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Statistical Surveillance. Optimality and Methods 

Marianne Frisen 

Department a/Statistics, Goteborg University, Box 660, SE-40530 GOteborg, Sweden. 

Summary 

Different criteria of optimality are used in different subcultures of statistical 

surveillance. One aim with this review is to bridge the gap between the different areas. 

The shortcomings of some criteria of optimality are demonstrated by their 

implications. Some commonly used methods are examined in detail, with respect to 

optimality. The examination is made for a standard situation in order to focus on the 

inferential principles. A uniform presentation of methods, by expressions oflikelihood 

ratios, facilitates the comparisons between methods. The correspondences between 

criteria of optimality and methods are examined. The situations and parameter values 

for which some commonly used methods have optimality properties are thus 

determined. A linear approximation of the full likelihood ratio method, which satisfies 

several criteria of optimality, is presented. This linear approximation is used to 

examine when linear methods are approximately optimal. Methods for complicated 

situations are reviewed with respect to optimality and robustness. 

Key words: Change-point; Control chart; CUSUM; EWMA; Likelihood ratio; Monitoring; 

Quality control; Repeated decisions; Shewhart; Statistical process control; Stopping rule. 
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1 Introduction 

There is often a need for continual observation of time series, with the goal of detecting 

an important change in the underlying process as soon as possible after it has occurred. 

Surveillance, statistical process control, monitoring and change-point detection are different 

names for methods with this goal. 

An example is the surveillance of the foetal heart during labor described by Frisen 

(1992). An abnormality, caused by e.g. a lack of oxygen due to the umbilical cord around 

the neck of the foetus might happen at any time. Detection has to be as soon as possible 

after the event has occurred to ensure that a rescuing action, such as a Cesarean section, is 

of value. 

In recent years there have been a growing number of papers in economics, medicine, 

environmental control and other areas, dealing with the need of methods for surveillance. 

Applications in medicine are described in e.g. the special issue (no. 3, 1989) of "Statistics 

in Medicine". Monitoring for detection of changes in public health is described by e.g. 

Williamson and Hudson (1999) and Sonesson and Bock (2002). Methods for post 

marketing surveillance of adverse effects of drugs are described by e.g. Lao et al. (1998). 

Needs for environmental control are described in the book edited by Barnett and Turkman 

(1993). Surveillance technique is used for environmental monitoring by Pettersson (1998b). 

Applications in economics, and especially the surveillance of business cycles, are treated 

in, e.g. the special issue (no. 3/4,1993) of "Journal of Forecasting". Comments on the role 

of statistical quality control in industry are given in the paper by Banks (1993) and the 

connected discussion. Y ashchin (1993) discusses the relation between "Engineering Process 

Control" where the corrective formula is important and "Statistical Process Control" where 

the detection of the abrupt change is the ftrst aim. 

In applied work a single optimality criterion is not always enough but evaluations of 

different properties might be necessary (Frisen 1992). However, optimality plays an 

important role both in applied work and for theory. There are many papers which claim to 

give the optimal method of surveillance. However, the suggested optimality criteria differ 

in important aspects. Most commonly used methods are optimal in some respect. 
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Here, the aim is to make a characterization of the methods by the optimality properties 

they have. In Table 1 some schematic characterizations are given. The explanations will be 

given in the text. The focus of the paper is the inferential matters. A complete review of the 

area of statistical surveillance cannot be made within one paper. 

In some applications the whole process will be stopped as soon as an alarm occurs. An 

example is the surveillance of the foetal heart during labor mentioned above. This is called 

active surveillance in contrast to passive surveillance, where our actions at an earlier time 

point do not affect the process (Frisen and de Mare (1991)). This can be the case in flood 

warning systems when alarms do not affect the level of the water. Most of the discussion 

in this paper concerns active surveillance, but the differences with respect to stochastic 

properties between the active and passive surveillance will be pointed out. 

The timeliness and also the simplicity of procedures is considered in the vast literature 

on quality control charts. Also, the literature on stopping rules is useful and relevant here. 

The inferential problems involved are important for the applications and interesting from 

a theoretical view, since they are linking together different areas of statistical theory. In 

cases where several changes may follow after each other, the process might be 

characterized as a hidden Markov chain and the posterior probability for a certain state 

determined (e.g. Harrison and Stevens (1976) and Hamilton (1989)). Estimation of the 

time of change (e.g. Hinkley (1970) and Gombay (2000)) is not discussed here. 

Some broad surveys and bibliographies on methods for statistical surveillance are found 

in e.g. Zacks (1983), Vardeman and Cornell (1987), Basseville and Nikiforov (1993), and 

Lai (1995). In the survey by Kolmogorov et al. (1990) and the collection of papers edited 

by Telksnys (1986) the early results on optimal stopping rules by Kolmogorov and Shiryaev 

are reported and further developed. Also the book by Brodsky and Darkhovsky (1993) on 

nonparametric methods for change-point problems is in the same spirit. A collection of 

papers on change-point problems is edited by Carl stein et al. (1994). A survey of statistical 

process control (SPC) is given by Woodall and Montgomery (1999). In this survey it is 

pointed out that a cross-fertilization between SPC and the mathematical statistical literature 

on e.g. change-point analysis would be fruitful. In Crowder et al. (1997) it is stated: "There 

are few areas of statistical application with a wider gap between methodological 

development and application than is seen in SPC." In a short review on SPC Stoumbos et 

al. (2000) state a need for a greater synthesis of the theoretical change point and applied 
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SPS literature. The bibliographies mentioned above treat both the case of a fixed period and 

the case of sequential observation. The survey by James et aL (1987) only treats the fixed 

period case. In the following only detection of one change will be discussed. In the 

following only the case of sequential observations will be treated. 

In Section 2 the notation is described. Also, a specification is made of the most 

commonly discussed case in the literature, that of a shift in the mean of a normal 

distribution. This case is used to derive the connections between methods and optimality. 

In Section 3 some general criteria of optimality are described and analyzed. In Section 4 

general methods are described and compared with whose derived from the optimality 

criteria. Thus, the commonly used methods are characterized by their optimality properties. 

In Section 4.1 the full likelihood ratio method, L~ which fulfills important optimality 

criteria, is described. In Section 4.2 linear approximations of the LR method are derived. 

The approximations are used in Section 4.3 to determine the approximate optimality of the 

exponential moving average method, EWMA, and also to discuss for which situation 

EWMA will be a suitable method. Different variants of CUSUM methods are analyzed in 

Section 4.4 with respect to their optimality. In Section 5 there is a description of methods 

and a discussion of optimality for some more complicated situations, like multivariate 

surveillance, non-parametric surveillance, more complicated models and more complicated 

changes. Section 6 contains some concluding remarks. 

2 Notations and Specifications 

The process under surveillance is denoted by X = {XCt): t = 1,2, ... }, where XCt) is 

the observation made at time t. This observation may be an average or some other derived 

statistic. For the case of surveillance ofthe foetal heart rate, described in Frisen (1992), XC t) 

is a recursive residual of a measure of variation. The random process that determines the 

state of the system is identified by JlCt), t = 1,2, .... 

To demonstrate some features, a simple specific situation is used in most of Sections 

3 and 4, while more complicated situations are treated in Section 5. This standard case will 

now be described. 
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As in most literature on quality control, the standard case of a shift in the mean of a 

Gaussian random variable from an acceptable value Il ° (say zero) to an unacceptable value 

III is considered. It is assumed that if a change in the process occurs, the level suddenly 

moves to another constant level, Ill>llo, and remains on this new level. That is Il(t) = Ilo 

for t= 1, ... , 1:"-1 and Il(t) = III for t= 1:", 1:"+1, ... For each decision time s, s=l, 2, ... 

we want to discriminate between the two events C( s) = {1:" ~ s} and D( s) = {1:">s}. C( s) 

implies ll(s)=J.1l and D(s) implies ll(s)=J.1°. 

We will consider different ways of constructing alarm sets A(s) with the property that, 

when Xs = {X(t): t~s} is a subset of A(s), there is an indication that the event C(s) has 

occurred. The time of the fIrst alarm is tA = mints: Xs c A(s)}. 

Here Ilo and J.1l are regarded as known values and the time point 1:", where the critical 

event occurs, is regarded as a generalized random variable with the probabilities TIt=P( 1:"=t) 

and with the probability, TIn that no change ever occurs 

The intensity, Vt ,of a change is 

t=oo 

1tn =I-.E1te 
t=l 

The aim is to discriminate between the states of the system at each decision time s, s= 1, 

2, ... by the set of observations ~ = {Xes): t ~ s} under the assumption that X(1) -1l(1), 

X(2) - 1l(2), ... are independent normally distributed random variables with mean zero and 

with the same known standard deviation 0. For clarity, standardization to J.1°=O and 0=1 

is used and the size of the shift after standardization is denoted by Il. The case J.1>O is 

described here. The case Il<O is treated in the same way. Two-sided procedures will be 

discussed in Section 5.1.1. 
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3 Optimality Criteria 

In this section general criteria are discussed and illustrated by the standard case of 

Section 2. In Section 5 the special problems with optimality for multidimensional and other 

complicated situations are discussed. 

The performance of a method for surveillance depends on the time 't of the change. 

Alarm probabilities will in general not be the same for early changes as for late changes. 

Sometimes it is appropriate to express the measure of the performance as a function of 't, 

as by Frisen (1992)and Frisen and Wessman (1999). However, sometimes a precise 

criterion of optimality is needed. In order to obtain a measure, which is independent of the 

value of't, several approaches have been used: 

1. The situation when 't=1 is often studied In the literature on quality control. This is the 

situation when the change occurred at the same time as the surveillance started. The 

approach is discussed in Section 3.1 on ARL. 

2. In the literature on statistical theory it is often assumed that the surveillance has been 

started a very long time before a possible change (e.g. Lindgren (1985), Pollak and 

Siegmund (1991), Srivastava and Wu (1993)). In that case the asymptotic results when 

't tends to infinity are relevant. 

3 . Averaging measures with respect to the distribution of't can be used when assumption 

on this distribution is available. Error probabilities are described in Section 3.2 and 

expectations and utilities are described in Section 3.3. 

4. The worst possible value of't is used by the minimax criterion (Section 3.4). 

3.1 ARL 

A measure that is often used in quality control is the average of the run length until the 

first alarm (see e.g.Page (1954) and Wetherill and Brown (1991)). The average run length 

until an alarm, when there is no change in the system under surveillance, is denoted ARLo• 

The average run length until detection of a true change (that occurred at the same time as 

the surveillance started) is denoted ARL I. The part of the definition in the parenthesis is 
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seldom spelled out, but seems to be generally used in the literature on quality controL For 

some situations and methods the properties are about the same, regardless of when the 

change occurred, but this is not always true as is illustrated by Frisen and Wessman (1999) 

and Frisen and Sonesson (2002). The run length distributions are often very skewed and 

the skewness depends on important parameters. Sometimes, it is suggested that the whole 

run length distribution should be reported. Instead of the average, Gan (1993) advocates 

that the median run length should be used on the ground that it might be more easily 

interpreted. However, the main problem is that only the case 1'= 1 is considered. When used 

with care, the criteria based on ARL can be usefuL However, a blind trust might be 

dangerous as will now be demonstrated. 

3.1.1 Minimal ARLI 

Optimality can be defIned as minimal ARL I for fIxed ARLo• This criterion will shortly 

be called "the criterion of minimal ARLI ". This criterion is usually used in the literature 

on quality control and is often used also in more general statistical literature. Consequences 

of this criterion, which makes it unsuitable for many applications, will now be 

demonstrated by Proposition 1 and 3. Some might consider the consequences self-evident, 

but since it is in contradiction with much of the literature and practice, detailed proofs are 

given. All proofs are given in Appendix 1. First we demonstrate, for the standard case 

specifIed in Section 2, that equal weight should be given to all observations to fulfIll the 

criterion. 

Proposition 1. There exist values Cs such that a surveillance system with alarm at 

s 
tA = min{s: EX(t»cs} 

t=1 

gives the minimal ARLI for fixed ARLo. 

Thus, methods which give equal weights to all observations can satisfy the optimality 

criterion of minimal ARL 1 for fIxed ARLO
• This is confIrmed by simulations by Chan and 

Zhang (2000) and Frisen and Sonesson (2002) in studies of different parameters of the 

EWMA method (Section 4.3) as the ARL criterion is best fulfIlled for those values of the 

parameter which corresponds to the most equal weights. There are a great number of papers 
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in the literature on quality control where the aim is to find the parameters of a method 

which is "optimal" in the sense that the ARL 1 is minimized for a fixed ARLo. Methods with 

equal weights for old and recent observations are not very often used in quality control. 

Examples of such methods are the simple CUSUM variants described in Section 4.4, where 

also the drawbacks of these methods are discussed. The Proposition 1 thus demonstrates 

that the optimality criterion could be questioned as a formal criterion. 

In applications where the criterion of minimal ARL 1 is the proper one (in spite of the 

drawbacks given above) it is not sufficient to know the alarm statistic for each decision 

time s. You would also have to determine the alarm limit Cs for this statistic for each s. 

We construct a method, the Two-Point method, which fulfills the criterion of a minimal 

ARLI for a fixed ARLo. Denote the fixed desired value of ARLo with A. The method has 

the alarm limits C1 = L, Ci = 00 for i = 2,3, ... k-l and Ctc = - 00, where k = [A - <P(-L)] / <P(L) 

and L is restricted to those values which makes k an integer. 

Proposition 2. The Two-Pointmethodfulfils "the criterion ofminimalARL1
" by having 

ARLI arbitrary close to the minimal value, one, for aflXed ARLO. 

The Two-Point method of the proposition above will have very bad properties as soon 

as 1:'> 1. The above demonstration of the possibility to fulfill the criterion of minimal ARL 1 

for a fixed ARLo, is not intended as a recommendation of how to proceed in practical 

applications, but is a demonstration of the shortcomings of the criterion. 

Now we give similar results for a more reasonable method, here named the LCUSUM 

method (Section 4.4) which minimizes the ARLI for a fixed false alarm probability. 

Proposition 3. The surveillance system with alarm at 

s 

tA = min{s: LX(t) > L + s~/2} 
t=l 

where L is a constant, gives the minimal ARLI in the class of methods with the same false 

alarm probability P(tA < t). 
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3.1.2 Minimal ARLI/ARLo 

Sometimes optimality is expressed as minimal ARL 1/ ARLO
• This ratio might be useful 

but has drawbacks as a formal optimality criterion. The skewness of the run length 

distributions (especially if there is a change) and other facts make it easy to construct 

situations where obviously inferior methods satisfy this criterion. Below the shortcoming 

of this criterion is illustrated by the often used Shewhart method which gives an alarm as 

soon as x(s) exceeds a limit G (Section 4.7). 

Proposition 4. For the Shewhart method, ARLI/ARLo is decreasing when the limit G 

increases. 

Thus, in the class of Shewhart methods, the greatest possible limit G should be used. 

This demonstrates that the optimality criterion of minimal ARL 1/ ARL 0 should not be used 

without care. 

3.2 Error probabilities 

An important optimality criterion is the maximal detection probability P(A( s)1 C( s» for 

a fixed false alarm probability P(A(s)1 D(s», and a fixed decision time s, when C(s) = { l' 

~ s} and D(s) = { l' > s}. The LR method of Section 4.1 satisfies this criterion which in 

short will be called "the maximum detection probability criterion". Different error rates 

were discussed by de Mare (1977) and Frisen and de Mare (1991). 

A constant probability of exceeding the alarm limit at each s means that we have a 

system of repeated significance tests. This might work well also as a system of surveillance 

and is often used. The Shewhart method of Section 4.7 has this property. This is also the 

motivation for using the limits with the exact variance in the EWMA method of Section 4.3 

and a variant of the CUSUMmethodofSection4.5 given by Brown etal. (1975). However, 

the probability of exceeding the alarm limit conditionally on no earlier alarm is not constant 

for these methods. Evaluation by the significance level and power of the (repeated) test is 

often used, especially in the econometric literature, even when the aim obviously is on-line 

detection of a shift in sequentially obtained data. 
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Chu et al. (1996) advocate monitoring methods which have a fixed (asymptotic) 

probability of any false alarm during an infinitely long surveillance period. For some 

applications this might be important because a strict significance test is the goal. In that 

case, ordinary statements for hypotheses testing can be made. However, the price for this 

additional feature is high as the expected delay of the detection of a change will be very 

large as pointed out by Pollak and Siegmund (1975). 

3.3 Expected Delay 

Let the expected delay from the time of change, 't'=i, to the time of alarm tA> given the 

time of change, be denoted by 

ED(i) = E[max (0, tA-i) I 't'=i] 

To connect with the Section 3.1, it can be noted that ED(1)=ARLl_l. The ED(i) will 

typically tend to zero as 't' increases. The conditional expected delay 

CED(i) = E[tA-i I 't'=i, tA 2 i] = ED(i) / P(tA 2 i) 

on the other hand, will for most methods converge to a constant value. This value is 

sometimes named the "steady state ARL". The summarized expected delay is 

ED= E[ED('t')], 

where the expectation is with regard to the distribution of 't'. 

An important specification of utility is that of Girshick and Rubin (1952) and Shiryaev 

(1963). They treat the case of constant intensity of a change where the gain of an alarm is 

a linear function of the expected value of the delay, tA -'t'o The loss associated with a false 

alarm is a function of the same difference. This utility can be expressed as U= E{u('t', tJ}, 

where 
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The function h(,;-tJ could be a constant b, in which case 

U=b P(,;>tJ+ at ED +~. 

Thus, we would have a maximal utility if we have a minimal (at is typically negative) 

expected delay from the change-point for a fixed false alarm rate. The criterion will be 

named "the criterion of minimal expected delay" or "the ED criterion", for short. The full 

likelihood ratio method LR (Section 4.1) satisfies this criterion. 

3.4 Minimax 

Minimax solutions, with respect to ,;, avoid the requirement of information about the 

distribution of,;. Pollak (1985) gives an approximate solution to the criterion of minimal 

expected delay, for the worst value of,;. The solution is a randomized procedure. The start 

of the procedure is made in such a way that it avoids the properties being dependent on ,;. 

For many applications however it would be more appropriate with a method depending on 

the distribution of ,; than one depending on an ancillary random procedure. Both 

dependencies decrease with time. 

Moustakides (1986) uses a still more pessimistic criterion by using not only the worst 

value of ,; but also the worst possible outcome of X .. _t before the change occurs. The 

CUSUM method, described in Section 4.5, provides (except for the first time point) a 

solution to the criterion proposed by Moustakides. 

Ritov (1990) considers a loss function which is not identical to that of Shiryaev (1963) 

but depends on ,; and tA besides tA -,;. The worst possible distribution P(,;=s+ 11 ,;>s; Xs) is 

assumed for each time s. With this assumption of a worst possible distribution (based on 

earlier observations) CUSUM minimizes the loss function. 

Asymptotic minimax optimality is the optimality criterion in much of the theoretical 

literature on stopping rules as in e.g. Lai (1995), Lai (1998) and Lai and Shan (1999). 
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Results on the order of the convergence of the minimax value to its lower bound has been 

given for some methods by Yakir et al. (1999). 

As pointed out by Pollak and Siegmund (1985) the maximal value ofCED(t) is equal 

to CED(1) = ARL 1 -1 for many methods and with a minimax perspective this can be a 

motivation for the use of ARLI. However, this argument is not relevant for all methods. 

It is demonstrated by Frisen and Sonesson (2002) that it is not for EWMA. For this 

method, there is no similarity between the solution to the ARL-criterion and the minimax­

criterion, while it is strong between the solutions to the criterion of expected delay and the 

minimax-criterion. 

3.5 Evaluation Functions 

Optimality criteria are useful, but sometimes a single criterion is not enough and a function 

should be used for the evaluation. Margavio et al. (1995), Woodall and Montgomery (1999) 

and Carlyle et al. (2000) state that the use ofthe ARL criterion is usually recommended in 

spite that it is known that the run length distribution is poorly reflected by this measure. 

Margavio et al. (1995) suggest that the whole distribution ofthe alarm time should be used. 

The time dependent alarm limit should be utilized to give the desired distribution. Then 

special properties such as fast initial alarms could be designed. However, distributions for 

each value of l' would be necessary to get all information. Some examples of derived 

evaluation functions will be given below. 

3.5.1 Delay of an Alarm 

Differences in shapes of CED(t) curves, for different methods, as illustrated by Frisen 

and Wessman (1999) motivate descriptions of those curves. 

When the distribution of l' is geometrical with the intensity v, it is sometimes useful 

to express the expected delay for a method as a function of Vas in Frisen and Wessman 

(1999). 

In some applications, such as intensive medical care (Frisen (1992)) there is a limited 

time available for rescue actions. Then, the expected value of the difference 't-tA is not of 

main interest. Instead of using the expected value as in Section 3.3 and 3.4, the probability 

that the difference does not exceed a preassigned limit is used. The limit, say d, is the time 
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available for successful detection. The probability of successful detection 

was used by Frisen (1992) and Frisen and Wessman (1999). Bojdecki (1979) considers the 

supremum (with respect to 1') of 

Symmetrical measures around l' can be relevant, e.g. when the aim is to make an alarm as 

close as possible to a turning point in an economical index (Andersson (2002)). 

3.5.2 Predictive Value 

The predictive value PV(s) = P(C(s)1 A(s)) of an alarm at time s has been suggested as 

a criterion of evaluation by Frisen (1992). The predictive value tells us how probable a 

change is, when we have an alarm. Thus, it gives important information about which action 

would be appropriate. It simplifies matters if the same action can be used whenever an 

alarm occurs. Thus, a constant predictive value with respect to time is a good property. 

The relation between the predictive value and the posterior distribution PD(s) = P(C(s) 

1 Xs ) is different for passive and active surveillance. This is important since the method of 

giving an alarm as soon as the posterior distribution exceeds a fixed limit is often 

advocated. See e.g. Smith and West (1983) and Harrison and Veerapen (1994). 

Proposition 5. At passive surveillance the method based on the posterior distribution 

with the alarm set r4(s)= {~; PD(s»c} implies PV(s) > c. 

At passive surveillance the predictive value increases to one as time s increases, for 

common methods, since P(C( s)) = P( l' =::; s) tends to one. As an example, the predictive value 

for the Shewhart method, when l' has a geometric distribution with intensity v will be 

given. For the Shewhart method, the alarm probabilities a = P(tA =tl tA ~t, D) and (1-P) = 

P(tA=t1 tA~t, C) do not depend on time which simplifies formulas. 

PV(s) = P(C(s) 1 A(s)) = P(C(s) n A(s))/P(A(s)) = 
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= f (1- v) T - 111(1- /1) / [(1- v)s + f (1- v) T - 1 11(1- /1) +] 
T= 1 T= 1 

[ /1) s-I ] [ s- 1 s- 2] = 11(1- (1- (1- v) ) / 11(1- /1)(1- (1- v) ) - all(l- v) 

which tends to one when s tends to 00. 

At active surveillance the process is stopped if X(I) E aA(1). Otherwise we have the 

complement aAc(1) and for s=2, 3, ... write aA\_l = aA c(1) n aA C(2) n ... aA C(s). In this 

active case, the simple relation in the Proposition 5 above is no longer true. Instead PV(s) 

= P(C(s) I ~ E aA(s) n aAcs_l ). 

At active surveillance the predictive value usually has an asymptote less than one, since 

the probability that the first alarm occurs at time s decreases with s for large s. The formula 

of the asymptote for the Shewhart method is given in Frisen (1992). Graphs of the 

predictive value for different methods are given in Frisen and Wessman (1999). The 

predictive value is not monotonically increasing for all methods. 

There is a great difference between a single decision and a sequence of decisions. At a 

single decision the posterior distribution might give sufficient information. For a sequence 

of decisions, characteristics of the sequence, such as constant predictive value, are of 

interest. 

4 General Methods 

First, some general methods are described, specified for the simple situation specified 

in Section 2 and their optimality properties are determined. Then, in Section 5, special 

methods for some more complicated situations will be described. 

In Figure 1 the alarm sets of some methods, which will be described below, are 

illustrated for the decision time s=2. The purpose of the figure is to illustrate the 

geometrical differences of the alarm sets. 

In Table 1 some main characterizations of some methods are schematically described. 

The number of parameters which can be used to optimize for different situations is one 

important difference. Many methods for surveillance are based in one way or another on 

likelihood ratios. For the comparison, expressions in terms of the pariallikelihood ratios 

are also given in Table 1. 
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4.1 The Likelihood Ratio Method 

A method constructed by Frisen and de Mare (1991) to meet several optimality criteria, 

e.g. those of Sections 3.2 and 3.3, will first be presented. The general method uses 

combinations of partial likelihood ratios. Although methods based on likelihood ratios have 

been suggested earlier, for other reasons, the use in practice is (yet) rare. The likelihood 

ratio method will be used as a "benchmark". Commonly used methods are compared with 

it in order to clarify their optimality properties. 

Here, the likelihood ratio method is applied to the shift case specified in Section 2. The 

"catastrophe" to be detected at decision time s is C={ 't ~ s} and the alternative is D= { 't >s}. 

The likelihood ratio method has an alarm set consisting of those Xs for which the 

likelihood ratio exceeds a limit: 

For the case of C = { 't ~ s} this can be expressed as 

t w(t)L(t) > Os 
t=1 

where wet) = P('t=t)/P('t~s) and the partial likelihood 

Both are dependent on s, but the index is suppressed. 

For the case of normal distribution and C(s)={'t~s} and D(s)={'t>s}, as specified in 

Section 2, we have 

where 

does not depend on the data and 

g(s)= exp( -(s+ 1)j.L2/2) 
P(t::;:s) 
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is a nonlinear function ofthe observations. 

In order to achieve the maximum detection probability described in Section 3.2, an 

alarm should be given as soon as p(xs) > Gs. 

In the case of a geometric distribution of l' the condition of "minimal expected delay", 

as described in Section 3.3, is achieved if an alarm is made as soon as the posterior 

distribution exceeds a fixed limit (Shiryaev 1963). 

where K is a constant. Thus, the optimality is achieved by the likelihood ratio method with 

the additional requirement 

Gs =K P(1' > s) / (1-K) P(1' ~ s). 

The method for this limit, that thus gives alarm for the first s where 

will here be called the LR method. A usual assumption is that l' has a geometric distribution 

with 11: t=(1-vtlv . The shape of the alarm set for this case is illustrated in Figure 1. The 

alarm is given for the first s where 

(1) 

When V tends to zero both the weights wet) and the limit Gs of the LR method tend to 

constants. Shiryaev (1963) and Roberts (1966) suggested the method, which is now called 

the Shiryaev-Roberts method, for which an alarm is triggered at the first time s, for which 
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tL(t) > G 
1=1 

where G is a constant. The method has an approximately constant predictive value (Frisen 

and Wessman 1999), which allows the same interpretation of early and late alarms. 

The posterior distribution PD( s) = P(C( s) I Xs ) has been suggested as an alarm criterion 

by e.g. Smith et al (1983). When there are only two states, C and D, this criterion leads to 

the LR method (Frisen and de Mare (1991)). Sometimes the use of the likelihood ratio or 

equivalently the use of the posterior distribution is named "the Bayes' method". In some 

cases, where the approach really is Bayesian as in e.g. Gordon and Smith (1990), this is 

appropriate. However, this name is avoided here since it might give wrong associations. In 

most papers using the likelihood ratio, a frequentistic approach for evaluation is used. Here, 

no use of Bayesian inference is made. Bayes' theorem is used and l' is considered as a 

stochastic variable but no results depend on the perspective of Bayesian inference. 

4.2 Linear Approximation of the Likelihood Ratio Method 

A linear approximation of the LRmethod is of interest for two reasons. One is to obtain 

a method which is easier to use and analyze, but has similar good properties as the LR 

method. Another is to get a tool for the analysis of approximate optimality of other 

methods. Different approximations might be of interest for different situations. Here we 

will study three variants. The details of the approximations are given in Appendix 2. 

The first approximation, which is denoted LinLR is achieved by a Taylor approximation 

of the alarm function. With standardized weights w which sum to one, and with 

b = (l-v)exp(1l2/2) >1, 

we have 

and the alarm criterion 
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twLmLR(t)x(t) > [ b
S 

{(b-1iK (b-l)}+ b-l ]/~. 
t=l b(b S-1)-s(b-1) v(l-K) b(b S-1)-s(b-1) 

(2) 

The weights of the LinLR method can be approximated by exponential weights, and 

then we have the EwLinLRmethod. This corresponds to using the EWMA statistic (Section 

4.3) with the value of A set to 

A * = 1 - exp( -1..1,2/2)/(1-v) = 1 - lib. 

A third approximation, EwLinLnLR, is achieved by a Taylor approximation of the 

logarithm of the alarm function of the LR method and further approximation of the weights 

by use of exponential weights with A= A *. The alarm limit is 

where the constant L is determined by the desired false alarm properties. 

A large scale simulation study by Frisen and Sonesson (2002) demonstrates that all the 

approximations works satisfactory. For large values of j.L, the EwLinLnLR approximates 

the LR method best, while there is no great difference for small values. For small values 

ofj.L, the LinLR method has slightly less ED than the EwLinLRmethod, but the exponential 

weights are quite satisfactory. 

4.3 Exponentially Weighted Moving Average 

A method for surveillance based on exponentially weighted moving averages, EWMA, 

was described by Roberts (1959). Positive reports ofthe quality of the method are given by, 

e.g. Robinson and Ho (1978), Crowder (1987), Ng and Case (1989), Lucas and Saccucci 

(1990) and Domangue and Patch (1991). 

The alarm statistic is 

Zs = (1-A)ZS.l+AX(S), s=l, 2, ... 



where O<A:::;; 1 and, in the standard version of the method, Zo is the target value Il 0, 

which is here chosen to be zero. 
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The statistic is sometimes referred to as a geometric moving average since it can 

equivalently be written as 

s s 
A(l-A)SE(l-Ar~(t) oc Eb ~(t) 

~1 ~1 

where b=1/(l-A) is a constant> 1. 

An out-of-control alarm is given if the statistic Zs exceeds an alarm limit, usually chosen 

as Loz, where L is a constant and Oz the limiting value, as s tends to infinity, of the 

standard deviation of Zs' When we standardize with weights WE(t)=A(l-Ay-t/[l-(I-AY], 

which sum to one, this method will give an alarm for the fIrst s for which 

(3) 

where ~A =Loz /[l-(l-A )s] 

The EWMA statistic gives the most recent observation the greatest weight, and gives 

all previous observations geometrically decreasing weights. If A is equal to one, only the 

last observation is considered and the resulting method is the Shewhart method described 

in Section 4.7. If A is near zero, all observations have approximately the same weight. Since 

the EWMA method has two parameters, A and L, these can be chosen to equal any other 

linear method when s=2, as in Figure 1. It is thus not included separately in that fIgure. 

When s>2 differences appear_ 

4.3.1 Error Probabilities and Expected Delay 

Differences and similarities with the linearizations of the LR method will now be 

examined in order to fmd conditions for approximate optimality of the EWMA method. All 

proofs are given in Appendix 1. 

Proposition 6. There does not exist any A which makes the EWMA exactly optimal with 

respect to the "maximum detection probability" or the"minimal expected delay ". 
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Proposition 7. For late observations approximate identification with the weights of the 

LinLR method is achieved with A = A *. 

Thus, approximation of the good properties of the LR method according to "the 

maximum detection probability criterion" of Section 3.2 can be expected. 

A comparison between the weights of the observations by LinLR method and the 

weights in the EWMA method with A=A* is made in Figure 2. In the beginning of the 

surveillance the EWMA gives more weight to the older observations than the LinLR 

method. However, already for decision time s= 1 0, the differences between the two methods 

are without importance for the case in the figure. For s=15 it is not possible to see any 

difference in the scale of the figure. The approximation deteriorates as A * decreases. 

For a full evaluation of optimality, it is necessary also to consider how the limits for 

alarm depend on s. 

Proposition 8. For late decisions and A= A *, the alarm limit of the EWMA 

approximates those of the LinLR, EwLinLR and Ew LinLnLR methods. 

Thus, the EWMA method approximates the approximations of the LR method. When 

these approximations are good, EWMA will in turn approximate the LR method. Thus, the 

EWMA method could be expected to approximately fulfill also the optimality condition of 

Section 3.3 of a minimal expected delay. The simulation study by Frisen and Sonesson 

(2002) demonstrates that for large values of 1-1, the EWMA method has much worse 

expected delay than the LR method and the approximations. However, for small and 

moderate values the choice A=A * makes EWMA nearly as good as the LR method. 

4.3.2ARL 

According to Proposition 1 A should approach zero in order to give equal weight to all 

observations and thus give an alarm statistic which can give a minimal ARL 1 for a fixed 

value of ARLo. When A approaches zero, the standard EWMA approaches the SCUSUM 

method of Section 4.4 and the ARLl value approaches one, while the ARLl for the 

commonly recommended value of A (for two-sided procedures) corresponds to a local 

minima for the one-sided specific case studied by Frisen and Sonesson (2002). This should 

not be interpreted as a disadvantage of the commonly used values of A but as a warning 
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against uncritical use of the ARL criterion. 

Many variants ofEWMA with allocation ofthe probability offalse alarms to early time 

points are suggested. One such suggestion is the use ofthe exact variance (Roberts (1959)) 

instead of the asymptotic. Another suggestion is the FIR (fast initial response) first 

suggested for the CUSUM procedures by Lucas and Crosier (1982a) but later used for the 

EWMA. The FIR procedure starts with Zo>O. Steiner (1999) suggests a combination of 

those procedures and also suggests that the distribution of the run length should be even 

more adjusted to allocate the probability of false alarms to early time points. 

4.4 Simple Cumulative Sums 

Sometimes CUSUM is used as a unifYing notation for methods based on the cumulative 

sum of the deviations between a reference value and the observed values. In the simplest 

form there is an alarm as soon as the cumulative sum of differences from the target value, 

here llo=O, exceeds a fixed limit 

Cs= t x(t) > L, 
t=l 

(4) 

where L is a constant. This method is sometimes called ''the simple CUSUM". It will here 

be denoted as SCUSUM. The similarity with the EWMA method when A tends to zero is 

illustrated by Frisen and Sonesson (2002). The SCUSUM method gives optimal error 

probabilities for 1'=1 in the case specified in Section 2. However, Frisen (1992) 

demonstrated that when 1'>1, SCUSUM cannot compete with other methods. As is seen 

in Figure 1 the shape of the alarm set is quite different from the ED-optimal one. 

Another simple method based on cumulative sums is the method which gives an alarm 

when the likelihood ratio for C={ 1'=1} against 0:= { 1'>s} exceeds a fixed constant. As was 

demonstrated in Proposition 3 we have an alarm as soon as 

s 

LX(t) > L + 81-1/2. 
t=l 

(5) 



22 

This method, which gives an alarm as soon as Cs exceeds a linear function of s, is here 

called the LCUSUM method. By choosing L small enough in this method, the finite value 

of ARL 1 can be made arbitrary close to one. Still, for this L the ARLo will not be fInite and 

thus greater than any fIxed value. The method is a sequential probability ratio test without 

the limit for acceptance. The alarm set of the method can also be expressed by the 

likelihood ratio condition L(I) > G, where G is a constant and L(1), as defmed in Section 

4.1, is the likelihood ratio for C={'&"=I}. For the SCUSUM method the limit for L(1) 

depends on s. The LCUSUM method has minimal E(tA-'&") when '&"=1 among methods with 

the same total false alarm probability. In Figure 1, where the alarm set for s=2 is illustrated, 

the LCUSUM is identical to the SCUSUM since the only difference is how the limit for 

alarm depends on the decision time s. 

For both SCUSUM and LCUSUM the data from all earlier points in the time series have 

the same weights as the last one. As soon as only'&"= 1 is considered (as in the criterion that 

minimizes the ARLl for fIxed ARLO) these weights are the optimal ones. For most 

applications this is not considered rational. The most often suggested optimality criterion 

in the literature on quality control does thus lead to a type of method which is seldom used 

in practice. 

4.5CUSUM 

The variant of cusum tests, which is most often advocated, is named ''the CUSUM 

method" Page (1954). There is an alarm for the fIrst s for which 

Cs - Cs_i > h + ki for some i=l, 2, ... , s, (6) 

where Co = 0 and h and k are chosen constants. By the CUSUM method (in contrast to the 

simple variants of Section 4.4) the information from earlier observations is handled quite 

differently depending on the position in the time series. Sometimes (e.g. Lorden (1971) and 

Siegmund (1985)) the CUSUM method is presented in a general way by likelihood ratios 

(which in the normal case reduce to Cs-CsJ. Yashchin (1993) and Hawkins and Olwell 

(1998) give thorough reviews of the CUSUM method. 
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The CUSUM method is the result of a natural combination of methods. Each of these 

is optimal, with respect to the expected delay, to detect a change that occurs at a specific 

time point. The alarm condition of the method can be expressed by the likelihood ratios for 

C={'t=t} as 

max(L(t); t=1, 2, .. , s) > G, 

where G is a constant. The method is sometimes called the likelihood ratio method, but this 

combination of likelihood ratios should not be confused with the full likelihood ratio 

method, LR, of Section 4.1. In Figure 1 the boundary of the alarm set of the CUSUM 

method is seen to be a two-phase linear approximation of the nonlinear limit of the LR 

method. 

The optimal value of the parameter k of (6) is usually claimed to be k=(ll.o+1J. 1)/2, which 

after our standardization reduces to IJ./2. The chain of references (if any) usually ends with 

Ewan and Kemp (1960), where it is concluded from a nomogram that this value seems to 

be good. The likelihood ratio method for C={'t=i} gives alarm for 

s 
LX(t»c + (s-i)j.L/2. 
t=i 

where c is a constant. Thus, also here we have the slope IJ./2. This slope is optimal, with 

respect to the expected delay, in each step. However it does not prove that it is ED-optimal 

for the sequence of decisions. 

The CUSUM, with k= IJ./2 satisfies certain minimax conditions (Moustakides 1986 and 

Ritov 1990) as was discussed in Section 3.4. Different variants and generalizations are 

discussed in the theoretical literature on minimax optimal methods e.g. Lai (1995), Lai 

(1998) and Lai and Shan (1999). 

4.6 Moving Average 

The moving average method gives an alarm as soon as 
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where d is a fixed window width and L is a constant. The alann set can also be expressed 

by the likelihood ratios L(t) as 

L(s-d) > G 

where G is a constant. 

It will thus have the optimal error probabilities of the LR method with C={ 't=s-d}. 

4.7 Shew hart 

This method, which was suggested by Shewhart (1931) is much used in quality control. 

An alann is triggered as soon as an observation deviates too much from the target. The 

stopping rule is that we have an alann as soon as 

x(s»G. (7) 

The limit G for a fixed ARLo, is calculated by the relation: P(X( s »Glll( s )=ll 0)= 11 ARLo• 

For illustration of the alann set at decision time s=2 see Figure 1. More expanded 

descriptions are found in many textbooks like Wetherill and Brown (1990). 

The alann statistic of the LR method 

reduces to that of the Shewhart method when the "catastrophe" to be detected at decision 

time s is C = { 't = s} and the alternative is D = { 't > s}. The alann set can be expressed 

by the condition 

L(s) > G 

where G is a constant. Thus the Shewhart method has optimal error probabilities for these 

alternatives for each decision time s. 

For large shifts, Frisen and Wessman (1999) demonstrated that the LRmethod and the 

CUSUM method converge to the Shewhart method. 
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5. Methods and Optimality for Complicated Situations 

Much research has been done on construction of methods for special situations. The 

panel discussion edited by Montgomery and Woodall (1997) contains many references. In 

complicated problems it is not always easy to achieve, or even define, optimality and this 

is seldom done. When the states, between which the change occurs, are completely 

specified the full likelihood ratio with its good optimality properties can be used. Pollak and 

Siegmund (1985) point out that the martingale property (for continuous time) of the 

Shiryaev-Roberts method makes it more suitable than the CUSUM method, (which does 

not have this property) for adaption to complicated problems. On the other hand Lai (1995), 

Lai (1998) and Lai and Shan (1999) point out that the good minimax properties of 

generalizations of the CUSUM method make the CUSUM suitable for complicated 

problems. In this section different inferential approaches, and corresponding optimality 

properties, to some complicated problems are described. 

5.1 Special Kinds of Changes 

5.1.1 Two-Sided Alternatives 

In the earlier sections, one-sided procedures were discussed in order to get some sharp 

results on optimality. However, in many applications two-sided procedures are motivated. 

A common approach is to use two parallel one-sided surveillance procedures and signal an 

alarm as soon as any of the procedures give a signal. This is a special case of the union 

intersection method discussed in Section 5.5 for multivariate surveillance. Another 

common approach is to use symmetric limits for the alarm statistic. 

For CUSUM the two approaches give the same result, and the properties are easily 

related to those of a one-sided procedure. Kemp (1961) and van Dobben de Bruyn (1968) 

demonstrate that the two one-sided procedures are exclusive in the sense that if one of them 

signals, the other should not be in a state from which a signal could have resulted at a later 

stage. 

The same result for both approaches is not achieved in general and not for the SCUSUM 

or the EWMA methods. The properties for the one- and two-sided versions are not easily 

related because of different relations between successive decisions. It has been suggested 
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by Champ et al. (1991), Gan (1995) and Gan (1998) to use a barrier for each of the one­

sided EWMA procedures and thus get a simple relation between properties for two-sided 

and one-sided methods for surveillance and at the same time avoid "worst possible" effects 

with respect to the history before the change. A slight modification of the barriers used in 

the papers above is used by Morais and Pacheco (1998) to achieve more easily 

approximated ARL properties. Comparisons between one-and two-sided EWMA with and 

without barriers with respect to ARL and ED are reported by Sonesson (2001). While the 

ARL-optimal value of A is zero, as expected, for the one-sided case this is not true for the 

two-sided one. This means that for the two-sided case the order of the observations (which 

for "C'=1 should be an ancillary statistic) influences the ARL-optimal alarm statistic. This 

conflict between the ARL-criterion and the ancillary principle is explained by the 

deficiency of the ARL-criterion. 

Pollak and Siegmund (1985) suggest that a two-sided version of the Shiryaev-Roberts 

method should be constructed by a weighted average of the statistics for the two one-sided 

variants. With known probabilities for the two alternatives the full likelihood ratio method 

could be used. Thus, we have the "maximum detection probability" and the "minimal 

expected delay". 

5.1.2 Gradual Shifts 

Most of the literature on surveillance treats the case of an abrupt change. However, in 

applications it is not uncommon with a gradual change which starts at an unknown time. 

One example is the recording of radioactivity when a radioactive cloud is brought with the 

wind from a site with a nuclear incident (Jarpe (2000a». Another case is the post marketing 

surveillance of adverse drug effects, where a start of a gradual increase of cases in the 

population is expected if a released drug turns out to be harmful (Svereus (1995». In both 

these papers it is demonstrated that the methods in current use in Sweden, which in both 

cases are based on differences between moving windows, are inefficient for detection of 

gradual changes. Comparisons between methods for the case of a linear change are made 

by Aerne et al. (1991) and Gan (1992). Arteaga and Ledolter (1997) compare several 

procedures with respect to ARL properties for several different monotonic changes. One 

of the suggested methods in that paper is based on the likelihood ratio, isotonic regression 

and a window. Yashchin (1993) discusses generalizations of the CUSUM and the EWMA 

methods which could detect both sudden and gradual changes. 
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5.1.3 Turning Points 

Sometimes the timely detection of a change in monotonicity is important. This is the 

case in natural family planning, where a change from increasing to decreasing (or vice 

versa) values of some indicators of hormone production are markers of start or end of the 

fertile phase (Royston (1991)). Another situation where timely detection of turning points 

is important is for governments and business, when the turns in leading business indicators 

are used to predict a future turn in the business cycle. A third example is for financial 

decisions, where the selling of an asset is desired at the time of maximum price (or function 

of it). Hidden Markov Models are natural for the switches between the up- and down phase 

and are used both for business cycles and finance (Dewachter (2001)). A piecewise linear 

curve is often assumed for suggested methods for business cycles and fmance. When the 

assumptions on prior knowledge are the same, it is demonstrated by Andersson et al. 

(2001) that the HMM method is identical to the LR method. 

When the knowledge on the shape of the curve is uncertain, a non-parametric method 

is of interest. A maximum likelihood ratio method was constructed by Frisen (2000) with 

the likelihood statistic in the LR method of Section 4.1 replaced by the maximum 

likelihood ratio 

~ 1t 1 
p(xs) = L k exp-{Q(O) - Q(k)} 

k=l Pret" ~ s) 2 

where Q(k) is the (standardized) quadratic deviation from the best model with a turn at time 

k and Q(O) is the deviation from the best model without a turn in the specified time period. 

The deviations are based on the observations available at each decision time, s. These 

deviations can be calculated by the methods given by Frisen (1980) and Frisen (1986) for 

unimodal regression. The expected delay by this method is investigated by Andersson 

(2002). Evaluations and comparisons with currently used methods in Sweden for detection 

of turns in business cycles are made by Andersson et al. (2001). 
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5.1.4 Change in Certain Distributional Parameters 

The variance is the most commonly studied distributional parameter, except the mean. 

Transformation of the variance before it is used in standard charts is often suggested. 

Nelson (1990), Acosta~Mejia (1998) and Ncube and Li (1999) suggest that the (subgroup) 

range is used in combination with standard methods for surveillance. von Collani and Sheil 

(1989) use the standard deviation. Chang and Gan (1995), Srivastava (1997) and Morais 

and Pacheco (1998) use the logarithm of the variance. The statistics might be affected not 

only by a change in the variance but also by a change in the level, which also might be 

relevant. Thus, much ofthe discussion on change in the variance is a discussion on change 

in variance andlor mean. This multivariate problem will be discussed in Section 5.5.1. 

Robustness with respect to non-normality and serially correlated observations of the 

CUSUM method for monitoring of the variance is examined by Chang and Gan (1995) and 

the method is compared with the EWMA method. Comparisons with respect to ARL 

between different ways to monitor the variation are done by e.g.Acosta-Mejia et al. (1999). 

In connection with spatial surveillance, Jarpe (1999) suggests a method for detection 

of a change in the parameter for spatial interaction in a generalized linear model. 

5.1.5 Change between Unknown Parameter Values 

The method by Bell et al. (1994) to detect a change to a stochastically larger distribution 

(nonparametric but geared to the exponential distribution), is applied in their paper to the 

detection of a change of the parameter in a Bernoulli process to a larger value. Asymptotic 

efficiency is reported. Gordon and Pollak (1997) use invariant statistics combined by the 

Shiryaev-Roberts method to handle the case of an unknown pre-change distribution in 

regard to a nuisance parameter, e.g. the pre-change mean of a normal distribution, and 

evaluate the methods by ARL. 

Lai (1998) suggests the GLR method, where G stands for generalization and LR for the 

CUSUM-combination of partial likelihood ratios. A prior distribution for the value after 

the change is used. To avoid cumbersome computation the suggestion is to use a window 

so that only recent observations are used. The method fulfills an asymptotic minimax 

criterion. 
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5.2 Change in a Non-Normal Distribution 

5.2.1 Methods Designed/or other Specified Distributions than the Normal 

Surveillance of the frequency of rare events is an important example of change of a 

parameter in a distribution which is not Gaussian. Usually, as in Gan (1998), the methods 

are based on the distances in time between successive events. Rossi et al. (1999) suggest 

that the Poisson distribution should be approximated by the normal one. A bibliography of 

control charts based on attribute (or count) data is given by Woodall (1997). Padgett and 

Spurrier (1990) and Ramalhoto and Morais (1999) construct Shewhart type methods 

suitable for the Weibull distributions. Padgett and Spurrier (1990) give the Shewhart limits 

for the lognormal distribution. 

5.2.2 Non-Parametric Methods and Robustness with respect to Distribution 

An overview is given by the book on non-parametric change-point problems by Brodsky 

and Darkhovsky (1993). In Bell et al. (1994) a non-parametric method based on the 

Shiryaev-Roberts method and geared to the exponential distribution is suggested for the 

surveillance of a change in distribution to a stochastically larger distribution. Very high 

asymptotic relative efficiency is reported. In Gordon and Pollak (1997) invariant statistics 

are used for a similar setting and the ARL properties are given. Ranks are used for 

modified EWMA (Hackl and Ledolter (1991)) and modified Shewhart and CUSUM (Liu 

(1995)). Liu and Tang (1996) construct a completely non-parametric generalization of the 

Shewhartmethod based on the bootstrap technique. Jones and Woodall (1998) compare the 

ARL properties of some methods based on the bootstrap technique. Chakraborti et al. 

(2001) critically examines several methods which are claimed to be distribution free, 

especially those based on the Hodges-Lehmann estimates. 

The robustness with respect to non-normality of the CUSUM method and some 

modified methods is examined by Lucas and Crosier (1982b). Chang and Gan (1995) 

examine the effect of non-normality of the CUSUM and EWMA methods for surveillance 

of the variance. Robustness of the ARLo for skewed and heavy tailed distributions is 

examined for the Shewhart method and EWMA-variants by Borror et al. (1999). 

Robustness for different methods against deviations from the normal distribution and also 

lack of independence is examined by Stoumbos and Reynolds (2000). 
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5.3 Dependent Observations 

The three most common ways to treat the case of dependent observations are 1) to use 

the ordinary method and to study the robustness, 2) to use the ordinary method but with 

wider alarm limits based on the correct variance or 3) to use the residuals from a time series 

model. 

The robustness of the ordinary EWMA and CUSUM methods when the data are 

generated by an AR(1 ) process is investigated by VanBrackle and Reynolds (1997), who 

also suggest modifications. Properties of the EWMA method in the presence of 

autocorrelation are derived by Schmid and Schone (1997). 

Schmid (1997) uses limits for the EWMA method based on the correct variance, given 

the autocorrelation, and compares this approach with the residual-based versions with 

respect to ARL properties. Liu and Tang (1996) suggest a nonparametric bootstrap-based 

generalization of the Shewhart method which does not require independent observations. 

VanBrackle and Williamson (1999) examine the ARL properties of several general 

methods and several types of shifts when one-step ahead forecasts are used. In Cardinal et 

al. (1999) integer-valued counts of diseases are monitored for public health purposes by 

monitoring of the forecasts by a model suitable for this kind of data. In Lu and Reynolds 

Jr (1999) and Lu and Reynolds Jr (2001) the EWMA and CUSUM methods, respectively 

are applied to the original observations and to the residuals. In their paper on EWMA the 

ARL is used and in the paper on CUSUM the "steady state ARL" (the asymptotic value of 

CED) is used. 

The three approaches mentioned above are compared by Pettersson (1998a) with respect 

to several measures, such as the predicted value and the expected delay, besides the usual 

ARL. It is also demonstrated in that paper that the residual statistic can be seen as a rough 

approximation of the full likelihood ratio statistic (with some terms deleted). Lai (1998) 

gives a generalization of the theorem by Lorden (1971), on asymptotic minimax optimality 

for the CUSUM method, for the case of dependent variables, by applying the method to the 

forecasts. 
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5.4 Complicated Regression Models 

If the nuisance parameters of the model are known, the residuals might have simple 

properties which can be used for surveillance of possible changes from the model. When the 

parameters have to be estimated from the data the situation is more complicated. However, 

in many cases (Brown et al. (1975) and Frisen (1992» the recursive residuals from an 

estimated regression model have simple properties and can easily be used by some general 

technique for surveillance. Brown et al. (1975) suggest the use of the CUSUM statistic of 

Section 4.5 but with other alarm limits. These limits are constructed to give a system of 

repeated significance tests as discussed in Section 3.2. 

In McLaren et al. (2000) hierarchical multiple regression modeling is used as the base 

for surveillance of changes in the pattern of individual patients laboratory data. In Yashchin 

(1995) a "regenerative likelihood ratio method" (named LR) ofCUSUM type, which allows 

periodic discarding of data and thus is possible to compute also for complicated problems, 

is proposed for the monitoring of parameters of a nested random effect model. It is evaluated 

bytheARU. 

When the only assumption of pre-change regression is that it is monotonic, the (non­

parametric) maximum likelihood estimator is suitable to use with the LR method, as 

discussed in Section 5.1.3. 

5.5. Multivariate Surveillance 

Reviews of multivariate surveillance are given by, e.g. Lowry and Montgomery (1995) 

and Woodall and Montgomery (1999). Also, the book by Basseville and Nikiforov (1993) 

contains much discussion on multivariate problems. 

One common way to deal with multivarate problems is to construct an omnibus statistic 

which is supposed to take care of the important aspects of the multivariate problem. A 

survey of different omnibus methods is given by Kourti and MacGregor (1996). Commonly 

used statistics are the X2 and the T2 statistics already suggested by Hotelling (1947) for 

surveillance. He used the Shewhart method and Crosier (1988) the CUSUM method to 

monitor the omnibus statistic. 
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Multivariate versions ofthe EWMA and CUSUM methods, named MEWMA (Lowry 

et al. (1992)) and MCUSUM (Crosier (1988)), are constructed by T2 statistics based on the 

EWMA, respectively CUSUM, vectors. Crosier (1988) compares his two ways to combine 

T2 and CUSUM and concludes that MCUSUM has better ARL properties. Runger and 

Prabhu (1996) give a numerical procedure based on Markov chains for the computation of 

the ARL of the MEWMA. 

Projection methods, such as principal component analysis or partial least squares 

technique, to reduce the dimension of a multivariate surveillance problem are recommended 

by Kourti and MacGregor (1996) and Scranton et al. (1996). 

The union intersection principle can be used to handle parallel surveillance for each 

variable by signaling an alarm at the first time one of the procedures gives alarm. Different 

suggestions of the use of parallel procedures are given by Woodall and Ncube (1985), 

Hayter and Tsui (1994) and Timm (1996). 

Hawkins (1991) suggests that the scaled residuals from the regression of each variable 

on the others are used. He notes that this is equivalent to base the surveillance on the 

likelihood ratios for change in each direction. He suggests that the components are 

monitored by parallel Shewhart or CUSUM methods. The full likelihood ratio method can 

be applied as soon as the event to be detected is specified. This is done by Wessman (1998) 

for the surveillance when all the variables change at the same time and by Wessman (1999) 

for different change-points. 

If the alternatives are completely specified general techniques as suggested by e.g. Lai 

(1995). Otherwise, optimality in multidimensional problems is hard to specify. In the 

literature on quality control, the ARL properties for different alternatives are discussed. In 

Tsui and Woodall (1993) the components of the combined statistic are weighted by the 

components of a loss function for shifts in different directions and then evaluated by ARL. 

Sometimes the Bonferroni method is used to control an error when conclusions are made 

about several variables. In Wessman (1999) there is a comparison with respect to ARL and 

PSD between the T2, the union intersection method, the full likelihood ratio statistic and the 

method with component likelihoods by Hawkins (1991) when the statistics are monitored 

by the Shewhart method. 

Important examples of multivariate surveillance are the simultaneous monitoring of the 

mean and variance and also spatial statistics. These two areas will now be described. 
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5.5.1 Methods for Detection of Change in Mean and Variance 

The different general approaches mentioned in Section 5.5 are of course applicable also 

for the mean and variance. However, this problem has drawn a special interest. An overview 

is given by Flury et al. (1995). 

Use of parallel charts for the mean and the variance (or a function of the variance) is 

suggested by e.g. Saniga (1989) and Morais and Pacheco (2000). In the latter the probability 

of signaling in the wrong chart is evaluated. Monitoring of the maximum and the minimum 

in samples for detection of change in the mean and/or the variance is suggested by Amin et 

al. (1999). 

One example of an omnibus statistic is the capability index, which according to Woodall 

and Montgomery (1999) is widely used in industry. Domangue and Patch (1991) compare 

several omnibus statistics when monitored by the EWMA method. 

Comparisons between several variants of omnibus and marginal methods for the mean 

and variance by EWMA methods are made by Gan (1995) with respect to the ARL. The 

conclusion by Gan for the situations examined is that the omnibus methods have several 

drawbacks. It makes a great difference if the aim is to detect a simultaneous change in mean 

and variance or if the most interesting case is that only one will change but you don't know 

in advance which one. 

5.5.2 Methods for Spatial Surveillance 

In areas such as monitoring of geographical disease patterns (see e.g. Lawson et al. 

(1999)) and control of environmental risks (see e.g. Barnett and Turkman (1993)), and 

technical pattern recognition, it is often necessary with models includiIig both spatial and 

temporal structure. Rogerson (2001) monitors a spatial scan statistic (Kulldorff (1997)) with 

the CUSUM method. Jarpe (1999) constructs a surveillance system for the simplest 

nontrivial spatial model, the Ising model. Surveillance problems related to the detection of 

the geographically spreading increased radiation level, in case of a nuclear incident, are 

treated by Jarpe (2000b). Rogerson (2001) and Lawson (2001) point out that surveillance 

approaches to spatial statistics are still rare. 
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6 Concluding Remarks 

The perfonnance of a system of surveillance depends on the time, 1:', of the change. To 

get an optimality criterion, either a summarizing measure over the distribution of 1:', or 

evaluation for a specific value of 1:', can be used. Evaluation for the value which gives the 

maximal expected delay is one interesting way. Evaluation for the case when 1:' tends to 

infinity is common in theoretical literature, but as for other asymptotic results it is not 

enough for all applications. The other extreme is to study the case where 1:'=1. This is the 

dominating procedure and will be discussed in more detail. 

Often the criterion is stated as minimal ARL 1 for a fixed ARLo. The frequent use is an 

indication that it is useful in many cases. However, it might be dangerous to use it without 

caution in all cases. As was noted in Proposition 1, this criterion implies methods where all 

observations have the same weight. The shortcomings of such methods were pointed out in 

Section 4.4 and they are not often recommended. Instead, methods which have all the 

weight on the last observation (Shewhart) or gradually less weight on the older observations 

(EWMA and CUSUM) are commonly recommended in the literature on quality control. 

Methods which have good properties when 1:'= 1 might not perfonn well if the change occurs 

later. If the problem is to discriminate between the hypotheses ll(t)=O for all t and the 

hypothesis ll(t)=11 for all t, then sequential methods for tests of fixed hypotheses (such as 

the power one SPRT method of Proposition 2 are appropriate. Only the situations where a 

change is expected to happen after an unknown time, 1:', require the special methods for 

surveillance. 

An argument for the use of the ARL criterion has been that it agrees with the minimax 

criterion. However, this is true only for some methods and not at all for others. 

A summarizing optimality criterion is the expected delay with respect to the distribution 

of 1:'. Exact infonnation about the distribution might be lacking. However, the drawbacks 

with the criteria based on ARL demonstrate the importance of any infonnation on the 

distribution of 1:'. The robustness is important. The properties of different methods when the 

actual shift 11 or intensity v is not the same as those M and V for which the method was 

optimized have been examined. Srivastava and Wu (1993) studied the asymptotic effect of 

different true 11 for a fixed parameter, M. Jarpe and Wessman (2000) studied the same effect 

for small samples. Frisen and Wessman (1999) studied the small sample properties for 
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different values of M for a fixed 1.1 to examine the robustness to the choice of parameter 

value M. The theorems and the figures in that paper demonstrate that the choice of a large 

value of M makes the properties of the methods more alike. For large values of Mall 

methods behave as the Shewhart method. Heuristically, a method designed to detect a large 

shift with a small expected delay should allocate nearly all weight to the single last 

observation. A consequence is that, with specification to a large value of the shift, the choice 

of method is not very important. No great differences between methods could be seen in the 

simulation study by Frisen and Wessman (1999) for M larger than 2 for 1.1= 1. This confirms 

the results by Mevorach and Pollak (1991) that the Shiryaev-Roberts method and the 

CUSUM method have similar properties for the cases M=5 and M=7 for 1.1= 1. The study by 

Frisen and Wessman (1999) also confirms the conjecture by Roberts (1966) about the 

robustness with respect to differences between the assumed and true intensities V and V. 

Criteria based on the posterior distribution have an intricate relation both to the expected 

delay and to the predictive value of an alarm. These relations were analyzed in Section 3.5.2 

for passive and active surveillance. 

Results on the optimality of different methods are summarized in Table 1. The LR 

method, which is the solution to the criterion of minimal expected delay, has a nonlinear 

alarm function with respect to the data. Commonly used methods are equivalent to the LR 

method only in extreme cases where the non-linearity disappears. Linear approximations are 

here used mainly for the comparison with other linear methods and to establish for which 

situations the methods have (approximate) optimality. The EWMAmethod has continuously 

decreasing weights for older observations. The CUSUM method has a discrete adaptive way 

of including old observations. This explains the good minimax properties for the CUSUM 

method. A good thing would be to have continuous adaptive weights. That is actually what 

the LR method has. The simple cumulative sum methods SCUSUM and LCUSUM satisfy 

optimality conditions for C={-r=l}. They are linear, but with equal weight to all 

observations in contrast to the linear approximations of the LR method which give more 

weight to later observations. 

The alarm sets in Figure 1 are not comparable with respect to false alarm probability. 

The false alarm probability P(tA=sID) depends on s in different ways for the different 

methods. Thus, the area under the curves cannot be interpreted. However, the shapes of the 

boundaries demonstrate geometrically some characteristics. The linear methods LinLR, 

EwLinLR, EwLinLnLR and EWMA (with two and one adjustable parameter respectively) 
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can approximate the nonlinear LR method rather well. The CUSUM method, which has one 

adjustable parameter and for s=2 is two-phase linear also approximates the smooth LR 

method rather well. However, the Shewhart and the SCUSUM methods which do not have 

any adjustable parameter, except the limit, can only approximate the LR method for very 

special cases. 

In Sections 3 and 4, the simplest and in literature most commonly discussed situation has 

been treated in order to concentrate on principal inferential matters which are not yet fully 

analyzed in literature. However, also many other situations are of interest for applications. 

The concept of optimality is often hard to specify for the complicated multidimensional 

cases. Uniform optimality can seldom be achieved. Usually the ARL properties are 

described for a set of situations. 

APPENDIX 1: PROOFS 

PROOF OF PROPosmON 1 

First, some properties of surveillance systems based on 

s 

tA = min{s: LX(t) > L + s~/2} 
t=1 

are derived. In this proof, let C( s) = {'t' = I} and D( s) = {'t' = oo} with the notation that 't' = 

00 is the event that no change ever happens. As a technical tool, passive surveillance with 

the alarm set denoted by pA(.), is used to start with. Then, with the specifications in Section 

2, the likelihood ratio method (Section 4.1) has the alarm set 

where as, bs and Cs are constants. 
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At active surveillance, where the surveillance is stopped at the first alarm, it follows 

from Theorem 3.1 in Frisen and de Mare (1991) that 

where aA(.) is the alarm set at active surveillance, AC
s_1 = AC(I) n AC(2) n ... n AC(s-l) and 

ACO is the compliment of A(.). We have that 

s r 

aA(s) = {Xs: EX(t»cs} n {Xs: EX(t):s: cr ' r= 1, ... s-l} 
t= 1 t= 1 

i 

= {Xs: s=min{i: EX(t»ci } }. 
t=l 

Thus, the monitoring system in the proposition is identical to that of a certain known 

likelihood-based one. Theorem 2.1 in Frisenand de Mare (1991) (see also Section 4.2 here 

and de Mare (1980» states that the likelihood ratio method has the property that for each 

decision time s it gives the maximal probability of alarm P(A( s)1 C( s» for a fixed false alarm 

probability P(A(s)1 D(s». 

Now, we use the properties derived above to examine the optimality condition. Both 

ARL 1 and ARLo are expected values under the condition that Il( t) has the same value for all 

t. The condition Il(t) = 0 is equivalent to the condition that no change ever happens, that is 

't = 00, with our notation. 

00 00 

= E t P(tA =tl 't' =00) = E t P(aA(t)1 D(t». 
~1 ~1 

00 00 

= E t P(tA =tl 't' = 1) = E t P(aA(t)1 C(t». 
t=1 t=l 

The constants, cs' can be chosen to match any given set offalse alarm probabilities and thus 
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any given ARLo. For these fixed values of Cs the likelihood ratio method with 

s 
tA = min{s: EX(t»cs} 

t" 1 

gives maximal detection probability for the fixed value ofP(aA(s)l D(s)) for all s and thus 

minimal ARL I. 

PROOF OF PROPOSITION 2 

The two-point method has ARLo = 1-CI>(L-O) + kCl>(L-O) = A and ARLI = 1-CI>(L-~) + 

kCl>(L-~) = 1- CI>(L-~) [CI>(L) + A - CI>(-L)] / CI>(L), which has the limit one when L tends to 

minus infinity, since CI>(L-~)/CI>(L) has the limit zero. 

PROOF OF PROPOSITION 3 

In Frisen and de Mare (1991) it was demonstrated that the sequential probability ratio 

test (SPRT) of C={ 1'=t} against D= {1'>s} without an acceptance limit and with a constant 

rejection limit will give the shortest expected delay for a given total false alarm probability. 

With the conditions of Section 2 and with t=1 the SPRT will be 

s 1 s 
llexp[ --({x(t)-J.LP-{x(t)p)]>G .. Ex(t) > L +s(J.L)/2 
~1 2 ~1 

where G and L are constants. The expected delay, which is minimal, is equal to ARLI - 1, 

since t=1. Thus, also ARLI is minimal. 

PROOF OF PROPOSITION 4. 

The method has ARLo =1/(1-CI>(G)), ARLI =1/(1-CI>(G-~)) and thus a ratio 

ARLI/ARLo = [1-CI>(G)]/[1-CI>(G-~)] which is decreasing when G increases. 

PROOF OF PROPOSITION 5 

PV(s) = P(C(s) I A(s)) = P(C(s) 1~; P(C(s) 1 Xs) > c) > c. 
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PROOF OF PROPOSITION 6 

The likelihood method, which satisfies the optimality criteria above, gives alarm when 

a nonlinear function of the observations exceeds a fixed limit, while the EWMA method 

gives alarm when a linear function exceeds a fixed limit. 

PROOF OF PROPosmON 7 

At constant intensity V 

1tj = (1_vtlv i=l, 2, ... 

The weights, met) of the LinLR method are found in Section 4.2. The relative weights are 

m(t+l)/m(t) = (l-bt+l)/(1-b~ = b + (l-b)/(1-bt). 

The relative weights are thus not constant for the LinLR method as they are for the EWMA 

method. However, for large values of u the relative weight tends to b when b> 1. Then, 

m(t+l)/m(t) = 1/(1-A) = b = (1-v) expO.l?/2) and thus A = 1 - exp(-IJ?/2)/(1-v). 

PROOF OF PROPOSITION 8 

The alarm limit for the EWMA method depends on the decision time s as 1 /[I-(1-AY] 

= bS/(bs-l) when A=A *. This is also the case for the LinLR, EwLinLR and EwLinLnLR 

methods as can be seen from the results in Section 4.2. 

APPENDIX 2: LINEARIZATIONS OF THE LR METHOD 

By approximation by Taylor expansion of the alarm function at X(i)=O and with a = 

exp(l..I?/2) the following linear approximation of the alarm function is achieved: 

pixs):;:;Ps * (xJ=piO) + tX(i) op~ 
i=1 OX(l) 

s s s 
=L1t ia i +~L1tia i Lx(t)= 

i= 1 i= 1 t=i 
s 

=m(s) + ~ Lx(t)m(t), 
t=1 



where the weights for the observations are 

An alarm is given as soon as 

t 
m(t) = La i1ti• 

i=1 

s 
Lx(t)m(t) 
t=1 

exceeds the limit given by the LR method in Section 4.1 

[Gs/g(s) -m(s)]/Il = 

=[a s+
1 P('r>s) ~ - m(s)]/~ 

l-K 
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If the intensity is constant, then 't has a geometric distribution 1t t=(I-v)t-lv and then, 

with b =a(l-v) = (l-v)exp(1l2/2), we have for b* 1 

and 

t. bv 
met) = [v/(I-v)]Lb 1 = (b t-l) 

i=1 (b-l)(I-v) 

tm(t) = bv 
t=1 (b-l)(I-v) 

b(bS-l)-s(b-l) 

b-l 

Ifb=l, met) =tv/(l-v) and the relative weights will tend to one when ttends to infinity. 

Also for b<l, the relative weights will tend to one when t tends to infinity. For b> 1 the 

relative weight tends to b and we have exponential weights. 

For b* 1, with standardization to make the sum of the weights equal to one, we have 



and the alarm is triggered if 

twLinLR(t)x(t» [ b
S 

{(b-l)2K (b-l)}+ b-l ]/IJ. (2) 
t=1 b(b S-I)-s(b-l) v(I-K) b(b S-l)-s(b-l) 

This linear approximation of the LR method is here denoted as the LinLR method. 

For large s and b> 1, the alarm limit tends to 

which is proportional to bS/(bs-l). 
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When the weights, which are proportional to (bS_l), are approximated by exponential 

weights the method will be named the EwLinLR method. 

Another approximation is achieved when the Taylor expansion is made for the logarithm 

of the alarm function 

An alarm is given as soon as 

exceeds the limit 

S olnp 
lnpS<xs)~ lnps * (xs) = lnps(O) + LX(i)--. S 

i=1 OX(l) 
S 

= Inm(s) + IJ. Lx(t)m(t)/m(s), 
t=1 

tx(t)m(t) 

In{Gs/g(s)} -lnm(s)]/jl }= 

K = [In[a s+1 P(t>s) -] - In(m(s))]m(s)/IJ. 
l-K 



For b * 1 we have the alarm limit 

= [In(exp(f.L 2/2) b S ~) - In(m(s»]m(s)/f.L = 
l-K 

K v(bs 1) 
= [f.L 2/2 + sInb + In-- - f.L 2/2 - In - ]m(s)/f.L 

l-K (b-l) 
K v(b S-I) 

= [sInb + In- - In ]m(s)/f.L 
l-K (b-l) 

= [sInb + In~ _ In v(b S-I)] bv(b S-I) 
1 - K (b - 1) (b - 1 )(1- v)1J. 

With weights standardized to have the sum 1 we have the alarm limit 

[sInb + In~ _ In v(b S-I)] bv(b S-I) (b-l)(I-v) b-l = 
l-K (b-l) (b-l)(1-v)f.L bv b(bs-l)-s(b-l) 

=[sInb + In~ _ In v(b S-I)] (b S-I) b-l 
l-K (b-l) f.L b(bs-l)-s(b-l) 

=[In~ - In-v-+sInb - In(b S-I)] (b S-I) b-l 
l-K (b-l) f.L b(bs-l)-s(b-l) 

=[L+sInb - In(b S-I)] (b S-I) b-l 
f.L b(bs-l)-s(b-l) 

where the constant L, to be determined by false alarm properties, is 

K v K A L = In-- - In--= In-- - Inv+ In-
l-K (b-l) l-K I-A 

This method, with exponential weights will be named the EwLinLnLR method. 

42 
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Resume 

Des differents criteres d' optimalite sont utilises dans differentes subcultures de la 

surveillance statistique. Un des objectifs de cette etude est celui d'etablir un 

rapprochement entre les differentes disciplines. Les faults de quelques uns des criteres 

d'optimalite sont montres par leurs implications. Quelques methodes frequemment 

utilisees sont examinees en detail quant it leur optimalite. Cet analyse est fait pour une 

situation standard, se concentrant sur les principes d'inference. Une presentation uniforme 

des methodes, par expressions de rapports de vraisemblance, facilite la comparaison entre 

les methodes. On examine les correspondances entre les criteres d'optimalite et les 

methodes. On presente une approximation lineaire de la methode du rapport de 

vraisemblance totale, qui satisfait plusieurs criteres de optimalite. Cette approximation 

lineaire est utili see pour examiner quand les methodes lineaires sont approximativement 

optimales. Des methodes pour des situations compliquees sont etudiees Quant it leur 

optimalite est robustesse. 



LEGENDS TO TABLE AND FIGURES 

Table 1. Schematic characterization of methods by optimality properties described in the 

text. 

Figure 1. Boundaries of the alarm sets at decision time s=2 for some methods described in 

the text and in Table 1. The values v=O.O 1 and 1-1= 1 were used for those methods which can 

be optimized. 

Figure 2. Connections with straight lines of the weights wet) of the observations x(t). The 

weights of the EWMA method are calculated for A = 1 - exp(1-12/2)/(I-v). The LinLR 

method is optimized for the case when the change 1:' has a geometric distribution with 

intensity v=O.OI and the shift is 1-1=1 and the same values are used for A. The pairs of 

curves are for decision times s = 5 and to. 



Table 1 

Method Formula Alarmfunction of No of parameters Optimality 
number L(t) in the alarmfunction 

min E(tA - 1'1 tA ;;:: 1') for fixed P(tA < 1') 

t w(t)L(t) 
and 

max P(A(s)1 C) for fixed P(A(s)1 D) 
LR (full likelihood ratio) (1) t=1 2 when C = { l' :s; s} and D = { l' > s} 

I 
I 

Shiryaev Roberts (1) 

tL(t) with V -->0 1 As for LR if V -->0 
t=1 

LinLR (linearization of the LR method) (2) 2 approximation of that for LR 

with AEWLR approximation of that for LR 
EWMA (3) 1 

with small A approximation of that for SCUSUM 

SCUSUM (4) L(1) 0 max P(A(s)1 C) for fixed P(A(s)1 D) 
when C = { l' = I} and D = { l' > s} 

LCUSUM (5) L(I) 0 min ARLI for fixed P(A(s)1 D) 

CUSUM (6) maxL(t) 1 best min max E(tA - 1'1 tA ;;::1') for 
fixed P(tA < 1') 

min E(tA - 1'1 tA ;;::1') for fixed P(tA< 1') 
asymptotically for large !.L 

Shewhart (7) L(s) 0 and 
max P(A(s)1 C) for fixed P(A(s)1 D) 

when C = {'t" = s} and D = {'t"> s} 
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