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ABS1RACf 

We will study here a general method for constructing equivalence 

tests for problems with onedimensional or multidimensional parameter. 

In the biometric field, the equivalence tests have been studied by many 

authors under the name of bioequivalence methods. Our general 

method is closely related to a method for acceptance sampling in the 

multiparameter case by Berger (1982) and a bioequivalence test 

method by Schuirmann (1981) for normal distributions and 

onedimensional parameter. We combine in a general form the ideas of 

two-sidedness by Schuirmann (1981) and the ideas for multiparameter 

handling by Berger (1982). We give a number of parametric and 

nonparametric examples where the general method is used and we 

illustrate the methods power properties by simulation results. 
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1. INTRODUCTION 

Equivalence tests means tests with the aim to state equivalence 

between two or several cases. Exact equality can not be 'proved 

statistically' with a probabilistic protection against erroneous statements 

in any reasonable case. Thus a suitable setup, which will be used here, is 

to define a region of approximate equality and to make a test, with some 

low prescribed level of significance a, of the composite hypothesis that 

the parameter combination is outside this region. When rejecting this 

hypothesis, we can make the statement that the parameter combination 

is inside the region, having the small error a of making this statement 

wrongly for any parameter combination outside the region. 

A common type of equivalence test situation is comparison of 

bioavailability in pharmaceutics. A new formulation of a drug is 

compared with a standard formulation in human subjects. For studying 

the extent of absorption, the areas under the concentration/time curve 

are then often the basic statistics in the analysis. Some parametric or 

non parametric method must be used for evaluating the area under the 

concentration curve (AUC) from the measures of concentration at a 

number of times. 

A much used type of design of bioequivalence experiment is a 

two-period crossover design, with some (even) number n of subjects. For 

the subjects are formed the bioavailability ratios 

Ri = AUCi(new) / AUCi(standard) i = 1, 2, 3, ... , n 

or the bioavailability differences 

Di = AUCi(new) - AUCi(standard) i = 1, 2, 3, .... , n 

and the analysis is based on either of these sets. The random variables 

in the set used are usually supposed to be independent. 
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Since the AVe values are non-negative, it seems more reasonable to 

use the AVe ratio statistics Ri i = 1, 2, 3, .... , n than to use the AVe difference 

statistics Di i = 1, 2, 3, ... , n. A natural parameter formulation of 

bioequivalence for the ratio statistics Ri i= 1, 2, 3, ... , n, is that the expectation 

of Ri should be in some interval including 1 or that the expectation of the 

logarithm of Ri should be in some interval including O. When the difference 

statistics Di is used, a natural parameter formulation of bioequivalence is 

that the expectation of the difference statistics Di should be in some 

neighbourhood of O. For the case of normal distributions there is a method of 

bioequivalence testing, which seems to be due to Schuirmann. See the 

abstract Schuirmann (1981). For testing the hypothesis Ho: Jl ~ al or Jl ~ a2 

against the alternative HI: al < Jl < a2 at the level a, the method means 

making one-sided tests of the two hypotheses HO I : Jl ~ a I and 

H02 : Jl ~ a2 , each one at the level a. The original hypothesis HO is rejected 

only if both these one-sided hypotheses are rejected. It is known that the 

level of significance is less than or equal to a. 

Methods can be given in terms of confidence intervals or in terms of 

tests. Se related discussions e.g. in Westlake (1972, 1976, 1979), Hauck and 

Anderson (1984), Steinijans and Diletti (1985) and Kirkwood (1981). In a 

response to Kirkwood (1981), Westlake suggested use of a 1-2a confidence 

interval for making bioequivalence statements, which is equivalent to the 

test method by Schuirmanrt (1981). 

The use of the type of construction made by Schuirmann is not limited 

to the case of difference test statistics and normal distributions. The same 

type of construction can be made for nonparametric test statistics and for all 

types of bioequivalence formulations for one parameter. Further it is 

possible to give general methods for construction of equivalence tests valid 

also for multidimensional parameter cases. This is also related to the work 
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on multiparameter hypotheses testing and acceptance sampling by Berger 

(1982). 

The aIm of this paper is to make a discussion of a general method for 

constructing equivalence tests. We will prove that the tests constructed with 

this method have the required level of significance. A number of examples 

will be given, and the properties will be studied in terms of power functions. 

We will also discuss the relation of our method to other methods for 

constructing equivalence tests. 
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2. A GENERAL CONS1RUCTION 

In this section we will gIve a general construction of equivalence tests 

with garanteed level of significance. The construction can be used for 

problems with one or several parameters. The one parameter construction is 

a special case, but for pedagogical reasons we will treat it sepately before we 

formulate a theorem for the more general case 

THEOREM 1 

Let C 1 be the rejection region for a level <l test of Ho 1 : 8 S;; 81 and let C2 

be the rejection for a level <l test of Ho2 : 8 ~ 82, where 82 > 81. 

Then a test of Ho : 8 S;; 81 or 8 ~ 82 with rejection region C 1 n C2 has a level of 

significance S;; <l. 

PROOF: If 8 S;; 81 then Pe ( C1 n C2) S;; Pe ( C1 ) S;; <l and if 8 ~ 82 then 

Pe (C1 n C2) S;; Pe (C2) S;; <l. Q.E.D. 

It should be observed that any type of test could be used in the 

construction. The test by Schuirmann (1981) is the special case, where a 

t test is used and the observations are supposed to be normally distributed. 

But the construction works equally well e.g. for a nonparametric rank test 

like the Wilcoxon test or for a robust test of Huber type. Also the bootstrap 

technique could be used for construction of equivalence tests according to 

the principle given above. In a later section we will discuss properties for 

different types of one parameter equivalence tests and compare the 

properties of different tests. The type of construction we have made is 

however possible to use also for multi-parameter equivalence problems. 
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THEOREM 2 

Suppose that eO c e and e A c e for A E A are parameter sets 

such that 

Suppose further that for each A, CA is a critical region for a level a. test of 

H A : e E e A • Then a test of Ho: e E eo with rejection region 

Co = n CA. 
A.EA 

has size :s;; a. . 

PROOF 

For each e E eo there exists at least one A' such that e E eA.' since 

U eA. = eo 
A.EA 

Then Pe ( Co ) = Pe( n CA) :s;; Pe ( CA.') :s;; a.. Q.E.D. 

Like in the one-parameter case, the construction is made such that a 

rejection in the equivalence test of level a. is made, if all the one sided 

hypotheses in a constructed set of tests are rejected at the level a.. In a 

subsequent section we will consider several examples of the construction. 

This type of construction is also used by Berger (1982) for acceptance 

sampling problems, which have much the same character as equivalence 

testing problems. He works however essentially with one sided test problems. 

At the instants when he has equivalence test in some parameters, he does 

not use the general principle above for the two sides of the hypothesis for 

those individual parameters. He uses instead a combined test based on a 

noncentral t distribution in case of normally distributed observations. We 

will discuss the details later. 

It should be observed that the method proposed above is completely 

general. It is not even neccesary to have a finite number of hypotheses HA• 
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In one of the examples in section 4, there is a natural problem formulation, 

where we technically have a continuum of hypotheses HA" A. EA. 

3. CROSSOVER DESIGNS 

In bioequivalence testing, the crossover design is a much used 

experimental design. By using each experimental unit for two treatments A 

and B we get a within subject comparison of these two treatments. The 

random allocation of the order of· using treatments A and B in subjects gIVes 

the chance to eliminate possible additive time effects. It is to be noted 

however, that if there are time effects, then there is a location difference 

between the distributions for the means of the differences between the 

results with treatment B and A in the two cases of order of treatment AB 

and BA. This means that the error estimate in a normal model should not be 

taken from a standard deviation of the full set of BA differences directly. It 

should be taken from a pooled standard deviation using the internal 

standard deviation estimates within the two groups having the order of 

treatment AB and BA respectively. Thus in a simple case with 

onedimensional observations and n experimental units for each of the 

treatment order cases AB and BA, there are 2(n-l) degrees of freedom in the 

pooled estimate. In simple normal models this is handled in a standrard way. 

It is slightly more complicated if we consider nonparametric methods for the 

tests. We will discuss these problems in more detail later. 
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4. SOME EXAMPLES 

In order to illustrate the general method of construction, we will gIve 

here some simple examples of equivalence tests. Some of those examples will 

be studied further concerning power and other properties in subsequent 

sections. 

EXAMPLE 1 Suppose that we have n subjects with independent 

observations and for the subject number i we have two independent 

components Xi and Yi, which are observations of two types of effects, e.g. III 

form of differences or ratios. Suppose further that the Xi:S are normally 

distributed with standard deviation 0'1 and that the Yi:S are normally 

distributed with standard deviation 0'2. If the observation pairs are obtained 

in a crossover design, the number n should be even, and there should be n/2 

subjects for each ordering AB and BA of the treatments A and B. If there are 

time effects present, there are different expectations for the Xi and Y i 

differences between treatment B and A for the two orderings AB and BA. 

After balancing out the time effects we have however estimates of the pure 

B-A difference parameters, which we denote ~1 and ~2. If the equivalence 

statement we want to possibly make is ~11 < ~1 < ~12 and ~21 < ~2 < ~22 , and 

if we use the level of significance <l , then we can make ordinary t tests of 

the four preliminary hypotheses 

Hll : ~1:S; ~ll H12 : ~1 ~ ~12 H21 : ~2 :s; ~2I H22 : ~2 ~ ~22, 

at the same (technical) level <l. The equivalence statement will be made only 

if all four hypotheses are rejected. Then the preliminary hypothesis HI1 will 

be rejected if 

X ~ ~11 + tl-a Sx/ ~n 

where tl-a is the 1 - <l fractile III the t distribution with n-2 degrees of 

freedom and Sx is a pooled estimate of the standard deviation O'x of the X 
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differences. In the same way the other preliminary hypotheses H12, H21 and 

H22 will be rejected if respectively 

X ~ J.l12 - tl-ex Sx / ...,j-;; 

y ~ J.l21 + tl-ex Sy / ...,j-;; 

y ~ J.l22 - tl-ex Sy / ...,j-;; • 

Observe that using these preliminary test results for the eqivalence 

test means that the equivalence statement is made only if the rectangula 

eX - tl-ex Sx /...,j-;; , x + tl-ex Sx /...,j-;;) x ( Y - tl-ex Sx /...,j n , Y + tl-ex Sx /...,j-;; ) 

lies completely inside the rectangula (J.lll, J.l12 ) x ( J.l21 , J.l22 ). 

A naive simple way of generating an equivalence statement with 

garanteed level of significance would be to make an ordinary rectangular 

confidence set for ( J.ll , J.l2 ) with confidence coefficient I-a, and to check if 

this rectangula lies completely inside the rectangula ( J.lll , J.l12 ) x ( J.l21 , J.l22 ). 

This means substituting tl-ex in our method by tl-ex', where I-2a' = ~ I-a. 

For instance for n = 20 and a = 0.05, the t value for our method would be 

1.73, while the t value for the naive simple method would be 2.43. This 

indicates that our method has much higher power. Power properties will be 

studied further in a following section. 
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EXAMPLE 2 Suppose that we have observations for n individuals, and 

that the observation on individual i consists of a pair ( Xi , Yi ) of possibly 

dependent normal random variables with some mean vector ( III ,1l2 ) and 

unknown covariance matrix 1:. The pairs corresponding to different 

individuals are supposed to be independent. We consider here a model 

without time effects in the crossover design. Again our aim is to get 

equivalence statements of the type that ~~) lies inside a rectangula 

( Illl , 1112 ) x ( 1l2l , 1122 ). A test with level a of the preliminary hypothesis 

can be based on the t statistic 

like in the case with independence within the pairs (Xi, Yi ). See e.g. 

Morrison (1967). The critical value is the I-a fractile in the t distribution 

with n-l degrees of freedom. The other preliminary hypotheses are treated 

in the same way, and the rule for the equivalence statement is exactly the 

same as in the independence case. The power properties however depend on 

the covariance between the X and Y variables. There is a symmetry in the 

independence case, which is missing in the general case. Also the power of 

the case with dependent X and Y variables will be studied in a following 

section. 
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EXAMPLE 3 Suppose that the two components Xi and Yi for each of n 

individuals are independent measurements of two characteristics, where the 

same measurement method is used in both cases. It might then be 

reasonable to assume that both components have the same unknown 

variance 0'2. Suppose further that Xi and Yi are normally distributed with 

parameters !ll and!l2 and that the equivalence statement we want to make 

is of the form !l12 + !l22 < r2. In this case the hypothesis to test is 

HO: !l12 + !l22 ~ r2 

and we could write the hypothesis parameter set as a union of the sets 

{ ( !ll , !l2 ): !ll cos <p + !l2 sin <p ~ r } 

for all <p, 0 S <p < 2 1t • For each of these sets, the corresponding hypothesis 

Hcp can be tested by a simple t test. Observe however that there is 

information on the common variance 0'2 in both the X and Y sample. The 

estimate of 0'2 is S2 = ~ (Sx2 + Sy2) , and the degrees of freedom are 2(n-I). 

The preliminary hypothesis Hcp is rejected if 

X cos <p + Y sin <p S r - tl-a S I ~ n 

i.e. if the mean point (X, Y ) is at a distance from the hypothesis parameter 

set boundary of at least tl-a S I ~ n . This means that the equivalence 

statement !l12 + !l22 < r2 will be made only if the sphere with centre in the 

mean point (X, Y ) and radius tl-a S I ~ n lies completely inside the sphere 

!l12 + !l22 < r2. 

This method can be compared to the naive method of making a I-a 

confidence set for (!l1,!l2) i form of a sphere, and to see if this falls 

completely inside !l12 + !l22 < r2. In that case the radius of the sphere is 

( 2 VI-a / n )1/2 S. For instance for 20 observations the radius in our 

method is 0.387 S, while the radius in the naive method is 0.570 S. Power 

calculations and power comparisons will be made in a following chapter. 
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EXAMPLE 4 When there are doubts about the normality of the 

observations we can use some nonparametric method like a one sample 

Wilcoxon test for the two preliminary tests in each component e.g. in 

example 1. The statistical model in this case is that the X and Y distributions 

are symmetric around some points. These symmetry points J.1I and J.12 are 

also the parameters to use in the hypotheses formulations like in example 1. 

In testing for instance the preliminary hypothesis HII: J.1I ~ J.1II we can use 

the translated X observations Xi - J.1II in an ordinary one sample Wilcoxon 

test of symmetry around 0 against the alternative of symmetry around a 

positive value, i.e. a onesided alternative. The other preliminary tests are 

treated analogously. 

If we do not have to consider time effects in a crossover design all 

preliminary tests are easily handled. But if we have to consider possible time 

effects the problem becomes a little more complicated. Then we have also to 

estimate the time effects beside making a nonparametric test for the effect 

parameter. This can be handled e.g. by estimating the time effect by an 

Hodges-Lehmann estimate or a median difference estimate, adjusting the 

series by this estimate and make an ordinary one sample Wilcoxon test for 

the effect parameter. The distribution for this Wilcoxon test statistic under 

the hypohesis is then however not the ordinary one. 

Weare not going to treat this more complicated non parametric 

methods in more detail in the present paper, but we have the intention to do 

it elsewhere. 
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5. POWER PROPERTIES 

In this section we will demonstrate the power properties for the 

suggested methods by presenting simulated power functions for some 

examples. 

Our first power function simulation is concerned with the methods for 

normally distributed observations, given in examples 1 and 2 of section 4. In 

example 1 we supposed that the two types of observations were 

independent and in example 2 we allowed for dependence. But the method 

works in the same way in the two cases. In Table 1 on the next page we give 

the simulated power function for correlations p:::;: 0.0, 0.5 and -0.5 for the 

special case of 12 observations with standard deviation 1.0 and equivalence 

regIOn in form of a square with side 2.0. In the simulation with sample size 

10000 we have supposed a model without time effects in the crossover 

design. Thus the standard deviation is estimated with 11 degrees of freedom. 

The result would not be changed very much if we had a situation, where we 

considered time effect, and had an estimate of the standard deviation with 

10 degrees of freedom. The same random variables are used with different 

translations to get the different power function results, which explains the 

regular behaviour. There is a symmetry around the diagonal which is not 

used in the simulation. Thus there is a slight random lack of symmetry. The 

essential effect of dependence is a bigger or smaller rounding off in the 

corners of the equivalence square. For the same sample size and other 

standard deviations and size of equivalence square, the results are 

obtainable from the same simulation, if the ratios between the sides of the 

equivalence square and the standard deviations are the same. 
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Table 1. Power of a two-dimensional equivalence test based on t statistics for 
12 observations with standard deviation 1.0. The equivalence region is 
(-2.0,2.0) (-2.0,2.0) and the level of significance 0.05. 
Correlation p = 0.0 
Expectation '.11 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Expectation ~2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

1.00 1.00 1.00 1.00 0.99 0.94 0.82 0.62 0.38 0.16 0.05 
1.00 1.00 1.00 1.00 0.99 0.94 0.82 0.62 0.38 0.16 0.05 
1.00 1.00 1.00 1.00 0.99 0.94 0.82 0.62 0.38 0.16 0.05 
1.00 1.00 1.00 1.00 0.99 0.94 0.82 0.62 0.38 0.16 0.05 
0.99 0.99 0.99 0.99 0.98 0.93 0.81 0.62 0.38 0.16 0.05 
0.95 0.95 0.95 0.95 0.94 0.89 0.78 0.59 0.37 0.16 0.05 
0.83 0.83 0.83 0.83 0.82 0.78 0.68 0.52 0.32 0.14 0.04 
0.61 0.61 0.61 0.61 0.60 0.58 0.50 0.38 0.24 0.10 0.03 
0.37 0.37 0.37 0.37 0.37 0.35 0.31 0.24 0.15 0.07 0.02 
0.16 0.16 0.16 0.16 0.16 0.15 0.13 0.10 0.06 0.03 0.01 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.02 0.01 0.00 

Correlation p = 0.5 
Expectation ~ 1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Expectation ~2 

0.0 1.00 1.00 1.00 1.00 0.98 0.94 0.82 0.62 0.38 0.17 0.05 
0.2 1.00 1.00 1.00 1.00 0.98 0.94 0.82 0.62 0.38 0.17 0.05 
0.4 1.00 1.00 1.00 1.00 0.98 0.94 0.82 0.62 0.38 0.17 0.05 
0.6 1.00 1.00 1.00 0.99 0.98 0.94 0.82 0.62 0.38 0.17 0.05 
0.8 0.99 0.99 0.99 0.98 0.97 0.93 0.82 0.62 0.38 0.17 0.05 
1.0 0.95 0.95 0.95 0.94 0.93 0.90 0.80 0.61 0.38 0.17 0.05 
1.2 0.83 0.83 0.83 0.83 0.82 0.80 0.72 0.56 0.36 0.16 0.04 
1.4 0.61 0.61 0.61 0.61 0.61 0.60 0.56 0.45 0.31 0.15 0.03 
1.6 0.37 0.37 0.37 0.37 0.37 0.37 0.35 0.30 0.22 0.11 0.02 
1.8 0.16 0.16 0.16 0.16 0.16 0.16 0.16 0.14 0.11 0.06 0.01 
2.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.01 

Correlation p = -0.5 
Expectation ~1 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 
Expectation ~2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

1.00 1.00 1.00 1.00 0.99 0.94 0.83 0.63 0.38 0.15 0.04 
1.00 1.00 1.00 1.00 0.99 0.94 0.83 0.63 0.38 0.15 0.04 
1.00 1.00 1.00 1.00 0.99 0.94 0.83 0.63 0.38 0.15 0.04 
1.00 1.00 1.00 1.00 0.99 0.94 0.83 0.62 0.38 0.15 0.04 
0.99 0.99 0.99 0.99 0.98 0.93 0.82 0.61 0.37 0.15 0.04 
0.95 0.95 0.95 0.95 0.93 0.89 0.78 0.58 0.34 0.13 0.03 
0.83 0.83 0.83 0.83 0.82 0.77 0.67 0.48 0.27 0.10 0.02 
0.61 0.61 0.61 0.61 0.60 0.56 0.47 0.33 0.18 0.06 0.01 
0.37 0.37 0.37 0.37 0.36 0.33 0.27 0.18 0.09 0.02 0.00 
0.16 0.16 0.16 0.16 0.16 0.14 0.10 0.06 0.03 0.00 0.00 
0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.02 0.01 0.00 0.00 
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If the sides of the equivalence square are larger or slightly smaller 

than the ones used, the shape of the power function in the corners of the 

equivalence square will be essentially the same. If the size of the 

equivalence square is much smaller than the one used in the simulation, the 

power function will be much changed. This occurs for a decrease of about 

30 % and more. With such a decrease of the equivalence square also follows 

a considerable decrease of the maximal obtainable power within the 

equivalence square. Already for 50 % smaller sides, the small maximal 

power begins to make the equivalence test worthless in practice. In the 

following Table 2 is given a simulation result for 50 % smaller sides of the 

equivalence square in the case of independent observations. In all other 

respects the simulation is made like the one for p = 0.0 in Table 1. The 

maximal power is almost 80 %. It rapidly decreases with further decrease of 

the size of the equivalence square. 

Table 2. Power of a two-dimensional equivalence test based on t statistics for 
12 observations with standard deviation 1.0. The equivalence region is 
(-1.0,1.0)x(-1.0,1.0), the level of significance is 0.05 and the correlation 
between the components is 0.0. 

Expectation 1 
Expectation 2 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

0.79 0.72 0.55 0.35 0.15 0.04 
0.72 0.65 0.50 0.31 0.13 0.04 
0.45 0.49 0.38 0.24 0.10 0.03 
0.33 0.30 0.24 0.15 0.07 0.02 
0.14 0.13 0.10 0.06 0.03 0.01 
0.05 0.05 0.03 0.02 0.01 0.004 

As mentioned in the discussion of the examples in section 4, the simple 

bioequivalence test obtained by checking if an ordinary confidence 

rectangula with confidence degree 1 - a falls completely inside the 

equivalence rectangula, is less efficient than ours. For a comparison we gIVe 
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simulated values of its power function in Table 3. The simulation is made in 

the same way as for our method in the case of independent observations. 

It can be seen that the simple confidence set method has considerably less 

power than our method. 

Table 3. Power of an equivalence test based on the ordinary rectangular 
confidence set for 12 normally distributed observations with standard 
deviation 1.0 and correlation 0 between the components. The equivalence 
region is (2.0,2.0) (2.0,2.0) and the level of significance is 0.05. 

Expectation III 
Expectation 112 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

1.00 1.00 1.00 0.97 0.91 0.79 0.58 0.35 0.16 0.05 0.01 
1.00 1.00 1.00 0.97 0.91 0.79 0.58 0.35 0.16 0.05 0.01 
0.99 0.99 0.99 0.96 0.91 0.78 0.58 0.35 0.16 0.05 0.01 
0.98 0.98 0.98 0.95 0.89 0.77 0.57 0.35 0.16 0.05 0.01 
0.92 0.92 0.92 0.89 0.84 0.72 0.53 0.33 0.15 0.05 0.01 
0.79 0.79 0.79 0.77 0.73 0.62 0.46 0.28 0.13 0.04 0.01 
0.57 0.57 0.57 0.56 0.53 0.46 0.34 0.21 0.10 0.03 0.00 
0.34 0.34 0.34 0.34 0.32 0.27 0.21 0.13 0.06 0.02 0.00 
0.16 0.16 0.16 0.15 0.14 0.12 0.09 0.05 0.03 0.01 0.00 
0.05 0.05 0.05 0.05 0.05 0.04 0.03 0.02 0.01 0.00 0.00 
0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.00 0.00 0.00 0.00 

In example 3 of section 4, we had a spherical equivalence set and a 

method based on an infinite number of preliminary hypotheses. Also in this 

case there is a similar but less efficient simple method based on an ordinary 

spherical confidence set. The following Table 4 gives simulated power 

function values for our method and this simple method. The power functions 

have a spherical symmetry and they are determined by the radius from the 

center of the equivalence sphere only. Also here, our method has a 

considerably higher power than the simple method based disectly on an 

ordinary confidence set for the twodimensional parameter. 
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Table 4. Power function for our method and the simple confidence set 
method for a circular equivalence set with 12 observations on pairs of 
independent normal random variables with variance 1. The intended level of 
significance is 0.05, and the number of replicates is 10000. 

Radius 2.0 
Expectation distance 
from center 

0.0 
0.2 
0.4 
0.6 
0.8 
1.0 
1.2 
1.4 
1.6 
1.8 
2.0 

Radius 1.0 
Expectation distance 
from center 

0.0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Power for 
our method 

1.00 
1.00 
1.00 
1.00 
0.99 
0.94 
0.82 
0.59 
0.35 
0.15 
0.047 

Power for 
our method 

0.76 
0.75 
0.70 
0.60 
0.50 
0.40 
0.29 
0.19 
0.12 
0.070 
0.036 

Power for confidence 
set method 

1.00 
1.00 
0.99 
0.97 
0.90 
0.75 
0.52 
0.29 
0.12 
0.04 
0.005 

Power for confidence 
set method 

0.32 
0.31 
0.27 
0.22 
0.16 
0.11 
0.07 
0.042 
0.022 
0.009 
0.003 
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6. OTHER METHODS FOR TWO SIDED PROBLEMS 

Berger (1982) has used another method than ours for handling the 

test problem with two-sided hypothesis for the different components of the 

parameter. Denoting a component parameter by ai, the component 

hypothesis might be written ai ~ ai 1 or ai;;:: ai2 . In our method the two 

subhypotheses would be tested at the same level (l. For the case when the 

observations related to this parameter component are normally distributed 

with expectation ai and unknown standard deviation O"i, Berger (1982) has a 

method based on the noncentral t distribution. He assumes an upper bound 

0" i ~ 0" iQ of the unknown standard deviation. The combined hypothesis 

ai ~ ai 1 or ai;;:: ai2 is rejected if I T I < a for a suitable a, where T is given 

by T = (Xi - aiQ ) / ( Si /...j;;) and aiQ = ( ail + ai2 ) / 2. Under the null 

hypothesis T has a noncentral t distribution, and a is determined by a table 

of that distribution. Table 5 gives simulated power function values for our 

method and the method based on noncentral t distribution. The table shows 

that if the true standard deviation is closely below the assumed upper 

bound, the method based on noncentral t is more powerful than ours. If 

however the true standard deviation is a little below the boundary, the 

methods have quite similar power functions and if the true standard 

deviation is considerably smaller than the bound, our method is much more 

powerful. If the true standard deviation is above the assumed bound, the 

method based on noncentral t does not keep the level of significance at its 

prerequired value, while our method does for all values of the true standard 

deviation 0". 
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Table 5. Power ~1 of our test and power ~2 of a test based on noncentral t 
distribution. Intended level of significance 0.05, equivalence interval 
(-0.05;0.02) and nine observations on normal random variables. There is 
power function symmetry around the point -0.015. The number of 
replicates is 10000. 

Standard deviation 0' 0.03 0.04 0.05 
Expectation ~ ~1 ~2 ~1 ~2 ~1 ~2 

-0.015 .849 .350 .496 .350 .260 .369 
-0.010 .809 .325 .477 .341 .252 .350 
-0.005 .682 .243 .423 .305 .235 .308 
0.000 .540 .140 .346 .228 .182 .249 
+0.005 .375 .058 .241 .154 .150 .200 
+0.010 .230 .029 .161 .088 .114 .141 
+0.015 .101 .005 .101 .050 .077 .092 
+0.020 .049 .001 .049 .023 .047 .051 

Standard deviation 0' 0.06 0.07 
Expectation ~ ~1 ~2 ~1 ~2 

-0.015 .130 .387 .036 .350 
-0.010 .119 .355 .038 .354 
-0.005 .111 .343 .037 .333 
0.000 .088 .273 .031 .307 
+0.005 .062 .239 .023 .270 
+0.010 .048 .183 .016 .226 
+0.015 .054 .144 .021 .178 
+0.020 .036 .106 .010 .140 
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