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ABSTRACT 

Industrial production requires multivariate control charts to enable monitoring of several 

components. Recently there has been an increased interest also in other areas such as 

detection of bioterrorism, spatial surveillance and transaction strategies in finance. In the 

literature, several types of multivariate counterparts to the univariate Shewhart, EWMA and 

CUSUM methods have been proposed. We review general approaches to multivariate control 

chart. Suggestions are made on the special challenges of evaluating multivariate surveillance 

methods.  
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RESUMO 

A produção industrial exige uma vigilância multivariada para permitir a monitorização de 

diversos componentes. Recentemente, tem havido um interesse crescente também em outras 

áreas, como de-tecção do bioterrorismo, a vigilância espacial e estratégias de operação na área 

financeira. Na literatura, vários tipos de contrapartidas multivariada para a análise univariada 

Shewhart, EWMA e CUSUM métodos têm sido propostos. Nós revisamos abordagens gerais 

multivariada vigilância. As sugestões são feitas sobre os desafios especiais de avaliação de 

métodos de vigilância multivariada. 

Plavras-chave: Vigilância, monitorização, controlo de qualidade, avaliação multivariada, 

suficiência 
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INTRODUCTION 

Multivariate surveillance is of interest in industrial production, for example in order to 

monitor several sources of variation in assembled products. (Wärmefjord, 2004) described the 

multivariate problem for the assembly process of the Saab automobile. (Sahni et al., 2005) 

suggest that the raw material and different process variables in food industry should be 

analysed in order to assure the quality of the final product. (Tsung et al., 2008) described the 

need for multivariate control charts at manufacturing and service processes. The first versions 

of modern control charts (Shewhart, 1931) were made for industrial use. Surveillance of 

several parameters (such as the mean and the variance) of a distribution is multivariate 

surveillance (see for example (Knoth and Schmid, 2002)). Capability index is dealing with 

both the mean and the variance. 

 

In recent years, there has been an increased interest in statistical surveillance also in other 

areas than industrial production. The need is great for continuous observation of time series 

with the aim of detecting an important change in the underlying process as soon as possible 

after the change has occurred. There is an increased interest in surveillance methodology in 

the US following the 9/11 terrorist attack. Since the collected data involve several related 

variables, this calls for multivariate surveillance techniques. Spatial surveillance is 

multivariate since several locations are involved. There have also been efforts to use 

multivariate surveillance for financial decision strategies by for example (Okhrin and Schmid, 

2007) and (Golosnoy et al., 2007). 

 

The construction of surveillance methods involves statistical theory, practical issues as to the 

collection of new types of data, and also computational ones such as the implementation of 

automated methods in large scale surveillance data bases. The data is sometimes highly 

dimensional and collected into huge databases. Here the focus will be on the statistical 

inference aspects of the multivariate surveillance problem. We will focus on some general 

approaches for the construction of multivariate control chart methods. These general 

approaches do not depend on the distributional properties of the process in focus, even though 

the implementation does. Reviews on multivariate surveillance methods can be found for 

example in (Basseville and Nikiforov, 1993), (Lowry and Montgomery, 1995), (Ryan, 2000), 

(Woodall and Amiriparian, 2002), (Frisén, 2003), and (Sonesson and Frisén, 2005). (Woodall, 
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2007) concentrates on profile monitoring where the relation between the variables is 

described as a profile.  

 

In Section 2 the notations and specifications will be given. In Section 3, different approaches 

to the construction of multivariate surveillance methods are described and exemplified. In 

Section 4, we discuss evaluation of multivariate surveillance methods. In Section 5, we 

demonstrate how the relation between the change points influences the choice of optimal 

method. Concluding remarks are made in Section 6. 

SPECIFICATIONS 

We denote the multivariate process under surveillance by { ( ), 1, 2,...}t t= =Y Y . At each time 

point, t , a p -variate vector ( )1 2( ) ( ) ( ) ( )
T

pt Y t Y t Y t=Y   of variables is observed. The 

components of the vector may be, for example, a measure of each of p  different components 

of a produced item. When the process is in control and no change has occurred, ( )tY  has a 

certain distribution (for example with a certain mean vector 0μ  and a certain covariance 

matrix YΣ ). The purpose of the surveillance method is to detect a deviation to a changed state 

as soon as possible in order to warn and to take corrective actions. We denote the current time 

point by s . We want to determine whether a change in the distribution of Y  has occurred up 

to now. Thus we want to discriminate between the events { }sτ ≤  and { }sτ > , where τ  denotes 

the time point of the change. In a multivariate setting, each component can change at different 

times τ1, .. τp. A natural aim in many situations is to detect the first time that the joint process 

is no longer in control since that motivates an action. Then, it is natural to consider 

min 1min{ ,... }pτ τ τ= . In order to detect the change, we can use all available observations of the 

process { ( ), }s t t s= ≤Y Y  to form an alarm statistic denoted by ( )sp Y . The surveillance method 

makes an alarm, at the first time point when ( )sp Y  exceeds an alarm limit ( )G s .  

CONSTRUCTIONS OF MULTIVARIATE CONTROL CHARTS 

Reduction of Dimension 

A start should be to add any relevant structure to the problem in order to focus. One way to 

reduce dimensionality is to consider the principal components instead of the original variables 
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as proposed for example by (Jackson, 1985), (Mastrangelo et al., 1996) and (Kourti and 

MacGregor, 1996). In (Runger, 1996) an alternative transformation, using so-called U2 

statistics, was introduced to allow the practitioner to choose the subspace of interest, and this 

is used for fault patterns in (Runger et al., 2007). Projection pursuit was used by (Ngai and 

Zhang, 2001) and (Chan and Zhang, 2001). (Rosolowski and Schmid, 2003) use the 

Mahalanobis distance to reduce the dimensionality of the statistic. After reducing the 

dimensionality, any of the approaches for multivariate surveillance described below can be 

used.  

Scalar Statistics  

The most far going reduction of the dimension is to summarise the components for each time 

point into one statistic. This is a common way to handle multivariate surveillance problems. 

(Sullivan and Jones, 2002) referred to this as “scalar accumulation”. In spatial surveillance it 

is common to start by a purely spatial analysis for each time point as in (Rogerson, 1997). A 

natural reduction is to use the Hotelling T2 statistic (Hotelling, 1947). This statistic is 
2 1

0 ( ) 0( ) ( ( ) ( )) ( ( ) ( ))T
tT t t t t t−= − −YYμ S Y μ , where the sample covariance matrix ( )tYS  is used to 

estimate YΣ . When YΣ  is regarded as known and the statistic has a 2χ  distribution, it is 

referred to as the 2χ  statistic. Scalars based on regression and other linear weighting are 

suggested for example by (Healy, 1987), (Kourti and MacGregor, 1996) and (Lu et al., 1998).  

Originally, the Hotelling T2 statistic was used in a Shewhart method, and this is often referred 

to as the Hotelling T2 control chart. An alarm is triggered as soon as the statistic 2 ( )T t  is 

large enough. The reduction to a univariate variable can be followed by univariate monitoring 

of any kind. Note that, there is no accumulation of information over time of the observation 

vectors if the Shewhart method is used. In order to achieve a more efficient method, all 

previous observations should be used in the alarm statistic. There are several suggestions of 

combinations where reduction to a scalar statistic is combined with different monitoring 

methods. (Crosier, 1988) suggested to first calculate the Hotelling T variable (the square root 

of 2 ( )T t ) and then use this as the variable in a univariate CUSUM method, making it a scalar 

accumulation method. (Liu, 1995) used a non-parametric scalar accumulation approach, 

where the observation vector for a specific time point was reduced to a rank in order to 

remove the dependency on the distributional properties of the observation vector. Several 

methods were discussed for the surveillance step, including the CUSUM method. (Yeh et al., 

2003) suggested a transformation of multivariate data at each time to a distribution percentile, 
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and the EWMA method was suggested for the detection of changes in the mean as well as in 

the covariance.  

Parallel Surveillance 

In this commonly used approach, a univariate surveillance method is used for each of the 

individual components in parallel. This approach can be referred to as combined univariate 

methods or parallel methods. One can combine the univariate methods into a single 

surveillance procedure in several ways. The most common is to signal an alarm if any of the 

univariate methods signals. This is a use of the union-intersection principle for multiple 

inference problems. Sometimes the Bonferroni method is used to control a false alarm error, 

see (Alt, 1985). General references about parallel methods include (Woodall and Ncube, 

1985), (Hawkins, 1991), (Pignatiello and Runger, 1990), (Yashchin, 1994) and (Timm, 1996).  

 

Parallel methods suitable for different kinds of data have been suggested. (Skinner et al., 

2003) used a generalised linear model to model independent multivariate Poisson counts. 

Deviations from the model were monitored with parallel Shewhart methods. In (Steiner et al., 

1999) binary results were monitored using a parallel method of two individual CUSUM 

methods. However, to be able to detect also small simultaneous changes in both outcome 

variables, the method was complemented with a third alternative, which signals an alarm if 

both individual CUSUM statistics are above a lower alarm limit at the same time. The 

addition of the combined rule is in the same spirit as the vector accumulation methods 

presented below. Parallel CUSUM methods were used also by (Marshall et al., 2004).  

Vector Accumulation  

By this approach, the accumulated information on each component is utilised by a 

transformation of the vector of component-wise alarm statistics into a scalar alarm statistic. 

An alarm is triggered if this statistic exceeds a limit. This is referred to as “vector 

accumulation”.  

 

(Lowry et al., 1992) proposed a multivariate extension of the univariate EWMA method, 

which is referred to as MEWMA. This method uses a vector of univariate EWMA statistics 

( ) ( ) ( ) ( 1)t t t= + − −ZΛY I Λ Z  where (0) =Z 0  and 1 2diag( , ,..., )pλ λ λ=Λ . An alarm is triggered at 
1
( )min{ ; ( ) ( ) }T

A tt t t t L−= >ZZΣ Z  for the alarm limit, L . The MEWMA method can be seen as the 
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Hotelling T2 control chart applied to EWMA statistics instead of the original data and is thus a 

vector accumulation method.  

 

One natural way to construct a multivariate version of the CUSUM method would be to 

proceed as for EWMA and construct the Hotelling T2 control chart applied to univariate 

CUSUM statistics for the individual variables. One important feature of such a method is the 

lower barrier (assuming we are interested in a positive change) of each of the univariate 

CUSUM statistics. This kind of multivariate CUSUM was suggested by (Bodnar and Schmid, 

2004) and (Sonesson and Frisén, 2005). Other approaches to construct a multivariate CUSUM 

have also been suggested. (Crosier, 1988) suggested the MCUSUM method, and (Pignatiello 

and Runger, 1990) had another suggestion. Both these methods use a statistic consisting of 

univariate CUSUMs for each component and are thus vector accumulation methods. 

However, the components are used in a different way as compared with the MEWMA 

construction. One important feature of these two methods is that the characteristic zero-return 

of the CUSUM technique is constructed in a way suitable when all the components change at 

the same time point. However, if all components change at the same time, a univariate 

reduction is optimal. 

Joint Solution 

The above approaches all involved stepwise constructions of methods. For complicated 

problems this is often useful. However, we might also aim at jointly optimal methods. Such 

optimality is not guaranteed by the approaches described in the sections above, which start 

with a reduction in either time or space (or other multivariate setting). Sometimes a sufficient 

reduction will result in a separation of the spatial and the temporal components. The use of the 

sufficient statistic implies that no information is lost. An example of this is the result by 

(Wessman, 1998) that when all the variables change at the same time, a sufficient reduction to 

univariate surveillance exists. 

 

(Healy, 1987) derived the CUSUM method for the case of simultaneous change in a specified 

way for all the variables. The results are univariate CUSUMs for a function of the variables. 

Since the CUSUM method is minimax optimal, the multivariate methods by (Healy, 1987) are 

simultaneously minimax optimal for the specified direction when all variables change at the 

same time.  
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A way of achieving a simultaneously optimal solution is by applying the full likelihood ratio 

method as in (Shiryaev, 1963) and (Frisén and de Maré, 1991) and derive the sufficient 

reduction as in (Frisén et al., 2010b) .  

EVALUATIONS OF MULTIVARIATE CONTROL CHARTS 

The timeliness in detection is of importance in surveillance, and other measures than the ones 

traditionally used in hypothesis testing are important. To evaluate the timeliness, different 

measures such as the average run length, the conditional expected delay and the probability of 

successful detection (Frisén, 1992) can be used with or without modification also in a 

multivariate setting. The special problem of evaluation of multivariate surveillance is the topic 

of the paper by (Frisén et al., 2010a). 

 

Optimality is hard to achieve and even hard to define for all multivariate problems. This is so 

also in the surveillance case (see (Frisén, 2003)). We have a spectrum of problems where one 

extreme is that there are hardly any relations between the multiple surveillance components. 

The other extreme is that we can reduce the problem to a univariate one by considering the 

relation between the components. Consider, for example, the case when we measure several 

components of an assembled item. If we restrict our attention to a general change in the 

factory, changes will be expected to occur for all variables at the same time. Then, the 

multivariate situation is easily reduced to a univariate one (Wessman, 1998) and we can easily 

derive optimal methods. For many applications, however, the specification of one general 

change is too restrictive. It is important to determine which type of change to focus on. The 

method derived according to the specification of a general change will not be capable of 

detecting a change in only one of many components. On the other hand, if we focus on 

detecting all kinds of changes, the detection ability of the surveillance method for each 

specific type of change will be small.  

 

In hypothesis testing, the false rejection is considered most important. It is important to 

control the error in multiple testing since the rejection of a null hypothesis is considered as a 

proof that the null hypothesis is false. (Hochberg and Tamhane, 1987) described important 

methods for controlling the risk of an erroneous rejection in multiple comparison procedures. 

The False Discover Rate, FDR, suggested by (Benjamini and Hochberg, 1995) is relevant in 

situations more like a screening than as hypothesis testing. In surveillance this is further 
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stressed as all methods with a fair power to detect a change have a false alarm rate that tends 

to one (Bock, 2007). The problem with adopting FDR is that it uses a probability that is not 

constant in surveillance. (Marshall et al., 2004) solve this problem as the monitoring is carried 

out over a short period of time and they use only the properties of the early part of the run 

length distribution. FDR in surveillance has been advocated for example by (Rolka et al., 

2007). However, the question is whether control of FDR is necessary when surveillance is 

used as a screening instrument, which indicates that further examination should be made. 

Often, the ARL0 of the combined procedure may be informative enough since it gives 

information about the expected time until (an unnecessary) screening. It will sometimes be 

easier to judge the practical burden with a too low alarm limit by the ARL0 than by the FDR 

for that situation. 

 

The detection ability depends on when the change occurs is needed. The conditional expected 

delay [ ]( ) E |A ACED t t t tτ τ= − ≥ =  is a component in many measures, which avoids the 

dependency on τ either by concentrating on just one value of τ (e.g. one, infinity or the worst 

value). (Frisén, 2003) advocated that the whole function of τ should be studied. This measure 

can be generalized by considering the delay from the first change 

min 1min{ ,... }pτ τ τ=  

1 min min( ,... ) ( | )p A ACED E t tτ τ τ τ= − ≥ . 

The Probability of Successful Detection suggested by (Frisén, 1992) measures the probability 

of detection with a delay time shorter than d. In the multivariate case it can be defined as  

1 min min( , ,... ) ( | )p A APSD d P t d tτ τ τ τ= − ≤ ≥ . 

This measure depends on both the times of the changes and the length of the interval in which 

the detection is defined as successful. Also, when there is no absolute limit to the detection 

time it is often useful to describe the ability to detect the change within a certain time. In such 

cases, it may be useful to calculate the PSD for different time limits d. This has been done for 

example by (Marshall et al., 2004) in connection with use of the FDR. The ability to make a 

very quick detection (small d) is important in surveillance of sudden major changes, while the 

long-term detection ability (large d) is more important in ongoing surveillance where smaller 

changes are expected. 

Since the above measures of delay are complex, it is tempting to use the simple ARL 

measure. The ARL1 is the most commonly used measure of the detection ability also in the 

multivariate case. It is usually assumed that all variables change immediately. However, the 
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results by (Wessman, 1998) are that univariate surveillance is always the best method in this 

setting. Thus, for genuinely multivariate situations with different change points, ARL1 is not 

recommended other as a rough indicator. 

 

THE EFFECT OF THE RELATION BETWEEN THE CHANGE POINTS 

In order to illustrate principles and measures we will compare one method using reduction to 

one scalar for each time (Method M1) with one using parallel control charts (Method 

M2).Method M1 gives an alarm if the the sum of the variables exceeds a limit. That is 

{ 1min ; ( ) ( ) }A Mt t X t Y t G= + > . Method M2 gives an alarm if the method gives an alarm for any of 

the variables.  ‘That is { 2 2min ; ( ) ( ) }A M Mt t X t G Y t G= > > . The limits were determined for the 

Shewhart method to GM1=3,29 and GM2=2,57 so that ARL0=100 for both M1 and M2. 

 

In the first situation, both variables shift at the same time. That is τX= τY. The method M1 has 

the conditional expected delay CED=1,39 while M2 has CED=2,09. The probability to detect 

the out-of-control state immediately PSD(0,t) is for the M1 method PSD=0,42 and for M2 we 

have PSD=0,32. Thus, we see that if both methods shift at the same time it is best to use the 

univariate sum as alarm statistic. This is also in accordance with theory. 

 

In the second situation one variable does not shift, while the other one does. However, we do 

not know beforehand which one it might be. For the case when X in fact did not change 

(τX=∞) but Y did we have min Yτ τ= . The method M1 has the conditional expected delay 

CED=4,53 and M2 has CED=2,49. For the M1 method PSD=0,18 and for M2 PSD=0,29. 

Thus, we see that if only one out of several processes changes the properties of M2 are much 

better.  

 

In the third situation we know that only the distribution of Y can change. We can thus focus 

on Y only. If this had been the case the univariate Shewhart method would have had 

CED=1,69. The probability to detect the out-of-control state immediately would have been 

PSD(0,t)=0,37. Thus, the knowledge would have improved the detection ability (for the same 

ARL0) considerably. 
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CONCLUSIONS 

Methods can be characterised as scalar accumulating, parallel, vector accumulating or 

simultaneous. However, there is no sharp limit between some of these categories. Many 

methods first reduce the dimension for example by principal components, and then one of the 

approaches for multivariate surveillance is used. (Fuchs and Benjamini, 1994) suggest 

Multivariate Profile Charts that demonstrate both the overall multivariate surveillance and 

individual surveillance in the same chart and thus combine two of the approaches. 

 

The more clearly the aim is stated, the better the possibilities of the surveillance to meet this 

aim. (Hauck et al., 1999) describe how a change may influence variables and the relation 

between them. One way to focus the detection ability is by specifying a loss function with 

respect to the relative importance of changes in different directions. (Mohebbi and Havre, 

1989) use weights from a linear loss function instead of the covariance for the reduction to a 

univariate statistic. (Tsui and Woodall, 1993) use a non-linear loss function and a vector 

accumulation method named MLEWMA. For some methods, the detection ability depends 

only on one non-centrality parameter which measures the magnitude of the multi-dimensional 

change. Such methods are known as “directionally invariant”. However, this is not necessarily 

a good property in all situations, since there often is an interest in detecting a certain type of 

change. (Fricker, 2007) stresses the importance of directionally sensitive methods for 

syndromic surveillance. Preferably, the specification should be governed by the application.  

 

The question of which multivariate surveillance method is the best has no simple answer. 

Different methods are suitable for different problems as was demonstrated by the examples in 

Section 5. Some causes may lead to a simultaneous increase in several variables, and then one 

should use a reduction to a univariate surveillance method, as shown by (Wessman, 1998) and 

demonstrated here by the examples. If the changes occur independently, one does not expect 

simultaneous changes and may instead prefer to use parallel methods. All knowledge on 

which component to concentrate on is useful. 

 

One advantage with parallel methods is that the interpretation of alarms will be clear. The 

identification of why an alarm was raised is important. The Hotelling T2 control chart is not 

able to distinguish between a change in the mean vector and a change in the covariance 

structure. (Mason et al., 1995) provided a general approach by a decomposition of the T2 
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statistic into independent components. Other suggestions include for example principal 

component analysis, see (Pignatiello and Runger, 1990), (Kourti and MacGregor, 1996) and 

(Maravelakis et al., 2002). The importance of knowledge about where to concentrate the 

effort after an alarm indicating a bioterrorist attack is discussed by (Mostashari and Hartman, 

2003). 

 

The evaluations of multivariate control charts are considerately more complex than for 

univariate ones. However, the effort to specify the problem is rewarding. Simple measures 

might be misleading. 
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