Y. -a- f3X)2 

A U U 2( a ~T + a ~ ) 

T 

whereWxx =nL(x; _X)2. 
;=1 

From this it follows that the ML estimator of p is obtained by solving the equation 

With x; = ti it is easily shown that the last expression can be written 

where x = LX; / T and, as before x; = ti . 
; 

LL~jX; lnt; -nYLx; lnt; 
j ; ; =0 
L x; In t; - x L x; In t; 

; 

(7) 

(8) 

The typical behaviour of the function /1(P)ML is depicted in Figure 2a for the same data set 

which was depicted in Figure lb. As can be seen there is a clear-cut local minimum at 0.93, 

but it is also seen that the function decreases below the latter minimum for values of p larger 

than 1.65. Thus, without prior information about the possible range of values for p, the ML 

approach may be hazardous. 
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Figure 2. Typical behaviour of the functions (a) /l(p) ML in (8) and (b) D(p) in (9) . 

Since it is possible to fit a regression plane to the values from each subject and for each 

value of the parameter p in the relation Xi = tt an alternative way of estimating p can be 

obtained. Let Pj (p) be the ordinary least squares estimator of fJ which is obtained for a 

given value of p by only fitting the model to the data from the j:th subject, j = 1, ... , n . Each 

such fit also gives rise to a residual sum of squares, say SSEip). The simple idea is now to 

choose as an estimate of p, the value that minimises 

(9) 

This estimate chooses the value of p which, on an average, gives the closest fit to the data in 

terms of the coefficients of determination. The behaviour of D( p) is depicted in Figure 2b for 

the same data set which was used for the ML estimation function /l(p) ML. It is seen that D(P) 

has a V-shaped structure with an easily recognised absolute minimum value at 0.92. 

The properties of the ML-estimator obtained from (8) and the properties of the estimator 

obtained from (9) are very similar. The distributions of the estimators are depicted in Figure 3 

below. The estimates were computed from simulations with p = 0.50, n = 16 and T = 10. It is 

seen that the distributions are very similar and resembles that of the normal distribution. One 

difference between the two estimation procedures is that the equation (8) sometimes resulted 
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in abnormal solutions when P was allowed to vary within an interval, which was too large. 

This was never the case with the D(P )-estimator obtained from (9). 

Table 1 below illustrates the differences between the two types of estimators when 

estimating p, as well as the rest of the parameters. Here n = 8 and T = 5 were used, i.e. the 

smallest nand T considered in this study. It is seen that the differences between the two types 

of estimators are negligible. For the other combinations of nand T the differences were even 

smaller. 

Due to the similarities between the two types of estimators and since the D(P )-estimator is 

much easier to handle in simulation studies, the latter will be considered in the sequel. A grid 

search procedure was used to minimise (9) in the simulations. 
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Figure 3. Distribution of the p-estimators when the true value is p = 0.50, n = 16 and T = 10. 

(a): Determined from D(p) in (9). (b), (c): Determined from Ll(p)MLin (8) with p varying 

between .01 and 1.00 and .01 and 2.5, respectively. Notice the abnormal solutions in (c). 
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Relative differences (%) between the ML- and O(p) estimators 

True value '" V(p) " v(&) " V(p) " V(8~) " V(8~ ) a /J "2 " 2 
of P P (fA (fu 

0.7 0.03 1.12 0.14 0.89 0.13 1.09 0.01 0.00 0.03 0.11 
1.0 0.01 0.07 0.03 0.19 0.02 0.27 0.00 0.00 0.01 0.02 
1.5 0.01 0.11 0.05 0.35 0.02 0.21 0.00 0.00 0.00 0.00 
2.0 0.00 0.00 0.08 0.05 0.02 0.06 0.00 0.00 0.00 0.00 
2.5 0.00 0.42 0.10 0.05 0.01 0.52 0.00 0.00 0.00 0.00 
3.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Table 1. Relative differences between the ML estimator given by (8) and the D(p) estimator 

given by (9), expressed as the absolute value of 100· (( D (p ) - ML) / ML) for n = 8, T=5. For 

these nand T the minimump will be 0.7. 

For values of p less than 0.5 and with (J"~ = 0.1, estimates of p are very unreliable for 

I 

small nand T. This is essentially due to the fact that the variation of the XiS then becomes 

very small, as will be shown below (C.f. (11». Values of p in the latter range are also ofless 

practical interest as far as the model in (1) is concerned, since the concentration curves remain 

above the zero level for an extremely long time (C.f. Figure 1). For simplicity, only values of 

p from 0.5, and sometimes from 0.7, and larger will be considered here. 

The iterative process of obtaining the solution of the p-estimator from (9) involves some 

problems, which are inevitable and are therefore worth some comments. In the next section it 

is shown that the p-estimator has an asymptotic normal distribution (as n ~ 00 ) with mean p 

and variance given by the expression in (11). The normality assumption turned out to hold 

even for n = 8 . As a first step in estimating p it is recommended to first get a rough estimate 

of p and of the variance. From the latter one can construct an interval, p ± constant· ~V (p) , 

which can be supposed to cover nearly 100% of all possible p-estimates. This interval may 

serve as an iteration interval for the grid search. The estimate of p depends on the division of 

the iteration interval. A too rough division may cause a misleading too small variance. With a 

finer division of the iteration interval the variance first increases and then starts to decrease 

towards the true value. 
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The bias of p can be disregarded. The largest absolute bias, about 0.0026, was obtained for 

p = 0.7 which corresponded to a relative bias of 0.37%. For values of p larger than 0.7 the 

bias readily declined to zero (C.f. Table 2 below). 

Figure 4 below illustrates how the variance of the estimator of p readily tends to zero with 

increasing values of p. At P = 1.5 the variance is about 10-4, and at p = 2.0 it is 10-5 which 

can be seen in Table 2. 
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p 

Figure 4. Variance of the D(P )-estimator for 

some values of p and the 4 possible 

combinations of nand T. 

4. Estimation of further parameters 

True value of V(p) 
P 

2.0 0.000053 
2.1 0.000036 
2.2 0.000024 
2.3 0.000016 
2.4 0.000011 
2.5 0.000008 
2.6 0.000005 
2.7 0.000004 
2.8 0.000002 
2.9 0.000002 
3.0 0.000001 

Table 2. Variance of the D(p)­

estimator for the larger values 

of p when n = 8 and T = 5. 

The estimators in Sect. 2 are optimal only if p is known. When p is estimated, one may 

suspect that this may have effects on bias and precision of the rest of the parameters. It is the 

purpose of this section to study these effects on the estimates of a, fJ, O"~, a~ and a+ fJx i 

when the true value of p is 0.7 or larger. 
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Table 3 below shows the relative bias of the estimators of the latter parameters. With a few 

exceptions, the relative bias can be omitted. For larger values of p not shown in the table and 

for the other combinations of n, T and i, the relative bias is even smaller. 

Relative bias (%) when estimating: 

True value a ~ 0'2 0'2 a+fix1 of p A u 

0.7 -6.15 -6.16 -0.82 3.46 -0.01 
1.0 -0.72 -0.84 -0.72 3.00 -0.12 
1.5 -0.28 -0.15 -0.16 3.54 0.13 
2.0 0.06 -0.01 -0.67 3.17 -0.07 
2.5 0.12 0.00 -1.42 2.96 -0.12 
3.0 0.11 0.00 -1.24 3.14 -0.11 

Table 3. Relative bias (%) for the estimators of the parameters of the model in (1) when 

n = 8, T = 5 and i = 1. 

The asymptotic variances and covariances (n large) of the ML-estimators can be obtained 

from the expectations of the second order derivatives of the log-likelihood in (7p. When pis 

fixed, the following expressions are obtained: 

v(a)=.!.[0';+0'~(.!..+X2J]' V(P)= O'~ , Cov(a,p)=_O'~x, 
n T W;t nW;t nW;t 

A2 2 [( )( 2 2)2 4J V(O'A2)= 20'~ V(O'A) = 2 T-IO'AT +O'u +O'u' u ' 
neT -1)T neT -1) 

(10) 

while all covariances between (a, P) and (a;, a~) are zero. 

On the other hand, when p in Xi = tj is estimated, the following expressions are obtained: 
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" " A A S2 
and let lX, /3, a~, a~, p betheML-estimators. Then, with Rp =1 ___ 1_, 

W;/S2 

~ 1 [2 2 { 1 ( x
2 

M ( 2xSI JJ 1 }] V(a)=- (jA +(ju -+ -+- M --- -- , 
n T W;/ S2 W;/ Rp 

(11) 

and 

~ P~) (ju
2 (MSI -xS2) Cov( a, = --"-- --.:....-----=~ 

nW;/S2 Rp 

(12) 

The variances of a~ and a~ are as in (10), while all covariances between (&,P,p) and 

To study the effect of first estimating p and then estimating the rest of the parameters, it is 

natural to consider the ratio 

R = Variance of parameter when p is known 
Variance of parameter when p is estimated 

(13) 

When estimating (j~ and (j~ , the ratio in (13) was very close to 1 as expected. The smallest 

and largest values of R, for all possible combinations of n, T and p, were 0.96 and 1.06. 

However, when estimating a and P the value of R was below 1. From Figure 5a it can be 
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seen that R is slowly increasing for larger p when estimating a. When estimating fJ the 

value of R is about 10 -2 for all values of p. The very poor variance of the fJ -estimator is 

quite remarkable. From (11) it can be seen that the variance of the fJ -estimator is 

proportional to the variance of p, and from Table 2 the latter was smaller than about 10 -5 for 

p larger than 2.0. However, this relatively small variance is not small enough to improve the 

variance of the fJ -estimator. Notice that the expressions for the mean curve and the tolerance 

limits in (3) and (4) do not involve a and fJ, but a+fJxi' From Figure 5b it is seen that the 

estimator of the latter quantity behaves much better than when a and fJ are estimated 

separatel y. 

The above results were obtained by using the relatively large value 0.1 of a;. For smaller 

values of a;, say smaller than 0.01, the ratio R will be closer to 1 when estimating 

a, fJ and a + fJxi . In fact, simulations by using the parameter values, which were estimated 

from the data set depicted in Figure Ib (where a; was estimated as 0.0034), suggest that the 

two-step procedure described in this paper may be used even when the number of subjects (n) 

is 2. 
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Figure 5. Values of the ratio R in (13) when estimating (a) a, (b) a+fJxl where Xl = 1 P • 
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5. Conclusions 

There is a great need for statistical methods that utilise the longitudinal structure of the data. 

For instance, in pharmacokinetics one often uses a relatively small number of patients from 

which data can be collected at many time points. In such situations it seems natural to try to 

use all the information contained in the sample when constructing e.g. tolerance limits, rather 

than using conventional methods, which only make use of cross sections over the subjects. 

Objections may be raised against the use of structural models for longitudinal data, like the 

one in (1). But if they are flexible enough to fit well to the data there should be no reasons for 

not using them. This paper has presented a model for monotone time-response data, 

containing a parameter p, which has to be estimated as a first step. The rest of the parameters 

can then be estimated by standard regression techniques in a second step. Whether this works 

or not, depends essentially on the magnitude of p and of the variance of the measurement 

errors. The two-step procedure works well for small values of the latter variance. But for large 

values of the variance simulation studies have shown that the procedure only works well 

when estimating a + fJx i' i.e. the quantity of main interest in some situations. 
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