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Abstract 

Surveillance to detect changes of spatial patterns is of interest in many areas 
such as environmental control and regional analysis. A model which pos­
sesses both spatial and time dependence is the Markov chain Markov field. 
Here a special case of this, called the Ising dynamic model with zero external 
field, and change in its spatial interaction parameter is considered. A method 
for simulation exactly according to this Ising dynamic model, is proposed. 
Surveillance methods corresponding to common methods for the time inde­
pendent case, are derived. 

Key words: Markov chain Markov field, Heterogeneous external field, Zero 
external field perfect simulation, on-line change detection. 
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Introduction 

Due to several environmental issues, such as forestry disease surveillance, 
voter proportion change detection, earthquake warning system and others, 
results about methods for judging whether a change in the behaviour of a 
spatio-temporal process has occurred or not, are strongly demanded. 

For e.g. monitoring a suspected breakout of a disease in a forest one 
could suppose that indications of the disease are present without any spatial 
dependence when the forest is in control (i.e. not an epidemic). A sudden 
breakout of the disease could then be detected as a change in the appearance 
of clustered diseased trees (i.e. epidemic) which in turn could be recognised 
as a suddenly increased level of attraction. 
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Guyon [8] and Bayomog [1] introduced a spatio-temporallattice process 
which they called Markov chain Markov field. This is a sequence of lattice 
variables forming a Markov chain indexed by time t. At each fixed time t 
given the previous state at time t-1, the lattice variable at t is a Markov field. 
They investigated properties of pseudo-likelihood estimators of and tests for 
pair-wise interaction and temporal interaction parameters in the distribu­
tion of this process. Several random lattice models were also considered by 
Liggett [17]. 

At large this work is the proceedings of Jarpe [12] and [13]. While we 
in that paper considered the Ising model with zero external field assuming 
time independence given the time of change, we allow for both temporal 
and spatial dependence in this one. In those papers the problem was also 
the monitoring of Ising patterns for detecting a change in the interaction 
parameter. This problem was dealt with by reducing the observation pro­
cess to a statistic which was minimal sufficient for the interaction parameter 
and, using the statistic's asymptotic distribution as an approximation of the 
statistic's distribution in a finite lattice, methods for univariate surveillance 
could be applied. 

In this paper the approach is different. In Section 1 we introduce the 
Markov chain Markov field (Guyon [8] and Bayomog [1]). The model con­
sidered here is called Ising dynamic model with zero external field. It is a 
spatio-temporal model and a special case of a Markov chain Markov field. 
In short it is a sequence of random fields X (1), X (2), . .. and the sequence 
is a Markov chain. Each field, X(t), given the previous field, X(t-1), is a 
Markov field according to the Ising model with heterogeneous external field. 
This observation is useful for the suggested technique, explained in Section 2, 
to simulate exactly from the Ising dynamic model with zero external field. 

In Section 3 we consider some spatio-temporal surveillance methods to 
detect a change in the interaction parameter of the space-time model. The 
aim is to establish appropriate methods for fast and accurate detection of a 
change. Some common surveillance methods are derived for the Markov chain 
case. From simulations of the Ising dynamic model it is possible to evaluate 
the performance of these surveillance methods. Finally in Section 4, the 
results are discussed. 

1 Space-time Model 

We briefly introduce the space-time model Markov chain Markov field and a 
special case of it called the Ising dynamic model which is based on the Ising 
model. A more thorough presentation of Markov field Markov chain is in 
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Guyon [8] and Bayomog [1] and of the Ising model in e.g. Kindermann and 
Snell [15]. 

1.1 Markov Chain Markov Field 

Let AN be a set consisting of N positions, called sites, symbolically denoted 
by i E {I, 2, ... ~ N}, forming a lattice. Let (E, £) be a measurable set and v 
a positive a-finite measure on E. Let the random process X(t) = {Xi(t) : iE 
AN} be a random field defined on (EN, £@N,v@N), t E Z+ with some reflexive 
neighbourhood relation where site i being a neighbour of site j is denoted 
j E ai and the variable at time t and sites i E B ~ AN is denoted by XB(t). 
Given the previous field, X (t -1), let X (t) be a random field, t E Z+. Also 
let X = {X ( t) : t E Z+} be a stochastic process with state space EN. 

Definition 1 (Guyon [8]) The stochastic process X is called a Markov 
chain Markov field if 

for each i E AN and t E Z+. 

This means that {X(t) : t E Z+} is a Markov chain with transition probabil­
ities 

Pt(B,x) = P[X(t)EB\X(t-1)=x]' xEEN. 

In this paper we consider time homogeneous Markov chains, for which there 
exists a transition probability P on EN such that Pt = P for all t E Z+. 

1.2 Ising Dynamic Model with Zero External Field 

The Ising dynamic model with zero external field is a special case of the 
Markov chain Markov field. Let An be a finite set consisting of n2 positions, 
called sites, symbolically denoted by i E {I, 2, ... ,n2

}, forming a square lat­
tice in Z2. 

Let F = {-I, I} and F = a(F), the smallest a-algebra of F. Then the 
space (F, F) is measurable with respect to the counting measure, /-l, on F. 
Furthermore, let X (t) be a random field defined on (Fn2, F@n2 

, /-l@n2
), t E Z+ 

with a neighbourhood relation according to Definition 2. If BeAn, we 
denote {Xi(t) : i E B} by XB(t). X is assumed to have a distribution with 
frequency function p( x ). 

Definition 2 The sites i and j are called (first order) neighbours) de­
noted by i rv j) if the Euclidean distance between i and j is exactly 1. The 
neighbourhood of a site i is the set ai = {j E An : i rv j}. 
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To avoid edge problems, we map our square study region onto a torus. 
We consider the special case of a Markov chain Markov field where given 

the state of the neighbourhood at time t, X8i(t), and the state at i at time 
t-1, xi(t-1), the random variable at site i and time t, Xi(t) is conditionally 

Time: t -1 Time: t 

Figure 1: The state Xi(t) at a site, i, is conditionally independent of states at 
other sites given the states of its spatial neighbours, X 8i (t), and its temporal 
neighbour, Xi (t -1) . 

independent of all other sites. More precisely, the process X = 

{Xi(t) : i E An, t E Z+} considered, satisfies 

for each i E An and t E Z+ (see Figure 1). We assume that, for each t E Z+, 
X(t) fulfils a positivity condition (Hammersley and Clifford [9]): P[Xi(t) = 

Xi(t)] > 0 for each i E An (which implies that P[Xl(t) = Xl(t), ... ,Xn2(t) = 
Xn2 (t)] > 0). For the sake of simplicity we denote {Xi( u) : i E An, 1 :::; u:::; t} 
by X9 and x(t) by x, x(t-1) by x', x(t-2) by x" and so on, whenever this 
is convenient. 

Definition 3 The global distribution function, denoted p( x Ix'), of the Ising 
dynamic model with zero external field is the transition probability in 
the Markov chain X(l), X(2), ... 

P[X(t)=xIX(t-1)=x1 = Z-lexp (</JQ(t)+'Ij;R(t)) 

where Z = Z(x',</J,'Ij;) = ~xexp(</JQ(t)+'Ij;R(t)) is a normalising constant 
and Q(t) = ~i""j XiXj, R(t) = ~i xixi are energies where summation with 
index i rv j means summing over all i E An, j E 8i : j < i and summation 
index i means summing over all sites i E An. </J and 'Ij; are spatial interaction 
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and temporal interaction parameters respectively on some parameter space 
<I> x\]! C ]R2. 

One way of simulating from the Ising dynamic model, is via the Ising model 
with heterogeneous external field. A model without time in it is the Ising 
model. In the Ising model with heterogeneous external field, the 
lattice process X = {Xi: i E An2} is defined by the distribution 

P[X=X] = Z-lexp(<PLxiXj+Al L Xi+ A2 LXi) 
i"'j iEIAn2 iE2An2 

where (lAn2, 2A n2 ) is a partition of An2, and ('2:"E A Xi, '2:"E A Xi) is called 
• 1 n

2 
• 2 n

2 

heterogeneous external field. If Al = A2, the external field is homoge-
neous, and Al = A2 = 0 makes a zero external field. When not otherwise 
stated, we consider the zero external field version of the Ising and Ising dy­
namic models, and therefore this term ("with zero external field") will be 
suppressed subsequently. 

When <P is positive the neighbours tend to have the same values thus ren­
dering clustered patterns and when <P is negative they tend to have different 
values which renders regular patterns. In the same way positive 'lj; makes 
each site more likely to remain the same for each time step while negative 'lj; 
gives each site the tendency to be the opposite of the previous state. 

Denoting '2:jEBi Xj by Vi, the local distribution function, p(xilxBi' xD, of 
the random variable at site i, given the states of its spatial and temporal 
neighbourhood, is 

where Zi = 2 cosh( <PVi + 'lj;xD is the local normalizing constant. Due to the 
positivity condition, this conditional probability takes its values on (0,1) 
for all values of the neighbourhood. The Ising dynamic model may also be 
expressed a logistic linear model by 

I ( p(llxBi' xD ) 
og 1 - p(1IXBi' xD 

1.2.1 Stationarity 

In the zero external field Ising model, Onsager [19] found that with <P- = 
log( J2 -1) = -<P+ the existence of a unique stationary distribution of X is 
guaranteed for <P E <I> compact on (<p-, <p+). 
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Pickard [21] investigated the homogeneous external field Ising model and 
found that for the non-zero external field (A # 0), it is sufficient that </J> </J'-, 
where </J'- is a function of the external field parameter A, and bounded by 
log ( v'2 - 1). 

Guyon [8] and Bayomog [1] studied the Markov Chain Markov Field. 
Bayomog concluded that for the aut 0-Poisson model, the temporal interac­
tion part of the energy function, Qi(xIB), uniformly bounded in x, B for all 
i E An implies the existence of a unique stationary distribution of X. 

For the Ising dynamic model, we will assume that for </J and 'l/; in the 
parameter interval <I> x 'IF, there is a stationary distribution, 7r, of X (t) and 
we only consider parameters within that interval. 

2 Simulation 

Perfect simulation is a technique to simulate exactly to a stationary distribu­
tion (introduced by Propp and Wilson [22]). It is used in this paper for the 
monotone case and, with the modification by Haggstrom and Nelander [10], 
for the anti-monotone case. 

The method of perfect simulation of the Ising model is applicable in the 
case with Ising dynamic model. Apart from being nice for illustrations (see 
Figure 2) this way of getting samples simulated exactly according to the Ising 
dynamic model is the base for the simulated moment results in the end of 
Section 1. 

Observation 1 The global distribution of the Ising dynamic model is a global 
distribution of an Ising model with heterogeneous external field. Spatial in­
teraction parameter </J and temporal parameter 'l/; in the Ising dynamic model 
corresponds to interaction parameter </J and external field parameter 'l/;x'. 

Since there is no problem to simulate Ising heterogeneous external field pat­
terns (using e.g. the Gibbs sampler), Observation 1 says that we may simulate 
exactly according to the Ising dynamic model. 

Gibbs Sampler 

The Gibbs sampler was invented by Suomela [24] but usually the credit goes 
to Geman and Geman [6]. It is a stepwise procedure where one, at each 
time-step t = 1,2,3, ... , cruises along the sites i E An so that each site is 
almost surely visited infinitely often. This cruise could be made in a number 
of ways e.g. i = 1,2, ... ,n2

• At each visit the state possessed by that site, is 
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Figure 2: Three 100 x 100 square lattice patterns at times 1,2,3 simulated 
exactly according to an Ising dynamic model with 'ljJ = 3. In the first row 
¢ = 0.7 (attraction)) in the second (spatial independence) and in the third 
¢= -0.7 (repulsion). 
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where {Ui(t) : i = 1, ... ,n2
, t = 0,1,2, ... } is a sequence of independent obser­

vations of the uniform distribution on [0,1]. For some fixed t = to, the states 
are {XI(tO), ... , Xn2(tO)}). As all sites are visited and updated again the clock 
snaps one tick to t = to+ 1 and the states are {Xl (to+ 1), ... , Xn2 (to + 1)}, and 
so on. Starting with arbitrary states {XI(O), ... , Xn2(0)} and updating ac-
cording to this rule, the sequence {x(O), x(1), ... } of configurations achieved 
at each "full round", forms a Markov chain. So we may approximately sim­
ulate an Ising configuration according to the desired global distribution. 

Perfect Simulation 

Let {Ui(t) : i = 1, ... ,n2
, t = -M, . .. ,O} be a sequence of independent 

observations of a uniform random variable on [0,1]. The main idea is the 
following: impose the partial ordering relation denoted by :::S meaning that 
X :::S y if Xi ~ Yi for each i E An. Then generate two monotone Markov 
chains {x( t)}~=_M and {y(t)}~=_M according to the" Coupling-from-the-past­
protocol" starting with X ( - M) = 6 being the minimal state and y ( - M) = i 
the maximal state and terminating with x(O) = y(O) which is the simulated 
Ising configuration. The time - M is unknown stochastic and it is determined 
during the evaluation of the algorithm. The algorithm is the pseudocode 

T+--1 
repeat 

upper(-T-1) +-- i 
lower( -T-1) +-- 6 
for t =-T to 0 

for i = 1 to n 2 

upper(t) +-- g( upper, upper(t-1), i, Ui(t)) 
lower(t) +-- g(lower, lower(t-1),i,Ui(t)) 

T+--2T 
until upper = lower 
return upper 

where the map 9 may be chosen as the previous sampling algorithm Gibbs 
sampler or other Metropolis-Hastings algorithms (see Kendall and M¢ller [14]) 
or some other that results in a Markov chain and which preserves the partial 
ordering. 
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However, the distribution p, that we want to simulate samples from, must 
satisfy a monotonicity condition (Propp and Wilson [22]) in order for the 
method to be valid. When </; is negative (attractive case), p is monotone 
but otherwise not. On the other hand, when </; is positive (repulsive case), p 
satisfies an anti-monotonicity condition and with a slight modification of the 
updating map g, realisations can be simulated in this case as well (Haggstrom 
and Nelander [10]). In short this is to say, provided that we have chosen the 
Gibbs sampler as the map g in the case of positive </;, then the modification 
is just to update each site of say the chain referred to in the pseudocode 
as upper, not according to its neighbours but rather according to the cor­
responding neighbourhood of the partner chain lower. The same goes for 
updating each site of the lower chain according to the corresponding neigh­
bourhood in the upper chain. Haggstrom and Nelander showed that this 
change makes the resulting Ising pattern distributed exactly according to 
the stationary distribution in the anti-monotone case. Thus we are able to 
simulate Ising configurations regardless of the value of </;. 

3 Surveillance 

There are many different names (surveillance, change detection, monitoring 
etc.) for the task of detecting a shift. In this paper we consider the case 
where the data accumulates in time and it is decided "on-line" whether or 
not a change has occurred. For further reading see e.g. Frisen [2], [3], Frisen 
and de Mare [4], Frisen and Wessman [5], Jarpe and Wessman [11], Lai [16] 
or Wessman [25]. 

We make consecutive observations x(1), then x(2), then x(3) and so on, 
of X = {Xi(t) : t E Z+, i E AnY, a process according to the Ising dynamic 
model where, conditional on X(t-1)=x(t-1), 

X (t) E- { p( x (t) \ x (t -1); </; = </;0) if t < T 
- p(x(t)\x(t-1);</;=</;1) ift~T 

where the distribution p(. ;</;) is as given in Section 1, </;1 E (</;_,</;+) and T 

is an unknown random time-point. We consider the problem of detecting a 
change of </; from </;0 to </;1, 

3.1 Markov Chain Surveillance Methods 

There are several general surveillance methods suggested in the literature. 
We recall the definition of the Cusum, Shiryaev-Roberts (SR) and likelihood 
ratio (LR) methods for for the i.i.d. (independent and identically distributed) 
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variables before and i.i.d. variables after change case (henceforth this will be 
referred to simply as "the i.i.d. case") and then we derive the same methods 
for the Markov chain case. Let 

lr(x(t)lx(t-1)) 
p(x(t) Ix(t-1), T ~ t) 
p(x(t)lx(t-1),T>t) . 

In the i.i.d. case, lr(x(t)lx(t-1)) = lr(x(t)) = p(X(t)IT ~ t)/p(X(t)IT > t). All 
three methods are stopping rules on the form 

T = inf{s: a(Xss»c} 

where a(·) is an alarm function and c is a threshold. The Cusum method 
for the i.i.d. case {y(t) : t E Z+}, suggested by Page [20] and studied by 
Lorden [18], is defined with alarm function 

The Cusum method for the Markov chain, X, has alarm function, conditional 
on the initial state X(O) = Xo, 

1 
p(x<slxo, T=t) 

max og 
19ss p(xsslxo,T>S) 

{
(log lr( x(l) Ixo))+ 
(loglr(x(t)lx(t-1)) + a(xss-d)+ 

S = 1 
S = 2,3, ... 

The SR method for the i.i.d. case {y(t) : t E Z+}, derived by Shiryaev [23], 
has alarm function 

s 

a(ys) = 'L!Ys.(YssIT=t)/!Ys.(YSsIT>S). 
t=l 

The SR method for the Markov chain, X, has alarm function 

t p(x<slxo, T=t) 
t=l p(xssIXO,T>S) 

{ 

lr(x(l)lxo) 

lr(x(l)lxo) rr;=2 lr(x(r)lx(r-1)) 
+ L::=2rr:=tlr(x(r)lx(r-1)) S = 2,3, ... 

s=l 

{ 
lr(x(l)lxo) 
lr(x(s)lx(s-l))(a(xs-l) + 1) S = 2,3, ... 

S = 1 
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The LR method for the i.i.d. case {y(t) : tEZ+}, presented by Frisen and de 
Mare [4], has alarm function 

s 

a(y~s) = LPT(t)/(l- I::=lPT(W))· (JY:5.(y~s\r=t)/fY:5.(Y~s\r>s)) 
t=l 

where PT(t) = P[r = tl. The LR method for the Markov chain, X, has alarm 
function 

(1- tPT(t)t1 t f(x<s\r=t) 
t=l t=l f(x~s\r>t) 

(1- Epr( t))-l (Pr(l )lr(x(l )Ixo) g lr(x(r) Ix(r -1)) 

+ t,pr(t) g lr(x(r)lx(r-1))) . 

By using simulations of the Ising dynamic model, we may evaluate the per­
formance of these surveillance methods. 

4 Discussion 

This study shows that, monitoring a change in interaction in a sequence of 
finite square lattice Ising dynamic patterns with zero external field, can be 
performed using methods for surveillance of a Markov chain. It is suggested 
that simulation exactly according the Ising dynamic model with zero external 
field, is used for the evaluation of the surveillance methods presented. 

Sometimes, methods for treating a simultaneous change in both the chem­
ical potential and the interaction parameters, are necessary. The reason for 
choosing the Ising model was that it is a simple model which nevertheless 
possesses a non-trivial property. An extension to e.g. a Potts model is one 
possibility of how to proceed. Also surveillance in spatial point process mod­
els (see e.g. Grabarnik and Siirkkii [7]) could be of interest. 
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