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Abstract 

Statistical and practical aspects on methods for on-line turning point detection in 
business cycles are discussed. When a method is used on a real data set, there are a 
number of special data problems to be considered. Among these are: the effect of 
smoothing, seasonal variation, autoregression, the presence of a trend and problems 
with multivariate data. Different approaches to these data problems are reviewed and 
discussed. In a practical situation, another important aspect is the estimation 
procedure for the parameters of the monitoring system. Three likelihood based 
methods for turning point detection are compared, one based on a Hidden Markov 
Model and another including a non-parametric estimation procedure. The three 
methods are used to analyze an actual data set of a period of the Swedish industrial 
production. The relative merits of comparing methods by one real data set or by 
simulations are discussed. 
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1. Introduction 

In order to predict the turns of the business cycles leading economic indicators can 
be used. By timely detection of the turns in one or several leading indicators the 
turning point time of the general business cycle can be predicted. Timely prediction of 
a change in phase of the business cycle is important for both government and industry. 

In this paper predictions of the actual value of the business cycle are not discussed. 
Instead the methods discussed here concern detecting the turning point time, i.e. the 
time of a change from a recession phase to an expansion phase (or vice versa). The 
tardiness of stabilization policies induces unintended effects (see ('mer (1987)). For 
reviews and general discussions see e.g. Neftci (1982), Zarnowitz and Moore (1982), 
Westlund and Zackrisson (1986), Hackl and Westlund (1989), Zellner, Hong and Min 
(1991), Jun and Joo (1993), Lahiri and Wang (1994), Li and Dorfman (1996), 
Birchenhall, Jessen, Osborn and Simpson (1999) and Layton and Katsuura (2001). 

As pointed out by e.g. Diebold and Rudebusch (1996), Kim and Nelson (1998) and 
Birchenhall et al. (1999) two distinct but related approaches to the characterization 
and dating of the business cycle can be found. One approach emphasizes the common 
movements of several variables. This approach is pursued by e.g. Stock and Watson 
(1991) and Stock and Watson (1993) and is briefly discussed in Section 3.2.5 on 
multivariate approaches. The other approach, the regime shift, is the one pursued in 
this paper, as also in the works by Neftci (1982), Diebold and Rudebusch (1989), 
Hamilton (1989), Jun and Joo (1993), Lahiri and Wang (1994), Layton (1996), 
Koskinen and Oller (1998), Layton (1998) and BirchenhaIl et aI. (1999). 

In recent years methods based on likelihood or posterior distributions have been in 
focus. In the general theory on statistical surveillance there are proofs for their 
optimality properties (see e.g. Shiryaev (1963) and Frisen and de Mare (1991)). Many 
of the suggested methods are based on a hidden Markov model (HMM), also referred 
to as a Markov-switching or regime switching model, see Hamilton (1989). In 
Andersson, Bock and Frisen (2002) three different likelihood based methods are 
compared in detail with respect to the delay of motivated alarms and the predictive 
value of an alarm at different times. In this report, the same methods are compared, 
but here the emphasis is on the situation where the methods are used on a real data set 
of quarterly data and the problems connected with this. 

In surveillance the inference situation is one of repeated decisions. Continual 
observation is made of a time series with the goal of detecting the turning point in the 
underlying process as soon as possible. The surveillance system consists of an alarm 
statistic and an alarm limit. For general reviews on statistical surveillance, see 
Shiryaev (1963), Frisen and de Mare (1991), Wetherhill and Brown (1991), 
Srivastava and Wu (1993), Lai (1995), Frisen and Wessman (1999) and Frisen (1999). 

The purpose of this paper is to discuss the particular data problems that are present 
in methods for on-line turning point detection in cyclical, economic processes. Some 
of the suggested approaches for dealing with seasonal variation, autocorrelated data, 
trend and multivariate problems are reviewed. Furthermore, the effects of smoothing 
the data are investigated by a Monte Carlo study. 

Another important aspect in an applied situation is the assumptions made about the 
process and hence the estimation procedure used. We discuss different assumptions 
and the estimation procedures connected with them. 

A frequently used approach for evaluating the performance of a method for turning 
point detection is to use the out-of-sample performance. Sometimes evaluation is 
made by Monte Carlo methods, as in Andersson et al. (2002). In this paper the 
evaluation is made on a set of real data, the Swedish Industrial Production (IP). 
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The paper is organized as follows. Section 2 contains a description of different 
likelihood based approaches. In Section 3 special data problems and estimation 
procedures are discussed. Also a Monte Carlo study regarding the effects of 
smoothing is presented in this section. The statistical properties of the three methods 
are summarized in Section 4 where also a period of the Swedish IP is analyzed. The 
pros and cons of this way to evaluate methods are discussed. Section 5 contains a 
summarizing discussion. 

2. Concepts of likelihood based surveillance for detection of turning points 

In this section the basic concepts of likelihood based surveillance for online 
detection of turning points is given. 

2.1 Model within each expansion- and recession phase 

The situation under study is one where X is a leading economic indicator. By 
monitoring X we want to detect a regime shift (a turning point) as soon as possible. 
Here the model for X at time tis: 

X(t) = J.1(t) + tXt), (1) 

where tXt) -iid N[O; if] and J.1(t) is a cyclical stochastic process described below. 
The aim is to detect a change in J.1, from expansion state to recession state (or vice 

versa). The definition of a turning point (or regime change) is that the regression of J.1 
on time is monotonic within each regime. That is, for a peak we have 

{
J.1(1) ::;; J.1(2) ::;; ... ::;; J.1(t), 

E[Xt]=f.1t : 
J.1(l)::;; ... ::;; J.1(r-1) and J.1(r-1) ~ ... ~ J.1(t), 

t<r 

t~r 
(2) 

where t=1 is in a period of expansion, ris the random time of a turning point (the time 
of change from the expansion to a recession) and X t={X(1), X(2), ... , X(t)}. The 
process J.1 is stochastic since ris stochastic. The monotonicity restrictions for a trough 
are the opposite of those in (2). 

Finding a model for J.1 can be difficult since the cycles differ over time, both in 
length and level. One recently evaluated approach (Andersson (2002)) is to use only 
the monotonicity restrictions in (2) and thus avoiding to use any parametric 
assumptions regarding the shape of the turning point. 

Parametric assumptions regarding J.1 make the method more powerful if the 
assumptions are valid. One example of a parametric assumption is that the regression 
on time is linear within each phase, with known parameters. For the situation when 
the tum is a peak, we have 

{

R +/3 ·t 
E[X(t)]=J.1(t) = PO l' 

/30 + /31 . (r-l) - /32' (t -'Z"+ 1), 

t<'Z" 

t '? 'Z" ' 
(3) 

where t ={ 1, 2, ... }. The expected value in (3) holds for a random walk with drift 
where the value of the drift parameter changes from PI to -P2 at time t=T. 
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In many HMM approaches the series under observation, X, is differentiated and the 
expected value of the differentiated process is assumed to be constant, conditional on 
the state, see e.g. Layton (1996), Ivanova, Lahiri and Seitz (2000) and Layton and 
Katsuura (2001). If the process is assumed to be a random walk with drift, or another 
process with an expected value as in (3), then the differentiated series will have a 
constant expected value, conditional on the state. For the situation when the turn is a 
peak we have 

E[X( t)-X( t-1)] = {;~: t<r 
t ~r' 

(4) 

where /31~0 and f:h<0. When the observations are independent over time, as in (1), the 
expected values in (4) imply the linear functions in (3). If the process is a random 
walk with drift, or another process with an expected value as in (3), then (4) is valid. 
The business cycle can be assumed to be symmetric or asymmetric in different 
aspects, see e.g. Neftci (1984), Falk (1986) and McQueen and Thorley (1993). One 
kind of asymmetry is differences in slopes between phases of recession and expansion 
(i.e. 1/31 I "* I f:h I). The effect of a non-symmetric turning point for a monitoring 
method where only monotonicity restrictions are used is studied in Andersson (2001). 

The standard deviation (j can be assumed to be different for recession and 
expansion, as in e.g. Koskinen and Oller (1998). However, this might not always be 
the case, for example in Hussey (1992) it is demonstrated that the standard deviations 
are different for one indicator but not for another. Macroeconomic time series are 
sometimes considered to have a continuously varying standard deviation. If there is 
evidence of considerable heteroscedasticity, then the observations in the alarm 
statistic should have different weights. Sometimes the logarithm transformation is 
used for variance stabilization. This is the case here, where the observation X is the 
logarithm of the original observation. After this transformation, the variance is here 
assumed equal, as also in Andersson (2001). The surveillance is conducted and 
evaluated for the transformed variable X. 

2.2 Event to be detected 

An alarm system is developed in order to detect the turning point. At decision time 
s an alarm statistic is used to discriminate between D(s) = { r> s} and C(s) = { r:5': s}, 
where ris the unknown time when the underlying process J1 changes from expansion 
to recession, or vice versa. Knowledge of whether the next turn will be a trough or a 
peak is assumed. The solutions for peak- and trough-detection are equivalent, as 
everything is symmetrical. It is the knowledge per se which is important. 
Henceforward, for simplicity, the turning point will be expressed as a peak (a 
transition from expansion to recession). This is not, however, a restriction in the 
methods. Thus, for a method that relies on the monotonicity restrictions only, the aim 
is to discriminate between the following two events: 

D (s): J1(1) :5': ... :5': J1(s) (5) 
C (s): J1(l) :5': ... :5': J1( r-l) and J1( r-l) ~ J1Ct) ~ ... ~ J1(s) 

where r={ 1, 2, ... , s} and at least one inequality is strict in the second part. 
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Under the assumption that the regression consists of linear functions where the 
slopes are symmetrical for the two phases, the aim is to discriminate between D and 
C, such that 

D (s): f.1(s) = flo + /ks 
C(s) = {u C(t)}, 

(6) 

where C( t): f.1(s) = flo + fll'( r-1) - flds-r+ 1) and where r={1, 2, ... , s} and flo and fli 
are known constants. 

If an HMM is assumed then, at decision time s, an alarm statistic is used to 
discriminate between 

D (s): ,u(s-1) ~ ,u(s), 
C(s): f.1(s-1) > ,u(s). 

(7) 

The difference between D and C in (5) and (6) is only the assumptions regarding 
,u(t). However, when an HMM is assumed, as in (7), the events are different also in 
another aspect. The apparently simpler event in the HMM approach is combined with 
a more complicated situation for the information of previous states. No knowledge of 
previous states is utilized in an HMM approach. Thus the probabilities for the history 
of those earlier states will have an effect. The two events in (7) correspond to families 
of histories of states. Because of Markov dependence the probabilities for the histories 
of those earlier states will have an effect and earlier observations carry information of 
the history of states. 

In this paper, the alarm statistics are based on the likelihood ratio between the 
events D and C, i.e. 

where xs={x(1), ... , x(s)} andfis the likelihood function. This is described further in 
Section 2.4. 

2.3 Assumptions about transition probabilities 

The probability of a transition from recession to expansion (or vice versa) are, in 
most approaches in the HMM framework, assumed to be constant with respect to 
time, see e.g. Hamilton (1989), Layton (1996) and Ivanova et al. (2000). But the 
transition probability can also be assumed time varying, as by Neftci (1982), Diebold, 
Lee and Weinbach (1994), Filardo (1994) and Layton and Katsuura (2001). One 
approach for the time varying transition probability is to use a model where the 
transition probability is a function of economic indicators, see e.g. Layton and 
Katsuura (2001). The assumption of a time invariant transition probability is made for 
all three methods investigated in this paper. 

When the information about the time and type (peak or trough) of the last turning 
point is not utilized (as in (7) above), it is necessary to make a probability statement 
regarding the type of the next turning point as well as inference about whether the 
turning point has occurred or not. For this purpose, it is necessary to consider all 
previous possible turns (both peaks and troughs) and hence two transitions 
probabilities are needed in the monitoring system. The (common) situation when 
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these two probabilities have different values is sometimes also referred to as 
asymmetry. The probabilities of transitions can also be expressed as intensities of the 
occurrences of peaks and troughs. 

Contrary to the assumption of an HMM, the type of the next tum (peak or trough) 
is sometimes assumed known (e.g. Neftci (1982)). This is assumed in two of the 
methods here (see Section 2.4). When information about the type of the next turning 
point is used, then the events D and C are declared corresponding to that information 
and then it is sufficient with one measure of intensity in the monitoring system. The 
intensity, when not presented as Markov transition probabilities, is hereafter denoted 
v. Note that the value of the intensity may differ for peak detection and trough 
detection. The single transition probability is 

v = P(C(t)ID(t -1» = p(z-= tlz- ~ t). (8) 

The assumption of a constant transition probability, and thus a geometric 
distribution for the turning point time, r, is not very realistic in the business cycle 
application. The lengths of the cycles vary more than for a geometrical distribution 
and the probability of small values of the time for the turning point is much smaller 
for the business cycle than for a geometrically distributed variable. Kim and Nelson 
(1998) investigate duration dependence (if the tendency to switch state depends on the 
time spent in the current state). A test is carried out on four economic indicators in the 
US economy and the result is that there is a tendency to duration dependence. 

In Fig. 1 the observed sample density function for the Swedish IP for the period 
1970Q1 to 1987Q1 is compared to geometric density functions using different 
intensity estimates. 

pdf pdf 
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Fig. 1. Left: density for peak with observed sample density function (- - -.) compared to geometric 

density function with intensities 0.07 ( ••. ) and 0_13 (-). Right: density for trough with observed 

data (- - - .) compared to geometric density with intensities 0.53 ( •.. ) and 0.10 (-). 

Since the observed distribution of 't is far from geometric, it could be argued that 
the empirical distribution should be used. However a prior based on the observed data 
above would result in a high prior probability for a turning point after about 9 
quarters. The consequence would be that the influence of the actual data is reduced 
and the probability of an alarm after 9 quarters would be very high, only due to prior 
information. 
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For methods where the transition probabilities are assumed to be known and 
constant, estimation of the probabilities can be made using data from an earlier period. 
Since there can be several years between transitions in the business cycle (see Fig. 1), 
a very long time series is required to get reliable estimates. 

In order to avoid the risk of misspecification, a non-informative prior for the 
turning point time can be used. When a non-informative prior for 't is used, no 
transition probability needs to be estimated. One approach that uses a non-informative 
prior is the so called Shiryaev-Roberts (SR) approach, suggested by Shiryaev (1963) 
and Roberts (1966). The likelihood ratio method is optimal for the intensity that is 
used, see Frisen and Wessman (1999), therefore a non-informative prior is 
suboptimal. However, the non-informative prior makes the method robust against 
assumptions regarding the intensity. Thus the risk of errors due to erroneous 
assumption, uncertain estimates or uncertain assumptions is avoided. The SR 
approach is used for two of the methods in this paper. 

2.4 Alarm rules 

All methods considered here use a likelihood ratio based alarm statistic. The 
likelihood ratio (LR) method has several optimal properties, see Frisen and de Mare 
(1991). The expected utility, based on very general functions of the gain of an alarm 
and the loss of a false alarm, is maximized. The LR method yields a minimum 
expected delay of an alarm signal conditional on a fixed probability of false alarm. In 
Frisen and Wessman (1999) several properties of the LR method are investigated and 
compared with other methods of surveillance, e.g. the Shewhart method and the 
CUSUM method, for the case of a shift in level. 

The LR method signals an alarm for the first time s for which 

LR(s) 

where ks=kl(1-k)·P(D(s))IP(C(s)). Frisen and de Mare (1991) showed that the 
posterior probability approach is equivalent to the LR approach for the situation 
where C is the complement of D. 

At the unknown time 't there is a turning point, i.e. there is a change in f.l from 
expansion to recession (or visa versa). For the situation where f.1 are known functions 
under D and C (see (6)), the alarm rule for the likelihood ratio at time s is written as 

s Ws (j) . I (xs 1f.1 = f.1C(j)) 

L I D >ks, 
j=i I(xs f.1 = f.1 ) 

where wij) = P( 'Z!=j)lP( ~s), ks=kl(1-k)-P( r>s)/P( '5.s) and f.1
c

U) and tP are parameters 
under restriction C(j)={ r=j} and D={ r>s}. 
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The alarm rule using the non-informative prior approach, SR, is 

s f(x
s 
l,u = ,L.{(j») 

L I _ D > kSRlin 
j=! f(xs,u -,u ) 

(9) 

where kSRlin is a constant alarm limit. The method where tP and ,lieU) are modelled 
using known linear functions with a symmetric turning point and where the SR 
approach is used regarding the intensity is hereafter referred to as the SRlin method. 

A method that assumes no knowledge of ,u, other than the monotonicity restrictions 
in (5), and uses the SR approach regarding the intensity was suggested by Frisen 
(1994) and evaluated by Andersson (2002) and Andersson et al. (2002). The alarm 
rule is 

(10) 

where k SRnp is a constant alarm limit and fl D and fle(j) are the maximum likelihood 

estimators of the vector ,u under monotonicity restrictions D and CO), described in 
section 3.1.1. This method is hereafter referred to as the SRnp method. In previous 
evaluations, this method has been referred to as the MSR method (Maximum 
likelihood Shiryaev-Roberts). 

With an HMM approach (e.g. Hamilton 1989), the posterior probability is used in 
order to classify time points to the different regimes (expansion and recession), the 
classification being "recession" if the posterior probability exceeds a constant. Often 
the constant is chosen to be 0.5 (see e.g. Hamilton (1989) and Ivanova et al. (2000)). 
That is 

(11) 

The classification by the posterior probability can be used in prospective monitoring 
(see e.g. Neftci (1982)). By "the HMlin method" we hereafter refer to a monitoring 
method where the rule in (11) is used, together with the definition of the event C in 
(7) and the assumption that the differentiated series is constant in each regime 
according to (4). These conditions agree with those used by Koskinen and Oller 
(1998). 

The time of alarm, tA, is the first time for which the alarm statistic (in (9), (10) and 
(11) respectively) exceeds its specified alarm limit. 

The approach by Birchenhall et al. (1999) is similar to both the HMM approach 
and the likelihood ratio method of surveillance in two respects: i) Birchenhall's 
approach is based on Bayes theorem and the likelihood and ii) a classification is 
made of the type of regime. A major difference, however, is that the classification into 
different regimes is based on explaining variables and not on the earlier state. This 
difference is discussed further in Andersson et al. (2002). 

The constants in the alarm rules have to be determined. These constants are often 
set so that the false alarms are under control. The most common way in the general 
theory and practice of surveillance is to control the ARLo, (the Average Run Length to 
the first alarm if the process has no turn). It is suggested by Hawkins (1992), Gan 
(1993) and Andersson (2002) that the control instead is made the MRLo (the median 
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run length). This has several advantages, such as easier interpretations for the skewed 
distributions and much shorter computer time for calculations. One objection to using 
the limit 0.5 for the posterior probability by the HMM methods is that no direct 
conclusion can be made regarding the false alarms. 

3. Estimation and special data problems 

The discussion so far has been concerned with inferential problems relevant for all 
studies of detection of turning points in business cycles. However, for a specific 
application there are many important problems before you have the ideal data set to 
analyze. Some such problems will now be briefly discussed. 

3.1 Estimation 

An important aspect is which assumptions that are made about the process, since 
these assumptions determine how the parameters of the model are estimated. The 
parameters are often estimated using previous data. If the parameters are estimated 
from a short period the variance of the estimates will be large and the parameters 
might be severely misspecified. As a result the method will produce misguiding 
results, leading to wrong conclusions and decisions. Here we discuss assumptions and 
estimation of fl and the transition probabilities. 

3.1.1 Estimation of fl 
Different assumptions can be made about fl. In practice, when fl is assumed to be 

known, it is in fact estimated from a large enough set of data from an earlier period. If 
it is assumed that the differentiated series has a constant expected value, conditional 
on the state, and that the expected values are constant over the cycles, then the 
estimation can be made using previous data. This assumption is used by e.g. Neftci 
(1982), Layton (1996), Ivanova et al. (2000) and Layton and Katsuura (2001). 

One suggested estimation procedure, under the model assumptions in (1), is to first 
classify each time point as belonging to either the expansion state or the recession 
state. Then the parameters in (3) can be estimated as 

A-I nj 

Pj =d j =-Ld ji , 

nj i=1 

where nj = # time points classified as state j and dj is the differentiated series classified 
as belonging to state j. 

In order to avoid the rather strong assumption of a specific parametric function for 
f.1, or when reliable information on the parametric function is not available, an 
approach based only on the knowledge that the monotonicity of fl changes at a turning 
point can be used. The result is the non-parametric estimation, used in the SRnp 
method, which is evaluated by e.g. Andersson (2002). The estimation is made using a 
least square criterion under the monotonicity restrictions C and D in (5). Under the 
model assumptions in (1), the estimates are also the maximum likelihood estimates. 

For the peak detection situation, the event D implies a monotonically increasing fl
vector 

{fl(t) ~ fl(t+ I)}, t~l. 
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In the likelihood expression f{xsl,u = PD} in (10), pD is the estimated parameter 

vector which corresponds to 

where FD is the family of ,u-vectors such that {,u(l) $; ,u(2)$; ... $; ,u(s)}. Thus, pD is the 

maximum likelihood estimator of ,u under the monotonicity restriction D. For a 
trough, the estimation is made under the restriction {,u( 1) ~ ... ~ ,u(s) }. This estimator is 
described by e.g. Robertson, Wright and Dykstra (1988), p. 1-58. 

The event C is composite, C={ ~}, and thus we have C = {C(J), C(2), ... , C(s)}. 
In the peak detection situation OJ) implies a vector that is first increasing and then 
decreasing, so that 
{,u(1) ~ ... ~,u(j-l), ,u(j-l) ~,u(}) ~ .... }, j E {I, 2, ... , s}. 

In the likelihood expression f{ Xs l,u = pe(j)} in (10), pe(j) is the estimated parameter 

vector which corresponds to 

m~( 0) f(xs l,u), 
J1EF } 

where pC(j) is the family of ,u-vectors such that {,u(I) $; •.• $; ,£lV-I) and ,£lv-I) ~ ,u(j)~ .... }, 
where j = {I, 2, ... , s} and where at least one inequality is strict in the second part. 
Thus, pe(j), j E { 1, 2, ... , s}, is the maximum likelihood estimator of ,u under the 
monotonicity restriction C(j). This estimator is given by Frisen (1986). For a trough, 
the estimation is made under the restriction {,u( 1) ~ ... ~ ,u(j-l) and ,u(j-l) ~ ,u(j) ~ ... }. 

When the information regarding ,u is restricted to only monotonicity assumptions, 
then no previous data is required for estimation. The alarm statistic can be constructed 
directly from the data to be analyzed. One advantage of the non-parametric approach 
is that it can successfully be used also when reliable information on the parametric 
function is not available. Also important is that the non-parametric method does not 
assume that all phases of the same type have the same level and parametric shape. In 
practice, this varies a lot. The SRnp method, (10), only uses the monotonicity change 
and not the level. Wrong specifications of the slope lead to very bad properties (see 
Section 4.1.2), as was demonstrated by Andersson et al. (2002). The safe way by the 
non-parametric approach might be preferred. 

3.1.2 Estimation of transition probabilities 
When considering different methods of estimation, simultaneous maximum 

likelihood estimation of all parameters in the model is an obvious choice. However, if 
the whole parameter set is estimated using maximum likelihood criterion then the 
rareness of the turning points can lead to large errors around turning points, 
compensated by high accuracy within phases, as pointed out by Lahiri and Wang 
(1994) and Koskinen and Oller (1998). For that reason, the transition probabilities are 
sometimes estimated using some other criterion than maximum overall likelihood. 
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For the transition probabilities, maximum likelihood estimates, based only on the 
events of transitions, are a natural choice. For the data on the Swedish IP, the 
transition probabilities, Pl2 and P21, are estimated using 

A n12 5 
P12 = = --= 0.13 (0.054), 

nl1 +n12 34+5 
(12) 

A n21 4 
P21 = =--=0.10 (0.047), 

n21 +n22 4+36 

where nij is the number of transitions from state i to state j and the standard errors are 
given in parenthesis. 

When the posterior probability for HMlin is calculated in the simulation study 
below, the maximum likelihood estimates of (12) are used. 

Some authors, e.g. Koskinen and Oller (1998), use smoothing to reduce the 
stochastic error. They estimate the transition probabilities and the smoothing 
parameter simultaneously from historical information, with the criterion of 
minimizing a cost-function based on the sum of two measures of error (the Brier 
probability score and the proportion of wrongly classified states). The Brier 
probability score, also referred to as the Quadratic probability score, is the mean 
square error for the posterior probability, i.e. the average squared deviation between 
the true state (0 or 1) and the posterior probability. The effect of smoothing is 
investigated further in Section 3.2.1. 

3.2 Special data problems 

Always when using real data, there can be concerns about the data quality in 
general. In this section we discuss the problems connected with analyzing data that 
has been transformed (e.g smoothed, adjusted for seasonality and adjusted for trend). 
The section is also concerned with the problems when data exhibit autoregression and 
using multivariate data. 

3.2.1 Effect of smoothing 
One drawback with using the alarm limit 0.5 for the posterior probability is that the 

value 0.5 is not chosen to yield a certain ARLO or MRLo. In other words, we have no 
control of the false alarm rate. The variability of the process affects the false alarm 
rate. In order to reduce the false alarm rate some authors, e.g. Koskinen and Oller 
(1998), recommend that the observations should be smoothed after differentiation, see 
also Oller (1986). The objective of the smoothing, in Koskinen and Oller (1998), is 
both reduction of white noise and lagging of the turning point. The former purpose is 
motivated by the desire to reduce the false alarm rate whereas the latter purpose is 
motivated by the use of multivariate data, where the turning points of the different 
processes are not always synchronized. The differentiated observations yet) are 
smoothed according to 

yet) = AY(t) + (l-A)Y(t-l) , 

where A.E {O, I}. 
Smoothing by kernel estimators is used by e.g. Hall, Marron and Titterington 

(1995). The smoothing of observations reduces the variance and hence reduces the 
false alarm probability. However, there are also disadvantages as will be seen in the 
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Monte Carlo study below. Results are given on the distribution of the alarms, both 
conditional of no change and of a tum, and the probability of detecting a turning point 
within a specified time. 

The effect of smoothing on the performance of the HMlin method is investigated. 
In order to evaluate the false alarm properties, a model for the event D (no tum) has to 
be specified. Data on the (logarithm of the) Swedish IP was used to get a reasonable 
simulation model. A linear function was fitted to the officially dated (National 
Institute of Economic Research (1992)) expansion phase 1987Q2 to 1989Q3. The 
observations on X, under event D, are simulated using the following model 

(13) 

where Ji D(t) = 11.194 + 0.0069·t and t:(t) - iid N[O; 0.016]. In order to evaluate the 
alarm properties under event C the following model is used: 
;t:(t) = Jicr(t) + t:(t), (14) 

where Jicr(t) = 11.194 + 0.0069·t - 2Dl·0.0069·(t-r+1) , t = {l, 2, ... }, and 

{
1, t;;::: r 

D 1= 
0, otherwise 

and t:(t) - iid N[O; 0.016 ]. 
Both the SRlin method and the HMlin method use information from previous 

expansion and recession phases in the alarm statistic and for parameter estimation. 
Thus, a sequence of three expansion phases and four recession phases are simulated 
by the following model 

X(t) = Jilt) + c;(t) , 

{ 

Jilj (t), j = {1, 2, 3} 
where Jii(t)= 

Ji2j(t), j = {1, 2,3, 4}} 

d () 
.. {NCO;(Yfj ), j={1,2,3} 

an Ci t -lld 2 . 
NCO; (Y2j), ] = {I, 2,3, 4} }. 

The function Jilj(t) and parameter Oij represent the expected value and the standard 
deviation in expansion phase j, respectively and Ji2j(t) and Oij represent the expected 
value and the standard deviation in recession phase j, respectively (see Appendix 1). 
The evaluation period (t=1) starts 4 time points after the last turning point (a trough). 

The effect of smoothing on the HMlin method is shown below. The alarm limit for 
the smoothed data (A.=O.3) is adjusted to yield the same MRLo as for the unsmoothed 
data (A.=1). 
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Fig. 2. HMlin method, 11.=1 (.".) and 11.=0.3 (--). Left: Distribution of the time of an alarm, 

conditional on event D (no tum). Right: Distribution of the time of an alarm, conditional on 't= 10 .. 

The common value of the MRLo is 17. For both cases, A.={ 1, 0.3} we have a large 
enough sample so that the standard error of the median is less than 0.15. We can see 
in Fig. 2 that the density of the time of the alarm has different skewness for A.=1 and 
A.=0.3. 
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Fig. 3. Probability of successful detection within d time points for 't= 1 O. HMlin method, 11.=1 ( ••• ) and 

11.=0.3 (-). 

The probability of successful detection (PSD) is the probability of detecting a tum 
within d time units, that is 

For both cases, A.={1, 0.3}, the number of replicates is large enough to yield a 
standard error of PSD of less than 0.0030. The reduced distinctness of the turning 
point, due to smoothing, decreases the probability of successful detection (see Fig. 3). 
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3.2.2 Seasonal variation 
The variables that are considered to be leading economic indicators are measured 

monthly or quarterly and thus often contain seasonal variation, which could 
complicate the monitoring. The seasonal variation can be considerable, as is seen in 
Fig. 4. 

LnlP 
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~. 

J'M1 

I~ I~ 11.0 

I~ ~ 10.9 J'tN! ~ 
10.8 

10.7 

10.6'+--;-~-.._..---.-~-.._..----.--....-...---I 
o 8 16 24 32 40 48 56 64 72 80 88 96 

Time (quarters) 

Fig. 4. Swedish Industrial Production, quarterly data (l970Ql to 1992Q2). 

If seasonality is neglected in the modeling and in the monitoring, it could lead to 
seriously wrong conclusions. It is important that the structure of the original series is 
not disturbed by the seasonal adjustment. In the monitoring situation here, it is 
important that the time of the turns is preserved after the adjustment. The problem of 
altered change points by seasonal adjustment has been briefly discussed, see e.g. 
Ghysel and Perron (1996) and Franses and Paap (1999). 

The effect of using different filters in order to adjust for seasonality is analyzed in 
Andersson and Bock (200 1) and it is demonstrated that the detection is delayed when 
a data transformation such as differentiating or moving average is used. The largest 
reduction in probability of detection is caused by the moving average. 

3.2.3 Autoregression 
Economic time series often exhibit strong autocorrelation. In Ramjee, erato and 

Ray (2002) the performance of the EWMA method for detecting a shift in level in a 
process with long range dependence is discussed. Lahiri and Wang (1994) evaluate 
the performance of a monitoring system where a model with autoregressive errors is 
assumed and where the posterior probability is used together with an alarm limit. The 
same alarm limit is used for models with autoregressive errors of different order. They 
find that the introduction of autoregression in the errors leads to a smaller forecast 
error within phases but increases the risk of wrong inference concerning turning 
points. The effect of time dependent observations can be dealt with by adjusting the 
alarm limit. If the assumption of an independent process is used, when it is in fact 
dependent over time, the result is an increased false alarm probability. The 
consequence of autoregression in the process is examined in the general theory of 
surveillance where also remedies are suggested. For a review, see Pettersson (1998) 
and Frisen (2002). 
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Ivanova et al. (2000) argue that the effect of the autoregressive parameters will 
largely be captured by the probabilities of remaining in the current state (PI I or P22). 
Many of the suggested approaches for turning point detection assume that the possible 
autoregression is not a problem, as is also assumed here. 

3.2.4 Adjusting for trend 
Many macroeconomic variables can be characterized as cyclical movements 

around a trend. In order to distinguish the movements and make the time series 
stationary it is sometimes necessary to adjust for the trend. In model (1) no separation 
between the trend and the cycle is made. In most HMM approaches, and also the one 
considered here (HMlin), differentiation is used, whereas in SRlin and SRnp no such 
adjustment is made. 

The choice of a method for trend adjustment should depend on the assumptions 
regarding the trend-component. Whether the trend is assumed to have components 
that are deterministic, stochastic or both, has implications for the appropriate method. 
Adjusting for trend implies a data transformation, which may result in a distortion of 
the characteristics of the original series. Gordon (1997) studies the effect of trend 
removal for predictive densities of the US GDP and warns against using other 
information from the data than that which is directly associated with the business 
cycle turning points. Canova (1998) discusses trend removal and evaluates the effect 
using several different approaches, among them first order differentiating. One 
conclusion from the study is that linear trend removal does result in turning point 
times which do not correspond to the official turning point times of the National 
Bureau of Economic Research, USA. In another paper Canova (1999) points out that 
previous research has shown that the trend may interact with the cyclical component 
and is therefore difficult to isolate. The general conclusion is that statements 
concerning the turning points are not independent of the statistical assumptions 
needed to extract trends. Boone and Hall (1999) compare different methods for 
separating trend and cycle by a Monte Carlo study. The mean squared differences are 
used as a measure of evaluation. A difficulty with this measure, in a turning point 
setting, is that it does not primarily indicate whether the turning point times are 
preserved. 

The removing of the trend has less effect on the possibility to distinguish the 
turning points when analyzing short time series. Since the SRlin and SRnp methods 
are applied to a part of the time series that contains one turning point at most, no 
attempt to separate the trend from the cycle is made. 

3.2.5 Multivariate problems 
By the common movement approach, a business cycle is characterized as the 

cyclical movement of many economical activities. This demonstrates that important 
information is contained in the relation between the turns of different indices. This 
information can be utilized, either by transforming the problem to a univariate one (by 
using a composite index of leading indicators) or by applying a multivariate method 
of surveillance. 

Stock and Watson (1991) and Stock and Watson (1993) model the common 
movements of coincident variables as arising from an unobservable common factor 
(the overall state of the economy). The key elements are the selection of variables and 
the estimation of the common factor. Leading indicators are added to the model to 
help predict future values of the common factor. 

Diebold and Rudebusch (1996) discuss the relation between the common 
movement approach and the regime approach and attempt to encompass both 
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approaches by considering the common movements of coincident variables where the 
common factor is assumed to be governed by a two-state HMM. 

Kim and Nelson (1998) use the same approach as in Diebold and Rudebusch 
(1996). However, estimation is here made by Gibbs sampling in a Bayesian 
framework. They find that the main cause of increase in forecast accuracy is the 
ability to capture the common movement among several variables instead of just one, 
whereas the prior assumptions concerning the transition probabilities had a minor 
influence. Hamilton and Perez-Quiros (1996) compare the accuracy in predicting the 
phases of U.S. real gross national product using univariate and bivariate linear 
models, where the latter included a composite leading index (CLI), and corresponding 
HMM. Adding a CLI to the linear model was found to result in the greatest increase in 
accuracy, whereas using HMM makes no substantial increase in accuracy. 

Koskinen and Oller (1998) utilize multivariate information by monitoring a joint 
vector of leading indicators with a common time of tum. When used for turning point 
detection in the Swedish business cycle the following three series are used: the 
Swedish IP, the Swedish Business Tendency Survey and Stockholm Stock Exchange 
Index. When the method is applied to the U.S. economy, the (first difference of) 
Gross National Product and the Composite Index of Leading indicators are used. 

Birchenhall et al. (1999) exploit the feature of a business cycle, of common 
movements across variables, by extracting a business-cycle index from a vector of 
time series. As in the works by Stock and Watson, the selection of variables is an 
important element. 

Kontolemis (2001) uses an HMM approach to identify turning points, using four 
different time series. A comparison is made between turning point identification based 
on the individual series and a multivariate approach. It is shown that the business 
cycle chronology based on the latter approach is closer to that of NBER than the 
turning points obtained from individual series. 

Wessman (1998) demonstrates that the minimal sufficient alarm statistic for 
changes in several variables with the same change point (or known time-lag), is 
univariate. In this paper the investigation has been made for the turning point of one 
leading index, possibly constructed as a function of many different indices. This is, in 
fact, the situation also for most of the earlier studies since a reduction to a univariate 
statistic is possible. However, procedures that are more efficient might be constructed 
by using the indices separately in the method of surveillance. 

For reviews on multivariate surveillance, see Wessman (1999) and Frisen (2002). 
A topic for future research might be to use more of the theory of optimal multivariate 
surveillance for building a system for multivariate monitoring of business cycles. 

4 A comparison of some likelihood based approaches for detecting a turning 
point in a leading index 

4.1 Statistical properties 

In Andersson et al. (2002) an evaluation was made of the properties of the three 
methods by means of a Monte Carlo study. The major results are summarized here. 
Since two of the methods, HMlin and SRlin, rely on assumptions of known parameter 
values, evaluation was made both for the situation when the correct parameter values 
were used and for the situation when the values were misspecified. 
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4.1.1 Correct parameter values used 
For all three methods the alarm limits are set to yield MRLo = 17 (quarters), but the 

distribution of the alarm times differs. The HMlin method has more frequent alarms at 
early time points, but low alarm probability later on, compared to the others. 

The expected delay measures the delay time for a motivated alarm (i.e. the time 
between T and tA). This measure depends on T- For a turning point within a year from 
the last turn, the SRnp method has the longest expected delay. For turning points that 
occur later, the SRnp method has a (slightly) shorter delay than the HMlin method. 
SRlin has the shortest delay time for every value of T-

In a practical situation it is important to have a strategy for what action to take 
when a turning point is signalled. The predictive value (see Frisen (1992)) reflects the 
trust you should have in an alarm. For the HMlin method the high alarm probability at 
the first time point results in that alarms at t=1 are of little value, whereas the 
predictive value for SRnp and SRlin at this time have much higher predictive values. 
The alarms that come at time points t=4 and hence forward have predictive values of 
(at least) 0.75 for all three methods. 

4.1.2 Incorrect parameter values used 
The effect of using wrong parameter values for J1 was evaluated both for the 

situation when only the slope after the turn was misspecified and for the situation 
when both slopes (pre-turn and post-turn) were misspecified. Also in this evaluation 
the alarm limits are set to yield MRLo = 17 (quarters). 

When only the post-turn slope is misspecified, it has very little effect on the 
conditional expected delay and the predictive value. 

When both slopes (pre-turn and post-turn) are misspecified, the effect on the 
conditional expected delay and the predictive value is major. For small and moderate 
values of 1; (T<lO), the delay time is longer when the slopes are specified as being too 
steep. Thereafter the delay time is shorter for misspecified slopes. The price for the 
short delay times is however that the predictive value of those alarms is low. 

In view of these results, using a method that does not require any parametric values 
for J1 is a safe way, particularly since the properties of the SRnp method are almost as 
good as those of the SRlin method. 

4.2 Evaluation by data on the Swedish Industrial Production 

The most common way to evaluate methods for detection of turning points in 
business cycles is by using one set of data. We use quarterly Swedish data on IP 
(1987Q2 to 1992Q2) with one turning point, to evaluate the three methods (SRnp, 
HMlin and SRlin). The aim is to detect the peak in the time series. 

According to official records (National Institute of Economic Research (1992)), the 
peak occurs at time 1989Q3 (t = 10), implying that the time of change is 1989Q4 
(-z=l1).The period is displayed in Fig. 5. The official turning point times can often be 
based on more information than data. This other information might make the official 
time different than it should have been, if only the IP data had been used. Fig. 5 
indicates that the turning point in the data is earlier than the official time. Thus the 
methods, using only the IP data, can not be expected to be good at indicating the 
recorded official time for this realization. All three methods give alarms earlier than 
the official times for this set of data. 
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Fig. 5. Seasonally adjusted values of the (logarithm of) Swedish industrial production, quarterly data 
for the period 1987Q2:1992Q2. The official time of change (11) is marked with a solid vertical line. 
The alarm times (tA={4, 7, 1O} for SRnp, HMlin and SRlin, respectively) are marked with dashed 
vertical lines. The model for Il, used by SRlin and HMlin, with 't=11 is marked with a solid curve (see 
(14)). The 2.5 th and 97.5th percentiles of values of the observations according to the model is marked as 
dotted curves ( ... ). 

Both the SRlin method and the HMlin method use the assumption of a piecewise 
linear model for J1 (see (3)). The piecewise linear model fits less well at the turning 
point as we have a plateau. McQueen and Thorley (1993) argue that it is reasonable 
that recessions tend to be preceded by plateaus. A plateau will result in a tendency to 
give alarms just before the tum. It can be discussed whether this is a drawback or not. 
An early indication of a coming recession is a plateau. In this light, alarms just before 
the turning point can be considered to be good, since they can be seen as warnings. 

SRlin and HMlin rely on the assumption that the parameters (slopes and standard 
deviations) are known or possible to estimate with great certainty. Here we use the 
data on Swedish IP from the period 1970Q1:1987Q1 and the estimation procedure 
described in Appendix 1 to estimate the parameters. The resulting signal-noise ratios 

are: PI/aI = 0.47 (expansion phase) and P2/a2 = 0.40 (recession phase). These 
estimates are used for the HMlin method when calculating the posterior probability. 
The SRlin method assumes a symmetric turning point and homoscedasticity. We use 
pooled (by their frequency) estimates for both parameters, resulting in Plft= 0.41, 
when calculating the alarm statistic. The HMlin method also includes two transition 
probabilities, whose values are estimated according to (12). 

A drawback with a simulation study is that the model used in the simulations might 
not be representative of the process we want to study. An actual data set is certainly 
representative of the specific time period and situation at hand. However, the real data 
set might deviate stochastically from the process of interest. When a method is 
intended to be used on future data, then it is the properties of the process that are 
important for that method. In order to be able to make a general statement about, for 
example, the average delay time of a method, it is necessary to replicate the 
performance of the method at a turning point. Then Monte Carlo methods are a 
valuable tool. However, it is important that the model, used in the simulations, is 
based on a set of real data. 
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5. Discussion 

The user of a monitoring system is faced with many difficult decisions. Issues that 
must be considered when analyzing a real data set are: choice of estimation procedure, 
how to handle seasonal variation and whether to apply different kinds of 
transformations of data (e.g. trend removal and smoothing). 

The smoothing of the observations before applying a method of monitoring will 
reduce the variation and hence reduce the false alarm probability. However, the 
smoothing will introduce autocorrelation and, as pointed out by Oller and Tallbom 
(1996), will lead to a delayed signal. In this paper it is confirmed that the expected 
delay of a motivated alarm is increased by smoothing (when the false alarms are 
controlled). One method of surveillance, where the smoothing procedure is included 
in the alarm statistic and not made separately, is the EWMA method (see e.g. Crowder 
(1987), Domangue and Patch (1991) and Frisen and Sonesson (2001)). This method 
allows for a controlled false alarm rate at the same time as the variability is reduced 
by smoothing. 

The transition probabilities can be estimated separately, using only the observed 
transition frequencies. It has also been suggested that both transition probabilities and 
smoothing parameters are estimated simultaneously. The parameters then compensate 
for each other. If data is much smoothed then the transition probability must be set 
very high, otherwise the delay will be too long. Thus it might be difficult to interpret 
the parameters separately. If the Brier probability score is used as a criterion when 
estimating the transition probabilities, it must be borne in mind that this measure does 
not take into account the order of the observations. As a result the transition 
probabilities might again be difficult to interpret. 

Often a constant transition probability is assumed, which implies that the time of 
the tum has a geometric distribution. This might not be in accordance with reality for 
business cycles, but can be interpreted as a way of avoiding to use strong assumptions 
regarding the intensity of turns. Good estimates of the transition probabilities are 
useful if the pattern is constant over time and will remain the same, even in the future. 
Technically, the inclusion of transition probability estimates in the monitoring system 
is easily done by likelihood ratio methods. However, it is important that the 
monitoring system has the ability to detect a turning point also when this happens at 
an unexpected time. Thus, it might be preferred to use a non-informative prior for the 
time of the tum in the suggested SRlin and SRnp methods, so as to avoid the risk of 
errors due to wrong assumptions or uncertain estimates. 

When estimating the parameters of the monitoring system, historical data is often 
used. Then there has to be a balance between, on one hand, the risk of using data sets 
that are too small, which results in estimates with large variation and, on the other 
hand, the risk of using historical data which might be out of date. Sarlan (2001) 
examines the change in intensity and duration of US business cycles and concludes 
that the modem business cycle is different from the historical one. 

Parametric models contain information, which should be used whenever it is 
reliable. However, a non-parametric approach works also when such reliable 
information is not available. At early time points the non-parametric method (SRnp) is 
sensitive to extreme observations, since this method only relies on data and uses no 
prior information regarding Ji. Andersson et al. (2002) demonstrated the danger of 
misspecifying Ji: even a small misspecification of the parameter value of Ji may cause 
largely misguiding results. 

Economic time series often exhibit seasonal variation. Since most data-driven 
filters can have serious effects on the turning point times (see e.g. Andersson, 2001 ), 
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information from historical data or other prior knowledge, which makes the seasonal 
adjustment independent of the data to be analyzed, is very valuable. 

There are different methods for evaluating a method of surveillance. In this paper, 
the effect of smoothing is evaluated by simulation, whereas the monitoring methods 
are evaluated with a set of real data; a period of the Swedish IP. Evaluation of the 
properties of a method by one sample of real data is difficult. One difficulty is to 
know whether the turnout of the sample is typical. Evaluations by several real data 
sets (instead of just one) would decrease some of the stochastic variation in the 
measures of evaluation. However, if these analyses are not totally independent (for 
example if the same parameter estimates are used) then some of the stochastic 
components would keep their variance. 

The results from the application of the three methods on a period of the Swedish IP 
did not contradict the conclusion by the statistical properties that the non-parametric 
method is a safe way without much loss of efficiency. 
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Appendix 1. Estimation for the HMlin method, using previous data 

For the HMlin method several parameters are estimated from previous data, for 
which a simulation model is used. For each expansion and recession phase, a second 
degree polynomial regression function with seasonal dummy variables is fitted to data 
on the In(JP). After that, the polynomials are intercept-adjusted, not to expose any 
jumps. 

Results are given in Table 1A for each of the four recession phases and each of the 
three expansion phases, according to the model (without seasonal variation) 

Yij (t) = llyCt) + cij(t) = (OOij + 0lij . t+ 02ij . t2) + cij (t) , 

where i = {expansion} or {recession} and j = { 1, 2, 3, 4}. 
For the dating of recession and expansion phases, official records are used 

(National Institute of Economic Research (1992», see Table 1A. 

Table lA 
Dating of recession and expansion phases, official records are used (National Institute of Economic 
Research (1992)) 

1 J ~ 01 fh. sd[£(t)] 
Exp 1 10.707 0.023 -0.0002 0.004 

2 11.056 -0.019 0.0005 0.024 
3 12.678 -0.075 0.0008 0.013 

Rec 1 10.920 0.009 -0.0009 0.007 
2 10.550 0.046 -0.001 0.018 
3 8.426 0.117 -0.001 0.013 
4 11.615 -0.016 0.0001 0.020 

The (simulated) data from the estimation period is used in the estimation procedure, 
described below. 

Each time point is classified as being either expansion or recession by the same 
procedure as in Koskinen and Oller (1998) where the following definition of a turning 
point is used: 
The differentiated series has kept the same sign for at least two 
consecutive time points when it changes sign. If the new sign is kept during at least 
the next time point, then a turning point is said to have occurred. 

The method for estimating {PI, /32, o-r, o-i}' described below, is one component 
in the estimation procedure used by Koskinen and Oller (1998): 

Ad. 1 nj 

fJ __ J --"d 
j - 4 - 4 ~ ji' 

·nj i=1 

1 "1 
A2 ,,- 2 

o-j = 2.( . -1) ~(dji -d) , 
nJ 1=1 

where nj= # time point classified as state j and dj is the differentiated series classified 
as belonging to state j, where j = {expansion} or {recession}. 
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