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ABSTRACT 

Good prediction methods are important in many fields where 

qualitative variables are involved. The criterion of a good 

prediction method, used in this paper, is the average mean 

squared error. This criterion is used to compare and derive 

prediction methods, when the variable of interest is binary. 

The methods considered here are based on the maximum­

likelihood estimators of the expectation of the binary varible, 

for which we want to make a prediction. Derivations and 

simulations are made for the case where we have one qualitative 

background variable. It is for example demonstrated that, when 

the ordinary chi-squared test is used for choosing between two 

prediction methods, it should not be adopted on a conventional 

low level of significance (e.g. 5%). 
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1. INTRODUCTION 

In this paper we consider model selection, when faced with a 

binary dependent variable, Y, and a number of qualitative 

background variables. In an application Y could, for example, 

correspond to the presence or absence of a certain disease, and 

the background variables could be, e.g. exposed/not exposed, 

sex, living area. The data can be organized in a mUlti­

dimensional contingency table, where each cell contains the 

number of observations for a certain combination of variable 

values. 

1 

Even for a moderate number of background variables, there are a 

large number of cells in the table, and therefore there is 

often a wish to reduce, if possible, the dimensionality of the 

table. Traditionally this reduction has been accomplished by 

fitting various log-linear models to the data and removing 

parameters from the model that have proved non-significant 

according to some kind of statistical test, thus obtaining a 

non-saturated model, i.e. a model containing fewer parameters 

than cells in the table. Section 2.3 gives a brief discussion 

on such procedures. By estimating the parameters of a 

particular model, we can also obtain estimates of the 

conditional probability of Y given the values of the background 

variables. 

It is not self-evident that the traditional strategy, involving 

testing of hypotheses, is the best for all purposes. The 



purpose of the analysis can, for example, be to obtain 

information about the causal structure or to obtain predictors 

that will minimize some measure of error. We will in this paper 

concentrate on the latter aim, restricting the analysis to 

the class of predictors, where the maximum-likelihood (ML) 

estimates replace the parameters of a 'good' model. The problem 

is thus to find 'good' models for prediction purposes. This 

approach has similarities with the traditional ones and might, 

besides giving good predictors, also give some insight in to 

the structure of the data. The principal theoretical 

differences between the statistics suitable for traditional 

testing of hypotheses and those suitable for prediction 

purposes, are also of interest. 
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The problem of choosing models for prediction purposes has been 

extensively studied in the area of multiple regression 

analysis. A criterion for model selection frequently adopted is 

the mean squared error of prediction (MSEP). For observation 

of a future value of a binary dependent variable Y, MSEP is 

defined as E(y-p')2, where p' is a predictor of Y. As the 

MSEP takes account of both bias and sampling variability, we 

have the result that the saturated model is not necessarily the 

best. A bias can very well be offset by a reduced sampling 

variability owing to the inclusion of fewer estimated 

parameters. The MSEP depends on parameters which usually have 

to be estimated. 

It must be noted here, that we do not argue that the selected 

model is the "true" one. That is, in selecting a non-saturated 



model, we have not proved that the remaining effects are equal 

to zero. All we can say is that the selected model has the best 

prediction ability as judged by the criterion used in the 

study (with the reservation that the criterion is estimated on 

the basis of data). 

Chapter 2 presents a brief discussion on two different kinds of 

prediction methods for binary data. Different measures of 

prediction error are also considered. The chapter ends with a 

short review of some procedures for selection of models. 

3 

Chapter 3 introduces notations and a measure of prediction 

error, for the case where we want to make predictions about a 

binary variable and where we have observations on a discrete 

background variable, Z. When making a prediction for a 

particular level of Z, we distinguish between two predictors. 

The first is the usual maximum-likelihood estimator of the 

probability of success and the second is the maximum-likelihood 

estimator, which is obtained under the restriction that all 

success probabilities are equal (i.e. homogenity). In the 

following these predictors will be referred to as the 

unrestricted and restricted predictor, respectively. 

In Chapter 4, we examine a measure of prediction error, the 

average mean squared error, AMSE, for both prediction rules. A 

criterion based on AMSE for choosing between the two prediction 

rules is developed. The AMSE for this combined prediction rule 

is compared with the AMSE for the rules pI and p*. We also 



study the AMSE of the prediction rule that is obtained by 

letting a chi-squared test of homogeneity make the selection 

between pI and p*. The AMSE-criterion is also compared with 

the so called Akaike-criterion. 

4 



2. DIFFERENT KINDS OF PREDICTIONS AND MEASURES 

OF PREDICTION ERROR 

2.1 Event predictions and actuarial predictions. 

When making predictions of a variable, we often use known 

values of other variables, in some way related to the unknown 

variable. The variable for which we want a prediction is called 

the dependent variable, while the other (background-) variables 

are termed independent. In this section we discuss some 

distinctions among alternative kinds of predictions, when both 

the dependent and the independent variables are categorical. As 

the prediction ability of a specific model can be used as a 

criteria for model selection, we will also look at some 

measures of prediction error. 
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Hildebrand et al. (1977) make a distinction between an event 

prediction and an actuarial prediction. An event prediction is 

a proposition that predicts each case's state on the dependent 

variable, while an actuarial prediction is a proposition which 

specifies, for each case, the probabilities of the dependent 

variable. As an example of an event prediction rule the authors 

take the case of a binary dependent variable and two 

independent variables: 



"If the legislator is liberal from an urban district 

then predict that that person will vote in favour 

of the bill" 

An example of an actuarial prediction is: 
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"The chance of rain during each day in July is 1/3" 

In the first case an investigator could determine, for any 

"liberal from an urban district", whether the prediction was 

correct once the vote has been cast. In the second case the 

investigator could evaluate the extent to which the observed 

proportion matched the predicted. Usually, both kinds of 

predictions are based on past data. Having noted a proportion 

of 1/3 rainy days in July over a number of years, we could make 

the prediction "no rain" for a certain day in July, because 

this alternative is the most likely. 

In many cases it seems reasonable to associate an actuarial 

prediction with an individual future observation. Instead, for 

example, making an event prediction and classifying a patient 

as either healthy or sick, we come up with a proportion 

reflecting the risk of having the disease. Increasing values of 

the prediction could perhaps correspond to actions reaching 

from surveillance, via drug treatment, up to surgical 

treatment. 



2.2 Measures of prediction error. 

The topic covered in this paper, is a special case of a more 

general problem where one wants to choose a model suitable for 

prediction purposes. See Linhart and Zucchini (1986) for 

examples of application in different fields. In the literature 

the measure of prediction error is often termed error rate and 

one distinguishes the optimum error rate, which is the error 

rate that can be obtained if the parameters of the statistical 

model are known and the optimal predictor is used. Secondly, 

the actual error rate, is the error rate obtained by averaging 

over the the distribution of future observations. Thirdly, the 

apparent error rate is defined to be the average error rate 

when the predictor is applied to the available observations 

retrospectively. A trivial example should illuminate these 

concepts. 
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Suppose we observe a sequence of independent random variables 

Y1, ••. ,Yn , with common mean ~ and variance 0 2 . Suppose that we 

want to use these observations to make a prediction of a future 

observation Ynew , thought to have the same distribution. Now, 

suppose we adopt the mean squared error to a particular 

predictor Y', for example the mean of the observations Y1, •• Yn . 

The actual error rate then becomes 

MSEact = E(Ynew - y,)2 



If the parameter p were known, we could use it as a predictor 

and we would obtain the optimum error rate 

MSEopt= 0 2 

For the apparent error rate we let the predictor Y' predict the 

observations retrospectively and average the squared errors 

MSEapp 

Much research has been devoted to estimating the expectation of 

actual error rate (the apparent error rate is generally biased 

downward). Van Houwlingen and Le Cessie (1989) gives a review 

of different ways for estimation, including cross-validation. 

Efron (1986) provides several estimates for the bias of the 

apparent error rate. The theory applies to general exponential 

family linear models and general measures of prediction error. 
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In a setting identical to the one in this paper, where there 

are several groups of observations on a binary variable, Efron 

(1978), constructs one-way ANOVA tables, by introducing a wide 

class of measures of binary variation, including the squared 

error. A coefficient of determination can thus be defined for 

each measure in the class, reflecting the proportional decrease 

in residual variation when going from a crude explanation of 

the probabilities of success in the groups, to a more detailed. 
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In the case of event predictions, we are either right or wrong, 

so one appropriate measure of prediction error is the apparent 

error rate: 

The number of false predictions divided 

by the total number of predictions 

Consider the following example, where we have some past data of 

how urban legislators voted in a similar election. 

Liberal Conservative 

In favour 10 50 

Against 30 10 

Suppose we adopt the strategy of predicting "against" for 

liberals and "in favour" for conservatives. The apparent error 

rate in this case equals 0.20 and can be interpreted as 

follows. Suppose we knew only the state of the independent 

variable for all 100 individuals and used the proposed strategy 

to predict the state of the dependent variable of a randomly 

selected individual. The probability of making a false 

prediction would then be 0.20. This rate could be used for 

comparing other prediction rules, e.g. predicting "in favour" 

for both liberals and conservatives. 



Since the apparent error rate was obtained by letting the 

sample predict itself, we might suspect that it is to 

optimistic for future data. That this is the case is shown in 

Efron (1986). 

Turning to actuarial predictions where the predictor is 

continuous on the interval (0,1), we are more flexible when 

choosing a measure of prediction error. In the setting of the 

two-way classification of above, we define the squared 

prediction error for a future observation, i, belonging to 

state j on the independent variable 

where Pj' is an estimate of the probability p(Y=llz=j). The 

actual error rate in this case is 

When the aim is to compare the performance of different 

predictors, we could of course drop the constant term 

10 



Pj·(l-Pj). In chapter 4, we will study the expectation of a 

weighted average of this error rate over the values of j for 

two different predictors. 

Another measure is the expectation of the Kullback-Leibler 

distance. For a single Bernoulli variable Y with expectation p 

this is defined as: 

Dact E( -Y·log(p') - (l-Y)·log(l-p') ) 

-p·log(p') - (l-p)·log(l-p') 
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where p' is a predictor of Y and the expectation is taken over 

Y, holding p' constant. It is equal to the expectation of the 

log-likelihood over Y, holding p' constant. We see that for Y=l 

the Kullback-Leibler distance is equal to -log(p'), a 

decreasing function of p' and for y=Q it is equal to 

-log(l-p'), an increasing function of p'. The apparent error is 

Dapp -p'·log(p') - (l-p')·log(l-p') 

If we in the two-way classification assume that we observe one 

binomial variable Xj for each level of the independent 

variable, with parameters (nj,Pj) j=1,2, •. ,k, the Kullback­

Leibler discrepancy can be written as 



Dact 

where Pj' j=1,2, are predictors of Yijo The apparent error 

becomes 

Dapp = - E Pj'olog(Pj') - E (nj-Pj')olog(l-Pj') 

Now, the difference Dact - Dapp can be written as 

Approximating log(Pj/(l-Pj'» with the first two terms in it's 

Taylor expansion, the expectation of Dact - Dapp is 

If we for example let Pj' be the ordinary ML-estimator of Pj, 

this expectation is equal to 2/no If we have k different 

binomial populations the expectation would be kino Adjusting 

Dapp with the bias approximation we get 

D- = Dapp + 2/n 

12 



This in turn is equal to 

- I + 2/n 

where I is the maximized log-likelihood. 

In fact, this is a special case of the generalized information 

criterion for model selection, which states that one should 

choose the model for which 

is maximum. Ii is here the log-likelihood for the i:th model, 

maximized over qi parameters. In our case a is equal to 2 and 

this corresponds to the Akaike information criterion. For a 

discussion of this and the generalized information criterion 

see Atkinson (1980) and section 4.4. 

13 



2.3 Model selection procedures. 

When we have decided on a particular measure to compare models, 

there are different ways to search for the "best" model. For 

multidimensional contingency tables, one often considers the 

class of log-linear models, where it is assumed that the 

logarithms of the cell probabilities depend additively on a 

number of so called effects. For a three-dimensional table a 

log-linear model can be written 

where Pijk i=O,l j=1,2 ••. ,J k=1,2 ••• ,K 

14 

This is the saturated model, e.i. it contains as many effects 

as there are cells in the table. Unsaturated models are 

obtained by removing effects. It is a common practice to 

restrict attention to a family of submodels, called 

hierarchical models. The hierarhical principle means that if an 

effect is set equal to zero, then all its higher-order 

relatives are also set equal to zero. In the three-dimensional 

case, if for example the second-order interaction (a~)ij is 

zero, the hierarchical principle means that the third-order 

interaction (a~o)ijk is also zero. As we are more interested in 

modelling Pjk, the probability of Y=l given the values of the 



independent variables, we note that the 10git of this 

probability can be expressed as the difference between two 10g­

linear models 

As the number of possible models increases rapidly with the 

number of variables in the table, many model selection 

procedures have been developed. These procedures end up with 

one or several models hoped to be adequate in some way. 

15 

Most strategies for model selection begins by the fitting of a 

starting model. Adopting a rule for stepping from one model to 

another, one searches over a subset of the possible models. The 

process stops when some termination criterion is fulfilled. 

In most selection procedures the stepping rule and the 

termination procedure, depend on a goodness-of-fit test. Two 

commonly used test statistics are the Pearson chi-squared 

statistic and the log-likelihood ratio statistic. 



The selection procedures can be divided into three types, which 

all have a counterpart in multiple regression analysis. 

Starting from a simple model (often consisting of the main 

effects only), one conducts forward stepping by successively 

including effects. In backward stepping one starts with a 

complex model (often the saturated model), and successively 

removes effects. Greater flexibility is obtained if we allow 

effects previously added to the model to be removed in a later 

state or allow an effect removed in an earlier state to be 

included again. Virtually all procedures end when the tests 

employed for the addition of a term are nonsignificant or the 

tests for the removal of a term are significant. Benedetti and 

Brown (1978) summarize several of these procedures and 

illustrates their performance by an example. 

If the aim is to make hypothesis tests of effects, there is a 

problem of controlling the overall significance level. Aitkin 

(1979) has developed a simultaneous test procedure for fitting 

models, which is based on a backward stepping procedure. 

Fowles, Freeney and Landwehr (1988) construct a scatterplot 

for the d.f. (degrees of freedom) versus the value of the log­

likelihood statistic for all possible models. Points that fall 

near the line (d.f.,d.f.), fit the data well since the 

expectation of the test statistic equals the number of degrees 

of freedom if the model is correct and the samplesize is large. 

Points to the right of the plot (large d.f.) represent simple 

16 



models. Suggestions are made to select a subset of models with 

high d.f.:s near the line (d.f.,d.f.) for further inspection. 

This is an analogy to the Mallow's Cp-plot for multiple 

regression. 

17 



3. MODELS AND NOTATIONS. 

From now on we will be concerned with some simple special 

cases of choosing a model for a cross-classification when the 

objective is to make predictions of a binary variable, Y. We 

assume that we have observations on Y and an attribute Z, which 

is purely nominal. The data can be presented in a contingency 

table 

Z 

I 2 3 •••••••••••••••••••••• k 

0 xOI x02 x03· ................... xOk xO. 

Y 

I x11 x12 x13-····.············· .xlk xl. 

x .1 x .2 x.3-.··· .. ··· .. ·· ... ·· .x.k x m 

=m1 =m2 =m3· ................•.. =mk 

where Xij is the number of observations in cell (i,j), and 

summation over an index is indicated by a dot. The aim is to 

use these data when making predictions for future values of Y. 

18 
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The corresponding notations for the probabilities will be 

Z 

1 2 3 ••••••••••••••••••••• k 

0 POl P02 P03· .................. POk PO. 

Y 

1 P11 P12 P13· .................. Plk Pl. 

P.1 P.2 p.3-················· ·P.k P •• = 1 

Defining 

P1j 

Pj E( y I Z=j ) j = 1,2, ••• ,k 

POj+P1j 

we want to obtain an estimate of each Pj and use it as a 

predictor of future observations on the binary variable Y. Thus 

we are dealing with actuarial prediction. This is also the 

simplest example of variable selection, where we have only one 

independent variable. 

For the two-way classification above we can formulate a 

saturated log-linear model as 



where lij=log(Pij) and ~ai=~~j=~~(a~)ij=O. For situations where 

one variable can be interpreted as response and the other as 

explanatory, log-linear models that condition on the margins 

of the explanatory variable, that is, logistic regression 

models are of interest. 

p' + ~j' 

20 

We assume that the Xlj:s are distributed as independent 

binomial variates, which is equivalent to assuming that the 

marginals x.j:s are fixed. In section 4.6 we will look at the 

case where only the total sample size is fixed, e.i. the Xij:s 

are multinomially distributed. The relation ~l'= ~2'= ••• =~k'= 0 

corresponds to equality of the probabilities Pj, e.i. 

homogenity. Thus we have two possible logistic models, one 

including only the constant term p', the other also including 

the effect ~j'. 

Restricted model: log(Pj/(l-pj» p' 

Unrestricted model: 



A selection procedure in this case, thus amounts to choosing 

between these two model. A common approach is to adopt some 

test of the hypothesis HO: ~j'=O and choose the larger model if 

this test is rejected. As this paper deals with prediction of a 

binary variable, we want to obtain estimates of Pj:s under both 

models. Generally, to derive M.L.-estimates of the effects in a 

logistic model, we need iterative methods. Replacing p' and ~j' 

with their estimated values, we can get the M.L.-estimates for 

the Pj:s. For the restricted model we obtain a single 

estimate for all Pj:s, while for the unrestricted model they 

generally differ. In this case, where we have just one 

independent variable and thus no interaction effects, we can 

compute the M.L.- estimates directly, without fitting a 

logistic model. 

Now, assuming the restricted model is correct (e.i. 

homogenity), the M.L.-estimator of the Pj:s is the sum of the 

number of successes for each level of Z, divided by the total 

number of observations. We make the notation 

If the unrestricted model is correct, we obtain the M.L.­

estimators 

21 



i.e. the number of successes divided by the number of 

observations for Z=j. p* and Pj' will be referred to as the 

unrestricted and restricted estimator/predictor, respectively. 

In the following we let Pj' and p* denote both the stochastic 

variable and a particular realization. 

As a measure of prediction error, we will adopt squared error, 

that is 

and 

where Yij is a new observation independent of the Xij:S but 

identically distributed. Following the terminology of chapter 

2, the actual error rates are obtained by taking expectation 

over Yij, holding Pj' and p* constant. 

Comparing the performance of the two predictors, we drop the 

common term Pj·(l-Pj) and take expectation also over Pj' and 

* Pj respectively. We make the notation 

and 

22 
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where MSE stands for 'mean squared error'. Of course, both 

MSE:s depend on unknown parameters and have to be estimated. 

Now, if we make a new observation for which Z=j, we would 

prefer the predictor Pj' if 

Turning to the case where we want to predict a whole sample of 

new observations, with sampling proportions f1, f2, •• ,fk, we 

assume that the aim is to select a vector of predictors that 

is on the average good for the whole new sample. We will 

consider two such vectors, namely 

P' = (P1', P2 ' , ...• , Pk ' ) 

p* ( * * *) P1 , P2 , •••• , Pk 

both of dimension k. Thus for the prediction rule P'; if Z=j 

for an observation, use Pj' for prediction. And for the rule 

p*; if Z=j use p* for prediction. We define the average mean 

squared error for the two prediction rules as 



AMSE( PI) 

AMSE(P*) * = 1: fj·MSE(Pj ) 

Thus, we would prefer the prediction rule pI if 

AMSE(P*) - AMSE(P I ) > 0 

In section 4.1, we will see that this criterion implies that 

we should use p* also for some departures from homogenity. As 

24 

the criterion depends on unknown parameters, we will also study 

the effects of estimating it from the data. 
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4. Derivation and comparisons of prediction rules. 

4.1 The average mean squared errors for the predictors based on 

the unrestricted and the restricted model. 

In this section we study the average mean square error criteria 

for choosing between the two predictors p'and p*. We should use 

the predictor P' for a sample of new observations if 

AMSE(P') - AMSE(P*) 

is larger than zero and otherwise using the predictor p*. Of 

course, this criterion depends on unknown parameters, which in 

practice have to be estimated. Before we turn to this, we will 

examine how the AMSE:s depend on the true parameters. We will 

also study the shape of the region in the parameter space where 

P'is preferred to p*. 

Now, recall that we have available observations Xlj with 

corresponding sample sizes mj , j=l,2, •.. ,k. We want to use the 

old data set to make a prediction rule for new observations 

from a population with the same probabilities Pj, but with 

possibly different sampling proportions. The risk of the 

unrestricted predictor p' can be written as 
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AMSE(P' ) 

Until section 4.5 we assume that the sampling proportions in 

new sample are equal to the sampling proportions in the old 

sample, i.e. fj=mj/m for j=1,2, ... ,k. AMSE(P') can then be 

written as: 

AMSE( P' ) I: Pj· (1-Pj )/m 

For k=2 we can rewrite this as: 

AMSE(P' ) 

so 

The surface is thus a cap of an elliptical parabola with vertex 

in the point (0.5,0.5, 112m). The height of this cap depends 

inversely on the total sample size. 
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For the predictor p*, we get 

AMSE(P*) 

* where n = E(p ) = t fj·Pj 

Thus, AMSE(P*) consists of two parts, measuring the variance 

and the bias respectively. We note that the variance part is 

always less or equal than AMSE(P'). For k=2, AMSE(P*) is equal 

to 

AMSE(P*) 

(4.1.1) 

In fig 4.1.1 and 4.1.2 we plot AMSE(P*), for different values 

of PI and P2=1-Pl and P2=0.5-Pl respectively. The total 

samplesize, m, is set equal to 30 in these and the following 

figures. We have also plotted AMSE(P'). These lines as well as 

the line P2=0.1-Pl are shown in fig 4.1.3. 



The intersection of the graphs of AMSE(P*) and AMSE(P') defines 

the interval where performs p* better than P'. Due to a 

reduced bias term, this interval increases when fl moves away 

from 0.5. The length of the interval depends inversely on the 

total sample size. 

Write the criterion AMSE(P*) - AMSE(P') > 0 in the form 

> 1 

28 

where the index b refers to the binomial case. By making an 

appropriate change of coordinate system we will show that for 

k=2 relations of the kind ob=d defines an ellipse in the 

PlxP2-space. Put 

PI x·cose - y·sine 

P2 = x·sine + y·cose 

Substituting this into ob=d, we get 

A·x2 + B·x·y + C·y2 + D·x + E·y o (4.1.2) 



where 

A (l+d/m1)·COS2a - 2·cosa"sina + (l+d/m2)·sin2 a 

B -(d/m1 - d/m2)"sin2a - 2·cos2a 

C = (l+d/m1)·sin2a + 2"cosa·sina + (l+d/m2)·cos2 a 

D -(d/m1)·cosa - (d/m2)·sina 

E (d/m1)·sina - (d/m2)·cosa 

Putting B=O is equivalent to 

cot2a 

Solving for a 

29 

(4.1.3) 

It is easily seen that, since d>O, both A and B are larger than 

zero for all values of a. This proves that the relation 0b=d 

defines an ellipse. For f1 = 0.5, a = n/4. Substituting this 

value into (4.1.2), we arrive at 

o 



Completing squares and rewriting in the standard formula for an 

ellipse we get 

------------ + --------------- = 1 (4.1.4) 

1/2 d/2· (m+d) 

30 

The area inside the ellipse for d=1, defines together with the 

requirement O~P1,P2~1, the region where p* is preferred to p'. 

The eccentricity of this ellipse is 

1 

(m + 1)2 
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and thus it becomes flatter for large m, and because the major 

axis is constant this indicates that the region where p* is 

preferred becomes smaller. By looking at (4.1.3) and ( 4.1.4) , 

we see that the major axis coincide with the P1 =P2-line if 

f1=0.5. For f1+0.5, the major axis is tilted off this line. 

The magnitude of this effect is inversely related to m. For a 

total sample size of m=30, the region was plotted for two 

cases, f1=15/30 and f1=5/30. The result is shown in fig 4.1.3, 

where it is seen that the region is larger for f1 = 5/30. By 

inspecting (4.1.1), we see that this is no accident, since as a 

function of f 1, AMSE ( p* ) reaches its maximum for f 1 =0. 5 and 

AMSE(P') don't depend on fl. 



4.2 The suggested predictor Ph-. 

Now, ideally we would use the predictor P 'whenever ob> 1 and 

otherwise the predictor p*. If this prior knowledge is not 

available we must estimate the criterion. For this purpose we 

will use the maximum likelihood-method. 

It is a well known fact that the M.L.-estimators of Pj and n 

under the unrestricted model are respectively: 

ml(n) p* and ml(pj) 

and substituting these into 0b, we obtain the estimated 

criterion: 

n·E fj·(pj' - p*)2 

ob' = ----------------------- > 1 

E (1-fj)·Pj'·(1-Pj') 

We note here that ob' is equivalent to a statistic proposed by 

Goodman (1964) as a competitor to the chi-squared test for 
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homogenity. In the literature it is also known as the Wald 

statistic. 

Define a prediction rule 

Use P' if 0b'> 1 

Use p* if ob'~ 1 

and denote this predictor Pb-. Putting PRb=P(ob'> 1), the 

average mean squared error of Pb- is: 

33 

Of course, we would like PRb to be as large as possible 

whenever ob~1 and as small as possible when ob>1. Further, to 

calculate AMSE(Pb-) for different situations we must be able to 

compute the value of PRb. This was done through simulations for 



the two-population case, first for fl=15/30 and second for 

f1=5/30. The result is presented in fig 4.2.1 and 4.2.2 where 

AMSE(P') and AMSE(P*) are also plotted. 
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4.3 Comparison of Ph- and predictors based on Pearson's chi-

squared test. 

We now proceed to show that the statistic ob' has a close 

connection with the Pearson chi-square statistic used for 

testing the equality of k binomial probabilities: 

x2 

* * P ·(1 - P ) 

The difference between the two statistics lies in their 

denominators. Expressing ob' in terms of x2 we get 

* * P ·(1 - P ) 

x2 = 

x2 = 



E fj·Pj'·(l - Pj'> 

x2 

= ------------------------------

1 - x2/n 

To give a numerical example to show that ob' generally is not a 

function of x2, we pick two values of (P1,P2), for which X2 =1 

and compute the value of ob' in both cases. For the values 

(0.20,0.0629) and (0.20,0.4400) X2 =1, if f1=5/30. In the first 

case 0b'=0.55, while in the second case we get 0b'=1.38. 

In the case of equal sampling proportions, fj=l/k j=1,2, •. ,k, 

we however get 

X2 /(k -1) 

Ob' --------------------

1 - x2/n 
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Thus, we can state the criterion for choosing between pI and p* 

equivalently in terms of X2 : 

<=> X2 > n·(k-l)j(n+k-l) ~ k-l 

For different values of k, using the criterion ob' corresponds 

to adopting a x2- test at the following approximate levels: 

k a 

2 0.32 

3 0.38 

4 0.40 

5 0.41 

>30 0.50 

Let Pa be the predictor defined by the following rule: 

37 



38 

Use P' if x 2 > c1-a 

Use p* if x 2 < c1-a 

where c1-a is the upper (1-a)-percenti1e in a X2-distribution 

with k-1 degrees of freedom and let PRa =p(X2>C1_a). The AMSE of 

Pa can be written as 

AMSE(Pa ) PRa·AMSE(P') + (l-PRa )·AMSE(P*) 

Next, we will compare AMSE(Pb-) and AMSE(Pa ) for the two­

population case. Referring to the discussion above, it is clear 

that for equal sampling proportions (f1=0.5), the criterion 

ob'>l is equivalent to x2>n/(n+1). The latter critical value is 

for reasonably large n approximately equal to 1 and it 

corresponds to a test on the approximate level of a=0.32. 

The difference between the two AMSE:s can be written as 

(PRb - PRa)·(AMSE(P') - AMSE(P*» 

and we conclude that for equal sampling proportions we have 



AMSE(Pb-) - AMSE(Pa ) = 0 if AMSE(P')=AMSE(P*) or 

PRb=PRa 

> 0 if AMSE(P'»AMSE(P*) and a<0.32 

or AMSE(P')<AMSE(P*) and a>0.32 

< 0 if AMSE(P' »AMSE(P*) and a>0.32 

or AMSE(P')<AMSE(P*) and a<0.32 

To illustrate this and also study the effect of nonequal 

sampling proportions, AMSE(Pb-) and AMSE(Pa ) were computed 

through simulations. Two critical values for the x2-test were 

considered, 3.84 and 0.45, corresponding to the approximate 

levels 0.05 and 0.50 respectively. Two sampling proportions 

were chosen, fl=15/30 and fl=5/30. The results are summarized 

in fig 4.3.1 - 4.3.6. 
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As all curves intersect at the points where AMSE(P')=AMSE(P*), 

fig 4.3.1-4.3.6 illustrate how the region where p* is preferred 

to p' is larger for f1=5/30 than for f1=15/30. This is the 

result of a decrease in the average squared bias for p* ( see 

(4.1.1) page 15 ). 

We can also conclude that a traditional strategy involving a 

low-level test performs well if P1 and P2 are close, while the 

0b'-criterion works better elsewhere. As noted earlier, the 



effect of increasing m, would be to reduce the region where p* 

is preferred to P'. Thus, for larger m, the 0b'-criterion would 

be better for a yet larger region. 

In fig 4.3.4 and 4.3.6, we also note the non-symmetry for 

AMSE(PO.05), when we have non-equal sampling proportions. 

AMSE(PO.05) is larger for small values of PI than for large 

values of Pl' 

Fig 4.3.6 shows that AMSE(PO.50) actually is smaller than 

AMSE(Pb') on the interval where AMSE(P*)<AMSE(P') if fl=5/30, 

for the small values of PI and P2 covered in this figure. 
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4.4 Comparing Pb- with predictors based on the Akaike-

criterion. 

The Akaike-criterion for choosing between two models, amounts 

to comparing the quantities 

and 

where 11 and 12 are the maximized log-likelihood functions and 

ql and q2 the number of estimated parameters of the models. 

For our purposes we let 11 be the maximized log-likelihood 

function under the hypothesis of homogenity 

* * ~ ( Xlj·ln(p ) + (nj - Xlj)·ln(l-p ) ) 

and under the global alternative hypothesis we get 

The Akaike-criterion states that we should use the predictor pI 

if 



Equivalently we may express this in terms the likelihood 

functions, L1 and L2: 

For the two-population case q2-q1=1, so we obtain 

42 

Since 2·ln(L2/L1) has an approximate chi-square 

nulldistribution with one degree of freedom, this criterion is 

approximately equivalent to adopting a likelihood ratio test on 

the level of 0.16. 

Let PA be the predictor defined by the rule 

In fig 4.4.1 - 4.4.4 AMSE(Pb-) is compared with AMSE(PA). 



We see that PA performs slightly better in the region where 

ob<l, corresponding to values of PI and P2 quite close, while 

Pb- is better elsewhere. 
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4.5 Effects of different sampling proportions in the old and 

the new sample. 

In so far we have assumed that the sampling proportions in the 

old sample were identical to the proportions in the new sample, 

for which we wanted to make predictions. This assumption 

simplified the computations for AMSE(P') and AMSE(P*). In this 

section we shall give a brief indication to what happens if 

this assumption is not fulfilled. Let 

ej mj/m, i.e. the proportion of obs. at Z=j 

in the old sample, j=1,2, .•. ,k 

fj = nj/n, i.e. the proportion of obs. at Z=j 

in the new sample, j=1,2, ••• ,k 

The AMSE:s are defined by averaging over the new sample as 

usual 

AMSE(P') = 

AMSE(P*) 
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Evaluating MSE(Pj') and MSE(Pj*) for the proportions ej, we get 

AMSE(P') 

AMSE(P*) 

where n 

Studying AMSE(P*) for the case where k=2, we obtain 

AMSE(P*) 

AMSE(P*) - AMSE(P*) = (1 - 2·e1)·(e1 - f1)·(P1 - P2)2 

e1=f1 e1+f 1 

e.i. if P1+P2 we are better off if we try to predict for the 

new sample, where f1Te1 if e1<0.5 and f1<e1 or e1>0.5 and 

f1>e1. As is seen from fig 4.5.1, in the majority of cases we 

are however worse off. Note that we can't interpret fig 4.5.1 
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as indicating the effect of e1 for a given fl. For example, if 

f1=0.9, we can't say that AMSE(P*) is smaller for e1=0.6, say, 

than for e1=0.9. For the latter problem we can minimize 

AMSE(P*) 

with respect to e1. Taking derivative we obtain 

Restricting attention to the case P1+P2, for P1=P2 AMSE(P*) 

don't depend on either e1 or f1, we put this equal to zero and 

solve for e1. 
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As the second derivative is equal to 4·(P1-P2)2>0, the solution 

is a minimum. It is seen that e1=f1 if the variances are equal 

in the two populations. On the other hand, if the variance 

P1·(1-P1) is large compared to P2·(1-P2), the minimal e1 is 

smaller than fl. 
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Study the inequality 

AMSE(P') - AMSE(P') = (1 - f1/e1)"P1"(1-P1) + 

e1=f1 e1=ff1 

> 0 

For e1=ff1 we get two cases 

AMSE(P') - AMSE(P') > 0 <=> 

e1=f1 e1=ff1 

AMSE(P') - AMSE(P') > 0 <=> 

e1=f1 e1=ff1 

P1"(1 - P1) 
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In fig 4.5.2 - 4.5.4, the regions in the (P1,P2)-space where 

AMSE(P') - AMSE(P') > 0 

e1=f1 e1+f 1 

are shown, for values of e1 corresponding to 0.4, 0.5 and 0.6. 

We see that for e1=0.5, the inequality is satisfied for exactly 

half the space, both for f1>e1 and f1<e1. For e1=0.4 it is 

satisfied for the larger region if f1<0.2 and for e1=0.6 if 

f1>0.6. 

It is clear that AMSE(Pb-), will be effected if e1+f1. This 

effect should depend on the directions of the changes in 

AMSE(P') and AMSE(P*). E.i. if both AMSE(P') and AMSE(P*) get 

larger, then AMSE(Pb-) gets larger. This issue will not be 

discussed further. 



4.6 The multinomial case. 

In the preceding sections, we have assumed that the sample 

sizes for the different levels of Z, were fixed in advance, 

both in the old and the new sample. E.i. we were dealing with 

independent binomial sampling. 

In this section we shall see that not much is changed for the 

case where the sample sizes for different levels of Z are 

random variables. We will assume that the total sample size is 

fixed, e.i. multinomial sampling. As before we have the two 

prediction rules p' and p*. We define 

AMSE( P' ) 

AMSE(P*) 

1: p '.E(p·'- p.)2 .J J J and 

where P.j = P(Z=j) in the population where we want to make 

predictions. Note that we keep the old notations for Pj' and 

p*, but that they now have different distributions. After some 

computations we get 

AMSE(P*) 
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where P1.=P(Y=1). For AMSE(Pl) we rely on an approximation for 

computing V(pj') (the de1tha-method, see appendix): 

so 

AMSE( PI) E Pj' (l-Pj )/m 

Now, we would prefer the prediction rule pI if 

E P ··p··(l-p·)/m + (m+1)E p "(P'-P1 )2/m - E p··(l-p·)/m > 0 .J J J .J J. J J 

e.i. if 

> 1 

E (1 - P ')'p"(l - p.) • J J J 

So om is practically equal to 0b' To estimate om, we insert the 

M-L-estimates of the parameters (see appendix), and obtain: 



Om' --------------------------- > 1 

1: (1 - P ·')·p·'·(l - P") .J J J 

where P.j' = x.j/m, the proportion of observations at Z=j, in 

the old sample. Applying the prediction rule 

Use P' if om' > 1 

Use p* if om' ~ 1 

and call this rule Pm'. Putting PR(om'>l), The AMSE of Pm' can 

be written as 

AMSE(Pm') = PRm·AMSE(P') + (1 - PRm)·AMSE(P*) 

As in the binomial case this is an average of AMSE(P') and 

AMSE(P*). Thus Pm' can be expected to perform well over large 

regions of the parameter space. 
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Fig 4.1.3 Values of Pl and P2 where Oh = 1. 

t.o o.t I .. 0.1 

Pi 

f1 = 5/30: -, f1 = 15/30 --­
and P2=0.2-P1 are also indicated. 

0.. 0.7 0.1 t.o 
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Fig 4.1.1 Comparison of AMSE(P') and AMSE(P*) for P2=1~Pl. 52 
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Fig 4.2.1 Comparison of AMSE(P')1 AMSE(P*) and AMSE(Pb-)· 
for fl 15/30 and P2 Pl· 
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Fig 4.3.1 (P AMSE(PO O ~) and AMSE(Pb-) Comparison of AMSE 0.50a'L ~ _ 
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Fig 4.3.3 Comparison of AMSE(PO.SO), AMSE(PO.Os) and AMSE(Pb-) 
for fJ 15/30 and P2 0.5 Pl· 
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Fig 4.3.5 Comparison of AMSE(PO.50), AMSE(Po as) and AMS~(Pb-?7 
for f,=15/30 and P2=0.2-p,. 
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Fig 4.5.1 Effects of different sampling proportions in the old 
- * and the new sample for AMSE(P ). 

F1 
1.0+-------------r------------'/I 

0.9 

0.8 

0.7 

0.6 

0.6 

0." 

0.3 

0.2 

0.1 

O.O~--_r----r_--_r--~r_--~--_,----._--_.----._---T 

0.0 0.1 0.2 0.3 0." 0.6 

E1 

0.6 0.7 0.8 0.9 1.0 

The shaded area indicates the values of f1 and e1 where 
AMSE(P*) for e1=f1 is larger than AMSE(P*) for e1+f1. 

60 



Fig 4.5.2 Effects of different sampling proportions in the old 
and the new sample for AMSE(P'). 
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and the new sample for AMSE(P'). 

F~ 4 ~ .5.3 Effects of different sam 
in the old 
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Fig 4.5.4 Effects of different sampling proportions in the old 
and the new sample for AMSE(P' ). 

0.0 0.1 0.2 0.3 0." 0.5 0.6 0.7 O.B 0.9 1.0 

PI 

~: values of P1 and P2 where AMSE(P') for f1=e1=0.6 is 
larger than AMSE(P') for f1>e1=0.6. 

c=J: values of P1 and P2 where AMSE(P') for f1=e1=0.6 is 
larger than AMSE(P') for f1<e1=0.6. 
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5 Concluding remarks. 

When making hypothesis testing, the rejection of a true null­

hypothesis is usually considered to be a grave error. This 

consideration calls for adopting a small significance level, 

such as 0.05 or 0.01. When choosing between two prediction 

rules, such as p* and pI, we don't have such prior 

considerations. This paper has shown that if we adopt a low­

level significance test for choosing between p* and P' this 

procedure has a high AMSE-risk for large areas of the parameter 

space. 
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APPENDIX: Collection of some useful results. 

AI. MSE(Pj*) and MSE(Pj') for the multinomial case. 

We begin by evaluating MSE(Pj*)' for the multinomial case. We 

have that 

* MSE(Pj ) 

Here we have used the fact that xl. has a binomial distribution 

with parameters Pl. and n. 

We proceed by considering MSE(Pj') 

+ (E(XIO/X 0) _ po)2 J.J J 

Now, for the expectation of Pj' we have 
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EE(Xlj/X.j I x.j) = E(Pj) = Pj 

By adopting the multivariate deltha method we will evaluate an 

approximation to the variance of Pj'. We first formulate the 

method in general terms. Let e=(el, ••• ,et)' be a vector of 

parameters and let en'=(enl', ••• ,ent')' be a vector of random 

variables with the same dimension. Assume that en' has an 

asymptotic normal distribution in the sense that 

L(n·(en ' - e» ~ N(O, E(e» 

where L stands for convergence in distribution and E(e) is the 

asymptotic covariance matrix of en'. Further, let f be a 

function which has the following expansion as x~e 

f(x) fee) + (x-e)De' + o(~x-e~) 

67 

where De is the vector of partial derivatives of f evaluated at 

x=e. Within this framework, the asymptotic distribution of 

f(en ') is given by 
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L(n·(f(Sn') - f(S») ~ N(O, DSE(S)DS') 

We proceed by determining the asymptotic variance of PI' for a 

2x2 -table, the argument being the same for P2'. Put 

f(Sn') f(S) = Pll/p.1 = PI 

It is well-known that the Xij:s have an asymptotic normal 

distribution and the asymptotic covariance matrix is given by 

E(S) 



Computing the elements of De 

P2l 

of/oenl' = ------­

m·p.l2 

Pll 

of/oen3'= - -------

m·p.l2 

As f(en ') does not include e n2' and e n4' the dimension of De is 

2xl. This implies that the asymptotic variance of Pl' is given 

by 

m·De De' 

Performing this computation we arrive at 
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A2. Maximum-likelihood estimators for the multinomial case. 

Here we derive the M.L-estimators of the probabilities Pj , Pl. 

and P.j , j=1,2, ••. ,k, for the multinomial case. The likelihood 

function for the 2xk random variables is 

m! 

L = 

TtTtXij! 

TtTtp' .x 
~J 

The essential part of the log-likelihood function is 

i = 0,1 j 1,2, ... ,k 

Writing out the summation over the index i we get 

Making the substitution P1j=Pj·P.j 

1 I: (xO' ·log( P . - P .• P .) + xl' ·log( P .. P . » J .J .J J J .J J 



Maximizing this with respect to Pj by taking derivative and 

putting this equal to zero 

Xlj·p.j/Pj·p.j - XOj·p.j/(p.j-p.j·Pj) = 0 

<=> 

Pj xlj/x.j 

For the probabilities P.j, we observe that under this sampling 

plan the vector (X. I, x.2, ••• ,x.k)' has a multinomial 

distribution with parameters m=x .• and P.I, P.2, ... ,P.k. We 

therefore conclude that the M.L-estimator of P.j is x.j/m. 

By a similar reasoning we also conclude that the M.L-estimator 

of Pl. is given by xI./m. 
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