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ABSTRACT 

A multiple test procedure for pairwise comparisons based on 

the bootstrap is presented. It is a stagewise test without 

any distributional assumptions. It is also very general 

according to the number and types of hypotheses to be tested. 

The procedure is evaluated and to some extent compared to 

existing procedures. A FORTRAN computer program is available 

for the practical performance of the procedure suggested. 



1 Introduction 

The problem to be treated here is that of testing a number 

of hypotheses which are connected with each other. Connection 

means most of the times that the hypotheses are involved in 

the answering of one single major question. However, the 

relations among hypotheses could be more loose and the choice 

between one multiple test procedure versus many univariate 

tests is not always obvious. This latter question is given a 

brief discussion in Miller (1981) but is not to be handled 

further in the following. The assumption from now on is that, 

if a multiple test is suggested, there are good reasons for 

treating the hypotheses simultaneously. 

The general formulation of the multiple test situation is as 

follows. A number of null hypotheses, H1 , H2 , .•. , Hn is to 

* * * be tested against the alternatives H1 , H2 , ..• , Hn. When 

deciding which hypotheses are true and which are not, there 

are two possible mistakes to be made. Rejecting a hypothesis 

1 

which in fact is true, type I error, and accepting a hypothesis 

which in fact is false, type II error. Errors of type I are 

usually considered more serious and thus the probability of 

doing such an error is kept at a predetermined low level. In 

the multiple test case this means that the probability of re-

jecting any true null hypothes~should be set to a low 

multiple level, a, that is 

P(U Reject H.) = a 
iET 1 

( 1 ) 



where T is the set of indices for true null hypotheses. The 

lowest possible level of a is of course reached if it is de­

cided never to reject any null hypothes~. Such a rule would 

on the other hand give a probability of commiting a type II 

error, S, that equals unity if there is some false null 

hypotheses. Or in other words, the probability of detecting 

a false null hypothes~s,the power, would be zero. Thus there 

is a necessary trade off between a and S when establishing 

2 

the rule of rejecting or accepting the hypotheses. This trade 

off occurs in almost every test situation and is by no means 

special to multiple tests. In spite of the fact that there are 

situations when S ought to be predetermined and controlled, 

the common practise of using a predetermined a is followed 

in this paper. This forms also a basis for comparing the 

performances of different tests. 
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2 Multiple testing 

2. 1 The problem 

The general formulation of the multiple test situation given 

in the previous section contains a wide range of different 

problems. For the matter of simplicity just one, however 

rather general, problem is to be discussed here. The problem 

is to compare a number of groups and decide if the expected 

value of some variable is the same in all groups. If not, it is 

a part of the problem to tell which groups are differing. The 

null hypotheses in this case can be formulated 

i,j = 1,2, ... ,L,i7j ( 2) 

which forms the overall null hypothesis 

L 
HO : A HO" . . 1 1J 1,J= 

i7j (3) 

or 

HO 111 = 112 = = 11L • (4 ) 

Although (3) and (4) are equivalent, (3) seems to be more con-

sistent with the general formulation of testing M hypotheses. 

Here M equals (~). According to (3) the natural formulation 

of the alternative hypothesisis 

11i 7 11j 3i,j,i,j=1,2, ..• ,L,i7j (5 ) 

which is a whole set of different alternative hypotheses. One 

alternative is that all groups except one are equal and 
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another alternative is that all groups are differing. In 

between those two extremes there are, unless L ~ 3, a number 

of different alternative hypotheses which the test is supposed 

to discriminate among. The latter, of course, provided that 

HO is rejected. 

The final result of the test could be looked upon as a kind 

of clustering. That is, forming clusters of groups which are 

not possible to separate on the predetermined level of signi­

ficance. When doing this one should pay some attention to the 

logical structure in order to avoid putting one group in two 

different clusters or other similar contradictions. It is 

obvious that some of the existing procedures for solving 

the multiple test problem do not take care of the logical 

structure. 

2.2 Solutions 

There are many possible ways of solving the problem described 

above. The procedures could be divided into different types 

according to some important criteria. 

First of all one method, that has not been mentioned yet, could 

be sorted cut; the construction of multiple confidence regions. 

As the confidence region and the test are two branches on the 

same tree it is to some extent possibly to use the former 

instead of the latter. Some of the techniques below may also 

be converted to give confidence regions. The construction of 

confidence regions will however not be discussed in the 

following. 
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The test procedures could than be classified according to if 

they require any assumptions on the underlaying distribu~ion. 

Many procedures are based on the normal distribution. This is 

an often used assumption but nevertheless it is sometimes a 

rather dubious one. The procedure suggested in this paper does 

not require any distributional assumptions at all. 

The test itself could be conducted in two different ways. 

Either all pairs, ~. and ~., i~j, are tested and concluded to 
1 J 

be equal or different,or all groups are ranked in the order of 

their assumed true means. If the final result of clustering 

is to be reached with the first technique the direction or sign 

of the difference has to be stated. Otherwise the clusters C1 

containing ~. and ~. and C2 
containing ~k' ~l and ~m could 

1 J 

merely be stated to differ, C 1 ~C2' but not in which way, C1 > C2 

or C
1 < C2 • This problem is discussed by Shaffer (1980) , Holm 

(1977) and Marcus, Peritz, Gabriel (1976). When using a 

procedure of the second type the directional problem reduces 

to that of ties. This does not necessarily mean that a ranking 

procedure is superior to pairwise testing. Other problems, such 

as unknown significance levels, occur and make the ranking 

procedures sometimes rather dubious, Miller (1981). The test 

in this paper is based on pairwise comparisons with pre-

determined significance levels. 

Especially the pairwise comparisons tests could be further 

divided into two subgroups. Depending on if they are performed 

in one single or several stages some procedures could be 
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labelled multi-stage or stagewise tests. The principle in 

most stagewise' tests is simple enough. The (~) differencies 

are ordered in descending order and the pair that shows the 

largest difference are being tested first, the second largest 

after that and so on. The significance level in each step is 

adjusted to give the predetermined multiple level a. If the 

required significance is not met in a step, the hypothesis 

being tested there, as well as the following ones, are accepted, 

Holm (1977). The most apparent advantage of a mUlti-stage 

procedure compared to a single-stage is that the power of the 

test is concentrated in order to find false null hypothesis 

where they are likely to appear. The general result of this is 

higher power but it could also be used to make more precise 

statements. An example of the latter is the possibility of 

making a two-~ided test containing a directional statement 

without any loss of neither power nor significance level, 

Holm (1980). The test suggested in this paper is a multi-stage 

one. 

2.3 Classical procedures 

In this section a brief discussion of some existing procedures 

is given. Some of them apply just to the very problem presented 

above, others contain it as a special case. It is pointed out 

whether the procedures are based on distributional assumptions, 

ranking or pairwise testing, multi-stage testing and in some 

cases if the tests in fact are converted confidence regions. 
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Tukey's studentized range, Miller (1980), requires normally 

distributed variables and also the same number of observations 

in all of the L groups as well as common variance. By pairwise 

comparisons confidence intervals are constructed for the 

differencies. The tests of the hypotheses ~.~~., i~j are then 
1 J 

performed simply by examining the intervals for the inclusion 

of zero. The utility of this method is essentially the con-

struction of confidence regions. When it comes to testing 

hypotheses the method is often inferior to other procedures. 

Scheffe's F projections, Miller (1980), originates from 

Scheffe's method for handling contrasts in an analysis of 

variance. The normal distribution is assumed and the 

differencies ~.-~., i~j, are regarded as special cases of 
1 J 

general linear combinations. Both confidence regions and tests 

could be given. The procedure is rather general and for 

different special cases there are often better methods to be 

used. 

Bonferroni t statistics, Miller (1980), depends solely on the 

simple probability inequality, 

n < n 
P (UA .) - E P (A . ) , 

. 1 1 . 1 1 1= 1= 

which in this case gives a conservative bound for the 

(5) 

significance level when the multiple test is made up by several 

univariate t-tests. If M two-sided hypotheses are to be tested 

simultaneously the level aiM in each test gives an overall 

significance level that does not exceed a. It is obvious that 
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this procedure requires normally distributed variables, com-

pares the groups pairwise and is not multi-stage. The method 

is general and very simple, the latter perhaps its greatest 

advantage, together with its surprisingly good power I Bohrer 

et al (1981). 

Newman-Keuls multiple range test, Miller (1980), is a multi-

stage procedure. It is performed by first testing the range 

of all L means, in the second stage testing the range of the 

(L-1) smallest and the (L-1) largest means respectively, in 

the third stage testing ranges of (L-2) means and so on. The 

difference between two means are then said to be significant 

provided the range of each and every subset which contains the 

two means is significant according to an a-level studentized 

range test. Although the test ends up with statements con-

cerning pairs of means, differing or not, the results may easily 

be translated into a way of clustering the L groups. Consider 

the following example. Let y., i=1,2,3,4,5, be the ordered 
1 

sample means from five groups that should be tested along with 

the null hypotheses (2) against the alternatives (4). Display 

the means in a row and underline all combinations Whose range 

fails to meet the significance level. The testing procedure 

shown in table 1 gives the following result: 

~1 ~2 ~3 ~4 ~5 (6 ) 
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Table 1: Neuman-Keuls multiple range test 

Stage Test Significance 

1 YS-Y1 Yes 

2 Y4-Y 1 Yes 

YS-Y2 Yes 

3 Y3-Y 1 Yes 

Y 4-Y2 . No; underline y 2 through Y 4 

Y3-Y 1 Yes 

4 Y2-Y 1 No; underline Y1 through Y2 

Y3-Y 2 Jr Omitted because Y2 
Y4'""Y3 

. through Y4 has already 

been under lined . 

YS-Y4 Yes 

The conclusions to be drawn from (6) are that ~S differs from 

the other four means, ~1 differs from ~3' ~4 and ~S and that 

no other differences are significant. The restrictive 

assumptions that has to be met when performing this test are 

normally distributed variables, common variance and the same 

number of observations in each group. A further development of 

this procedure is made by Begun and Gabriel (1981) and the 

problem of interpreting patterns like (6) is discussed by 

Shaffer (1981). 

Duncan's multiple range test, Duncan (19SS), Miller (1980) 

differs from Newman-Keuls only in the choice of significance 

levels at the different stages. Let the predetermined overall 

level be a and p the number of means involved in the actual 
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stage, then the significance level, according to Duncan should 

be 

ap = 1 - (1-a)p-1 (7) 

while according to Newman-Keuls it should remain unchanged 

independently on the number of means, that is 

ap = a • 

As (7) is less conservative than (8) it increases the power 

of the test but gives also less protection against false re-

jections of the null hypothesis due to the large number of 

declarations required. The latter is rather vital, since the 

major idea behind simultaneous testing is to avoid that problem. 

As the actual multiple significance level of this test differs 

from a, it can not be compared to a of other tests. 

Multiple F test, Duncan (1955), Miller (1980), has the same 

structure as the multiple range tests above. The only differencies 

is that F-tests are used instead of range tests and that the 

number of observations in each group does not have to be the 

same. As with the range tests the ap-Ievels can be chosen in 

several ways, for instance (7) or (8). 

Fisher's least significant difference test, Miller (1980), has 

two stages. In the first stage the null hypothesis, (3) , is 

tested by an a-level F-test. If the F-value is nonsignificant, 

the null hypothesis is accepted and if it is significant the 

next stage is performed. In the second stage all of the (~) 
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pairs of groups are tested by a-level t-tests and for a 

significant t-value the comparison is judged significant. As 

both the t- and the F-distributions are involved it is obvious 

the test requires normally distributed variables. In the sense 

that the test contains more than one stage it could be called 

a mUlti-stage one. The test has same good qualities. It is 

simple and it is based on familiar distributions. A question 

mark should, however, be put for the significance level. The 

first stage F-test protects against false rejections if the 

null hypothesis is true in all parts. If the F-test shows to 

be significant, and the test proceeds to the second stage 

t-tests, this protection is gone for the part, if any, of the 

null hypothesis that remains true. This is so because the 

L t-tests are performed as (2) independent tests without the 

extra guard of a simultaneous testing procedure. This lack of 

protection could be serious. Let L=6, a=0.05 and assume that 

the F-test is significant due to just one mean, differing 

6-1 from the rest. That leaves ( 2 )=10 comparisons that ought to 

be judged.insignificant by the t-tests. The probability of 

misjudging at least one of them is however as high as 

1 - (1 - 0 • 0 5) 1 0 ~ O. 4 6 (9 ) 

For L=10 it gets even worse, the probability of rejecting 

at least one true null hypothesis is then 0.84. 

The k-sample rank statistics test, Miller (1980), is the non-

parametric analog to the studentized range test mentioned 

above. Thus it does not need the assumption of an underlaying 
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distribution such as the normal one, which is required for the 

studentized range test. The limitation on the number of ob­

servations is however still left, it has to be the same in all 

groups. This is due to the difficulties in computing critical 

points. The test-statistic is the maximum Wilcoxon two-sample 

rank statistic which for small number of groups and few ob­

servations has been tabulated. For increasing number of groups 

and/or observations one is depending on the limiting distribution, 

the multivariate normal, for calculations. When the rank test 

is compared to the studentized range rest it is found to be 

speedy, independent of normality assumptions and hence more 

efficient for nonnormal situations while the range test has 

greater efficiency when the variables really are normally, or 

near-normally, distributed. 

The Kruskal-Wallis rank statistics test, Miller (1980) is the 

nonparametric rank analog to Scheffe's F projections. Compared 

to the previous rank test it has one great advantage as it does 

not require equal sample sizes. This makes the test more 

applicable but apart from that it is second best to the previous 

rank test. If it is possible to use both tests, the former one 

should be choosen. 

The sequentially rejective method proposed by Holm (1977) is 

not a statistical test in itself, it is rather a procedure for 

administrating any test when performed in a multiple way. Con­

sider the testing of (2) by means of the Bonferroni t statistics 

at the significance level a. If there are M=(~) different pairs 



to be tested, the significance levels for each test should be 

a/Me When applying the sequentially rejective procedure on 

13 

this problem the M hypotheses are ordered in descending order 

after the actually observed values on any test-statistic. The 

test-statistics are assumed to take on greater values as the 

true means depart from the null hypothesis.' The first hypothesis, 

that is the one with the gratest value on the corresponding 

test statistic, is then tested on the aiM-level. If it is 

accepted the rest of the hypotheses are accepted as well. If 

it is rejected the procedure moves on with the testing of the 

second ordered hypothesis. At this stage the level is a/(M-1). 

If that one is accepted, the rest, except the first, are 

accepted and if it is rejected the third stage follows with the 

level a/(M-2). As long as the hypotheses are rejected the pro­

cedure goes on until the last hypothesis has been tested at the 

level 0./1=0.. This procedure is shown to have the multiple level 

of significance a., Holm (1977), while it is easily seen that the 

power is substantially increased compared to the Bonferroni 

procedure. 

There are of course several other mUltiple test procedures then 

those mentioned here, see for instance Duncan (1955) and Miller 

(1980). Some of them are inferior to a test described and 

others are unable to handle the testing situation concerned in 

this paper. The reasons for not discussing them further are 

thereby clear. 
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2.4 New procedures 

The theory of multiple testing has been discussed further by 

authers other than the already mentioned, for instance Kendall 

(1955) and Lehmann and Schaffer (1977). Proposals on new pro­

cedures or variates on the old ones, has been discussed, Begun 

and Gabriel (1981) and old procedures has been improved Miller 

(1980), Schaffer (1981). The main ideas remain however the same. 

In the next chapter a recently developed resampling technique, 

the Bootstrap, is discussed,Efron (1982),and in the fourth 

chapter this technique will be applied to the multiple test 

problem earlier described. 
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3 The Bootstrap 

3.1 The basic idea 

The Bootstrap is a resampling method invented and developed 

by Bradley Efron. It is presented in for instance Efron (1982). 

The basic idea is simple. We would like to know something about 

a population, finite or infinite. As it is impossible to in­

vestigate the whole population we have to do the best we can 

with a sample from that very population. With some functions 

of the sample we try to estimate what is interesting in the 

population. When it comes to estimating we always act under some 

degree of uncertainty and the statistical theory is called on 

to provide adequate measures of accuracy. The usual question is 

whether the estimate would be the same during an infinite 

number of repeated samples or rather with how much it would 

vary. A measurement of variation could be received in two ways. 

One way is to repeat the sampling procedure a number of times 

and thereby observe the actual variation of the estimate. This 

seems to be rather stupid as the final accuracy would be sub­

stantially increased if the observations from the repeated 

samples were added to the original one forming one large sample, 

and not split the observations into a number of equaly informa­

tive estimates. The second way is to, deduce the 

proporties of the estimate in a theoretical way. This often 

implies that some distributional assumptions has to be made 

about the population, for instance that the variable investigated 

is normally distributed. As long as the population really behaves 
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according to the assumptions the theory holds but if the con­

ditions for the theory is not quite fulfilled the resulting 

postulates concerning the estimates could be seriously wrong. 

The principle of the Bootstrap is to act as if the sample were 

an image of the population and by sampling with replacement 

from that image getting a large number of simulated new samples, 

so called Bootstrap-samples. By recording the estimate from 

each Bootstrap-sample the picture of the estimates variation 

emerges. One advantage of the procedure is obvious, it does 

not call for any distributional assumptions. On the other hand 

one drawback is almost as obvious, the method is depending 

on massive calculations that hardly could be done without the 

assistance of a computer. The latter is nowadays a minor 

problem but explains why the Bootstrap and related methods 

has been developed just recently. In the following it is 

assumed that the capacity of a computer is available whenever 

calculations of the type mentioned above are to be performed. 

The advantage of the methods being distribution-free is of 

greater importance. It makes it possible to apply the method 

to problems where theoretical properties are unknown and where 

the number of observations and/or the complexity makes the 

normal distribution unjustified. And even if the accuracy of 

some simple estimates could be given theoretically the analysis 

could, by means of the bootstrap, be extended to further 

aspects on the problem at hand. In order to explain the method 

a few examples are given below. 



3.2 Estimating the variance of a sample mean 

Consider a sample of size n from an unknown probability 

distribution F on the real line, 

x 1 ' x 2' ... , xn - F 

independently and identically. From the observed values 

1 n 
x=-Ex. 

n . 1 1 1= 

( 1 0) 

( 11 ) 

is computed and used as an estimate of the expected value of 

F. From the sample it is also possible to get an estimate of 

the accuracy of x. This could be measured by the variance 

which is estimated by 

v (x) = 1 n 2 
~---,,-:- E (x . -x) 
n(n-1)i=1 1 

( 12) 

( 13 ) 

The bootstrap estimate of (12) is received in the following 

-way. Let F be the empirical probability distribution of the 

-data, putting the probability mass of 1/n on each x .. Use F 
1 

for drawing samples with replacement of size n. That is 

sampling among the observed values x 1 ,x2 , ... ,xn and hence 

(14) 

* where x. is one observation in the bootstrap sample. The 
1 

bootstrap sample mean 

17 



-* x 
1 n * 

= - L: x. 
n i=1 1 

has the variance 

-* V(x ) 
n - 2 = 1 L: (xi-x) 

2" 
n i=1 

18 

( 1 5) 

( 1 6 ) 

~yrepeating this sampling procedure say B times and each time 

compute the mean (15) it is possible to estimate the variance 

(12) without using (13). The bootstrap estimate of (12) is 

then 

-* 

- -
V(x)BOOT 

1 B -*!:!* 2 
= B-1 L: (x.-x ) 

J=1 J 

where x. is the mean of bootstrap sample j and 
J 

( 1 7) 

( 18 ) 

If the number of observations n, were ~llthen the number of 

possible different bootstrap samples would also be small and 

in that case the different bootstrap samples could be enumerated 

and the true value of V(x)BOOT computed instead of its estimate 

(17). This could however be done only if n is very small. As 

soon as n becomes large enough to be realistic for real data 

one is depending on the estimate (17). The error in this 

estimation is however not the crucial point in the method. The 

precision of (17) is increased with the number of Monte Carlo 

simulated bootstrap samples, B, and as B + 00 the true value 

is obtained. Thus by making B large enough, and that is just a 

matter of computational time and cost, the estimation error 
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could be held at an acceptable level. The more serious problem 

is that of estimating F, the probability distribution, of the 

underlaying process or population. When F is estimated from 

the sample, in the way given above, it is very difficult to 

say anything about the error in that estimation. Only two facts 

-are certain. If F is an inaccurate estimate of F the method goes 

wrong as the simulations are performed under inadequate con-

-ditions. As with all statistical inference the accuracy of F 

as an estimate of F increases with the number of observations 

in the original sample. This latter problem deserves to be 

treated more extensively than what is done here. 

3.3 Estimating the variance of e 

The estimation of V(x) in the previous section could of course 

be performed without the bootstrap technique, the theoretically 

deduced formula for that is given in (12). The trouble with (12) 

is that it doesn It, in any obvious way, extend to estimators 

other than x. So does however the bootstrap estimate (17). 

Let 8 be any function of the original sample 

- -8 = 8(x
1
,x2 , .•. x n ) ( 19) 

where as before 

(20) 



20 

-Estimate F with F, the empirical probability distribution, 

-draw a bootstrap sample from F and calculate 

(21 ) 

Independently repeat this B times, obtaining the replications 

-* -* -* 0 1 ,02 , ... ,0B and calculate 

where 

V(0)BOOT 
1 B -* -* 2 

= B-1 L (0. - ° J 
j.=1 J 

-* ° 
1 B - * 

= -2:: O. 
B . 1 J J= 

The general notation in (19)-(22) reveals one of the most 

(22) 

important advantages with the bootstrap. It can be applied to 

complicated situations were theoretical analysis is hopeless. 

The ° above could be any statistic as. for instance, the median, 

a trimmed mean or a correlation coefficient. 

3.4 Other applications 

There are many possible applications, beside the ones given 

above, for the bootstrap. Efron (1982) gives several examples 

where the bootstrap gives results that hardly could be reached 

with pure theoretical analysis. One of the most important is 

perhaps the suggestion to use the technique for estimating 

bias. Other applicati-ons to be metioned are estimation of 

parameters in regression models and the extension to finite 

sample spaces. The latter makes the rationale for the bootstrap 

even more evident. 
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A slightly different application is given in Efron (1981) where 

the bootstrap is used to set standard errors and confidence 

intervals for parameters of an unknown distribution when the 

data is subject to right censoring. The estimates derived 

closely approximate the answers given by Greenwood's formula. 

A formula which requires much more analysis then does the 

bootstrap. On the other hand the latter method requires more 

computation. 

In the next chapter the bootstrap will be applied to the 

multiple test problem outlined in chapter two. 
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4 The Bootstrap multiple test procedure 

4.1 The basic idea 

The Bootstrap multiple test procedure is a new application of 

the bootstrap technique described in the previous chapter. It 

could be regarded as an alternative to the test-procedures 

mentioned in chapter two. The basic idea is to form all possible 

pairwise differencies among the L means and with a number of 

bootstrap samples determine whether the observed differencies 

are likely to occur just by chance or if they imply significant 

distinctions between the means. The test is performed in a 

stagewise way in order to test the differencies in descending 

order, beginning with the largest. As an additional stage at 

the end of the procedure, the logical structure is taken into 

account. 

4.2 The preliminary procedure 

Consider the overall null-hypothesis given in chapter one, 

]J =]J = 
1 2 = ]J L 

The alternative to (23) consists of a set of different 

(23) 

statements of which one formulation is given in (4). As 

indicated in (2) it is also possible to give the null-hypothesis 

as a conjunction of hypotheses. Doing this and at the same time 

connecting each null~hypotheses with i~s alternative gives the 

fol.lowing: 
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(24) 

The testing of these (~) hypotheses does not give the complete 

solution. For each HO rejected there is a directional statement 

missing. As mentioned earlier it is a part of the problem to 

tell in what way the groups differ, if they do. The answer is 

given by reformulating (24) according to the principles outlined 

in Holm (1977), giving 

HO HA 

)11~)12 )11>)12 

< )12-)11 )12>)11 

< )11>)13 )11-)13 (25) 

)13~)11 )13>)11 

It should be noted that (25) contains twice as many hypotheses 

as does (24). For each )1.~)1. there is a )1.~)1. under HO' Unless 
1 J : J : 1 

a>O.5 these two hypotheses could however not be rejected at 

the same time. 
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The basis for the inference are Lrandomly selected samples of 

sizes n
1

, n
2

, .•• ,nL from the probability distributions or 

populations, finite or infinite, having the expected values or 

true means ~1' ~2' ... , ~L. Let the samples form the estimates 

- - -
Y1' Y2' .•. , YL for ~1' ~2' ••• , ~L and define the observed 

differencies, d. ., as 1,J 

d .. = Y - y. 
1, J i J 

(26) 

which are estimates of the true differencies 

D .. = ~. - ~. 
1, J 1 J (27) 

The observed differencies are now to be arranged in descending 

order, starting with the largest positive value. Denote the 

largest d with d 1 , the second largest with d 2 and so on until 

the smallest of the L(L-1) = k differencies which has to be 

and let 11' J 1 be the indices of d
1

, 1 2 , J 2 the indices 

of d
2 

and so on until the last pair, being the first indices 

in opposite order. 

The hypotheses in (25) could now be put in the same order as 

the observed differencies, which along with the order index k, 

gives 

k Hk k 
0 HA 

1 ~1 $.~J ~1 >~J 
1 1 1 1 

2 ~12$.1JJ·2 ~1 >~J (28) 
2 2 

k 



where I k =J
1

, I k_1=J
2

, J k =I 1 , J k_1=I 2 etc. From (28) it is 

obvious that the second half of the hypotheses is just a 
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mirror image of the first half. It is also obvious that it is 

the hypotheses on the first half that one is out to reject, 

the rest is just serving as a formal complement making it 

possible to make the desired directional statements. 

The hypotheses in (28) is now to be tested in the following 

sequentially rejective manner, suggested by Holm (1977): 

Test H6 

f t d t Hi '>1 I accep e ,accep O;l-

If rejected, test H~ 

Test Hk o 
If t d t i '>k accep e ,accep HO;l-

k+1 
If rejected, test HO 

Test HK o 

(29) 

The decision of accepting or rejecting in each stage of (29) 

is made by means of the bootstrap technique. 

Let F. be the probability distribution or population with mean 
l 

~. and let F. be the empirical probability distribution of the 
l l 

i:th sample with zero mean. That is, before F. is computed by 
l 

putting the probability mass of 1/n. on each observation, the 
l 

sample mean y. is subtracted and thus giving the expected value 
l 



zero of F .. This point is crucial for the following moments 
1 

as we are now dealing with L distributions, F., having the 
1 

same mean. That is exactly what the original null-hypothesis 

(23) is saying and the general theory of tests is telling us 

to act as if the null-hypothesis were true until we have 

evidence enough to reject it. Acting like that makes it also 

possible to preassign and control the significance level, a. 
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Use the Fi:s to draw L bootstrap samples of sizes n 1 , n 2 , ... , 

-* -* -* nL giving the bootstrap sample means Y1' Y 2' ... , Y L· Note 

that the expected value of each sample mean is zero. Compute 

* the bootstrap differencies, d .. , as 
1J 

* d .. 
1J 

(30) 

* * and put them in the same order as (28), d d I
1

J
1

' I
2

J
2

, ••• , --

* d 
I~Jk. This does not necessarily mean that the k bootstrap 

differencies themselves are put in descending order, they are 

just arranged according to (28) and hence according to the 

k 
differencies, d .. , in the real sample. For each sample 

1J 
difference, d~., it is now recorded whether any of the bootstrap 

1J 
* k differencies, d I J ' L~k, is greater than or equal to d ... If 

L L 1J 
this happens, it indicates that the observed sample difference 

could have appeared by pure chance and thus is giving no 

evidence against the nUll-hypothesis,~. The bootstrap samples 

are drawn from distributions with the same mean, zero, and hence 

* any d .. ~O is purely random. Comparing the bootstrap differencies 
1J 

with a sample difference is then indicating whether the observed 
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sample differencies is just a random deviation likely to occur 

under the null-hypothesis. The following numerical example, 

Example 4.1, shows the procedure step by step. For simplicity, 

just three groups are being tested. 

The original o:verall nUll-hypothesis is 

( 31) 

Data consists of three samples of sizes n 1=10, n 2=20, n3=15 

giving the sample means Y1=1, y2 =2, Y3=5 standard deviations 

s1=3.3, s2=2.2, s3=30. However convenient it is not necessary 

to arrange the sample means in any order. Computing the sample 

differencies and putting them in descending order gives 

1 
5 1 4 d 3 ,1 = Y3 - Y1 = - = 

2 
d 3 ,2 = Y3 - Y2 = 5 2 = 3 

3 
d 2 ,1 = Y2 - Y1 = 2 - 1 = 1 (32) 

4 1 2 -1 d 1 ,2 = Y1 - Y2 = - = 

5 
d 2 ,3 = Y2 - Y3 = 2 - 5 = -3 

6 5 1 -4 d 1 ,3 = Y1 - Y3 
= - = 

Formulating the nUll-hypotheses along with the alternatives 

according to (28) now gives, 
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HO HA 

113~111 113>111 

113~112 113>112 

< 11 2-11 1 11 2>11 1 (33) 

111~112 11 1>11 2 

< 11 2-11 3 11 2>11 3 

111~113 11 1>11 3 

Let us now assume that the bootstrap samples, drawn with re-

placement from the real samples transformed to zero means, 

-* -* -* 
produce the bootstrap means Y1=O, Y2=-1, y 3=1. Computing the 

bootstrap differencies and putting them in the same order as 

the sample differencies (32) gives 

* -* -* 
d 3 ,'1 = Y3 - Y1 = 1 - 0 = 1 

* -* -* 
d = Y3 - Y2 = 1 - (-1 ) = 2 .3,2 

* -* -* (34) d 2 ,1 = Y2 - Y1 = (-1 ) - 0 = -1 

* -* -* 
d 1 ,2 = Y1 

- Y2 = 0 - (-1) = 1 

* -* -* 
d 2 ,3 = Y2 - Y3 = (-1) - 1 = -2 

* -* -* 
d 1,3 = Y1 - Y3 = 0 - 1 = -1 

Recording for each sample difference whether * > k dr J-d .. , L~ r: L l,) 

gives 
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Table 2 : The outcome of one bootstrap sample, 

example 4. 1 

k k 
d

k d*~dk H a 
1 < ].13-].11 4 No 

2 < ].13-].12 3 No 

< * d3 3 ].12-].11 1 Yes, since d 1 ,2 = 1 ~ 1 = 

4 < ].11-].12 -1 Yes, since <\,td4 

5 ].12~].13 -3 Yes, since q*,~d5 
2~:3 

6 ~ -4 Yes d* ~d6 ].11 ].13 1 ,3 

which in th;i;;s case indicates that the sample;' "differencies 3 and 4 

did not occur just by chance in the bootstrap samples while the 

differencies 1, -1, -3 and -4 did. The condition L~k above 

should perhaps be given a second thought. This condition is a 

consequence of the multi-stage natur of the test procedure. The 

12k null-hypotheses, HO' HO' ... , HO' 

descending order and the condition 

1 2 
preceding hypotheses, HO' HO' ... , 

are tested one by one in 
k 

for testing H~ is that 
k'-1 HO are being rejected. 

all 

As 

they have been rejected, and thus stated to be false, any random 

deviation emerging from the corresJ.X)ndingbootstrap differencies 

are of no interest. The means are assumed to differ and doing 

so the corresponding' ri\1.11~ypotheses,·· are no longer part of the 

hypotheses to be tested. This point is perhaps more obvious 

after the next step in the procedure. 

Obviously the results in table 2 are not enough to accept or 

reject any hypothesis. Inference based on one single bootstrap 
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indication,as how to act,would be similar to use just one 

observation for estimating a population parameter. In the latter 

case one needs several observations and for the problem at hand 

the answer is several bootstrap indications received from re-

peated drawings of bootstrap samples. For each new set of 

bootstrap samples of sizes n
1

, n 2 , ... , n L the bootstrap 

differencies are being computed and compared to the observed 

sample differencies. The same recordings as those described for 

the first set of bootstrap samples, are made for each replication. 

When, say, B replications are made, there are, for each sample 

difference, B indications of whether that difference is likely 

to occur just by chance or not. The predetermined level of 

significance, a, is now used to decide if the null-hypothesis 

is to be rejected or accepted. Let Bk be the number of times 
A 

when 

* k d I J ~ d .. L, L 1,J 
L~k (35) 

and let B~=B-B:. That is, the bootstrap samples indicate B~ 
k times out of B, that the observed difference, d ... , has ocurred 1,J 

by pure chance. Such an indication speaks for accepting H~. As 

the level of significance is the predetermined, maximum, 

probability of wrongly rejecting the null-hypothesis, is it 

obvious that H~ should be rejected if and only if 

(36) 

The comparisons of (36) are made stagewise according to (29) 

and thus resulting in the rejection of a number of null-
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hypotheses in the beginning of the ordered sequence of (28). 

The number of rejected null-hypotheses being anything from 

zero to K/2. 

Returning to the numerical example above this means that a 

large number of bootstrap samples should be drawn. Let us 

assume that the number of replications, B, equals 1000. This 

is enough to show the necessity of a computer for using the 

bootstrap technique. For each of the 1000 replications the 

bootstrap differencies are being computed according to (32) 

and ordered according to (34). Table 2 has to be reworked as 

the number of times when the condition (35) is fulfilled, B~, 
now has to be shown. The table below is one possible out-

come of the 1000 bootstrap replications. 

Table 3: Test based on 1000 bootstrap samples, 

example 4.1 

Hk d k k k 
k B· BA/B 0 A 

1 ].13~].11 4 1 0.001 

2 ~ ].13 ].12 3 12 0.012 

3 ].12~].11 1 443 0.443 

4 ].11~].12 -1 992 0.992 

5 ].12~].13 -3 1000 1 .000 

6 ].11~].13 -4 1000 1.000 

The number of null-hypotheses to be rejected according to the 

results of table 3 depends on the level of significance. For 
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a=O.OS. the two null-hypotheses ~3~~1 and ~3~~2 are rejected 

while their alternatives and the remaining null-hypotheses 

are accepted. For a=O.Ol just the first null-hypothesis is re­

k 
jected. It is also possible to regard the ratios BA/B as 

P-values or observed significance levels. 

4.3 Logical structure 

When table 3 is completed and evaluated it is possible to end 

the test procedure. A final step using the logical 

structure could however be added. By taking into account the 

logical structure the power of the test is increased without 

effecting the level of significance. The idea is to work with 

possible clusterings of the means being tested. If no information 

is given, as significant differencies between any two means, 

there are several possible patterns the clustering can follow. 

For simplicity regard the three means in the example above. 

They could be clustered in one of the five ways given in table 4. 

Table 4: Possible patterns of three means, exan~le 4.1 

Nr Pattern Denoted 

1 ~1=~2=~3 123 

2 ~1=~2~~3 12-3 

3 ~1~~2=~3 1-23 

4 ~1=~3~~2 13-2 

S ~1~~2~~3A~1~~3 1-2-3 
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It is to be noted that in reality the distributions or populations 

generating the samples are clustered in one and only one of the 

five ways listed in table 4. The trouble is that we do not know 

which one. When the first null-hypothesis is tested, no prior 

information is given and hence any of the patterns in table 4 

is possible. If the first null-hypothesis is rejected the second 

is tested. When performing that test we have already stated that 

H6 is false, and thus ~3>~1. From this it follows that the 

patterns 123 and 13-2 are not feasible as those patterns have 

the means ~1 and ~3 in the same cluster. When testing H~ there 

are only three possible patterns, 2, 3 and 5 and the test pro­

cedure could be performed conditioned on one of them. As it is 

impossible to say a priori which one of the patterns that gives 

the largest Bi, the bootstrap testing procedure has to be per­

formed once for each possible pattern, in this case three times. 

The final decision whether to reject H~ or not must namely be 

made for the largest of the possibly different P-values appearing 

in the three performancies of the test. Otherwise the pre­

determined significance level is violated and the protection 

against the rejection of true null-hypotheses abandoned. For 

each of the three possible patterns the testing now proceeds 

assuming the actual pattern to be true. This assumption is 

similar to the protective one, acting as the null-hypothesis 

were true until it is rejected, made in almost every test. When 

testing the second hypothesis, H~, under the condition of 

pattern number two, see table 4, it is assumed that the third 

mean differs from the other two. In the first stage it has 

already been shown that ~1 and ~3 differs and this leads to the 
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conclusion that the means are divided into at least two different 

clusters. One possibility is then pattern number two. From 

table 3 it follows that 12 of the 1000 bootstrap samples gave 

the indications that the difference d 3 ,2 in the real sample 

did occur by pure chance. We must now find out which bootstrap 

* differencies, d, " who turned out to be greater than or equal 
1J 

* to d 3 ,2. The difference d 3 ,1 has already been excluded and now 

* * * the differencies d 1 ,3' d 2 ,3 and d 3 ,2 have to be excluded as 

well. All of them excluded because the appearance of large 

values among them is just showing what has already been proved 

or assumed and does not contribute anything to the answering 

of the question at hand, namely whether H~ is true or false. 

It is obvious that the number of indications after the exclusions 

is less than or equal to the number before. 

This part of the procedure is repeated for each possible 

pattern and, as a protection against type I errors, the largest 

number of indications and hence the largest P-value is assigned 

to the solution. For the last pattern, 1-2-3, it has to be zero, 

and thus uninteresting, and for one of the patterns it perhaps 

equals the previous value. If the latter happens the clustering 

is not worth-while, if it does not, the additional stage improves 

the power of the test. One possible outcome of the testing of 

H~ based on clustering is shown in table 5, from which it 

follows 
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2 Table 5: Test of HO under clustering assumptions, 

example 4.1 

Pattern B2 
A 

B2/B 
A 

~1=~2~~3 4 0.004 

~1~~2=~3 0 0 

~1~~2~~3A~1~~3 0 0 

max 2 BA/B=0.004 

that the P-value has decreased from 1,2% to 0.4% by the 

clustering. Of course this is not always the case, but the 

possibility of any improvement makes the clustering stage worth 

trying. 

When performing the clustering stage above one important point 

is not to violate the significance level. In order to see that 

the significance level is kept during this stage the following 

reasoning could be put forth. 

The different patterns that are possible when testing a 

certain hypothesis could be regarded as an exhaustive and 

disjunctive partitioning of the parameter space. That is, 

each pattern represents a combination of true and false null-

hypotheses, where one, and only one, combination is true. The 

trouble is, however, not knowing which combination being true. 

In spite of this lack of knowledge, assume that the null-

hypotheses, e.g. from table 3, being true belong to the set 
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M* while the false ones do not. That is, i, j € M* means that 

the null-hypothesis Vi S Vj is true. The possibility of 

committing a type I error could then be formulated as 

P ( max (d. .) ) y- *) = a 
i,jeM* 1, J 

(37) 

where y* is the critical value given by the predetermined 

level of significance, a, if the test statistic max d .. is 
i,j€M* 1, J 

used for testing the null-hypotheses Vi S Vj for all i ,j 6. M*. 

During the preliminary stage of the procedure, the search for 

significant differencies is performed on the whole parameter 

space, except among the null-hypotheses already rejected. Let 

k M be the set of null-hypotheses not rejected before the pre-

liminary stage k. If a type I error has not already been 

committed, then M* S Mk and the level of significance is S a 

since 

=) (38) 

c When it comes to the clustering stage, . there is one set, M , 

for each pattern c, c=1,2, ... ,C, where C is the number of 

c c* possible patterns. At least one of the M :s, say M , must 

c* contain the true combination M*, that is M* S M , and then it 

c* c follows from (38) that y* S Y . If it were known which M to 

c* call M , the test procedure could be performed for that pattern 

only; since it is not, the procedure has to be performed for 

c* c every possible pattern. Y is then one of the Y :s received 
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and since yc * ::;; max yC, max yC serves as an upper bound for 

c* c c* y . Taking max y = y ~ y* gives, at least, the predetermined 

level of significance, since this means that the single null-

hypothesis being tested, if it is rejected at all, would be so 

regardless of which pattern is containing the true combination 

M*. 

In terms of P-values, the value for the pattern containing M* 

should be choosen. As this is unknown the largest P-value is 

selected as being an upper bound for the true value. If the 

single null-hypothesis could, at a predetermined level of 

significance, be rejected for any MC, then it could certainly 

c* be rejected for M* SM. 

The reasoning above holds for any true probability distributions 

generating the samples. In the Bootstrap procedure these 

distributions, and thus the corresponding y:s and P-values, are 

estimated by simulations. 

4 .4 The final pr'ocedure 

The combination of the preliminary procedure of section 3.2 

and the logical- structure inclusion of section 3.3 could be done 

in at least two ways. One way is to run the clustering procedure 

at all stages. The advantage of this would be to attain the 

lowest possible P-value for each null-hypothesis 

being tested. Doing so would however also cause unnecessary 
. 

calculations as some P-values in the beginning of the test 

procedure, that is the most obvious rejections, are low enough 

without the clustering. This argument is negligible if the cost 
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of computation is zero. If the cost and time of computation 

has to be taken into account, another combination is perhaps 

preferable. One suggestion is to run the test according to 

the preliminary procedure until the predetermined significance 

level is reached at one stage. For the nUll-hypotheses at the 

preceding stages there is no need for any clustering as they 

have been rejected anyway. At the first stage where the significance 

level, a, has been reached, the test procedure would stop and 

no further rejections were to be made. At this stage the 

clustering is introduced. If the clustering cause the null­

hypothesis at this stage to be rejected the test is continued 

at the next stage, if not, the procedure ends. Once the 

clustering has been introduced it is performed at all the 

following stages, as long as the null-hypotheses are rejected. 

If the preliminary procedure is unable to reject at stage i, 

it is certainly unable at stage j, j>i. 

One improper use of the clustering stage has to be nen:Cioned as well. 

When using the clustering it is possible to get a P-value < a 

at a stage where one or even many of the preceding null-hypotheses 

has not been rejected. If this happens one has to remember that 

a condition for the rejection of H~ is that H6 ' j<i, already 

has been rejected. See also Cox and Spj¢tvoll (1982) where this 

condition is neglected. 

In the examples of the following section the latter of the two 

possible combinations of main and clustering procedures is used. 

Although the computer program used is more general, this is the 

test procedure finally suggested. 



39 

5 Examples and evaluation 

5.1 Comparisons between methods 

In this chapter a few examples are given in order to see how 

the previously outlined method really works. Along with the 

solutions provided by the bootstrap procedure, there are results 

given according to other methods. The examples are therefore 

choosen to fit even other procedures then the one suggested 

in this paper. However, it is to be remembered that almost 

every other method is subject to restrictions and assumptions 

of which the bootstrap procedure is perfectly unaware. This 

makes it possible to line up a number of problems where the 

bootstrap method is the only alternative and thus the outstanding 

one. Such problems would however be uninteresting from a com­

paring point of view. The examples to follow are taken from 

papers concerned with other methods of multiple testing. This 

means that a comparison is possible, at least to one alternative 

method. 

5.2 The bootstrap versus the Newman-Keuls procedure 

The two examples given below serve both as an illustration of 

the bootstrap method and as a comparison between this procedure 

and the one known as the Newman-Keuls procedure. 

Example 5.1 is taken from Miller (1980). It consists of 5 

groups with 5 observations per group. As the actual observations 

are not given, 25 values are simulated following the means and 
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standard deviations from Miller (1980) and assumed to be 

normally distributed. The complete data can be found in appendix 

B. 

The original overall null-hypothesis is as usual 

~1 = ~2 = ~3 = ~4 = ~5 

with the alternative 

.., i;t: J' ~, ;t:~, .:l 
1 1 

(39) 

(40) 

For the bootstrap procedure the hypotheses are reformulated 

according to (25). The result from the running of the main 

procedure with B=1000 replications is given in table 6. If the 

significance level were a=5%, the clustering procedure ought 

8 to be performed for HO and onwards but let us assume that we 

are interested in pressing the P-value downwards even for Hb 
and start the clustering with that instead. The results from 

the clustering are given in tables 7-9. Before turning to the 

results of the clustering one remark should be made according 

to the describing of patterns. Since the ~,:s are already 
1 

ordered in descending order, the meaning of for instance 

~1;t:~2;t:~3 is that all ~i are differing even ~1 and ~3 though 

that is not explicitly said. Accordingly the sixth pattern of 

table 7 means that ~1=~3' ~1;t:~4' ~1;t:~5 and ~2;t:~5' the eighth 

pattern that ~.;t:~., \f. . . -+' etc. 
1 J 1,J,V-J 
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Table 6: Example 5.1 solved with the boostrap method 

main procedure B=1000 

k Hk k 
0 P-va1ue=BA/B-100 

1 < 11 5-11 1 0 

2 < 11 5-11 2 0 

3 < 11 3-11 1 0 

4 < 11 5-11 4 0 

5 114~111 0.8 

6 < 11 5-11 3 1.6 

7 < 11 3-11 2 
4.5 

8 112~111 7.6 

9 113~114 27.3 

10 < 11 4-112 57.1 

1 1 < 11 2-11 4 100.0 

12 < 11 4-11 3 100.0 

13 < 11 1-11 2 100.0 

14 < 11 2-11 3 100.0 

15 < 11 3-11 5 100.0 

16 11 ~11 1 4 100.0 

17 < 11 4-11 5 100.0 

18 < 11 1-11 3 100.0 

19 < 11 2-11 5 100.0 

20 < 11 1-11 5 100.0 
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Table 7: Example 5.1, testing H 7 ]1 ~W with o 3 2 .. 

clustering 

Pattern 

]11=]12;<:]13=]14~]15 

]11=]12=]13;<:]14;7!]15 

]11;<:]12=]13=]14=]15 

]11;<:]12=]13;<:]14;<:]15 

]11;<:]12=]14;<:]13;<:]15 

]11;<:]12;<:]13=]14~]15 

]11;<:]12;<:]13;<:]14;<:]15 

7 P-value=BA/B-100 

0.3 

0.3 

1.5 = max (B~/B-100) 

1.4 

0.5 

o 

o 

Table 8: Example 5.1, testing H~ 

clustering 

Pattern 

]11=]12;<:]13=]14;<:]15 

]11=]12;<:]12;<:]13;<:]15 

]11;<:]12=]14;<:]13;<:]15 

]11;<:]12;<:]13=]14;<:]15 

]11;<:]12;<:]13;<:]14;<:]15 

8 p-value=BA/B-100 

1 .2 

1 .2 

1.4 = max (B!/B-100) 

o 

o 



Table 9: Example 5.1, testing H~ 

clustering 

Pattern 

].11~].12=].14~].13=].15 

].11~].12~].13=].14~].15 

].11~].12~].13~].14~].15 

9 P-value=BA/B o 100 

10.9 = max (B!/B o 100) 

0.2 

o 
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As the P-value for H~ is as high as 10.9% the procedure is 

not continued. For 1. 6S:Cl.s::1,0. 9 the results could be interpreted 

as follows. The samples put the means in the order 

(41) 

where the significance level is met for all comparisons except 

for ].12-].14 and ].14-].13 which are not significantly differing. The 

results could also be given according to (6), the underlining 

technique mentioned in section 2.3, 

(42) 

where two means underlined by the same unbroken line are not 

significantly differing, while the others are. 

The Neuman-Keuls procedure, Miller (1980), is now used to test 

the very same null-hypothesis. It is to be noted the figures 

are not the same as in Miller (1980), due to the random 

simulation, but of course the same as above. The test procedure 

can be followed in table 10. The critical values for the test 

could be found in Miller (1980). 
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Table 10: Example 5.1, solved by the Newman-Keuls 

procedure a=5% 

Stage Test Significance 

1 26.4-14.6 Yes 

2 21.9-14.6 Yes 
26.4-18.0 Yes 

3 19.5-14.6 Yes 
21.9-18.0 Yes 
26.4-19.5 Yes 

2 18.0-14.6 No, underline fl1 to fl2 
19.5-18.0 No, underline fl-2 to fl4 
21.9-19.5 No, underline fl3 to fl4 
26.4-21.9 Yes 

With the underlining technique table 10 gives 

(43) 

which is to be compared to (42). The only difference between 

the two methods is that the bootstrap procedures succeeded in 

rejecting the null-hypothesis fl2~fl1 while the Newman-Keuls 

procedure did not. Whether this difference is important or 

not could not be postulated at this stage but nevertheless are 

the results an indication of the bootstrap procedure being 

more powerful. 

Example 5.2 is taken from Hartley (1955). The problem here is 

to compare 6 means on the basis of 5 observations from each 

group. As in the previous example the variates are simulated 

according to a normal distribution. The complete data can be 
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found in appendix C while the hypotheses are stated as before. 

When the bootstrap procedure, with B=500 replications, where 

applied the results of table 11 was achieved. 

Table 11: Example 5.2, solved with the bootstrap 

method, main procedure, not all null-

hypotheses being listed B=500 

k k k 
HO p-value=BA/B o 100 

1 < 11 6-11 1 0 

2 < 11 6-11 3 0.2 

3 < 11 5-11 1 0.8 

4 < 11 6-11 2 1 .4 

5 < 11 4-11 1 1.4 

6 115~113 5.6 

7 < 11 6-11 4 11 .8 

8 < 114-11 3 14.6 

9 < 11 2 -11 1 16.0 

Table 11 indicates that the clustering procedure ought to be 

6 run for HO. As this is done, the P-value decreases to 5.0% 

under the pattern shown in table 12. 



Table 12: Example 5.2, testing H~ 

clustering 

Pattern 
6 p-value=BA/B o 100 

7 
The testing of HO gave a P-values of 10%. If it is agreed to 

reject H~, the combined result of tables 11 and 12 could be 

given in the following terms. The samples imply the order 

(44 ) 

46 

among the means. 111 differs significantly from 114' 11 5 , and 116 

but from 113 and 11 2 . 112 differs significantly only from 115 and 

116 and so does 11 3 . 114 differs significantly only from 11 1 . 115 

differs significantly from 111 and 113 while 116 does it from 

11 1 , ~2 and 11 3 . With the underlining technique this becomes 

111 113 112 114 115 116 
(45) 

Table 13 gives the result when the Newman-Keuls procedure is 

applied to the same data. Again it should be noted that the 

actual figures are not the same as in previous paper, Hartley 

(1955). 
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Table 13: Example 5.2, solved by the Newman-Keuls 

procedure a=5% 

Stage Test Significance 

1 1609-1442 Yes 

2 1554-1442 Yes 
1609-1472 Yes 

3 1539-1442 Yes 
1554-1472 No, underline 113 to 115 
1609-1506 Yes 

1506-1442 No, underline 111 to 112 
1539-1472 Already unde~lined 

4 

1554-1506 Already underlined 
1609-1539 No, underline 114 to 116 

5 No groups of 2 means could be significant 
since no groups of 3 means are. 

Drawing the lines suggested in table 13 gives 

(46) 

which is almost the same as (45). The only difference is 

that the bootstrap procedure pointed out 113 to differ 

significantly from 115 while the Newman-Keuls 

procedure did not. On the other hand the latter method shows 

a significant difference between 112 and 116 while the former 

technique state them to be not significantly different. 
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5.3 Evaluating the significance level 

When the bootstrap procedure was compared to the Newman-Keuls 

method it was found that the former possibly had higher 

power. This means that the probability of committing a type-II 

error, S, is lower. For the same test procedure and sample 

size S could only be decreased by increasing a, the probability 

of committing a type-I error. Therefore, in this section some 

attention will be paid to wheather the significance level 

really keep the predetermined value, in this case 5%, or not. 

Such an investigation is however rather heavy to put through 

and that is the main reason for giving just two simple examples 

on this subject. 

Consider L populations having the same mean and variance. Draw 

from each of them a sample of size n and compare the sample 

means. Since the populations are identical, a test that rejects 

any part of the null-hypothesis, ~1=~2= ... =~L' is committing 

a type-I error. By repeating the procedure over and over again 

the significance level is estimated. 

In example 5.3 the variables are uniformly distributed, 

x.~R(0,100), L=3 and n=10. The results of 20 repeated bootstrap 
1 

tests are given in table 14, from which it follows 
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Table 14: Example 5.3 

Sample no P-values for the largest 
differencies 

1 13.3 

2 80.5 

3 28.0 

4 19.4 

5 83.4 

6 19.4 

7 16. 7 

8 60.6 

9 73.4 

10 13.8 

11 62.4 

12 94.1 

13 26.5 

14 50.3 

15 36.6 

16 24.0 

17 16.8 

18 76.7 

19 71.3 

20 47.7 

that the procedure in this case does not commit any type-I 

error at all. In the long run the significance level is of 

course not zero but the result indicates that a is perhaps 

as low as it is meant to be, namely 5%. 

In example 5.4 the variables are normally distributed. 

x1~N(0,1), L=3 and n=5. The results of 20 repeated bootstrap 

tests are given in table 15. From this it follows 
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Table 15: Example 5.4 

Sample P-value for the largest no differencies 

1 97.8 

2 21.1 

3 1.8 18.5 

4 69.4 

5 73.7 

6 5.6 

7 34.4 

8 50.1 

9 5.5 

10 32.7 

11 34. 1 

12 23.7 

13 55.1 

14 35.9 

15 44.4 

16 4.7 17.3 

17 79.1 

18 90.2 

19 35.0 

20 39.9 

that the procedure in this case wrongly rejects at least one 

true null-hypothesis two times out of 20, if a is predetermined 

to equal 5%. Estimating the real significance level from the 

20 tests gives a=2120=10%. This is however not as serious as 

it looks. Some calculations on the binomial distribution give 

that p(X~2IX~Binom(20, 0.05)=0.26, which in terms of testing 

says that the deviation from a=5 % is in no way significant, a is 

not shown to be greater than 5%. 
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The four examples given in this chapter are mainly pointing 

in the same direction. The bootstrap multiple test procedure 

seems to have a little bit higher power than does the Newman­

Keuls method but is still maintaining the same significance 

level. To some extent the probability of committing an error 

of type-I is lower with the bootstrap method. This is due to 

the methods taking care of the direction or sign of the 

differencies. The Newman-Keuls method is based on two-tailed 

tests and the protection against directional errors is there­

fore rather weak. 
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6 An application 

The method outlined in chapter four has been applied to a 

real problem. A researcher in micro biology had developed a 

method of classifying observations into one of four groups. 

The real values, which are rather difficult to obtain, where 

then measured. The problem was now to investigate whether 

there were significant differencies between the true means 

of the four groups. Assuming that the observations are nor-

mally distributed with common variance, this problem could 

be solved by analysis of variance. This would however only 

give indications on the existence of differencies without 

showing where they are. Since the latter is also wanted, a 

multiple comparison test is called for. The results, completed 

with some descriptive statistics of the Bootstrap multiple 

test is given below. 

Let xij be observation number j, j=l,2, ... , n i , classified 

to group number i, i=l,2,3,4. The number of observations, 

sample means and standard deviations are given in table 16. 

Table 16: Descriptive statistics from the samples 

i 

1 

2 

3 

4 

n. 
1 

11 

24 

24 

14 

x. 
1 

658.909 

1634.083 

4098.750 

10256.350 

s. 
1 

733.718 

2215.504 

3258.095 

3860.779 
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If the true means of the four groups are denoted ~i' i=1,2,3,4, 

then the overall null-hypothesis to be tested is 

H 
o ~1 = ~2 = ~3 = ~4 (47) 

with the alternative, HA, that some pairs, at least one, are 

differing. The results of the preliminary stage of the Bootstrap 

test is given in table 17. The number of replications, B, is 

here 10000. 

Table 17: The preliminary stage of the Bootstrap 

test 

k Hk P-value = Bk/B . 100 0 A 

1 ~4 ~ ~1 0.00 

2 ~4 ~ ~2 0.00 

3 ~4 ~ ~3 0.00 

4 ~3 ~ ~1 0.14 

5 ~3 ~ ~2 2.59 

6 ~2 ~ ~1 39.35 

7 ~1 ~ ~2 100.00 

At the significance level a = 0.05, the hypotheses one through 

five could be rejected. This means that all pairs except 1 and 

2 are significantly differing. Performing the second stage 

shows however that even the latter pair is differing on the 

a = 0.05 level. The results are given in table 18. 



Table 18: Testing H~ ~2 ~ ~1 with clustering 

Pattern P-value 

~1 = ~2 ~ ~2 ~ ~3 

~1 ~ ~2 ~ ~3 ~ ~4 

4.22 

0.00 

The conclusions drawn from this experiment is then that the 

classification method developed yields four groups which, 
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according to their means, all are significantly differing at 

the level of significance a = 0.05. It could also be stated 

that the order is ~1 < ~2 < ~3 < ~4 . 



7·. Conclusions 

The problem of multiple testing is familiar to most sta­

tisticians. One solution to that problem has been suggested 
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in this paper. Compared to other methods it is rather general 

according to distributional assumptions etc. This is just 

natural since the bootstrap procedure substitutes theoretical 

distributions with ·their empirical counterparts. That is practise instead of 

theory. Two important remarks could be made according to this 

substitution. First, a method like the bootstrap is heavily 

depending on the computer. While the user of traditional 

techniques is doing with a table of critical values, some 

formulas and possibly a desk calculator, the bootstrapper 

needs a computer even if the problem is rather small. Nowadays 

this need can be met for most statisticians. Second, it is 

always difficult to prove the qualities of a method relaying 

on simulations. The properties of the traditional methods are 

often derived by means of distinguished mathematics which is 

believed to be true, even if not always understood, by every­

one. When it comes to the bootstrap and related techniques 

the theoretical results are often too far away and the only 

proofs obtainable are the ones based on large simulations. 

That is simulating a method that consists of simulations it­

self. To the born theorist this must be rather dubious. 

The method presented in this paper is not proved to be better 

than other methods. There are just a few hints indicating that it 

seems to be. slightly better. The advantages of me bootstrap procedure 
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are however to obvious to be neglected, no need for distri­

butional assumptions, no limits for the number of hypotheses 

or the number of observations and no restrictions like, for 

example, equal sample sizes. All this are good reasons for 

further development and evaluation of the bootstrap multiple 

test procedure. 
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APPENDIX A 

Data to Example 4.1, see section 4.2 

j y 1 j Y2j Y
3 

. 
J 

1 -3 0 5 

2 -3 0 5 

3 -3 -1 5 

4 1 -1 5 

5 1 -1 5 

6 1 -1 4 

7 '1 2 4 

8 5 2 6 

9 5 2 6 

10 5 2 0 

11 2 0 

12 2 10 

13 2 10 

14 2 2 

15 5 8 

16 5 

17 5 

18 5 

19 4 

20 4 
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APPENDIX B 

Data to Example 5.1, see section 5.2, rounded to one decimal 

place 

Grupp 
Obs 1 2 3 4 5 j 

1 13.9 13.4 21.6 19.8 27.4 
2 15.1 21 . 7 22.4 19.7 23.1 
3 13.2 20.7 19.7 20.9 30.7 
4 15.0 15.7 24.2 18.7 22.6 
5 15.7 18.5 21 .4 18.4 28.3 

x 1 14.6 18.0 21.9 19.5 26.4 

s. 1 .0 3.5 1 .6 1 .0 3.5 
1 

].1. 16. 1 17.0 20.7 21.1 26.5 
1 

0. 2.7 2.7 2.7 2.7 2.7 
1 
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APPENDIX C 

Data to Example 5.2, see section 5.2 

Grupp 
Obs 1 2 3 4 5 6 j 

1 1462 1477 1491 1516 1537 1571 
2 1449 1528 1484 1451 1542 1623 
3 1417 1583 1350 1552 1532 1584 
4 1451 1455 1531 1569 1613 1681 
5 1429 1489 1505 1610 1546 1587 

Yi 1442 1506 1472 1539 1554 1609 

s. 18.2 50.4 70.6 60.0 33.4 44.5 
1 

l1 i 1470 1498 1505 1528 1564 1600 

o. 49.5 49.5 49.5 49.5 49.5 49.5 
1 
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Data 

GRUPP 

1 
2 
3 
1 
2 
3 
1. 
;2 
3 
1. 
2 
:3 
1 
2 
3 
1 
2 
3 
1 
'2 
:3 
1. 
2 
3 
1. 
2 
3 
1 
;2 
3 
1. 
2 
3 
1 
2 
3 
1 
~') 
r:;. 

3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
;,::r 
3 
1 
2 
3 
1 

2 
3 

to 

Xl 

40 
42 
64· 
50 

1 
0 

;23 
86 
60 
92 
"14 
92 
93 
11 
B8 
25 

3 
16 
~37 
BO 
69 
77 
44 
41 
96 
29 
33 
31 
63 
20 
77 
60 
77 
60 
53 
77 
18 
73 
86 
19 
96 
48 

2 
61 
93 
83 
79 
67 
18 
45 
CJ6 
38 
57 

9 
81 
66 
19 
:1.7 

6 "'­~) 
78 

Example 

X2 

56 
71 
32 
17 
26 
78 
62 
24 
78 
85 
72 
42 
61 
53 
91 
37 
89 

9 
79 
64 
32 

2 
77 
22 
62 
46 
56 

6 
10 
74 
67 
49 
12 
86 
91 
81 
58 

2 
91 
73 
4·5 

7 
60 
89 
23 

7 
71 
37 
:51 
75 
27 
17 
4.0 

1.0.0 
13 
73 
10 
41 

44 
4.0 

3, see 

X:3 

21 
10 
50 
10 
85 
28 
62 
99 
24 
71 
31 
33 
23 
98 
16 
29 
66 
22 
66 
31 

3 
55 
66 
59 
95 
61. 
91 
57 
67 

4 
54 
46 
56 
99 
56 
74 
66 
62 
36 
61 

9 
58 
23 
57 
65 
57 
81 
85 
25 
75 
66 
96 
44 
32 
7.0 
14 
88 
97 

73 
91 

section 

X4 

1'") r... 
67 

7 
'7 

34 
28 

5 
35 
32 
41 
68 
24 
44 
39 
50 
68 
67 
35 
50 
62 
63 
75 
58 
62 
13 
83 

9 
26 
67 
14 
30 
67 
l:-}3 

4 
l:-}O 

6 
24 
19 
52 
17 
14 

6 
2 r

, r.:.. 

82 
85 
41 
99 
36 
75 
83 
25 
21 
91 
c!.o 
34 
35 
58 
19 

4 
79 

5 

X5 

3 
62 
51 
"17 
52 
91 
52 
71 
52 
33 
74 

0 
41 

1. 
2 

29 
20 
44 
94 
32 
42 

2 
32 
48 
60 
51 
78 
::.U 
78 
56 
17 
94 

1. 
20 
11 
68 
84 
36 
46 
44 
85 
34 
86 
28 

9 
32 
19 
88 
65 
85 
11 

7 
13 
41 
51 
30 
10 
80 

6 
14 

X6 

18 
61 
39 

9 
76 
33 
93 

4 
97 
33 
12 

5 
78 
59 
18 
24 
37 
99 
87 
90 
72 
87 

3 
1-

11 
47 

2 
73 
64 
4·7 
27 
88 
70 
49 
78 
49 
50 
58 
58 
'26 
53 
70 
26 

5 
12 
26 
49 
4'") r.:.. 

87 
:58 
46 
10 
2.0 
44 
42 
51 
85 
51 

21 
24 

X7 

57 
82 
84 

0 
83 
84 
60 
58 
55 
44· 
4·3 
41 
31 
58 
23 
89 
14 
49 
53 
46 
44 
17 

1 
4 

51 
86 
94 
58 

2 
57 
77 
51 
53 
57 
55 
29 
98 
86 
48 
89 
20 
74 
38 
28 
38 
23 
22 
93 
63 
63 
59 
33 
41 

.0 
22 
47 

7 
64 

46 
35 

X8 

51 
71 
27 
79 
48 
35 
49 
24 
79 
93 
56 
53 
52 
45 
24 
38 
98 
96 

0 
81 
41 

9 
49 
64 
49 
49 

1 
0 

79 
39 

7 
83 
36 

5 
85 
38 
15 
32 
70 
67 
55 

7 
68 

7 
86 
75 
98 
73 
85 
84 
53 
11 
18 
39 
38 
46 
95 
52 

30 
36 

X9 

50 
::i6 
43 
48 

3 
93 
43 

3 
55 
73 
85 
60 
68 
43 

1 
;'24 
79 
84 
72 
88 
54 
39 
82 
84 
30 
66 
64 
~H 
74 
84 
tl3 
88 
;;.!7 
27 
:~5 

~~ 
r.'. 

56 
92 
94 
56 

3 
89 
69 
24 
38 
91 
96 
17 

3 
85 
65 
35 
70 
21 
64 
16 
84 
63 

33 
85 

63 

XI0 

96 
19 
78 
25 
39 
71 
23 
25 
80 
22 
75 
47 
46 
66 
10 
12 
22 
15 
83 
86 
98 
49 
83 
27 
21 
68 
74 
36 
40 
37 
56 

7 
62 
41-

5 
78 
98 
32 
30 
78 
18 
81 
20 
81 
92 
25 
94 
52 
50 
21 
53 

0 
25 
94 
25 
28 

6 
84 

22 
80 
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Data 

GHUPP 

1 
2 
3 
1 
2 
3 
1 
2 
~3 
:!: 
2 
3 
1 
2 
3 
1 

':z 
3 
1 
2 
::3 
1 
2 
::3 
1. 
2 
3 
:1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 
:1 
2 
3 
1 
2 
3 
1 
2 
3 
1 

2 
3 

to Example 

Xl 

O. 42 
1. 02 

-0. 27 
O. 06 
1. 34-

-0.05 
O. 10 
O. 53 

--0. 70 
-0.48 

2. 10 
O. 51 

-1. 48 
-1.03 
0.48 

-0. 76 
-1. 26 

1.53 
1. 96 

-1.06 
-0. 32 

1. 44 
O. 29 
0.86 

-0. 92 
O. 93 

-0.81 
-0. '1'7 
-0. 33 

1. 23 
0.41 

-1. 72 
-0. 81 
-0.42 

1. 67 
O. 24 

-'1. 62 
1. 2;'2 

-1. 29 
-0.64 
0.96 

-0.62 
1. 27 

-0. 14 
-1. :"13 
0.28 
0.08 
1. 98 
2. 25 

-0.82 
-2. 14-

1. 96 
O. 43 
1. 30 

-0.63 
-0.97 
0.95 

-0. 13 

0.33 
-0. ~j8 

4, see section 5 

X~J 
• II:. 

-'0.39 
-0. 14-

0.81 
1. 45 

-1. 16 
-,0. 18 
-0. 20 

O. 50 
-0. 34 
-1.12 
0.26 
0.25 

-0. 68 
-0.24 
0.42 
0.44 
O. 04 
1. 20 

-1. 49 
O. 82 

-0.94 
0.95 

-0. 23 
O. 11 
1. 61 
0.72 
0.43 
O. 04 

-0. 07 
1. 25 

-1.28 
-0. 64 
0.26 
1. 28 

-0. 12 
-1.20 
-0. 18 
-0.45 

O. 15 
-0.08 
-0. 15 

O. 79 
-0.24 
-0.05 
-0.41 
-1. ~~8 
-1. 06 
-0.86 
0.27 
O. 10 
0.93 
1. 38 
1. 12 
O. 64 

-1.04 
0.41 

-0.61 
-0.91 

-0. 74 
-0. 04 

X::'1 

-1.20 
0.08 
0.69 

-0.69 
-1. 53 
-0. 79 

1. 92 
1. 00 

-0.31 
-0.24 

0.31 
0.47 
O. 19 
O. (:t6 

-0.40 
0.96 

-0. 30 
0.05 
O. 52 
1. 70 

-1.04 
0.25 

-0. 19 
0.93 
1. 71 
0.81 

-0.81 
-0. 13 
-0.33 
-0.04 

1. 42 
-'0.22 
-0.41 
-2.07 

1.21 
0.88 
O. 19 

-1. 04 
-1. 70 
-1.60 
-2. 79 
-0.72 
-0. 56 

O. 58 
O. 39 
1. 13 

-0. 66 
0.65 

-0. 54 
-0.27 
-0. 24-
-0. 15 
-0.85 
-0. 66 

0.41 
0.41 

-0.80 
O. 17 

--1.96 
O. 57 

X4 

0.97 
-1. 38 
-0. 55 
-0. 38 
0.84 

-0.85 
-0. 39 

1. 11 
-0.91 

0.29 
-'0.50 

1. 33 
0.94 

-0.22 
1. 37 
0.02 

-0. 37 
-0. 65 
0.44 
O. 92 
O. 39 

-0.25 
0.95 
0.75 

-1. 54 
0.70 

-0.86 
1.25 
0.07 
1. 93 

-0. 77 
O. 16 

-0. 54 
1. 19 
1. 47 
1. 20 

-'1. 14 
0.21 
0.09 
1. 12 

-0. 50 
0.72 

-0.68 
-0.35 
-0.38 

1. 45 
O. 39 

-1.48 
0.46 
O. 14 
1. 55 

-0. 53 
0.24 
O. 53 
0.02 
1. 23 
1. 21 
1. 34 

-0.96 
-1.47 

X5 

--0. 17 
0.33 

""1. 15 
0.76 

"'0.24 
,,-1. 44 
--;'? 28 
0.32 

"'2.24 
1. 49 

'-0.22 
~-O, 57 

O. 56 
2. 34 

--:1. 24 
"-1. 67 
-1. 10 
0.36 
1. 39 
0.26 
O. 51 
0.76 
0.42 

-"0.55 
"'0.87 
-0.21 
-2. 44 
-0.87 
0.49 

--1..31 
--0.43 
"-1. 45 
0.33 
0.68 
1. 17 

-0.07 
0.37 
0.00 
O. 10 
O. 50 

'-0.64 
0.89 

--0.92 
O. 51 
0.03 
O. 58 
0.87 

--0.82 
---0.89 

O. 30 
l- 18 

--1. 24 
O. 34 

"'"1. 71 
"'0.24 
0.47 
0.45 

--0.22 

0.33 
O. 55 

64 

i 

.--".1' 



APPENDIX F 

Logical flowchart of the FORTRAN computer program performing 

the Bootstrap multiple comparison test. 

1. Number of groups and observations and observed values 

are read into the program. 

2. Calculations of means and standard deviations. 

3. A table of means and standard deviations is printed. 

4. All possible differencies among pair of means are 

calculated. 

5. The differencies are sorted in descending order. 

6. All observations are translated to give zero means. 

7. All possible clustering patterns are enumerated. 

8. A number of Bootstrap-samples are generated. 

.65 

9. The observed differencies are tested in descending order. 

10. The results of 9 is printed. 

11. A number of Bootstrap-samples are generated (optional). 

12. One difference is tested under clustering conditions 

(optional). 

13. The result of 12 is printed (optional). 

14. Go to 11 (optional). 

15. End. 

The steps 7, 8, 9, 11 and 12 are handled by two subroutines 

while the rest is performed by the main program. 


