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Abstract: This paper concerns the problem of assessing autocorrelation of 

multivariate (i.e. system wise) models. It is well known that systemwise diagnostic 

tests for autocorrelation often suffers from poor small sample properties in the sense 

that the true size overstates the nominal size gravely. The failure of keeping control of 

the size usually stems from the fact that the critical values (used to decide the 

rejection area) originate from the slowly converging asymptotic null distribution. 

Another drawback of existing tests is that the power may be rather low if the 

deviation from the null is not symmetrical over the marginal models. In this paper we 

consider four quite different test techniques for autocorrelation. These are (i) Pillai's 

trace, (ii) Roy's largest root, (iii) the maximum F-statistic and (iv) the maximum (

test. We show how to obtain control of the size ofthe tests, and then examine the true 

(small sample) size and power properties by means of Monte Carlo simulations. 
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I. Introduction 

The history of autocorrelation testing dates back to the early 20th century, though the 

first test that gained popularity among practitioners is probably that of Durbin and 

Watson (1950). Since then, a variety of autocorrelation tests were proposed, most of 

which in the time domain. Some examples are the test suggested by Ljung and Box 

(1978) (model independent tests) and the BG test of Breusch (1978) and Godfrey 

(1978) (model based test). These are tests for auto correlated errors of univariate 

models, but some results are available for multivariate models as well. Hosking 

(1980), for example, proposed multivariate versions of the model independent tests 

while Edgerton and Shukur (1999) proposed Multivariate versions of the BG test. 

The above mentioned tests are all consistent against deviations from the null, and they 

limit their nominal size asymptotically. However, the multivariate testing approach 

has shown to behave poorly in small samples and high-dimensional models. In 

particular, the sizes of these tests are often so far from their nominal sizes that the 

power lacks meaning. For example, Edgerton and Shukur (1999) examine, among 

other things, the size of a Wald test for five-dimensional data with 25 observations, 

and report that the true size is 85% under the null hypothesis of 5% nominal size. 

Obviously, such a test is useless in small samples. 

The failure of keeping control of the size stems from the fact that the critical values 

(used to decide the rejection area) originate from the slowly converging zeroeth order 

approximation to the true null distribution. This problem may often be corrected for, 

as shown in this paper, by using better approximations or tabulated critical values, and 

so the problem of keeping control of the size may be overcome. An additional 

problem with these multivariate tests is that their powers may be rather low. One 

reason for this is that classical multivariate tests put equal weight on each marginal 

model and, within each model, equal weight on each scalar parameter. Hence, if the 

deviation from the null is only due to one marginal model or even one single element 

of the parameter matrix, the power may be quite poor. So if no prior information of 

the type of deviation from the null is available one might want to consider some 

alternative approaches. 
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In this paper we propose four test techniques for autocorrelated errors. They are based 

on (i); Pillai's trace, (ii) Roy's largest root (iii), the largest F-statistic (i.e. the 

maximum of all marginal F-statistics); and finally (iv) the largest t2 (i.e. the maximum 

of all squared elementwise t-statistics). The first of these statistics is based on the sum 

of its arguments, while the other three use the maximum of their arguments. They 

represent quite different types of tests and so their optimum properties are expected to 

differ. This paper is concerned with this matter. 

As we want our proposed testing techniques to be as general as possible, they are 

applied on Seemingly Unrelated Regression (SUR) models. The SUR model is a 

generalisation of multivariate regression with a wide field of applications (see e.g. 

Bewley (1986)) which in tum is a special case of univariate multiple regression and is 

hence quite general. 

The tests are based on a two-step procedure where the first step consists of estimating 

the regression parameters of the SUR model and then, secondly, the autocorrelation 

test is performed on a secondary (multivariate) regression model based on residuals 

resulting from the primary regression. 

In this paper we will examine the size and power properties of our proposed tests. In 

particular, we are interested in whether the tabulated critical values, designed for 

observable variables, still provide correct size when applied on residuals. Since the 

finite-sample null and non-null distributions of the four test statistics are unknown we 

will examine the properties of the tests by means of Monte Carlo simulations. 

The paper is organised as follows: The next section presents some simple tests for 

linear restrictions of multivariate models. In section III we show how the tests, 

presented in Section II, can be used to test for autocorrelation by using residuals, 

while we present some size and power simulations in Section IV. Finally, a short 

summary is given in Section V. 
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II. Testing linear restrictions 

We previously mentioned some different methods to test for autocorrelation. In this 

section we explain them in more detail. The model considered in this paper is the 

classical SUR model 

o 

= , shortly, 

o 

y= XIl+t. (2.1) 

One crucial assumption of (2.1) is that Plim(X'OX jT)=Q, where Q is a fixed 

finite matrix and O(MTXMT):= E [tt'] where T is the number of observations. It is 

possible to relax the assumption regarding Q slightly, though it suffices well for our 

purposes. The model (2.1) is a generalization of multivariate regression (i.e. when 

Xl = X2 = ... = XM ) with a wide field of applications (see e.g. Bewley (1986)), which 

in tum is a generalization of univariate multiple regression and hence quite general. 

The random variable of interest in this paper is the disturbance vector t. It is 

convenient to re-express the (MTxl) disturbances vector of (2.1) as a (MxT) 

matrix, t(MxT) = [tl ... tM r. The t:th column of this matrix, i.e. tt = [8w ··8LM r, is 

assumed to follow a first order vector autoregressive process, defined by 

(2.2) 

where E[()t] = O(MXl) , and where 

m, m' = 1, ... ,M and s,t = 1, 2, ... , T for s =I:- t. We also assume ()t to be Gaussian. In 

iid 

other words, ()t ~ N (0, 1:). The process tt is said to be stable if all eigenvalues of r 

have a modulus smaller than one (Lutkepohl (1993)), which we assume holds. 
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Formal test statistics regarding r are frequently derived from likelihood theory, 

particularly through the Lagrange Multipliers. However, except in a very special case, 

it is impossible to concentrate any parameters out of the likelihood function of (2.1), 

and numerical maximization of the function with respect to all the parameters may 

prove to be computationally difficult (Beach and MacKinnon (1979)). But assume, for 

the moment, that there exist observable counterparts of 1:, and 1:'_1 respectively, Z, 

and W" say. Then (2.2) may be re-expressed as 

(2.3) 

with the corresponding null hypothesis of no autocorrelation 

(2.4) 

Inferences regarding possible autocorrelation of (2.3) may then be drawn by using a 

classical test of linear restrictions, a well established theory, and there are several 

convenient procedures to test linear hypothesis regarding the parameter r available. 

This approach is a highly interesting candidate to likelihood-based tests. We present 

four test techniques below, and in section III we then show how these techniques can 

be used to obtain feasible tests for autocorrelation regarding (2.1). 

i. The Pillai's trace 

The usual approach to test (2.4) is to compare the restricted and unrestricted sample 

covariance matrixes of (2.3), i.e. the covariance matrix calculated from (2.3) under 

" ,.. iid 

Ho and HouHA respectively, :EHo and :EHouHA say. Then, assuming o,~N(O,:E), 

the statistic H:= T(:EHo - :EHoUHA) has a Wishart distribution (see Rao (1973) p. 549). 

In addition, Hand E:= T :EHouHA are independent. The matrixes Hand E are 

frequently referred to as the hypothesis and error matrices respectively. A variety of 

test statistics may be formulated as functions of E and H or in terms of the 

eigenvalues A(M) 2 ... 2 A(2) 2 A(I) of HE-I. One frequently used test statistic is 
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qJ:= T {n( H(H + Et)} = T {M -n(i;~oi;HoUHA)} = TL:=11 :~ (2.5) 
m 

where n(·) is the trace operator. The statistic (2.5) is known as both the Lagrange 

Multiplier (LM) statistic (c.f. Bewley (1986)) and as Pillai' s trace (c.f. Anderson 

(1984)). As T limits infinity, the statistic qJ limits a X(v) distribution under the null, 

where v is the total number of restriction to be tested (in our case, v = M2). 

However, it is well known that this asymptotic distribution does not provide control of 

the size in finite samples. For example, Pillai (1977) discusses the properties of 

several multivariate tests and their asymptotic distribution and concludes that "the 

usefulness of these asymptotic results have been very little so far for the practitioner". 

Higher order approximate null distributions of (2.5) have been supplied by several 

authors, such as Fujikoshi (1970), (1973) and Lee (1971). In particular, Muirhead 

(1982) has proposed an asymptotic null distribution of qJ up to 0 (r3
). However, 

this approximation involves a great deal of constants which need to be defined. A 

simpler approach is to use tabulated critical values instead. The (nearly exact) critical 

values have been calculated by several authors. A fair amount of these are reproduced 

in Anderson (1984), who reports a maximum difference of 3 in the third decimal 

place, as compared to the exact critical values. Therefore, these tabulated critical 

values provide a highly interesting candidate as compared to those of the limiting chi

square distribution. 

ii. Roy's largest root 

A quite different statistic to that discussed above is the frequently used Roy's largest 

root, defined by 

(2.6) 

This statistic has been suggested by Roy (1945) for testing the hypothesis of (2.4). It 

has a rather complicated null distribution (Khatri (1972)). Asymptotic null 

distributions have been proposed for A(M) by Muirhead (1982), though these are of 
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unknown order and may not be suitable in small samples. Instead, one may use the 

results of Heck (1960) who proposed that 

(2.7) 

where -k log (1- XA.) = zA. and k is a simple function of T and M . The constant zA. is 

given by Heck (1960), Table 4.1, for M < 6. The author compares the critical values 

of (2.7) with the critical values of the exact c.d.f. of A(M) , and reports that in the most 

unfavourable values of M, the error is found to be five units in the fourth decimal. For 

M ~ 6 , tabulated critical values are available in Anderson (1984), who reports similar 

precision. The statistic (2.7) has been frequently applied in classical multivariate 

analysis though it does not seem to have been appreciated in the context of diagnostic 

testing. 

iii. Largest marginal F-statistic 

When M is large, one may expect the power to detect deviations from the null to be 

rather low if the deviation from the null hypothesis is only in one or two of the M 

marginal models. One possibility to increase the power is to consider only 

equationwise tests and use the maximum of the marginal statistics. However, such a 

procedure may lead to the problem of mass significance and hence to reduction of the 

validity of the conclusions. Therefore we will instead consider a scale-transformed 

model. Assume, for the moment, that ~ (i.e. the covariance between the equations) is 

known. Then (2.3) can be transformed as ~-1/2Zt = ~-1/2rWt + ~-1/20t' or shortly, 

(2.8) 

Clearly, the marginal models of (2.8) are uncorrelated. The 1:-1/2 matrix has a 

(regular) inverse, namely 1:1/2, and hence it is of full rank and therefore the columns 

of 1:-1/2 are linearly independent. In other words, 1:-1/2r = f = 0 ~ r = O. The 

hypothesis (2.4) may then be re-expressed as 
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(2.9) 

and so the m:th component of (2.9), i.e. HOm: (f m = 0) where f m is the m: th row

vector of f, may readily be tested by calculating the classical F-statistic (Fm say) of 

the m:th marginal model of (2.8). This is done by calculating the restricted and 

unrestricted residual covariance matrixes I:.H and I:.H uH , say, from (2.8) and 
o 0 A 

forming 

(2.10) 

where G-Ho,mm and G-HouH4,mm is the m:th diagonal element of I:.Ho and 1:. HouHA 

respectively. The hypothesis HOm: (f m = 0) is then rejected at the a level if Fm :2: If! 

where p( ~M'T-M-I) ::::;; If!) = I-a, and the full hypothesis of (2.9) may then be tested 

by the statistic Fmax := m;:x { Fm } :=1 and it is rejected at the a level if Fmax :2: Ij/ where 

P ( Fmax ::::;; Ij/ ) = (1- a )I/M. Now, since 1:. is unknown, this proposed test is not 

operational, but an operational, asymptotically equivalent, version may be obtained by 

replacing 1:. by a consistent estimate (see Appendix A). 

iv. Largest r -statistic 

It may well be that the deviation from the null is dominated, not by the parameters in 

one marginal model, but in one single element of r in (2.3), i.e. a deviation from the 

null where all but one of the elements of r are zero. It may then be more favourable 

to use the maximum of the elements as a proper test statistic. Such a statistic may be 

constructed as follows: Let 

(2.11) 

~ 

where r IS the OLS estimate of the r parameter III (2.3) and 

G := V[Vec( f) ] = S-I <8l 1:.H
o

uHA where S:= plim(WW'/T). Then a test regarding 
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the scalar element r mm' is readily obtained. It may be shown that, if 1] is chosen such 

that P (x(~) :::; 1] ) = (1- a ylM2 , then the following holds: 

lim p(max{0;}M2 :::; 1]I Ho) = I-a. 
T -400 1 1=1 

(2.12) 

M2 
In other words, the hypothesis (2.4) is rejected at the a level for m~{ 0; LI ~ 1] . It 

may be shown that the results above still hold if the covariance matrix :EH uH is 
o A 

replaced by a consistent estimate, such as ±HoUH
A 

= &&'/T where & is the unrestricted 

residuals of (2.3) (Appendix B). The exact null distribution of (2.11) is related to the 

regular student's ( distribution, being a normal variate pre-multiplied by the inverse 

root of its estimated covariance matrix. Hence, a better approximation to the null 

distribution of 0; may be that of a squared student's (distribution, i.e. the F(I,T-M-I) 

distribution. Since the F(I,T-M-I) distribution limits the X(~) distribution asymptotically 

we have, analogous to (2.12), 

(2.13) 

where P ( F(I,T -M -I) :::; 1/ ) = (1 - a yl M2 • There is no guarantee that the test based on 

(2.13) has better small sample properties than that of (2.12). However, 0; , is a Wald 

statistic (see Lutkepohl (1993) p. 93), and the Wald test based on the X2 distribution 

is well known to overestimate the nominal size (Shukur (1997)). Hence, as the F(1,V2) 

distribution has higher critical values (as compared to the X(~) distribution), one may 

expect that the small sample size property of (2.13) is superior to that of (2.12). We 

will therefore determine the critical value for the maxim~m 0; statistic from (2.13) 

rather than (2.12) and, somewhat imprecisely, refer to the test as the maximum (2 test. 
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Four quite different tests of the same hypothesis have been considered above. Other 

useful methods are the well-known tests Wilks lambda (also known as the likelihood 

ratio test) and Hotelling-Lawley-test (also known as the Wald test). These tests are all 

of the same family as they put equal weight on each marginal model and may hence 

be viewed as variants of Pillai's trace and will not be included here. There are, of 

course, numerous of other possibilities to test (2.4). Both the maximum F-test and the 

maximum r -test are examples of order statistics in its simplest form. Other more 

complicated linear combinations of order statistics of {e~} or {Fm} could be chosen 

as well, since (asymptotic) distributions of such statistics are usually fairly easy to 

obtain, see David (1969) for some examples. Furthermore, it is possible to construct a 

wide class of tests based on the eigenvalues {Am} of HE-I. Perlman and Olkin (1980) 

showed that any test with an acceptance region g ( ~, ... , AM ) ::;; c, where g is non

decreasing in each argument, is unbiased. They also supply monotonicity results of 

the power functions of such tests. In this paper, however, we will limit ourselves to 

the tests considered in II.i-II.iv. These tests represent distinct types and are expected 

to behave quite differently in small samples, and one may wonder how their power 

properties differ. The power properties of the Pillai's trace test and the Roy's largest 

root test are fairly well documented. A short review is given by Anderson (1984), who 

reports that "The maximum root test has greatest power if the alternative is one

dimensional. On the other hand, if the alternative is not one-dimensional, then the 

maximum root test is inferior". Further on, none of the tests has a power function 

which dominates the others over the whole parameter space or even locally (Fujikoshi 

(1988)). In addition, the power properties of the maximum F-test and the maximum 

e 2 test are unknown. Hence, if no prior information of the type of deviation from the 

null is available, it may be difficult to decide which test to use. In this paper we will 

exemplify the possible similarities/dissimilarities among the tests. In particular, we 

are interested in whether some tests have good or bad over-all power properties, but 

we are also interested in the size properties of the tests, since the power property lacks 

interpretation if the true size of a test is far from its nominal size. We use Monte Carlo 

simulations as a tool for answering these questions. They are presented in section IV, 

but first we need to see how the four proposed tests may be applied in practice since 

we have, up to now, been assuming that the error component E is observable, which 

is never true in finite samples. This matter is discussed in the following section. 
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III. Testing for multivariate autocorrelation 

The tests discussed in Section II concerns model (2.3) with observable variables. 

Since our model of interest, i.e. (2.2), consists of an unobservable variate, our above 

discussed tests are not feasible unless I: is replaced by some observable proxy 

variable, resulting in test statistics with the same asymptotical null distributions as the 

tests of (1I.i) -- (lI.iv). One simple choice is the regular Feasible Generalized Least 

Square (FGLS) residuals, EI := YI -- XIP FGLS. They are obtained by the following 

algorithm (c.f. Srivastava and Giles (1987)): 

1. Apply OLS to (2.1) and obtain the OLS residuals, £Im say. 

lll. Define P := ( fJ-1/2 ® I) and transform (3.1): Y = X~ + I: 1---7 PY = PX~ + PI: . 

~ ~ ~ 

IV. Apply OLS to PY = PX~ + PI: and calculate the FGLS residuals 

The residuals E are easy to calculate and play the role of a proxy variable to their 

unobservable counterpart I: and may be used in a straight forward manner to test the 

null hypothesis of zero autocorrelation. It has been shown by e.g. Schmidt (1976) that 

f 

EI -HI (this derivation makes no assumption of zero autocorrelation, but implicitly 

assumes stationarity, which we have from our assumptions ofp. 4). By using EI as a 

proxy variable for 1:
1

, we may construct tests for possible autocorrelation in (2.2) by 

using the results of section II. As all these tests are functions of restricted and 

unrestricted covariance matrices (i.e. I:H and I: H uH ) we will start by showing how 
o 0 A 

these matrices may be estimated. 

An estimate of I:.HouHA (the unrestricted covariance matrix) may be obtained from the 

model 

(3.1) 
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where EI is the t:th row of the E(MxT) matrix of residuals and VI is an additive error 

term vanishing asymptotically. The model (3.1) depend on observable variables and 

play the role of an observable counterpart of (2.3). The null hypothesis of zero 

autocorrelation in (2.2) may then be tested by using the feasible model (3.1). Let EL 

be the matrix of first-order lag of E, & R I := EI and &u I := EI - I'EI_1 where , , 

I' = EE~ (E L E~) -I is the OLS estimate of r . Then we may form operational restricted 

an unrestricted residual covariance matrices of (3.1) by I:. Ho := (1/T ) L~~I & R,I&~,I and 

I:.HOUHA :=(1/T)L~~I&U,'&~,' respectively. From these covariance matrixes we may 

then calculate H:= T(I:.H - I:.H uH ), 
o 0 A 

A A 

E:=T:EH uH o A 
and the eigenvalues 

~M) 2 ... 2 ~2) 2 1(1) of H:ft-I
• We then have operational versions of the test statistics 

proposed in section II. They are defined by 

(3.2) 

and (3.3) 

A 2 { A 2}M2 
8( 2) = max 8; . 

M 1 1~1 
(3.4) 

The fourth statistic may be obtained by first pre-multiplying (3.1) by a-1/2 (defined on 

P 11) to get a-1/2E = 0--1/2rE + 0--1/2~ + 0--1/2 V or shortly 
• I /-1 / / , , 

(3.5) 
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Equation (3.5) is then an operational version of (2.8), with its corresponding test 

statistic defined by 

~ { ~ }M F(M) = max Fm 
m m=I 

(3.6) 

where F = ((T - M -l)/M) ((J -J )/J ) m ~~ ~~~ ~~~ 
where if and Ho,mm 

~ 

ifHouHA,mm is the m:th diagonal element of the restricted and unrestricted residuals 

matrices of (3.5) respectively. 

The four test statistics presented above are operational versions of their counterparts 

in Section II, and the critical values used to test Ho ; r = 0 are the same as those of 

statistics i-iv in Section II *. 

Now, there are some uncertainties related to the tests proposed above. Firstly, they are 

based on proxy variables to the unobservable error variables, whereas the critical 

values are designed for observable variables, and this may have an impact on the size 

properties. Secondly, they are expected to have different optimality properties and one 

may wonder if and how the power properties differ among the four tests. These size 

and power properties are not possible to derive analytically, as the null and non null 

distributions of the statistics are unknown in finite samples. Therefore, we will use 

Monte Carlo simulations in order to shed some light on these questions. Details on the 

simulations are presented and discussed in the following section. 

* The tabulated critical values do not cover all possible sample sizes. Typically, they are tabulated only for sample sizes 

T = 10,20, ... or similar intervalls. In order to obtain critical values for arbitrary sample sizes, we have used linear regression to 

interpolate critical values. Details are supplied in Appendix C. 
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IV. Size and power 

We previously discussed the fact that the test statistics presented in Section II are 

constructed for observable variables rather than for residuals, and this may have an 

impact on the finite-sample size properties. Also, the tests based on the largest 0 2 

statistic and the largest F statistic rely on asymptotic properties. We therefore need 

to examine their finite sample properties by Monte Carlo simulations in order to 

obtain an idea of the agreement of the tests' true sizes to the nominal sizes. Further 

on, one of our main purposes in this paper is to examine the possible differences of 

the powers of our proposed test techniques. In particular, we would like to see if some 

of the tests have superior over-all properties (i.e. have high power against a wide class 

of deviations from the null). In order to perform these examinations, we need to 

specify some models for the so-called primary regression used to generate the 

residuals on which we form the secondary regression, used to perform the 

autocorrelation tests. We will also specify some null and non-null parameterisations 

of the residual process for the power simulations. Below we present the models used 

in the simulations. 

Parameters used in the simulated models. The residuals proposed in section III do 

not depend on the regression parameters. However, they do depend on the properties 

of the regressors as well as on the error covariance matrix. Below, in Tables I and II, 

we display the choices used in our simulations. 

Table I. Factors that are used in the size and power simulations. 

Factor 7-dimensional data 3-dimensional data 

Error Covariance matrix, 1:. toeplitz( 4 2 1 .5 .2 0 0)* toeplitz( 4 2 1) • 

Number of regressors. 4 4 

Number of observations, T. 25-120 25-120 

Distribution of regressors. iid iid 

Xii ~U[O,I] Xii ~U[O,l] 

Distributions of errors. iid iid 

01 ~ N[O, 1:.] 01 ~ N[O, 1:.] 
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Table II. Parameters of model (2.2) used in power simulations. 

r 7-dimensional data 3-dimensional data 

Power model 1 toeplitz(.28 .2 .1 .05 .02 0 0)* toeplitz (.28 .2 .1)* 

Power model 2 toeplitz (.6 0 0 0 0 0 0)* toeplitz(.6 0 0)* 

Power model 3 r 2 =[.35 .2 .15 .1 .05 .04 0] r2=[.35 .2 .15] 

all other r ij = 0 . all other r ij = 0 . 

Power model 4 r 2,2 = 0.7 r 2,2 = 0.7. 

all other r ij = 0 . all other r ij = 0 . 

• The toeplitz operator provides a convenient technique for choosing the elements in high-dimensional 

matrix-valued parameters. The upper triangle of the symmetric matrix A = toeplitz ('fI" ... , 'flu) is 

defined by its diagonal elements Am", = 'fI" m = 1, ... , M, the first off-diagonal by 

Am(",+,) = 'fI" m = 1, ... , (M -1) , the second off-diagonal by A m(m+2) = 'fIJ' m = 1, ... , (M - 2) and so on. 

The parameters in Table II represent four different power parameterizations, one 

where (nearly) all elements of r deviate from zero (model 1), one where only the 

diagonal elements of r deviate from zero (model 2), one where only one marginal 

model deviates from zero (model 3) and one model where only a single element of r 
deviates from zero (model 4). 

When considering table III, we see that the Pillai's trace, the largest root test and the 

maximum F test hold control of the size even in the smallest sample size, staying 

within our defined acceptable range of ±I % from its nominal size. Unfortunately, the 

maximum t
2 test does not quite control the size, it needs about 50 observations before 

it is reasonable. Hence the power properties of the maximum t 2 test should be 

interpreted with care in small samples. Moving on to Table IV, the power properties 

of the tests on the 3-dimensional data do not differ markedly. However, the power 

differs up to a good 10% in the 7-dimensional process. The largest root test has higher 

power than the Pillai's trace test over the whole range of sample sizes. 
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Table IV. Powerfor modell, M=3. Powerfor modell, M=7. 
Nobs Pillaitrace Largest root Max t2 MaxF Pillaitrace Largest root Maxt2 MaxF 

25 .274 .321 .193 .282 .281 .307 .336 .387 
30 .414 .464 .289 .399 .446 .549 .409 .536 
35 .543 .586 .394 .503 .629 .737 .553 .674 
40 .662 .699 .491 .605 .782 .857 .636 .780 
45 .742 .778 .575 .687 .893 .929 .717 .857 
50 .820 .844 .660 .754 .954 .966 .809 .909 
60 .911 .923 .778 .859 .994 .994 .909 .969 
80 .984 .986 .919 .962 1 1 .987 .997 
100 .998 .997 .977 .991 1 1 .998 1 
120 1 1 .994 .998 1 1 1 1 

Table V. Powerfor model 2, M=3. Powerfor model 2, M=7. 
Nobs Pillaitrace Largest root Max t2 MaxF Pillaitrace Largest root Maxt2 MaxF 

25 .631 .535 .398 .509 .521 .309 .397 .509 
30 .835 .729 .593 .707 .791 .549 .513 .707 
35 .935 .859 .761 .841 .945 .756 .658 .844 
40 .981 .940 .871 .928 .992 .884 .792 .927 
45 .995 .973 .937 .972 .999 .952 .890 .968 
50 .998 .988 .965 .986 1 .984 .947 .988 
60 1 .999 .994 .998 1 .999 .992 .998 
80 1 1 1 1 1 1 .999 1 
100 1 1 1 1 1 1 1 1 
120 1 1 1 1 1 1 1 1 

Table VI. Powerfor model 3, M=3. Powerfor model 3, M=7. 
Nobs Pillaitrace Largest root Max t2 MaxF Pillaitrace Largest root Maxt2 MaxF 

25 .233 .272 .144 .215 .102 .100 .152 .100 
30 .337 .386 .210 .316 .131 .157 .119 .140 
35 .443 .498 .281 .429 .177 .216 .129 .212 
40 .556 .610 .367 .531 .218 .290 .156 .292 
45 .651 .703 .451 .630 .271 .365 .180 .376 
50 .731 .783 .533 .710 .328 .467 .226 .474 
60 .853 .888 .663 .837 .451 .631 .331 .641 
80 .961 .975 .858 .957 .694 .867 .567 .860 
100 .993 .996 .945 .990 .869 .966 .769 .967 
120 .999 1 .981 .998 .953 .994 .892 .993 
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Table VII. Powerfor model 4, M=3. Powerfor model 4, M=7. 
Nobs Pillaitrace Largest root Max t2 MaxF Pillaitrace Largest root Maxt2 MaxF 

25 .441 .541 .446 .467 .120 .120 .172 .147 
30 .642 .725 .640 .653 .174 .225 .204 .258 
35 .794 .856 .791 .793 .243 .355 .307 .403 
40 .893 .929 .886 .884 .326 .488 .456 .535 
45 .946 .967 .946 .939 .425 .613 .591 .658 
50 .974 .985 .969 .969 .511 .724 .713 .767 
60 .995 .997 .993 .993 .692 .880 .870 .891 
80 1 1 .999 1 .913 .985 .982 .983 
100 1 1 1 1 .989 .999 .999 .998 
120 1 1 1 1 .999 1 1 1 

In Table V, the opposite effect occurs. Here, the Pillai's trace test is dominating with a 

power difference of up to a good 10%, and the same pattern is shown in the 3- and 7-

dimensional models. Further on, in Table VI, where only one marginal model deviates 

from the null, the maximum F test and the largest root test are dominating and the 

difference between the two tests is only about 5% at the most, in favor of the largest 

root test. The Pillai' s trace test is markedly inferior to the maximum F test and the 

largest root test in the 7 dimensional model. Finally, in Table VII, some really 

interesting facts are visualized. In this parameterization, where only one single 

element deviates from the null, the largest root test is only slightly better than the 

Pillai's trace test in the 3-dimensional data. Though for the 7-dimensional data the 

power differs by up to 25%, in favor of the largest root-test. Hence the difference in 

power among the tests may be quite large in some parameterizations. Also, note that 

the maximum F test has a power function only slightly lower than that of the largest 

root test. In all, the largest root test seems to have the highest power for all models 

except when precisely the marginal parameters deviate from zero (i.e. model 2) where 

Pillai's trace test is dominating. A somewhat surprising fact though, is that the 

maximum P statistic does not dominate the power functions for any parameterization. 
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v. Summary 

In this paper we have proposed four simple tests against multivariate autocorrelation 

to be used in SUR models or multivariate regressions. Two of them, namely the 

Pillai's trace test and Roy's largest root test are frequently applied in multivariate 

analysis but do not seem to have been appreciated in diagnostic testing. One reason 

for this may be that the convergence rates to their asymptotic null distributions are 

rather slow, in particular in high dimensional data. We have here demonstrated that 

this size problem is readily overcome by using tabulated critical values (available in 

the literature). Even though these critical values are derived for observable data, we 

have shown in this paper that they still provide good control of the size when applied 

on residuals. When it comes to the other two tests, the largest j2 test and the largest F 

test, our simulations have shed some light on their properties as well. The largest j2 

test has shown to be inferior to the other tests in terms of size. It underestimates the 

true size in the three-dimensional case while it overestimates in the seven-dimensional 

models. In contrast, the size of the largest F test stays in close proximity to the 

nominal size, even in high dimensional data and small samples. 

Furthermore, we have demonstrated that the power of the different tests may be quite 

different, depending on the type of deviation from the null. In particular, in one of our 

power comparisons the difference between the powers of two tests was as high as 

25%. Hence the choice of test may be of crucial importance. Expectedly, no single 

test has uniformly highest power. Nevertheless, in these simulations, we found that 

two tests have a good over-all power property. These are the largest root test and the 

largest F test. Unfortunately though, they do not have simultaneous maximum powers 

for the same type of deviations and so there is no obvious choice of test for a situation 

where one does not know much of the type of possible deviation from the null. 

However, in terms of simplicity, the largest F test may be preferable since it does not 

require tabulated critical values. Also, the power of this test is not far below the power 

of the largest root test in the situations where the latter is dominating. Hence, from 

this point of view, the largest F test may be preferable in an applied study. 

Acknowledgements: The author is indebted to Eva Andersson and Ghazi Shukur for 

valuable comments on earlier versions of the manuscript. 
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Appendix A. 

In Section II.iii. we considered the asymptotic distribution of Fy;"max:= m:;x { Fy;"m } :=1 

where Fy;"m is the F-statistic of the m:th marginal model of the transformed model 

(2.3), i.e. r.-I/2Z/ = r.-I/2rw/ + r.-I/2~/, in matrix form Z = fw + ii and the index r. 

of Fy;, indicates that the true covariance matrix has been used. Now, consider the 

corresponding statistic Fi:.,max:= m:;x { Fi:.,m } :=1 where the true covariance matrix has 

~ p 

been replaced by an estimate such that r. ~ r. . Then the following holds: 

f ~ 

Proposition 1: F.., ~Fy;,max . .. ,max • 

Proof: Firstly, consider the untransformed model Z = rw + ~ and its (OLS) residual 

vector & = ( z - fw) = z - ZW' (WW't w with corresponding residual covariance 

matrix &&'/T. For the case of restricted covariance matrix, W only consists of a unit 

vector (corresponding to the intercept parameter) and there is hence no need to treat 

the restricted and unrestricted covariance matrix separately. Clearly, under the null 

hypothesis, (&&'/T)~ r. HO. Hence (&&'/T) = 0(1), both for the restricted and 

~ ~ ~ 

unrestricted estimate. Next, consider the transformed model Z = rw + ~ and its 

corresponding residual vector 

g =( z-rw)= Z-ZW'(Ww't w = r.-I/2 (z-ZW'(WW't w)= r.-l/2&. (AI) 

Hence the residual covariance matrix of the transformed model is 

(~y;,~~/T) = r.-I/2 (&&'/T) r.,-!/2 where the index r. of iiy;, indicates that the true 

covariance matrix r. have been used in the transformation Z ~ r.-I/2Z. The residual 

covariance matrix of the feasible transformed model may then likewise be written as 

(~i:.~i:/T)=:t-I/2(&&'/T):t1-!/2. Now, we have by assumption :t~r. and hence 
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i:-1/2 ~ r,-1/2 or equivalently, (i:-1/2 - r,-1/2 )= 0(1), and so i:-1/2 = r,-1/2 + 0(1). We then 

have 

Hence, 

(&t&~/r) -( &};&~/r) = i:-1/2 (&&'/r) i:1-I/2 - r,-1/2 (&&'/r) r,1-I/2 = 
, 

(r,-1/2 + 0(1) ) (&&'/r) (r,-1/2 +0(1)) -( r,-1/2 (&&'/r)r,1-I/2) = 

0(1)( &&'/r) r,1-I/2 + r,-1/2 (&&'/r) 0(1) + 0(1)( &&'/r) 0(1) = 

0(1 )o( 1) + 0(1)0(1) + o( 1)0(1) 0(1) = 0(1). 

(A2) 

(A3) 

both for the restricted and unrestricted covariance matrix (under the null). Next, 

where the subscripts indicate that the residuals 0 have been calculated under Ho and 

Ho uHA respectively, assuming r, is known. Similarly, H t and Et are the matrices 

corresponding to H}; and E};, though with r, replaced by i:. From (A3) we have 

that 

p p 

H t - H}; ~ 0, Et - E}; ~ 0 . (A4) 

Further, we have, from Rao (1973) p. 458 , F};,m =(H};,mm/Vl)/(E};,mm/V2)~F(VI,v2)' 

m = 1, ... ,M. Similarly, define Ft,m = (Ht,mm/V1 )/(Et,mm/V2). Then, following Rao 

p f f 

(1973), Xn-Y,,~O, Y,,~Y, =>Xn~Y' and hence as F};,m ~F(vl,V2) using (A4) we 

established that the F - statistic of the m:th marginal model of the feasible 

transformed model (i.e. Z H i:-1/2Z) have asymptotically the same distribution as the 

F - statistic of the theoretical transformed model (i.e. Z H r,-1/2Z) G. 
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Appendix B. In section II.iv we considered the asymptotic distribution of 

M2 
8i.max := m~{ 8~.1~1 where 8I:,i is the i:th element of the scaled variate 

0I::=~G~1/2Vec(r), where GI: :=8-1 ®~HoUHA' 8:= plim(WW'/T) , ~ =Cov[o], 

and 8 and ~ are positive definite (p.d.) by assumption. Note that if 8 is p.d., then so 

is 8-1 (Harville (1997) p. 214). Furthermore, GI: is p.d. since 8-1 and ~ are p.d. 

(Harville (1997) p. 369). Now, consider the estimate Gi; = (WW'/Tt ®r.HoUHA 

where IS any estimate such that 

0i; :=~GtI/2Vec(f'). Further, let 17 be chosen such that P(X0) ::;17)=(1_aY/M
2 

where a is the test level desired. Then the following holds: 

Proposition 2: lim P (max {8~ }M2 ::; 17) = 1-a . 
T --+00 1 ,I ,~I 

Proof: Firstly, we note that, if h: IRk ~ IR' and g: IRm ~ IRn are continuous 

functions, and x IS a finite-dimension random vector, then 

e e p p 

XT ---+ X=> h(XT )---+h(X) and XT ---+ X=> g(XT)---+ g(X) hold (Shao (1999) p.42). 

Now, it IS well known that under some quite general conditions, 

~ (~ )£ ~ p "TVec r-r ---+N(O,G) where G :=8-1 ®~, (Lutkepohl p. 66). Since ~---+~ and 

p 

(WW'/T)---+8 by assumption, it follows by the product rule that 

Gi; = (8-1 ® r. )~(8-1 ® ~) = GI:. Unique continuous versions of the square root ofa 

p.d. matrix, G 1/2 say, are the Cholesky square root and the symmetric p.d. square root 

(Fahrmeir and Kaufman (1985) p. 348). Hence, if we restrict the matrix root to be of 

this class, we have G ~2 ~ G ~2 , and since the matrix inverse mapping is continuous 

(Davidson (1994) p. 287) we have Gi1/2 ~G~1/2. Hence, by the product rule for 

central limit theorems (Hamilton (1994) p. 185), we have 

e 
and so E\,; ---+ iidN (0,1) . Since 
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e 
h (X) = X2 is continuous, we then have eL ~ X(~) where eL is the square of the 

i:th element of 0±. Furthermore, as g(X) = max(X) is continuous at X (for a 

e M2 e M2 
continuous variable X), it follows that 0~ ~ X(I) => m~x { eL } i=1 ~ m~x { X0),i } i=1 

where X(I) is an (M2 xl) vector of iid X(~) variates. In other words, we have 

established that lim p(max{e~}M2 '5:, k) = p(max{X(~)'i}M2 '5:, k) for some constant 
T --->00 1 1:,1 1=1 1 1=1 

- ( -) 11M2 choose k such that P X(~-a,l),i '5:, k = (I-a) which completes the proof 0. 

Appendix C: 

The following linear regression function was used to interpolate critical values for the 

Roys'lagest root statistic and Pillai' s trace statistic: 

Let ke,M,T be the "observation" (originating from a table) of the critical value for the 

statistic () for M-dimensional data for sample size T. Then we have used the linear 

regression model 

(e1) 

and the corresponding estimated models (parameters estimated with ordinary least 
square), used to interpolate are; 

Roy's largest root: kX,7,T = 1.314-0.231n(T) + 0.0024(zn(T))2 , R;dj. = 0.993. 

13 "observations" were available for interpolation range 5 '5:, T '5:, 100 • 

Pillai's trace: kX,3,T = 2.207 + 1.3781n(T)-O.l42(ln(T) t, R;dj. = 0.997 . 

10 "observations" were available for interpolation range 14'5:, T '5:, 124. 

kX•7,T = 4.283 + 1.971ln(T)-O.l93(ln(T))2 , R;dj. =0.999. 

10 "observations" were available for interpolation range 18 '5:, T '5:, 128 . 
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