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1. Introduction 

In pharmacology, comparison of bioavailabili ty is an important 

problem. A new formulation of a drug is compared with a standard 

formulation in human subjects. When the extent of absorption is 

studied the areas under the concentration/time curves (AUC) are 

the statistics used for analysis. These statistics are determined 

by some parametric or nonparamatric methods from the basic con­

centration measurements e. g. every half hour during a day. 

Data are often collected for both new and standard formulations 

according to a two-period cross-over design with totally n 

subj ects. For the subj ects the bioavailabili ty ratios 

Ri = AUCi (new)/AUCi (standard) 

i = 1, 2, ... , n 

are formed. These seem to be preferable to differences 

Di = AUCi (new) - AUCi (standard) 

i = 1, 2, ... , n 

which usually can not be supposed to be independent of the, 

variable AUCi (standard) or AUCi (new). The distribution of 

the ratios Ri i = 1, 2, ... , n can however be suspected to be 

right skewed and in most contexts it is more suitable to consider 

the log ratios 

Zi = In Ri = In AUCi (new) - In AUCi (standard) 

i = 1, 2, ... , n. 

The log ratios Z. i = l, 2, ... , n (as well as the ratios 
1 

Ri , i = 1, 2, •.. , n) are supposed to be independent, identi-

cally distributed. 

The most interesting parameter is the expectation ~ = E [ Zi] 

or the median m determined by P (Z. > m) = P (Z. < m). For symmet-
1 1 

ric distributions ~ and m both coincide with the symmetry point. 

Bioegvivalence means that ~ (or m) is close enough to o. A typical 
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definition in some applications is that the new drug and the 

standard drug are considered bioequivalent if -0.233 < ~ < 0.223 

h ' h d -0.223 0 8 ~ +0.223 1 25' th w 1C correspon s to e =, ~ e ~ e =, 1n e 

"ratio scale". There are several parametric and non-parametric 

methods proposed for this type of problem. 

Methods can be given in confidence interval formulations or hypo­

thesis test formulations. See e.g. Westlake (1972, 1976, 1979, 

1981), Hauck and Andersson (1984), Steinijans and Diletti (1985) 

and Kirkwood (1981). 

Our methods are formulated in terms of tests of hypotheses. They 

are somewhat related to methods proposed by Westlake (1972, 1976, 

1979), but his methods are formulated in terms of confidence 

intervals. Furthermore his intervals do not have a predetermined 

confidence coefficient which is the same for all parameter values. 

Our methods are also somewhat related to the test method by Hauck 

and Andersson (1984) but their method has only an approximative 

level of significance, which can be considerably higher than the 

nominal level in some cases. 



3 

2. Proposed tests 

When the aim of a bioequivalence trial is to show that a new 

drug is bioequivalent to a standard drug ,the natural hypothesis 

to test is 

HO : 11 ~ (a, b) 

for some a and b, when we consider the parameter 11 = E [ Zi]. 

Suppose we can reject the hypothesis HO in a test with small 

level of significance a. Then the rejective statement 11 £ (a, b) 

(meaning that there is bioequivalence) is defensible in the 

sence that the event of falsely making this statement, when the 

hypothesis 11 ¢ (a, b) is true, has at most the small proba­

bility a. A good test of the hypothesis 

HO : 11 ~ (a, b) 

with level of significance a will have a power function (pro­

bablility of rejection), which is smaller than a for 11 t (a, b) 

and which has big values for 11 in the central parts of the inter­

val (a, b). 

For the case, when Z. i = 1, 2, ... , n are independent N (11,0) 
1 

distributed with known ° there exists a uniformly most powerful 

(UMP) test of HO : 11 $ (a, b) with level of significance a. In 

this test HO is rejected when 

1 Z = -n 

n 
L: Z" £ (a + A, b - \) 
k=l k 

where A is determined by 

Pa (2 £ (a + A, b - A)) = Pb (2 £ (a + A, b - A)) = a 

and P means probability calculated when Z., i= 1, 2, ... , n, 
11 1 

are N (11, 0) distributed. See Lehmann (1959) p 89. Observe that 

A is not only smaller than the half length ul_~ 0n of a two 
2 

sided confidence coefficient 1 - a, but also smaller than 

u1 - a Jk, which is used to determine a one-sided confidence 
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interval with confidence coefficient 1 - a. Here u q means the 

q fractile in the N (0,1) distribution. For instance for 

a = - 0,223 b = 0,223 a = 0,35 and n = 12 we get A = 0,164 

while]11 a£.-= 0,198 and ]11 '~n = 0,167. - Vn - a Vl1 

2 

In practice the standard deviation a can not be supposed to be 

known, but must be considered to be a nuisance parameter. For 

problems with .nuisanceparameters a standard technique is to 

construct a UMP unbiased test. But the common technique does 

not apply to our problem. See Lehmann (1959) chapter 5. In this 

paper we will propose a test which is not (exactly) unbiased 

but has a power function which is a little smaller than the 

level of significance at the boundaries ]1 = a, O' < a < 00 and 

]1 = b, 0< a < 00 of the hypothesis HO. 

The parametric normal method we propose is based on the follow­

ing simple theorem. 

Theorem 1. Let Zl' Z2' ... , Zn be independent N (]1, a) random 

variables with· mean n 
Z = 1 I Zk and 

n k=l 

standard deviation S 
1 n 

= (n-1 I 
k=l 

and let t 1 _a be the 1 - a fractile in the t distribution with 

n - 1 degrees of freedom. Then 

sup P (a + t1 
]1, a -a 

S 

Vn 
< x < b - t §..) < a for ]1 ¢: (a, b) 

1-a Vn 

where p. denotes probability for the parameters ]1 and a. 
]1,a 

Proof Let A and B be the events 

A = fa + t §.... < x] 1-a Vn 

B = tx < b - t ~J 1-a 
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Then for ]1 ~ a 

p (a + t 1-0'. 
S 

b - t S < x < = ]1,0'. Vn 1-0'. \In 

= P (A n B) < p (A) < 0'. ]1,0'. ]1,0'. 

In the same way for ]1 > b 

p S 
X b - t ~) (a + t 1-0'. \In < < = 11,0'. 1-0'. vn 

= p (An B) < p (B) < 0'. ]1,0'. ]1,0'. 

Q.E.D. 

The theorem shows that a test of the hypothesis 

HO : ]1 ¢ (a, b) 

rejecting when 

a + t ~ < 1-0'. \[fi 
X 

S 
< b - t 1-0'. vn 

has a level of significance < 0'.. It is to be noted that the 

distance 
t ~ 

1-0'. vn between 

X and the limits a and b corresponds to a one-sided confidence 

interval for ]1 with confidence coefficient 1 - a although the 

test problem has a two-sided hypothesis. We will discuss further 

properties of the test later. 

The type of test construction, used for the normal case above, 

is possible to apply to other parametric or nonparametric 

families of distributions. We will consider next a nonpara­

metric test related to the (one-sample) Wilcoxon test. 

Suppose that Zl' Z2' ... , Zn are independent and that they 
have a probability density f (x - 8), where f is any (unknown) 

symmetric density. The Wilcoxon test of the hypothesis 

H : 8 = 8 can 
8'0 0 

be based on the sum of ranks of for the Z.: s 
1 
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satisfying Zi > 0 0 in the series of all I Zi - 0 0 /. Equivalently 

it can be based on the number of Z.:s satisfying Z. > 0
0 

and 
111 

the number of pairs i, j; i ~ j satisfying 2 (Zi + Zj) > 0
0 

See e.g. Lehmann (1975) section 3.2. Let us denote 

= number of averages 
Z. + Z. 

1 ] > 0 
2 a 

with i < j. 

Then H0 : 0 = 0 is rejected 
a 0 

if V0 < k V0 > n (n + 1 ) 
k or -

a a 2 

for some suitable. k, determined by the level of significance. 

For one-sided hypotheses H0 : 0 ~ 0'0 
a 

. 0 > 0 a 
a Wilcoxon one-sample test analogously rejects for V00 ~ ~ 

or V 0 a ~ k 2 for suitably chosen. k 1 and k 2 . A Wilcoxon type test 

for our problem is given by the following theorem. 

Theorem 2 Let Zl' Z2' ..• , Zn be independent random variables 

with density f (x - 0), where f (x) is a symmetric function. 

Further let k be a number such that 

n (n + 1) 
Po (V < k) = P (V > 0- a 0- 2 k) < ex. 

Then 

sup 
n (n + 1) 

2 - k and Vb < k) < ex. 

Proof Let A and B be the events 

A = [ Va > n (n/ 1) - kJ 
and 



Then for e < a 

and in the same way for e > b 

n (n + 1) 
2 - k and Vb < k) = 

= P e (A/l B) ~ P e (B) < a 

Q.E.D 

The theorem 2 means that we get a test of 

HO : e 4 (a, b) 

7 

with level of significance at most a if we reject when both 

V > a -

and 

n (n + 1) - k 
2 

This means that HO : e t (a, b) is rejected if there are at most 
z· + Z. 

k means' 1 J i < j,on each side of the interval (a, b). 
2 

Observe that the test constructions in theorems 1 and 2 are 

quite analogous, but there is one essential difference. In 

theorem 1 the test is based on the position of an estimate (2) 

in relation to the interval (a, b), while in theorem.2 the test 

is based on the number of values (means (Z. + Z.)/2, outside (a, b) 
1 J 

on the different sides. 

Another example of a (non-parametric) test of the second type 

is obtained by using sign test statistics. Suppose that 

Zl' ~, •.. , Zn are n independent random variables with some 

continous density f (x) having median m. Let S be the number 
mO 

of Zi:s such that Zi > rna, and let k satisfy 



Then it easily follows that 

sup Pm (Sa ~ n - k and Sb ~ k) < a 

m¢(a,b) 

Thus we get a test of HO : m ¢ (a, b) with 

at most a by rejecting HO when the numbers 

sides of (a, b) are at most k each. 

8 

level of significance 

of Z.:s on the two 
1 
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3. Power properties 

First let us consider some properties of the test obtained in 

theorem 1 for normally distributed observations. Our test is not 

(exactly) unbiased and there is no uniformly most powerful 

(UMP) unbiased test available when 0 is unknown. It might how­

ever be reasonable to compare its power with the power of the 

UMP unbiased test of H1 : ~ ~ a against ~ > a and the power 

of the UMP unbiased test of H2 : ~ ~ b against ~ < b. The two 

latter power functions act as upper bounds for the obtainable 

power function of unbiased tests of the greater hypothesis 

HO : ~ ~ (a, b). The following table 1 gives some power function 

values obtained by non-central t distribution for the test of 

H1 and ~~ by simulatio.ns with 100.000 replicates for our test 

of HO with unknown 0 and by the normal distribution for the 

test of HO with known o. 

Table 1. Power functions for the tests of H1 : ~ ~ a, H2 :~ ~ b 

and HO : ~ ¢ (a, b) with known and unknown 0 based on 12 inde­

pendent N (~, 0) observations, a = -0.2 and b = 0.2, nominal 

level of significance 0.05. 

x 

-0.2 0.05 
-0.1 0.94 

0.1 0.0 1. 00 
0.1 1. 00 
0.2 1. 00 

-0.2 0.05 
-0.1 0.49 

0.2 0.0 0.94 
0.1 1.00 
0.2 1. 00 

-0.2 0.05 
-0.1 0.29 

0.3 0.0 0.70 
0.1 0.94 
0.2 1.00 

-0.2 0.05 
-0.1 0.20 

0.4 0.0 0.49 
0.1 0.78 
0.2 0.94 

1. 00 
1.00 
1. 00 
0.94 
0.05 

1.00 
1. 00 
0.94 
0.49 
0.05 

1.00 
0.94 
0.70 
0.29 
0.05 

0.94 
0.78 
0.49 
0.20 
0.05 

HO 

0= known 

0.05 
0.97 
1.00 
0.97 
0.05 

0.05 
0.53 
0.93 
0.53 
0.05 

0.05 
0.28 
0.50 
0.28 
0.05 

0.05 
0.15 
0.21 
0.15 
0.05 

HO 

0= unknown 

0.05 
0.94 
1. 00 
0.94 
0.05 

0.05 
0.49 
0.89 
0.49 
0.05 

0.05 
0.23 
0.40 
0.23 
0.05 

0.03 
0.07 
0.11 
0.08 
0.03 
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It is seen from table 1 that for small a:s our test has a level 

of significance (size) close to the prescribed value and that 

the test is nearly optimal. For big a:s the level of significance 

is not so close to the prescribed value and the power is not 

so close to the upper bound. This is however a case where also 

the upper bound describes bad power. The sample size n=12 is 

not big enough to give a good test of any kind for big a:s. 

Hodges and Lehmann (1954) have given a method to test the converse 

hypothesis ~ ¢ (a, b) against the alternative ~ E (a, b). Their 

modified Student t test has test limits between ordinary one­

sided and two-sided test limits. In our problem however the 

limits of ordinary one-sided tests serve as upper bounds, which 

we also use in our test. 
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4. A bootstrap method 

As an alternative to the test for the case with normally distri­

buted observations we have in section 2 described the test 

of Wilcoxon type requiring only symmetric distribution and the 

test of sign type valid for any continuous distribution.: 

A possibility to get a test with approximate level of signif­

icance a and without distributional assumptions is to use 

bootstrap technique. The basis of this technique is given in 

Efron (1982). 

Let f (u) be any probability density with corresponding expec­

tation 0 and variance 1. Then if the observations Zl' Z2' ... , Zn 

are independent and have the density 

we have a translation-scale family of distributions with the 

translation ~arameter ~ = E [Zl] and scale parameter 

cr = (Var Zl)2. 

The distribution of the statistic 

depends on the density f but not on ~ and cr. If we knew the 

a and 1 - a fractiles ta and t1 _ a of this distribution we 

could test 

HO : ~ ~ (a, b) 

on level of significane at most a by rejecting when 

a + t1 S < - < b - t S - a Z - a 
Vn vn 

Observe that ta is not equal to - t1 _ a in general when f is 

not symmetric. 

The bootstrap method means that properties of statistical methods 

are determined for the empirical distribution obtained in the 

experiment. This is done in practice by a simulation where 



observations are drawn at random from the series of results 

with replacement. 

* *, * 
Let Zl' Z2 ' ... , Zn be n elements drawn at random from 

Zl' Z2' ... , Zn with replacement and let 

-* 1 n * 
Z = n l: Zk 

k=l 

* ) 2 1 (5 = n-1 

-* * Z - Z 
T = 

5*/ Vn 

* 

n * -* ) 2 l: (Zk - Z 
k=l 

Then T is a bootstrap variable with approximately the same 

12 

distribution as T. The fractiles t a and t1 can be estimated - a 
from the empirical distribution of a big number of independent 

* copies of T . 

Observe however that the bootstrap method is an approximate one. 

The really obtained level of significance is only approximately 

equal to a. 
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5 . An example 

As an illustration of the methods described earlier we will use 

a real life example with 12 persons having got both a standard 

and a new drug. The datas are given in the following table 2. 

Table 2. 

Subject AUC (standard) AUC (new) Ratio Logratio Z 
no 

1 4776 4295 0.899 -0.106 
2 8765 7880 0.898 -0.108 
3 1551 788 0.508 -0.677 
4 1964 1778 0.905 -0.099 
5 6728 7010 1.042 0.041 
6 5290 6428 1.026 0.026 
7 1864 1883 1.010 0.010 
8 3686 2525 0.685 -0.378 
9 4214 3564 0.846 -0.168 
10 11730 9700 0.827 -0.190 
11 2936 2813 0.958 -0.043 
12 1399 2423 1.732 0.549 

From the data can be seen that there is a big variation of AUC 

values between the individuals, while the ratios and logratios 

are quite stable. We will use these logratio data to illustrate 

the different test methods discussed earlier with the hypothesis 

limits a = ln 0.8 = -0.223 and b = ln 1.25 = 0.223. 

The mean of these data is Z = -0.095 and the standard deviation 

is S = 0.285. In the normal method obtained from theorem 1 for 

level of significance a = 0.05 the hypothesis HO : ~ ¢ (a, b) 

is rejected if the distance from both points a and b to Z is 

at least 

t 
1 - a 

s vn= 0.148 

i.e between -0.075 and 0.075. Since Z = -0.095 the hypothesis 

H 0 can not be rej ected. 

Using the method obtained from theorem 2 we first calculate 

the 78 means ~ (Z., + Z ,), i < j. There are 17 means below -0.223 
1. J -

and 6 means above 0.223. According to the table of the Wilcoxon 

one sample test the one-sided test limit gives level of signifi­

cance 0.046, and thus the hypothesis can be rej.ected. 
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A third possibility is to make a test of sign type. There .c:::::tre 2 

values below -0.223 and 1 value above 0.223. From a table <::)f sign 

test we get the probability 1.93% for 2 positive values or less 

when the median is O. Thus in our modified sign test HO : ~ ~ (a, t 

can be rejected in a test at level of significance Ct = 0.0 :193. 

If the observations are supposed to be normally distributee:! an 

ordinary two-sided 95% confidence interval for ~ becomes 

(-0.276, 0.086). From this it does not follow that 

-0.223 < ~ < 0.223. Under the nonparametric assumptions of 

symmetric distribution a two-sided 94.8% Wilcoxon interval 

for the symmetric point ~ becomes (-0.486, 0.051). Again t~is 

does not imply that -0.223 < ~ < 0.223. A two-sided sign i~terval 

for the median m with confidence coefficient 96.1% becomes 

(-0.190, 0.026). In this case the confidence interval is 

included in (-0.223, 0.223). 

The example shows the advantage of the proposed methods Ov~r the 

simple methods based on ordinary symmetric confidence inte~vals. 

Because the data have a "heavy tail tendency" there also a];:>pear 

a slight advantage of the nonparametric methods over the n~rmal 

parametric method in this case. 
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