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ABSTRACT 

Timely decisions about when to trade assets are important in financial management. 
In this paper we consider prospective decision rules that aim at extracting early signals 
about what decision to make, e.g. sell an asset. The decision rules are based on 
prospective monitoring of a statistic in order to detect a regime shift, e.g. a turn in the 
trend of asset prices. In the finance literature there are several suggested prospective 
decision rules that aim at detecting a turn in the price, for example the Filter rule and 
the rules that use moving averages. Another approach that has been proposed is the 
hidden Markov model (HMM) approach, where the price level is assumed to change 
between an upward and a downward trend according to a Markov chain. An approach 
not often used in a financial setting is statistical surveillance, which deals with the 
theory and methodology of online detection of an important change in the underlying 
process of a time series as soon as possible after it has occurred. In this paper inferential 
differences and similarities between statistical surveillance, two variants of the Filter 
rule, a rule based on moving averages and an HMM approach are investigated. A new 
non-parametric and robust approach never used in financial settings is proposed. 
Further, the purpose is to enhance the use of proper evaluation, where the timeliness of 
the alarm is considered. Evaluation measures and optimality criteria commonly used in 
statistical surveillance are reviewed and compared with those generally used in a 
financial setting. The methods are evaluated on Hang Seng Index. 
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1 INTRODUCTION 

The aim for investors in the financial markets is to maximize a utility function that 
reflects the expected wealth, e.g. the expected net return on transactions. In a 
prospective framework, we have to make optimal sequential decisions whether to make 
a transaction or not. The approach considered in this paper is to monitor an indicator 
with the aim of detecting the optimal time to stop the monitoring and trade a certain 
asset, for example shares of a stock index fund or currency. The indicator is a statistic 
associated with the pricing process of the asset of interest. It is reasonable that optimal 
times to trade coincide with important events such as changes (regime shifts) in the 
stochastic properties of the indicator, for example changes in parameters of the model 
of the process. Then, finding the optimal time to stop the monitoring and trade is 
equivalent to the timely detection of a regime shift. Different types of indicators, 
regime shifts and model specifications are briefly discussed in section 2. The statistical 
methods discussed below are general and can detect any regime shift in any variable 
(the level or variance of the price, etc). 

According to one point of view, namely the efficient market hypothesis, the financial 
markets are arbitrage-free and hence there is no point in trying to determine the optimal 
transaction time. According to the "First fundamental asset pricing theorem", the 
market is arbitrage-free if and only if the asset prices are martingales (see Shiryaev 
(1999), p. 413). This implies that all information about the expected price one time unit 
in the future is reflected in the current price. Many agents in the financial markets reject 
the hypothesis and argue that historical data of financial markets contain information 
that is valuable for trading decisions. 

In this paper we work under the assumption that there exist temporary trends in the 
financial markets and that it is possible to identify regime shifts (turning points) where 
the trend changes direction by utilizing incoming data. 

Many non-linear approaches have been suggested where the regime is determined by 
observable variables and a change has been interpreted as a change in one or several 
parameters of a time series model. Smooth transition autoregressive (STAR) models 
(see e.g. Tedisvirta (1994) and Van Dijk et al. (2002)) is an example of a family of such 
models. Monitoring in order to detect regime shifts is different from modeling shifts. In 
monitoring the estimation of parameters is not the main issue, but rather to make 
repeated decisions in order to determine, at each time, whether a change in an important 
parameter, for example the expected value, has occurred or not. The inference situation 
is one of surveillance where the aim is quick and safe detection of a change. Repeated 
decisions are made, the sample size is increasing, and the null hypothesis is never 
accepted. Thus, the methodology of statistical surveillance is appropriate. For general 
reviews on statistical surveillance, see Frisen and de Mare (1991), Wetherhill and 
Brown (1991), Srivastava and Wu (1993), Lai (1995), Frisen and Wessman (1999) and 
Frisen (2003)). Statistical process control and monitoring are other names for methods 
with this goal. A short review of the theory and methodology of statistical surveillance 
is given in section 3. 

Measures used for evaluating how well a model describes data may be inappropriate 
for evaluating monitoring methods. The mean squared error (MSE) or the Brier 
probability score (also referred to as the quadratic probability score) are often used to 
describe the goodness of fit of a model. In a monitoring situation, the timeliness of an 
alarm signal, that is the relation between the time of alarm and the time of the change, 
is important. MSE or the Brier probability score does not take into account the order of 
the observations and hence do not reflect timeliness. Furthermore, Leitch and Tanner 
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(1991) argue that measures like the MSE is not necessarily closely related to the 
profitability of forecasting based decisions. Therefore, conventional measures of 
goodness of fit may not be appropriate in this setting. 

Since timeliness is crucial in a trading setting, the data should not be analyzed in a 
retrospective setting but in a prospective framework where incoming data are analyzed 
online and sequential trading decisions are made. However, a lot of work concerning 
detecting regime shifts in financial time series has been made in a retrospective setting, 
see e.g. Wichern et al. (1976), Hsu (1982), Inclan and Tiao (1994) and Chen and Gupta 
(1997). However, we will not consider a retrospective setting. 

Prospective decision rules used in finance in order to find optimal times to trade are 
often referred to as technical trading rules (or technical analysis, see e.g. Pring (1985) 
and Edwards and Magee (1992)). The general goal, according to Lo (2000), is to detect 
regularities in the time series of prices by extracting nonlinear patterns from noisy data. 
Whether prospective decision rules can generate profits that are higher than would be 
expected if the efficient market hypothesis holds has been investigated extensively. 
Whereas e.g. Fama and Blume (1966) and Szakmary and Davidson III (1999) conclude 
that profits cannot be made when transaction costs are taken into account, many studies 
give support for the profitability of the prospective framework, see e.g. Sweeney 
(1986), Sweeney (1988), Brock et al. (1992), Levich and Thomas (1993) and Neely et 
al. (1997). Though these studies use a prospective setting, no reference is made to the 
statistical surveillance framework. The decision rules (or trading rules) discussed in this 
paper are those which include an inferential aspect regarding a change in the process. 

Neftci (1991) points out that many of the decision rules referred to as technical 
trading rules are ad hoc and the statistical properties of the methods are often unknown. 
A consequence of this, as argued by Dewachter (1997) and Dewachter (2001), is that 
the statistical source of any possible profitability is not identified. A methodology that 
is perfectly suited for the prospective decision making situation in trading is statistical 
surveillance. Since the properties of methods of statistical surveillance have been 
investigated extensively, an integration of the theory and methodology of statistical 
surveillance and financial decision rules may be fruitful. Statistical surveillance has, 
however, not been used a lot, perhaps as a result of the cultural differences, e.g. 
linguistic barriers between financial decision rules and statistical surveillance. The 
latter has mostly been considered in medical and quality control settings. 

Lam and Yam (1997) claim to be the first to attempt to link up methods of statistical 
surveillance with those of technical trading rules. Previous to Lam and Yam (1997), 
Theodossiou (1993) applied a method of statistical surveillance for detecting business 
failures. Recent studies that relate statistical surveillance to financial applications are 
Severin and Schmid (1999), Schipper and Schmid (2001a), Schipper and Schmid 
(2001 b), and Steland (2002). These papers will be discussed in section 4.l. 

The purpose of this paper is to investigate the inferential differences and similarities 
between some methods of statistical surveillance and some prospective decision rules 
used in finance. The decision rules used in finance are here represented by two different 
variants of the Filter Rule suggested by Alexander (1961) and Lam and Yam (1997), 
two rules based on moving averages and a rule that use a hidden Markov model 
(HMM). Furthermore, the purpose is to enhance the use of proper evaluation. 
Evaluation measures and utility functions commonly used in statistical surveillance are 
reviewed and compared with those generally used in financial settings. 

The performance of decision rules can be evaluated in different ways, for example 
by means of different case studies or by a simulation study. A common feature in the 
finance literature on evaluation of decision rules is the use of different case studies. In 

3 



this paper evaluation is made by one set of real data, the Hang Seng Index. The pros 
and cons of evaluation by case studies as compared with evaluations by the stochastic 
properties of a model are discussed. 

The plan of this paper is as follows. Examples of indicators, regime-shifts, models 
and events to be detected are discussed in section 2 whereas section 3 briefly describes 
the theory and methodology of statistical surveillance. In section 4 some of the recent 
studies that relate statistical surveillance to financial applications are described and 
similarities and differences between some methods proposed in the literature on finance 
and some methods of statistical surveillance are discussed. Some of the methods are 
compared in section 5 by means of a case study. Concluding remarks are given in 
section 6. 

2 REGIME SHIFTS, INDICATORS AND MODEL SPECIFICATION 

Examples of different indicators and regime shifts to be detected are given in section 
2.1. However, for all types of indicators and regime shifts the problem can be treated in 
a general framework. But in order to make the discussion more concrete we will limit 
the discussion to a specific problem. We will consider the problem of timely detection 
of a turning point in the trend of a univariate cyclical process. This type of regime shift 
is often considered in the literature on financial decision rules due to the assumption of 
trends in the financial markets. The specification of models when the regime shift is a 
turning point is made in section 2.2 and the specification of events to be detected is 
made in section 2.3. 

2.1 Examples of regime shifts and indicators 

The stochastic process under surveillance is univariate or multivariate. The indicator 
can be constructed from one or several processes that are leading with respect to the 
variable of interest, e.g. the asset price level. The indicator can e.g. be calculated from 
prices of other assets. For trading based on indicators that are believed to lead, see e.g. 
Boehm and Moore (1991), Moore et al. (1994) and Brooks et al. (2001). In Boehm and 
Moore (1991) and Moore et al. (1994), a leading index is monitored in order to extract 
early signals of turning points in order to trade stock indices. 

When several processes are monitored, there are two obvious ways to simplify the 
multivariate situation. One is to reduce the processes into one process by some 
summary statistic. Wessman (1998) demonstrates that the minimal sufficient statistic 
for detecting regime shifts in several variables with the same change point (or known 
time-lag) is univariate. The other approach is to monitor each process separately and 
then combine the information. For reviews on multivariate surveillance, see Wessman 
(1999) and Frisen (2003). 

Risk is important in financial analysis, e.g. in portfolio management and in option 
pricing. A sudden increase in the risk level might hence be the regime shift to detect. 
The estimated variance can be interpreted as a measure of volatility, which itself is a 
measure of risk. In e.g. Schipper and Schmid (2001b) the monitoring of the variance is 
considered in a financial context. In the literature on surveillance of the variance, 
standard methods, usually used for monitoring the process mean, are applied on 
different transformations of the variance (Frisen (2003)). Two examples are the 
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standard deviation (von Collani and Sheil (1989)) and the logarithmic of the variance 
(Chang and Gan (1995)). It has been found that a large negative change in the price is 
often followed by an increased variance (see Franses and van Dijk (2000), p. 16). This 
phenomenon is called the Leverage effect (Black (1976)). In Schipper and Schmid 
(2001a) the aim is to simultaneously detect an additive outlier and a changed variance. 

According to market microstructure theory, see e.g. O'Hara (1995), the time 
between events associated with assets reveal information about the state of the market. 
Thus, the arrival time or the counting process of transactions could be an indicator to be 
monitored in order to detect a change in the intensity parameter. In Vardeman and Ray 
(1985) and Gan (1998) exponentially distributed arrival times are under surveillance. 
However, a realistic model of the arrival times of transactions is complicated and an 
exponential distribution might be too simple, see e.g. Engle and Russell (1998) and 
Zhang et al. (2001). In Rydberg and Shepard (1999) a model of the counting process of 
transactions is proposed. A Poisson distribution is used where the intensity has a 
structure similar to a generalized autoregressive conditional heteroscedasticity 
(GARCH) process. In Sonesson and Bock (2003) an optimal surveillance method for 
the arrival time and the counting process of an adverse health event is derived under the 
assumption of a Poisson process that is homogeneously conditional on the states. 

Associated with each transaction, marks are often available and are said to be related 
to the intensity (see Easley and O'Hara (1992) and Dufour and Engle (2000)). Examples 
of marks are the volume that is being traded, the level of the ask, bid and settling price 
and which traders that took part in the trade. A monitoring system that incorporates 
both the arrival times (or the counting process) and several marks might be treated in 
the context of multivariate surveillance. 

Another example of an indicator is the residuals of a time series model where the 
change is in the stochastic properties of the residuals. Yet another example is a turning 
point in a cyclical process to be described below. 

2.2 Models used when the regime shift is a turning point 

A turning point, i.e. a change in the monotonicity in a cyclical process is the regime 
shift considered for exemplification here. Examples of such processes are the price 
level of the asset of interest or the price level discounted by the opportunity cost rate 
that is the return you could earn on alternative investments of similar risk. The indicator 
that is being monitored could be a process Y, e.g. the price of an asset, or some 
transformation, e.g. the logarithmic transform or the first difference. For simplicity the 
process under surveillance is generally denoted X, where X can be achieved by a 
transformation (InY, Y(t)-Y(t-1) or InY(t)-lnY(t-1)). The situation under study is one 
where we assume a linear model for X, 

X(t)=Jl(t)+s(t) (1) 
where Jl(t) is the trend cycle and s(t)-iid N[O, (j2], t=l, 2, .... 

The assumption in (1) is in general too simple for financial data and extensions 
could be motivated by the features of the data or economic theory. Model (1), however, 
is used here to emphasize the inferential issues. The problem of autocorrelation is 
briefly discussed in section 5.3.3. Additional problems of seasonality, multivariate 
processes and additional trends in a setting of surveillance is discussed in Andersson et 
al. (2002a). Time series of asset prices are known to be severely heteroscedastic, which 
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should be taken into account by assigning the available observations at time t, {x(1), 
x(2), ... , x(t)}, different weights in the analysis. 

The aim is to detect a change from an upward trend to a downward trend, i.e. a tum. 
When X(t) is an undifferentiated series, then the aim is to detect a tum in Il. The 
examples and discussion henceforward will be for a peak (the best time to sell an asset), 
but the results also hold for detecting a trough (the best time to buy an asset). For the 
vicinity of a peak, Il is monotonic within each regime. That is 

E[X ]- . {Il~: 1l(1):::;; ... :::;; Il(t), 
t -Ilt· CT 

III :1l(1):::;;··· :::;;Il('t-l)andll(r-l)~ ... ~Il(t),t~'t 

t<'t 
(2) 

where Xt={X(1), ... , X(t)} and't is the unknown time of the change. With a random 
time of occurrence, Il is a stochastic process. 

Both nonparametric and parametric specifications will be considered. The 
parametric specification of Il is a piecewise linear regression 

E[X(t)]=Il(t): {Il D (t): ~o + ~l • t, t < 't (3) 
Ilc,(t): ~o +~1·('t-l)+~2 . (t-'t+l), t ~'t' 

where ~1;::0, ~2<0 when the turning point is a peak. The expected value in (3) holds also 
when X(t) can be described as a random walk with drift, where the value of the drift 
parameter changes from ~l to ~2 at time t='t. 

When X(t) is a differentiated process, then the monitoring can be made by 
constructing a system for detecting a shift in the level of Il. For example, if the 
undifferentiated process has the expected value in (3), then the expected value of X is 
constant conditional on the state, i.e. 

(4) 

where ~l;:: 0 and ~2<0. This assumption about the process is made in some HMM 
approaches, see e.g. Layton (1996), Ivanova et al. (2000) and Layton and Katsuura 
(2001). When the observations are independent over time, as in (1), the expected values 
of the differentiated series in (4) imply the linear functions in (3) for the 
undifferentiated series. If the undifferentiated process is a random walk with drift, or 
another process with an expected value as in (3), then (4) is valid for the differentiated 
series. Transformations can also affect the dependency structure. The process X is 
independent if the undifferentiated process is a random walk with drift. However, if the 
undifferentiated process is independent as in (1), then the process X will not be 
independent. Instead, X will be a moving average process of order one with parameter 
S= 1, so the stochastic part of X is 

s(t)= ro(t)-S·ro(t-l). 
The tum may not be abrupt but smooth or gradual. Economic agents may not all act 

promptly and uniformly at the same moment; their response to news requiring action 
may contain delays (Tedisvirta (1998)). For literature on surveillance of a gradual 
change, see Gan (1992), Svereus (1995) and Chang and Fricker (1999). 
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2.3 Event to be detected 

For each decision time s, a decision is made whether data indicate that a regime shift 
has occurred or not, i.e. whether 't is in the future or not. Formally in the methodology 
of statistical surveillance, this is expressed as discriminating between the in- and out-of­
control events, expressed as C(s) and D(s), respectively. C(s) and D(s) can be specified 

in different ways. The most frequently studied case is when C(s)={ U:=I C t }={ ~ s}, 

where Ct={'t=t}, i.e. that the change has occurred and the complement, and D(s)={ 't>s}. 
When the change is a peak and /l is given as monotonic functions (see (2)), then C(s) 
and D( s) are defined as 

D(s): /l(I) ::; ... ::; J.l(s) 
C (s): J.l(I) ::; ... ::; J.l('t-l) and J.l('t-l) ~ J.l('t) ~ ... ~ J.l(s) 

where 't={ 1, 2, ... , s} is the time of the change and at least one inequality is strict in the 
second part. Under the parametric assumption in (3), we specify C and D as 

D(s): J.l(t) = ~O+~l·t, t={ 1, 2, ... , s} 

C(s) = { U:=I C('t) }, 

where C('t): J.l(t) = ~o+~d't-l)+~2·(t-'t+l), t={ 1,2, ... , s}. 
One approach to the monitoring is to stop as soon as there is an alarm and then start 

the monitoring from scratch in order to detect the forthcoming tum. Thus, the 
monitoring is only made for the next peak, and knowledge of the type of the next tum is 
assumed. Only data from the current phase (upward or downward trend) is used in the 
monitoring. This will be contrasted to methods presented in section 4.4, where the 
inference situation can be described as one of classification of the observations to 
states. An alarm is called as soon as the system indicates a transition between states. In 
the classification situation we hence want to detect all possible transitions. The 
specification of C and D for this approach is 

D(s): J.l(s-I)::; J.l(s) (5) 
C(s): J.l(s-l) > J.l(s). 

When the system indicates a transition between the states, a decision to trade might be 
taken but thereafter the monitoring is not restarted but continued. This means that less 
information is used (nothing about the type of tum). Inferential differences and 
similarities between the two approaches were investigated in Andersson et al. (2002b). 

3 A SHORT REVIEW OF THE THEORY OF STATISTICAL SURVEILLANCE 

In the theory of statistical surveillance a method for change-point detection is 
developed from an optimality criterion. This means that the "best" alarm system is 
developed, conditional on the type of change and the cost of different actions. An 
optimal alarm set A(s) with the property that, as soon as Xs belongs to A(s) we infer 
that C has occurred, is constructed. Usually this is done by using an alarm system, 
consisting of a function p(xs), and a limit g(s), where the time of an alarm, tA, is defined 
as tA=min{s: p(xs»g(s)}. 
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3.1 Optimality and measures of evaluation 

It is important that the alarm system utilizes information in an optimal way. Desired 
properties of the rule are expressed as optimality criteria, which can be formulated in 
terms of utility functions. For a situation with one decision (hypothesis testing) the 
probabilities of type I and type II errors are measured by the size and power, 
respectively, i.e. there is a trade-off between these two probabilities. In a monitoring 
situation with repeated decisions, the time aspect (the time of the signal, tA, in relation 
to the time of the change 't) is important and must be considered in the evaluation. Here 
we have a trade-off between false alarms and delay of motivated alarms. The 
specification of utility determines the severity of the penalty for false or delayed 
alarms. The purpose of this section is to present a utility function and different 
measures used to evaluate decision rules. 

In statistical surveillance the type I error is usually characterized by the average run 
length conditional of no change, ARLo=E[tA I 't=oo], the median run length conditional 
of no change, MRLo=Median[tA I 't=oo] or the probability of a false alarm (PFA), 

P(tA <'t) = Z::l('t = i)· P(tA < il't = i). 

The evaluation of a method is made conditional on a limit g(s) that yields a certain 
ARLo (or MRLo or PFA). 

The ability to detect a change within d time units from 't is reflected by the 
probability of successful detection 

PSD(d, t)=P(tA-'tsd I tA~'t, 't=t), (6) 
which was used by e.g. Frisen (1992) and Frisen and Wessman (1999). PSD(d, t) is 
calculated conditional on the alarm coming after the turn. However, as a warning, 
signals right before the peak are also useful. The detection probability around the peak 
can be evaluated by 

P(ltA -'tl<d), 
where d is a constant integer. Bojdecki (1979) gives the solution to a maximization of 
P(ltA-'tI<d) with respect to 'to In his solution only the d latest observations are involved 
(Frisen and de Mare (1991)). When the process under surveillance is independent and 
normally distributed, the moving average method of statistical surveillance (see section 
3.2) with a window width d can be shown to be a special case of the solution of 
Bojdecki (1979) (Frisen (1994)). Another important aspect in the evaluation is the value 
of an alarm at a certain time point. The predictive value of an alarm at time t, 
PV(t)=P('ts tltA=t), suggested by Frisen (1992), reflects the trust you should have in an 
alarm at a given time point. If the predictive value is low, the alarm system is not 
reliable. 

The "power" of a method of surveillance is measured through measures that reflect 
the timeliness. A desirable property would be a short delay between the time of a 
change and the time of an alarm. A widely used optimality criteria in the literature on 
quality control is the minimal ARLl=E[tA I 't=I] for a fixed ARLo. This criterion only 
considers changes that occur at the start of the monitoring ('t=1), which is not realistic. 
The evaluation should also take into account 't> 1 because the performance of methods 
with the same ARLo may depend on the value of't (see Frisen and Sones son (2002)). 
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In the specification of utility by Shiryaev (1963) the gain of an alarm is a linear 
function of the expected delay. The loss associated with a false alarm is a function of 
the same difference. The utility is 

u(t A , 't) = { 
h ( t A -'t) , t A < 't 

a l ·(tA-'t)+a2, tA ~'t 
(7) 

where the function h(tA-'t) is an arbitrary function. In a situation where the intensity of a 
change, P('t=tIt~ t), is a constant v, the likelihood ratio method (LR, see section 3.2) 
maximizes the expected value of the utility. This criterion is sometimes referred to as 
the expected delay (ED) criterion for the following reason. If h(tA-'t) is a constant b, 
then the expected utility is 

E[u(t A , 't)] = b· P(tA < 't) + a l • ED + a 2 • 

The ED is defined as 

ED = I:l P('t = i)· ED(i) 

(8) 

where ED(i)=E[max(O, tA-i)I't=i]=E(tA-'tltA~'t=i)·P(tA~i). The expression E(tA-'tltA~'t=i) 
is the conditional expected delay of an alarm when 't=i (CED(i». When P(tA<'t) is 
fixed, the expected utility is maximized for a minimal ED. 

Minimax criteria can be specificed in different ways. One specification is the 
minimum of the maximal value of CED(i) with respect to 't=i. The minimax criterion 
avoids the requirement of a known distribution of 'to The criterion minimal maximal 
CED(i) with respect to 't=i and the worst possible outcome of Y,.! for a fixed ARLO is 
used by Moustakides (1986) and it is shown that the CUSUM method (see section 3.2) 
satisfies the criterion. 

Another optimality criterion is the maximal detection probability p(A(s)ICCs» for a 
fixed false alarm probability p(A(s)ID(s» and a fixed decision time s, see Frisen and de 
Mare (1991) and Frisen (2003). When CCs)={'t~ s} and D(s)={'t>s}, this criterion is 
satisfied by the LR method. When CCs)={ 't=s-m+ 1} and D(s)={ 't>s}, the moving 
average method of statistical surveillance with a window width m is optimal (Frisen 
(2003». 

3.2 Methods of surveillance 

The methods reviewed in this section are generally presented as monitoring of the 
process X, where X can be transformed or untransformed. Since the general aim is to 
discriminate between event D and event C, these events are specified either in terms of 
the transformed or the untransformed process of 11 (see e.g. IlD (t) and Ilc'(t) in 
equation (3) and (4». All methods reviewed are based on likelihood ratios where the 
difference depends on how the partial likelihood ratios are weighted. The likelihood 
ratio (LR) method does fulfill several of the optimality criteria described in section 3.1, 
and has been used as a "benchmark" when evaluating different methods of surveillance, 
see e.g. Frisen and Sonesson (2002) and Frisen (2003). The alarm rule of the LR 
method is 

(9) 
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where 

L(s, i)=fxs(xs!~=~Ci)/fxs(xs!~=~D) 
is the partial likelihood ratio of Xs when r=i and w(i)=P(r=i)lP(r~s) is the weight for 
L(s, i). In L(s, i), ~Ci and ~D are the expected value of X conditional on r=i and r>s, 
respectively. It was shown by Frisen and de Mare (1991) that the alarm rule of the LR 
method can be expressed in terms of the posterior probability conditional on the 
observed values of X and a constant limit gPp. An alarm is given as soon as 
P(C(s)!xs»gpP. This is equivalent to the LR method with the limit gLR(s)=gpp/(I­
gpp). P(D(s))/P(C(s))= gpp/(1-gpp )·P(r>s)lP(r~s). 

The alarm rule of the LR method in (9) requires knowledge of the distribution of r. 
Often a geometric distribution with a constant intensity v=P(r=t!r;::: t) is assumed. When 
the distribution of r is unknown, using a non-informative prior for the time of the 
change point avoids the risk of serious misspecification. When the intensity v tends to 
zero in the case of a geometric distribution, both w(t) and g(s) tend to constants. Thus, 
the limiting distribution is the non-informative prior. 

The method based on the limiting distribution (V---70) is the Shiryaev-Roberts (SR) 
method (Shiryaev (1963) and Roberts (1966)). The SR method satisfies the expected 
delay criterion when the process under surveillance has a constant intensity that tends to 
zero. The SR method gives equal weight to all partial likelihood ratios and the method 
can be used as an approximation to the LR method. Frisen and Wessman (1999) 
showed that the approximation works well, even for as large intensities as v=0.20. One 
method that uses the SR approach and is designed for turning point detection by 
monitoring the undifferentiated process, is the SRlin method (Andersson et al. (2002a) 
and Andersson et al. (2002b)). This method specifies the trend cycle ~ as piecewise 
linear functions, as in (3) where the tum is symmetric (~2=-~1). 

Erroneous or uncertain assumptions regarding the process under surveillance may 
have a great impact on the performance of the surveillance method. Some methods, for 
example SRlin, use the assumption of a known parametric function for the trend cycle 
~. However, since the parametric function is seldom known, Frisen (1994) suggested a 
non-parametric approach where the assumptions regarding /.l are only the ones of 
monotonicity and unimodality in (2). Combined with a non-informative prior for r, this 
is the SRnp method that has the following alarm rule for detecting a tum in ~: 

L~-I fxs (xs!~ = Aej) 
; ( ! = AD) > gSRnp, (10) 

XS xs ~ ~ 

where gSRnp is a constant. The vector AD is the estimator of ~ under the monotonicity 

restriction D (that no tum has occurred, i.e. that /.l(1) ~ ... ~ /.l(s)). The vector ACi is the 

estimator of /.l under the restriction Ci (a tum at time i, i.e. that /.l(1)~ ... ~ /.l(i-l) and /.l(i-
1);::: /.l(i)~ ... ;::: /.l(s)). The estimators are a maximum likelihood when the disturbances 
has a Normal distribution as in (1), see Frisen (1986) and Robertson et al. (1988). SRnp 
was evaluated in Andersson (2001), Andersson (2002), Andersson et al. (2002a) and 
Andersson et al. (2002b). 

Methods for turning point detection can be applied to the undifferentiated process. 
This is how the LR, SRlin and SRnp methods above are presented. Alternatively, a 
method for turning point detection can be applied to differentiated data, in which case a 
tum corresponds to a shift in level (as discussed in section 2.2). The surveillance 
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methods below are described for the situation when the aim is to detect a shift in level, 
from positive to negative level. 

The CUSUM method of Page (1954) is based on likelihood ratios and signals that a 
change has occurred in J..l as soon as the maximum of the partial likelihood ratios of Xs 
when t=i, L(s, i), exceeds a limit g, 

max {L(s, i)} > g, 
l;S;i;5;S 

where g is a constant to be determined. For independent and normally distributed 
variables, the alarm rule can be expressed as 

Cs-Cs.j < gcusUM-k-i, (11) 

for some i=l, 2, ... , s. In (11), Cs= I;=I (xU)-J..lD
) is a cumulative sum of the deviations 

between a reference value, here J..lD, and the observed values, k=-(J..lc -J..lD)12 and gCUSUM 
is a chosen constant. Hence, for this specification, (11) will satisfy the minimax 
criterion of Moustakides (1986). The size of the shift, for which you optimize the 
method, is reflected by k. If the size of the shift is small, the value of k will be close to 
zero. When the size of the shift is large, k is large. 

The CUSUM method is different from CUSUM-based tests in the econometric 
literature (see e.g. Brown et al. (1975)). Econometric CUSUM-based tests are often 
used for a fixed length series and aimed at a single decision as opposed to the inference 
situation of surveillance where repeated decisions are made. 

The moving average method of statistical surveillance is described in e.g. Wetherhill 
and Brown (1991) and Frisen (2003). The method can be formulated in terms of the 
partial likelihood ratio for t=s-m, L(s, s-m)=fxs(xslJ..l=J..lC(s-m))/fxs(xslJ..l=J..lD), and a 
constant limit g. An alarm is triggered when L(s, s-m»g. The value of g is not 
necessarily the same value as for other methods. The method satisfies certain 
specifications of optimality as described in section 3.1. 

For detecting a downward change in the level of an independent and normally 
distributed process, the alarm rule can be written as 

I~=s-m+1 ( x(i)-J..l D) <gMAsur, (12) 

where m is the window width and gMAsur is a constant. When J..lD is unknown, we use an 
estimate il D instead. One approach is to estimate J..lD from past observation by e.g. a 
moving average of window width q. At each decision time s, J..lD is estimated by 

ilD (s) = (I;~:-m-q+1 xU) )/q. (13) 

The Shewhart method put all weight to the last partial likelihood ratio L(s, s) and 
signals an alarm as soon as L(s, s) exceeds a constant g. The method maximize the 
expected value of the utility U(tA, t) in (7) when C(s)={t=s} and D(s)={t>s}. For an 
independent and normally distributed variable, the method will signal that a peak has 
occurred as soon as 

X(S)-J..lD<gShewhart, (14) 
where gShewhart is a constant. The problem of an unknown J..lD can be treated in the same 
manner as for the moving average method; we can e.g. use the moving average 
estimator (13). The method has a geometrical false alarm distribution and an 
conditional expected delay time, CED(i), that is constant over i. The Shewhart method 
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was evaluated along with the LR, SR and CUSUM methods in Frisen and Wessman 
(1999). They showed that when the size of the shift for which the methods are 
optimized, tends to infinity, then the LR, SR and CUSUM methods all tend to the 
properties of the Shewhart method. 

If the process is very noisy, we might want to monitor the smoothed process. The 
EWMA method (Roberts (1959), Robinson and Ho (1978), Crowder (1987), Sonesson 
(2001) and Frisen and Sonesson (2002)) has a built in smoothing mechanism and calls 
an alarm as soon as 

Zs=(1-A}Zs-1+ A:X(S)<gEWMA(S), 
where icE (0,1] is the weight parameter and the limit gEWMA(S) can be constant or 
varying, depending on the variant of EWMA. All past observations are utilized and the 
most recent ones are given most weight. EWMA is not an optimal method, but 
approximate optimality can be reached by making modifications of EWMA that behave 
similar to the LR method, see Frisen and Sonesson (2002) and Frisen (2003). 

4 THE RELATION BETWEEN STATISTICAL SURVEILLANCE AND SOME 
STRATEGIES SUGGESTED FOR FINANCIAL TRADING DECISIONS 

As earlier mentioned, there is a wide range of suggested methods for deciding what 
time is the best to stop the monitoring and trade in the financial market. Sometimes the 
expression "optimal stopping rules" refer to the approach described by e.g. Shiryaev et 
al. (1994), Shiryaev (1999), Kukush and Silvestrov (2000) and Jonsson (2001). They 
treat the case of finding the optimal time to exercise an option where the pricing 
process of the underlying asset is well-defined with known parameters. In these papers 
the model for the process is thus completely known, and the optimal stopping domains 
are obtained by calculating expected outcomes for different payoff-functions of the 
option. Hence, their approach is different from the one considered here where the 
process includes unknown statistical parameters and an inferential approach is 
considered where we want to infer from data whether a regime shift has occurred or 
not. Their approach will not be further discussed. 

We will begin this section by discussing some of the recent studies that relate the 
theory and methodology of statistical surveillance to decision making problems in 
finance. Some of the earlier suggested financial decision rules are then investigated 
more deeply and compared with approaches of statistical surveillance. We will proceed 
with the work of Lam and Yam (1997) and investigate the relation between the Filter 
rule, their proposed generalization of the Filter rule and the CUSUM method in section 
4.2. How trading rules based on moving averages are related to the optimality criteria 
used in surveillance has to our knowledge not been investigated. This will be the topic 
in section 4.3. Another methodology, also considered in finance, is that of a hidden 
Markov model (HMM), also referred to as a Markov-switching or regime switching 
model. The suggested decision rule, based on an HMM is hereafter referred to as the 
Hidden Markov Rule (HMR) and will be discussed in section 4.4. 

The relation between measures of performance often used in statistical surveillance 
and measures of evaluation of return is discussed in section 4.5. All decision rules 
considered are presented for the case when we want to detect one tum at a time (the 
monitoring is restarted after a confirmed tum). 
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4.1 Recent studies that relate statistical surveillance to decision making problems in 
finance 

Previous to Lam and Yam (1997), Theodossiou (1993), among others, use the 
methodology of statistical surveillance on financial problems. The application is not 
one of trading decisions but detection business failures. The CUSUM method is used in 
order to timely detect business failures. A multivariate process that measures a firm's 
financial condition is reduced into one process that is being monitored. 

Recent studies are those of Severin and Schmid (1999), Schipper and Schmid 
(2001a) and Schipper and Schmid (2001b). In these papers, the performance of 
different versions of the CUSUM, EWMA and Shewhart methods are compared with 
respect to detecting changes in GARCH processes. GARCH processes are sometimes 
used to describe volatility. In Severin and Schmid (1999), these three methods are 
compared with respect to a change in the mean of an ARCH(1) process. A case study is 
made on stock market data. Whereas Schipper and Schmid (2001b) aim to detect a 
change in the variance of a GARCH process, the aim in Schipper and Schmid (2001a) 
is to simultaneously detect an additive outlier, modelled as a one time change in the 
mean, and a changed variance. Schipper and Schmid (2001b) use the CUSUM and 
EWMA methods on the following indicators: the squared observations, the logarithm of 
the squared observations, the conditional variance and the residuals of a GARCH model 
estimated conditional that no change has occurred. A case study is made on stock 
market data. Schipper and Schmid (2001a) use EWMA to monitor the level of the 
process simultaneously with the indicators above. In all the three studies, ARL 1 is 
evaluated for a fixed ARLo. 

Steland (2002) addresses the need in finance for detecting change-points online. 
The use of a Shewhart-type method for detecting a change in the drift of a finance 
related process is discussed. The event to be detected is a temporary change in the drift 
Jl (a jump away from JlD and then back to JlD). Both a GARCH and an independent 
normally distributed process are considered. The indicator under surveillance is a non­
parametric kernel estimator of Jl. Different types of estimators are discussed, e.g. 
EWMA. Also here is ARLo fixed and the evaluation is made with respect to ARLI. 

4.2 Two Filter rules 

Lam and Yam (1997) propose a generalized Filter rule (GFR) for monitoring the 
untransformed process Y. At decision time s, an alarm signal that a peak has occurred is 
given if 

(y(s)-y(s-i) )/y(s-i) <gGFR-kGFR·i (15) 

for some i=l, 2, ... , s and where gGFR and kGFR are chosen constants. Detecting a trough 
(time to buy) is solved in an analogous way. GFR is derived with the CUSUM method 
as the starting-point. To see the relation between (15) and the CUSUM method, first 
consider the monitoring of an independent and normally distributed process X in order 
to detect a downward shift in the level from !lD to !le. The alarm rule of the CUSUM 
method can then be expressed as (11), that is 
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for some i= 1, 2, ... , s, where Cs = L ;=1 ( x(j)-~ D). This means that the alarm rule can be 

written as 

which can be written as 

,",S (j) k . D . 
.LJj=s-i+1 X < gCUSUM- .l+f.i .1. 

If we let X(t)=lnY(t)-lnY(t-l), then we have the alarm rule 

'"' S • (lnyG)-lny(j-l») < gcusUM-k-i+f.iD.i, 
.LJ J=s-l+1 

that is 

lny(s)-lny(s-i)<gcusuM-(k-~D)-i 
for the undifferentiated process In Y or 

y(s )/y(s-i)<exp{ gcusUM-(k-~D)·i} 
for the process Y. This is equivalent to 

(y(s)-y(s-i) )/y(s-i) <exp{gcusUM}·exp{ -(k-~D)·i}-I. (16) 

Let exp{gcuSUM}=(1+gGFR) and exp{-(k-~D)·i}=(I+kGFRri. We approximate (1+kGFRyi 
by (l-kGFR·i) and make this substitution in the limit in (16). The rule (16) then becomes 

(y(s)-y(s-i) )/y(s-i) < (1 +gGFRHl-kGFR·i)-l. 

If gGFR·kaFR·i"",O, this approximately equals (15), i.e. the alarm rule of GFR. Thus, 
applying GFR on the variable Y where gGFR=exp{gcusuM}-1 and kGFR=exp{k-~D}-1 is 
approximately the same as applying the CUSUM method on the variable lnY(t)-lnY(t-
1). It should be pointed out however, that only when the process X is independent and 
normally distributed, GFR will be approximately minimax optimal. 

A special case of GFR is obtained when kGFR=O. This is the widely used Filter rule 
(FR) proposed by Alexander (1961), which has been discussed by e.g. Alexander 
(1964), Fama and Blume (1966) and Taylor (1986) and Lam and Yam (1997). The rule 
is also referred to as the Trading range break (Neely (1997». This alarm rule, as given 
by Lam and Yam (1997), is to alarm that a peak has occurred as soon as 

(~~{y(t)}-y(S) )/~:; {y(t)} >gFR (17) 

where gFR is a constant. The constant gFR is generally between 0.005 percent and 0.03 
(Neely (1997». The statistical properties of this method seem not to have been 
examined. Sometimes the maximum in a moving window is considered instead of the 
overall max, see Neely (1997). 

Lam and Yam showed that the FR used on Y(t), is equivalent to a special case of the 
CUSUM rule (11) used on InY(t)-lnY(t-l). The special case is when k=~D. It is easily 

seen that (17) is equivalent to lny(s)-max{lny(t)} <In(1-gFR). Then we have that 
t:>s 
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for some i~s and where Cs = L ;=1 ( x(j)-~ D). Thus, FR in (17) is equivalent to 

Cs-Cs_i<ln(l-gFR)-~D.i. 
Hence, when X is independent and normally distributed and _(~c_~D)/2=f.P, FR has the 
same properties as the CUSUM method and FR will be minimax optimal. The special 
case when _(~C_~D)/2=~D implies ~C=_~D. When ~ is on the form (4) for the 
differentiated process X, it means that P2=-Pl. i.e. the location of PI and P2 are 
symmetric with respect to the zero line. This would be the case when undifferentiated 
process In Y is a random walk with drift where the value of the drift parameter changes 
from PI to -PI. The effect on the performance of the CUSUM method when the size of 
the shift for which the method is optimized, here measured by _(~C_~D), is seriously 
misspecified is investigated in Frisen and Wessman (1999). 

As was mentioned in section 2.2, if the undifferentiated process is independent, then 
the first difference X will be an MA(I) process. The partial likelihood ratio L(s, i) for a 
change in the mean of a MA process where the disturbance term has a Normal 
distribution is derived in Petzold et al. (2003). The problem of dependent observations 
is further discussed in section 5.3.3. 

The performance of GFR and FR were evaluated in Lam and Yam using one set of 
real data, namely the Hang Seng Index for the period 24 November 1969 to 6 January 
1993, for different combinations of gcuSUM and k. It was found that GFR offered an 
improvement over the FR with respect to measures of the return for some 
combinations. However, no discussion was made regarding the relation between k and 
the size of the shift. 

4.3 Moving average rules 

There are many rules suggested for financial trading decisions based on moving 
averages. The moving average rule as given by e.g. Neftci (1991), Brock et al. (1992), 
Levich and Thomas (1993), Mills (1997) and Neely (1997) will call an alarm for a peak 
(sell signal) as soon as the difference between two non-centred overlapping moving 
averages, one with a narrow window width m and one with a wide window width n, is 
below a limit, such that 

-L."~ x(i)-.l."~ x(i) <g(S)MAR. (18) m .L...=s-m+1 n .L...=s-n+1 
The limit is often a constant, usually set to zero. Alarm rule (18) can be written as 

L~=s-m+1 (x(i)-r.1
D 

(s)) <g'(S)MAR 

where r.1D(S)=(L~~:n+1X(i))/<n-m) and g'(s)MAR=m·n·g(s)MAR/(n-m). This is the usual 

moving average rule of surveillance expressed in (12) where ~D is estimated by the 

moving average estimator r.1D (s) in (13) with q=n-m and gMAsuF (m'(m+q)) 'g(S)MAR /q. 
A special case of (18) often considered is m=1 that is 

x(s) --!;. L~=s-n+1 x(i) < g(S)MAR' (19) 

Alarm rule (19) can be seen as comparing the last observation to the estimated trend 
and can be expressed as 
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x(s)- liD (S) <g'(S)MAR, 

where liD (s) = (L:~-n+1 xCi) )j(n-1) and g'(s)MAR=(nI(n-1))·g(s)MAR. This is the situation 

when only the last observation in used in the surveillance, i.e. the Shewhart situation 
that was presented in (14). Here /lD is estimated by the moving average estimator liD(S) 
in (13). 

As previously mentioned, the moving average rule of surveillance is optimal for 
discriminating between C(s)={ t=s-m+ I} and D(s)={ t>s} and the Shewhart method is 
optimal for C(s)={ t=s} and D(s)={ t>s}. However, the optimality is not so clear-cut in 
(18) and (19), since /lD is estimated and the results depend on the properties of the 
estimator. 

Combinations often used for the window widths m and n in the alarm rule (18) are I­
SO, 1-150,2-200 and 5-200 (Gencay and Stengos (1997)). In the applied work by Brock 
et al. (1992), Levich and Thomas (1993), Mills (1997) and Neely (1997), no explicit 
motivation behind the choice of combinations is made and to our knowledge, no 
explicit rule of thumb for the choice of window widths has been suggested. Neely 
(1997) points out that the width is often determined by trial and error by the 
practitioner. Different aspects on the choice of the window widths is discussed below. 

4.3.1 The consequences of the choice of the window width in the moving average 
estimator of ,P 

If we are to use the moving average method or the Shewhart method of surveillance 
for peak detection and /lD is unknown, we must estimate it. If the parametric form of the 
process is known, the parameters can be estimated. If no such knowledge is at hand, 
one approach is to use the moving average estimator liD in (13). Then however, we 
must determine the window width of the moving average, that is we must determine q 
in (13). Below we will discuss different aspects on the choice of q. We will consider 
three aspects that should be taken into account. These are the cycle length, the variance 
of the process under surveillance and the steepness of the trend. Focus will be given on 
alarm rule (19) that is the Shewhart approach with alarm rule (14) where /lD is 
estimated by the moving average estimator (13) with window width q. 

Say that the cycle length (peak to peak) is constant and equal to c. If a window width 
is used in the estimation that is much wider than c, then it is merely a question of 
comparing xes) with an estimator Ii that is uncondititioned on the states. This will 
cause an considerable delay of motivated alarms since Ii will severely underestimate 
/lD in a peak detection situation. If the monitoring is started right after a trough, the 
false alarm rate will be high for early time points. The reason for this is that when a 
wide window is used, observations before the trough are used in the moving average 
estimator at the start of the surveillance. A consequence is that the level will be 
overestimated at the start. 

If the variance is large, a large window might be motivated because it will reduce the 
false alarm rate. However, the delay of a motivated alarm will increase with the 
window windth. If there is considerable heteroscedasticity, it should be taken into 
account by using a weighted moving average instead of a simple one. 

It was shown by Andersson and Bock (2001) that a trend cycle estimated by a 
moving average does not always preserve the true time of the turning point. For a 
certain window width, the location of the estimated turning point time resulting from 
the moving average depends on the steepness of the post-peak trend /lc. If /lc is steep, 
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the turning point time is preserved by the moving average and thus there is no 
systematic delay in the turning point detection. 

Despite the wide spread use, window-based methods are sub-optimal because 
information about the process is lost since all observations are not used in the alarm 
statistic. When a narrow window width is used considerable information about the 
process is lost. If a wide window is used, the regime change will be smoothed and hard 
to detect. If two consecutive windows of fixed length are used, as in (18), the ability to 
detect a gradual change is low (Svereus (1995)). Thus, instead of using window-based 
methods, we should use methods that utilize all observations, for example the EWMA 
method or the LR method, since they cause no loss of information. An advantage of 
window-based methods however, is that the in-control process, here represented by ~p, 
does not need to be known. 

As we have seen, the use of a moving average estimator of Jl on non-stationary data 
is problematic. Thus, information from historical data or other prior knowledge on the 
form of the curve Jl is very valuable. 

4.4 HMR 

The Hidden Markov Rule (HMR), as given by Marsh (2000) and Dewachter (2001), 
is proposed for trading in the foreign exchange market. It is assumed that trends in 
currency prices depend on an unobservable process. The X process is here the 
difference of the logarithmic transformed process, and X is described as a HMM where 
the expected value of the differentiated process X is constant depending on the state 
(see (4)). The switching between the states in (4) is governed by a first-order time­
homogenous two-state hidden Markov chain J(t)={I, 2}. The states 1 and 2 denote the 
expansion and recession phase, respectively, and are such that E[X(t)IJ(t)=I]=~l and 
E[X(t)IJ(t)=2]=~2' respectively. In Dewachter, also a first-order hidden Markov chain 
governs the variance. 

Marsh and Dewachter proposed an alarm statistic based on the one-step ahead 
predicted expected value of the differentiated process X conditional on past values. At 
decision time s the alarm rule is to signal that a peak has occurred if 

E[X(s+I)lxs] <0 (20) 
where E[X( s+ 1 )lxs]=p(J (s+ 1)= llxs)-~ 1 +P(J (s+ 1 )=2Ixs)- ~2 is the minimum mean squared 
prediction error (MSPE) forecast. The alarm limit zero used in (20) is not chosen to 
satisfy a certain level of the type I error. Kwan et al. (2000) suggest the following rule 
for selling 

E[X(s+ 1)lxs]<-2'c, 
where c is a transaction cost. Kwan et al. (2000) does not model X as a HMM. Instead, 
a price-trend model (Taylor (1980)) is used. The simplest form of the price-trend model 
assumes that X has a stochastic trend and the change in the trend is governed by a 
Bernoulli process. It was however shown by Dewachter (2001) that the HMM above 
belongs to the class of price trend models. From this point of view, the alarm limit zero, 
used above in (20), might be a natural choice when we have no transaction costs. 

When the unobservable process is assumed to be governed by a HMM, a common 
approach is to use the posterior probability. The inference situation can be characterized 
as one of classification of the observations to states, as described in section 2.3, where 
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an alarm is called as soon as the system indicates a transition between the states. The 
rule for detecting a peak is to call an alarm as soon as 

P(J(s)=2Ixs»gpP. (21) 
It was shown by Frisen and de Mare (1991) that when D(s)=C(st, the complement of 
the critical event, then the posterior probability is inferentially equivalent to the LR 
method in (9). Since this method is optimal is various ways, it follows that HMR is also 
optimal in this case. However, the results of HMR and the LR method (for example in 
the sense of CED(i)) also depend on the assumptions and estimation procedures that are 
used for the parameters. The impact of these aspects was evaluated by Andersson et al. 
(2002b). Another important aspect is how the alarm limit gPP is determined. This is 
discussed below. 

4.4.1 How to chose the alarm limit (the effect of different specifications) 

The alarm limit determines the sensitivity of the alarm statistic. Provided that P21:;C 
P22, the alarm rule for HMR in (20) is equivalent to using the rule (21) for the posterior 
probability with the alarm limit 

g = Pll ·PI +P12 ·P2 (22) 
PP (PI-P2) . (P22 -P21 ) , 

where Pij=P(J(t)=jIJ(t-1)=i), i, j=l, 2, are transition probabilities. The limit gPP is 
sometimes set to 0.5, see e.g. Koskinen and Oller (1998) and Ivanova et al. (2000). 
This limit will, according to Zellner et al. (1991), give minimal expected loss if the loss 
of a false alarm equals that of a missed or delayed alarm (i.e. no signal of change at 't). 
For the situation when the location of the expected values PI and P2 in (4) are symmetric 
with respect to the zero line (i.e. P2=-Pl), and the expected length of the expansion 
phase is the same as the expected length of the recession phase, that is PI2=P2J. then the 
limit gpp in (22) equals 0.5. However, when the expected length of the expansion is 
shorter than for the recession (P21<P I2<P 11), then gpp is smaller than 0.5. This makes 
sense since we should then allow the alarm rule to be more sensitive for detecting 
peaks. 

An alarm system that uses the information about the type of the next turning point is 
more efficient. Then the system is constructed for detecting one turn at a time, instead 
of classifying the whole sequence of turning points. If we know that the next turn is a 
peak, then the transition probability P21 equals to zero. Then PI2 can be interpreted as 
the intensity of a peak, v=P('t=tl't~t), given that 't has a geometric distribution. For a 
symmetric turn, the alarm limit gpp in (22) then can be written as 

gpp=(1-2·pd/(1-pd=(1-2·v)/(1-v), 
which tends to one as v tends to zero and minus infinity when v tends to one. This is 
reasonable since the limit 1 implies that an alarm signal should never be called (since v 
~O means that the expected time of the turning point tends to infinity). The limit 0 
implies that an alarm signal should be triggered immediately after the monitoring was 
started (since v~ 1 means that the expected time of the turning point tends to one). 

Thus the symmetry of the turn and the intensity of the turns greatly influence the 
alarm limit. In surveillance methodology, the alarm limit is often determined indirectly, 
in order to control the false alarms, by setting the alarm limit so that a specific value of 
ARLO (or MRL 0 or PFA) is achieved. The value 0.5 is reasonable if the loss and gain of 
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a false and delayed alarm are the same and if the process is symmetric (both with 
respect to ~ and the transition probabilities), but otherwise quite arbitrary, since it does 
not give any control of the false alarm rate. A limit based on reasonable values of Pll, 
P22, ~I and ~2, as in (22), is less arbitrary than the choice 0.5. However, if the values 
that are being used are far from the true values (i.e. not optimal), the alarm rate will be 
affected. Thus, HMR is sensitive to the values of the parameters. 

Marsh and Dewachter use constant transition probabilities, Pl2 and P21. A constant 
transition probability implies a constant intensity, i.e. a geometric distribution of the 
time of the change-point. This is a rather restrictive assumption that may not be 
realistic. When the intensity changes with time that is being spent in the regime, it is 
referred to as duration dependence. Whether regimes in the financial markets exhibit 
duration dependence have been investigated by e.g. McQueen and Thorley (1994), 
Cochran and Defina (1995) and Maheu and McCurdy (2000). When we are not sure 
about the form of the intensity, a non-informative prior for the change point time avoids 
the risk of serious misspecification. When a non-informative prior for 't is used as in the 
SR method, no transition probability needs to be estimated. 

Another problem that Marsh (2000) addresses is the problem of instability of the 
estimates of PI and P2 over different time periods. When no assumption is made 
regarding the parametric form of the curve as in the SRnp method, the surveillance 
system is robust against changes in the characteristics of the curve over time. 

4.5 The relation between measures used in statistical surveillance with measures 
used in evaluation of return 

In papers regarding financial decision rules, the expected return from investments is 
often used as a measure of performance. One measure of return that is often used is 

r(tA)= X(tA)-X(O). (23) 
where X is the (logarithm of the) price. The above expression measures the return of 
buying the asset at t=O and selling it at the alarm time tAo The return in (23) does not 
take the timeliness of an alarm into account. However, as we will see below, under 
certain assumptions, return and timeliness are related. 

The expected return E[r(tA)] is maximized when E[X], is maximized. In the current 
setting, this occurs when we call an alarm (sell) at the time of the peak that is at tA=r-1, 
i.e. max{E[r(tA)]}=E[r(r-1)]. For tA:;t: r-1, E[r(tA)] decreases as ItA-'t1 increases and 
maximizing E[r(tA)] is equivalent to minimizing ItA-'tI. Consider the expected difference 

~(tA, t) = E[r(tA)-r('t)I't=t] = E[X(tA)-X('t)I't=t] 
and the timeliness measure PSD(d, t) in (6). The return in (23) is measured along the 
log-price scale whereas the timeliness measure PSD(d, t) is measured along the time 
scale. When X(t) is a known function of time, the timeliness measures can easily be 
expressed as a measure of the return. If E[X(t)] is on the piecewise linear form in (3), 
P(~(tA' 't)~d'ltA~'t, 't=t), where d' <0, is equivalent to PSD(d, t)=P(tA-'t::;d I tA~, 't=t) 
where d=d'/~2>0. A similar relation can be expressed for tA<'t. 

In a financial setting it is important that transaction costs are taken into account. If 
transaction costs are ignored, it would be optimal to have a method that frequently 
generates trading signals. When we consider transaction costs, we have a penalty for 
each alarm which favors infrequent trading. 
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In section 3.1, we exemplified the expected utility by (8) where h(tA-'t)=b in (7). 
This corresponds to a constant loss of a false alarm. However, as pointed out, the LR 
method with a constant intensity of a change will maximize the expected utility for an 
arbitrary function h(tA-'t) as long as the gain of an alarm is a linear function of the 
expected delay. Hence, regardless of any specification of h(tA-'t) in accordance with a 
realistic model of the expected return, the LR method will be optimal. If we have an 
expected return that increases as tA approaches 1:, we can for example use the function 

where b1>0, al<O and where b2 and a2 would depend on e.g. the transaction cost. The 
function U(tA, 't) above can be interpreted as the difference E[r(tA)]-E[r('t)], where the 
expectation is taken with respect to the disturbance e. If the relationship between the 
gain of an alarm and the expected delay is nonlinear, the solution will no longer hold. 
But it might work well if the nonlinearity is not too pronounced. 

5 EVALUATION BY DATA ON THE HANG SENG INDEX 

The most common way to evaluate decision rules in financial literature is by using 
one or several case studies. Here we will illustrate some of the methods by applying 
them to two different periods of a real time series. The performance will be measured 
by the timeliness of the alarm and the return (23) of resulting transactions. The relative 
merits of case studies as an instrument of evaluation is also illustrated and discussed. 

We will use the same time series that Lam and Yam (1997) used namely closing 
Hang Seng Index (HSI). HSI is a marked-value weighted index of the stock prices of 
the 33 largest companies on the Hong Kong stock market. The weight each stock is 
assigned in the index is related to the price of the stock. HSI can thus be seen as the 
price of a portfolio of stock. A period of logarithmized values of HSI (4 January 1999 
to 26 July 2002) is shown in Fig. 1. The two evaluation periods are marked with solid 
vertical lines. The methods are illustrated on two peaks, but troughs could equally well 
be used. 
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Fig. 1. Logarithm of values of daily observations of closing HSI from 4 January 1999 to 26 July 
2002. The two periods considered for evaluation, 10 February 1999 to 28 May 1999 and 10 April 2002 
to 26 June 2002, are marked with solid vertical lines. 

The statistical surveillance methods that will be evaluated are SRnp (alarm rule (10)) 
and CUSUM (alarm rule (11)). The strategies suggested for financial trading decisions 
that will be evaluated, are GFR and FR. The alarm rules are expressed in (15) and (17), 
respectively. All these methods are used on the evaluation periods and the time of alarm 
is noted. 

5.1 Characterizing the evaluation periods 

The aim is to detect a tum in the trend cycle. To our knowledge, no official dating of 
turning points in HSI exists. We must hence determine the time of change t, i.e. date 
the peak, for the two periods. First, for each period, we estimate the trend cycle ~ under 
the assumption that the period includes a single peak. The estimation is made by 
maximum likelihood under the restriction that the regression is inversely U-shaped and 
under the assumption that the disturbances are normally distributed as in model (1) (see 
Frisen (1986)). Then t is determined such that 

~(1)~ '" ~ ~(t-l) and ~(t-l)~ J.l(t) ... ~ J.l(t). 
The values of t for the two evaluation periods are marked in Fig. 2 and Fig. 3, 
respectively. 

For descriptional purpose we first fit a model to the logarithmized values of the data 
in the evaluation periods. We use the following model: 

In Y(t)=J.l(t)+s(t), 

where s(t)= 9's(t-l)+0(t), o(t)-iid N[O, cr~], t=l, 2, .... , and where Y is the price of a unit 

of HSI. The expected value of In Y is modeled using the piecewise linear function (3), 
that is 
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The first evaluation period under consideration, 10 February 1999 to 28 May 1999, 
is displayed in Fig. 2 below. The time of change is estimated to 6 May 1999 (t=55). 
The monitoring is started at 11 February (t=I). 
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Fig. 2. First evaluation period. Logarithm of values of daily observations of the HSI from 10 February 
1999 to 28 May 1999 is marked with dots. The time of change, 6 May 1999 (t=55) is marked with a 
dotted vertical line. The Il-curve estimated by inversely U-shaped regression is marked with a solid 
curve. The Il-curve for the piecewise linear model (3), estimated by ordinary least squares, with 1:=55 and 
the 2.5th and 97.5 th percentiles of values of the observations according to the model are marked as dotted 
lines. 

The second evaluation period, 10 April 2002 to 26 June 2002, is shown in Fig. 3. 
The time of the change is estimated to 21 May 2002 ('t=27). The monitoring is started 
at 11 April (t=I). 
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Fig. 3. Second evaluation period. Logarithm of values of daily observations of the HSI from 10 April 
2002 to 26 June 2002 is marked with dots. The time of change, 21 May 2002 (1:=27) is marked with a 
dotted vertical line. The Il-curve estimated by inversely U-shaped regression is marked with a solid 
curve. The Il-curve for the piecewise linear model (3), estimated by ordinary least squares, with 1:=27 and 
the 2.5 th and 97.5th percentiles of values of the observations according to the model are marked as dotted 
lines. 
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5.2 Specification of the surveillance systems 

The alarm limit in a surveillance system should be determined so as to get control 
over the false alarms. Generally, the alarm limit is set so that ARLo, MRLo or PFA 
equal a certain acceptable value. When we want to compare several methods, their 
respectively alarm limits are adjusted to yield the same ARLo (or MRLo or PFA). The 
specific value of an alarm limit depends on several factors, such as the signal-noise 
ratio and the dependency structure of the process under surveillance. The signal noise is 
a measure of how well the regime shift can be distinguished from the noise. We 
measure the signal-noise ratio as ~l/O"s. 

The observations on HSI are used in the surveillance. However, the methods differ 
concerning the transformations. SRnp is applied to In Y(t), whereas CUSUM is applied 
to the logaritmized and differentiated process, InY(t)-lnY(t-l) and GFR and FR are 
applied to Y(t). 

Some of the alarm statistics depend on known or estimated values of the parameters 
~], ~2 and O"s. We estimate the parameters by observations from the first evaluation 
period. The resulting estimated signal-noise ratio is 0.46. The alarm limits for SRnp and 
CUSUM are set to yield an MRLo of approximately 60 days, conditional on the 
estimated model for In Y above. For SRnp it suffices to estimate the variance of the 
process. Then the alarm limit, gSRnp, is determined by simulations so that MRLo=60. 
But for CUSUM, also the optimal value of k in the limit of the CUSUM method, _(~c_ 
~D)/2, which here corresponds to -(~2-~1)/2, must be estimated. The value of k obtained 
by using the estimated parameters is 

k= -(P2 -PI)/2 =0.00689. 

Then the other limit parameter, gCUSUM, is also determined by simulations so that 
MRLo=60. 

In a practical online monitoring situation, where the process is continually observed, 
the parameters must be estimated by observations that are available at the current time 
point, e.g. past observations of the process. We will take this aspect into account in the 
following way. When we evaluate the methods in the second period, we do not re­
estimate the parameters. Instead, we use the parameters estimated by observations from 
the first period again. 

In Lam and Yam (1997) no discussion is made regarding the false alarm rate. 
Instead the parameter values gCUSUM and k are determined to yield maximum return. As 
a comparison, their best values are also used. The best limit for FR is {-0.09} and for 
GFR, the best parameter combination of gCUSUM and k is {-0.06, -0.003}. Due to the 
similarity between GFR and CUSUM, only the CUSUM method will be investigated. 
The two alarm systems are referred to as FR(L&Y best) and CUSUM(L&Y best). 

5.3 Results 

When evaluating on a real time series including several turns, different approaches 
can be used, sometimes depending on the measure of evaluation. In active surveillance 
it is often the case that only the first alarm and the time to the first alarm are noted. 
Thus the expected delay only refers to the delay time for the first alarm. But when 
measures such as rate of return is used, then it is natural to restart the surveillance after 
an alarm, since it is likely that an asset would be sold, then bought, then sold again. 
Below both approaches will be tried. 
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5.3.1 Results when the surveillance systems are not restarted after an alarm is given 

The results of the two evaluations when the monitoring is not restarted after the first 
alarm time, i.e. a single trading decision is made during each period, is reported in the 
tables below. The measure of return, r(tA) in (23) is reported. We assume that it is 
possible to sell for the price at the alarm time tAo In Table 1, the return of buying a unit 
of the index at 9 February 1999 (t=O) for the price 9244.49 and selling it at tA is 

reported. Transaction costs are ignored. For CUSUM the parameter values PI and PI 

are estimated from the same period as is used in the evaluation (in-sample 
performance). 

Table 1. Results of the evaluation on the first period (10 February 1999 to 28 May 1999). Estimated time 
of chan e't=55. 

tA tA-'t I tA-'t1 r(tA) 
SRnp(MRL =60) 29 -26 26 0.158 
CUSUM(MRLo=60) 56 1 1 0.341 
FR(L&Y best) 64 9 9 0.294 
CUSUM(L&Y best) 64 9 9 0.294 

SRnp gives an alarm at the plateau (see Fig. 2). As opposed to CUSUM and FR that 
impose parametric restrictions on the turning point curve through the value of k, SRnp 
places no such restrictions. All information about the curve comes from data. Hence, 
SRnp is in this sense more sensitive to the values of the observations compared to the 
other methods. The success of CUSUM(MRLo=60) might be due to the large drop in 
the level right after 't (see Fig. 2). The magnitude of the drop is almost twice the 
estimated standard deviation of the process. 

In addition to the evaluation of the FR that use the limit of Lam and Yam (1997), 
referred to as FR(L&Y best) in the table above, we also apply the FR method with 
another limit. We use the limit gCUSUM that yield MRL °=60 for the CUSUM method. 
We do this in order to see whether there will a difference in performance between using 

the optimal value of k (estimated by -(P2-PI)/2) and using the value k=PI implied by 

FR. The result is that FR gives an alarm at the same time point as CUSUM, i.e. at t=56. 
This is because the turn is, according to our estimate, almost symmetric and hence the 

estimated optimal value of k is close to PI. 

The results of the evaluation on the second period when the parameter estimates 
obtained in the previous evaluation period (out-of-sample performance) are used again 
are reported in Table 2. It is assumed that a unit of the index is bought at 10 April 2002 
(t=O) for the price 10643.14. 

Table 2. Results of the evaluation on the second period (10 April 2002 to 26 June 2002). Estimated time 
of chan e't=27. 

tA tA-'t tA-'t r(tA) 
SRnp(MRL =60) 29 2 2 0.088 
CUSUM(MRLo=60) 33 6 6 0.071 
FR(L&Y best) 46 19 19 0.017 
CUSUM(L&Y best) 53 26 26 -0.003 

As seen in the first two rows in the table, SRnp outperforms CUSUM when 
k=0.00689, the value estimated from the first evaluation period, is used in the alarm 
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rule of CUSUM. If k=0.00431, which is the estimate from the current period, is used 
instead, CUSUM gives an alarm at t=27, i.e. at 'to The alarm yields a return of 0.099 
instead of 0.071. Hence, for a fixed value of gCUSUM, the choice of k has an effect here. 
The signal-noise ratio is very similar for both periods. When we again apply the FR 
with the limit gCUSUM that yield MRLo=60 for CUSUM, an alarm is given at t=33, i.e. at 
the same time as CUSUM. For both evaluation periods, the alarm limits suggested by 
Lam and Yam (1997) give late alarms. Hence, the surveillance systems based on these 
limits seem to be inappropriate for these periods. 

5.3.2 Results when the surveillance systems are restarted after an alarm is given 

We will now consider the situation when we are not restricted to stop the monitoring 
after the first alarm was given. Instead, we are allowed to restart the monitoring 
immediately, i.e. we can make a sequence of buy and sell decisions during the period. 

With this approach, we are given the following results for the first period. After the 
first alarm at t=29 of SRnp, a signal that a trough has occurred (buy signal) is called at 
t=35. An additional alarm that a peak has occurred (sell) is given at t=57. The 
cumulated return is 0.270. The other methods give no alarms later than the times 
reported in Table 1. For the second period, no alarms are called later than the times 
reported in Table 2. 

5.3.3 The effect of autocorrelation 

For the evaluation periods that we considered, there was a strong autocorrelation in 
the data. Many methods are constructed under the assumption of independent 
observations and might be misleading in their results if they are used directly on data 
with a dependency process. 

In statistical surveillance there are several ways of dealing with dependent data (see 
Pettersson (1998) and Frisen (2003)). One approach is to use the correct likelihood ratio 
statistic. The statistic for a change in the mean of a stationary AR(I) process with 
normally distributed disturbances is derived in Pettersson (1998). Another approach is 
to calculate the residuals of an estimated model of the dependency structure or to 
differentiate the observations in order to get rid of the dependency. A third approach is 
to just adjust the alarm limit so that the MRLo (or ARLo or PFA) is correct for the 
dependent process. Sometimes the dependence problem is ignored; no consideration is 
given whether the data has a dependency structure or not. 

When Lam and Yam calculate the ARLo analytically, a possible dependency 
structure is not discussed. The data in our two periods has an AR(1) structure with a 

rather high estimated AR parameter (9=0.7). Whether the dependence is considered in 
the model or not has a large impact on the results here. Thus further improvements can 
be expected by the use of methods of surveillance that takes the dependency structure 
into account. 

5.3.4 Case studies versus Monte Carlo methods 

The use of a single case study for evaluation can be questioned. How well does the 
actual data set represent the process of interest? How extreme is the outcome of the 
process? If it is very extreme, then the resulting alarm time is very rare. However, it is 
impossible to know whether an outcome is extreme or not if not several examples are 
available or if the process is replicated. If we e.g. replicate the process by Monte Carlo 
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methods, then we can make statements about the properties of a method under the 
assumptions in that study. 

6 DISCUSSION AND CONCLUDING REMARKS 

Inferential differences and similarities between statistical surveillance and some 
strategies suggested for financial trading decisions have been investigated. The latter 
were represented by two variants of the filter rule, a rule based on moving averages and 
a decision rule based on a hidden Markov model. All three methods aim at 
prospectively detecting turning points in a time series. 

A desirable property of any prospective monitoring method is that a change can be 
detected quickly (timeliness) without having too many unmotivated signals of change 
(safety). In the general theory of statistical surveillance, the aim is to optimize the 
method with respect to these properties. Examples of measures that reflect timeliness 
are the expected delay and the absolute probability of successful detection. The latter is 
of particular interest in a financial setting since trading right before a tum is valuable. 
The predictive value is another useful measure that reflects the trust you should have in 
an alarm. 

When financial decision rules are used in practice, measures of the return from 
transactions made are used to evaluate the performance. Since the aim of a financial 
decision rule generally is to maximize the expected return (adjusted for the risk 
exposure and transaction costs), return-measures are natural to use. Most of the results 
in the theory of statistical surveillance has been developed on the sole use of the 
timeliness scale. However, timeliness and rate of return are, as we have seen, often 
related. Thus, evaluation that both reflects timeliness and return should be used. 

It is well known that the CUSUM method is minimax optimal if the observations 
under surveillance are independent and normally distributed. The FR has been shown to 
be a special case of the CUSUM method. The special case is when the location of in­
and out-of-control means are symmetric with respect to the zero line, which is for 
example the case when there is a change in the drift of a random walk where the in- and 
out-of-control drift parameters are equal in absolute values. Thus, when this is the case, 
and the differentiated observations are independent and normally distributed, FR is also 
minimax optimal. However, this type of symmetry is a rather restrictive assumption and 
the CUSUM method is more general. GFR is an approximation of CUSUM that does 
take the aspect of the relation between the slopes of the upward and downward trend 
into account. Thus, GFR is approximately minimax optimal. 

Methods based on moving averages are common and relatively simple to construct. 
One method, widely used for trading, consists of comparing two overlapping moving 
averages of different length. In this paper it is demonstrated that this approach is 
equivalent to a moving average method described in the literature of surveillance, 
where the in-control mean is estimated by a moving average. A special case often 
considered is to compare the current observation with a simple moving average of 
observations. It was shown that this method is similar to the Shew hart method of 
surveillance where, again, the in-control mean is estimated by a moving average. The 
optimality properties of these two surveillance methods are known. This does not 
however necessarily imply that the moving average trading rule is optimal since the 
result depends on e.g. the properties of the moving average estimator. Another 
objection to the moving average methods is that it is often of interest to detect a change 
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that occurred in an unknown past and therefore methods that use all available 
observations, e.g. the full LR method should be used instead of methods that use only 
the last m observations. 

In both business cycles and financial trading rules there are several methods that use 
a Hidden Markov model approach. The inferential structure of the HMR method is 
equivalent to that of the LR method when the specifications of the events that are to be 
discriminated between are the same. This requires however that we have knowledge of 
the type of the next tum. Thus the method is also optimal in the sense that the expected 
utility is maximized. However, the results from the monitoring also depend on the 
knowledge (or method for estimating) of parameters and the distribution of '"C. 

Improper assumptions regarding the process under surveillance may have a great 
impact on the performance. When the distribution of the time of the change '"C is 
unknown, a non-informative prior for 't can be used in order to avoid the risk of serious 
misspecification. This is what the SRlin and SRnp methods use. A way of avoiding the 
risk of a serious misspecification of the regression is to use the non-parametric 
approach of the SRnp method. The case studies illustrate the advantage of the SRnp 
method when the current tum has a different shape than the previous. 

Since there are many problems to deal with in the implementation of surveillance in 
finance, further research is needed. Much effort has been made on the modeling aspect 
of processes related to finance, e.g. volatility, the arrival time of transactions and 
smooth transitions between regimes. However, not much work has been made in the 
implementation of these models in a surveillance system. 
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