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ASPECTS ON THE CONTROL OF FALSE ALARMS IN STATISTICAL 
SURVEILLANCE AND THE IMPACT ON THE RETURN OF FINANCIAL 

DECISlON SYSTEMS 

By David Bock 

Statistical Research Unit, Göteborg University 

ABSTRACT 

Systems for on-line detection of regime shifts are important, e.g. for making timely 
financial transactions. For daily data, it means that we make a new decision each day, 
based on the data available, and when there is enough evidence of a regime shift, an 
alarm is called. There is always the risk of a false alarm and here two principally 
different ways of controlling the false alarms are compared: systems with a fixed 
average run length until the first false alarm, and systems with a fixed probability «1) 
of any false alarm (fixed size). The effects of the two approaches are evaluated in 
terms of the timeliness of alarms. A system with a fixed size is found to have a 
drawback: the ability to detect a change deteriorates rapidly with the time of the 
change. Consequently, the probability of successful detection will tend to zero and the 
expected delay of a motivated alarm tends to infinity. This drawback is present even 
when the size is set to be very large (close to 1). Utility measures are used in the 
investigation, expressing the different costs for the gain of a motivated alarm and the 
loss of a false alarm. Drawbacks and advantages of the two approaches are 
investigated. How the choice of the best approach can be guided by the parameters of 
the process and the relation between the cost of a too earlyor too late alarm is 
demonstrated. The technique is illustrated by application to transactions of the Hang 
Seng Index. 

Key words: monitoring, surveillance, repeated decisions, moving average; Shewhart 
method. 

1 INTRODUCTION 

Online detection of an important change in the underlying process is important in 
many areas. In economics and finance, we are interested in detecting tuming points in 
the business cycle (Andersson et al. (2004)), changes in volatility in financial asset 
retums (Severin and Schrnid (1998), Severin and Schrnid (1999), Schipper and 
Schrnid (2001a), Schipper and Schrnid (2001b)), e.g. for timely trading of financial 
assets (Bock et al. (2003)). In medicine and public health, we aim at quick detection 
of e.g. kidney failures (Smith and West (1983)), the most fertile phase of the 
menstrual cycle (Royston (1991)), a foetal lack of oxygen (Frisen (1992)), and an 
increased disease incidence (Sonesson and Bock (2003)). In quality controi, if a 
manufacturing process produces contaminated products, we want to detect it early 
(Wetherhill and Brown (1991)). 
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In a situation where we have repeated decisions, the methodology of statistical 
surveillance is appropriate. Repeated decisions are also made in sequential analysis, 
but surveillance is different since even when we conclude that no change has 
happened, the monitoring is not stopped but continued (the null hypothesis is never 
accepted). Methods for this type of on-line detection have been developed in different 
areas (e.g. econometrics and quality control). Much of the work has emerged from the 
pioneering work of Shewhart (1931) and it is often referred to as statistical process 
control or statistical surveillance. In this field the false alarms are often characterized 
by measures reflecting the timeliness of these, for example the average run length to 
the first false alarm. For a review of statistical surveillance, see Frisen and de Mare 
(1991), Wetherhill and Brown (1991), Srivastava and Wu (1993), Lai (1995), Frisen 
and Wessman (1999) and Frisen (2003). 

On-line detection problems are receiving increasing attention in econometric 
literature. In the papers by Chu et al. (1996), Carsoule and Franses (1999), Leisch et 
al. (2000), Carsoule and Franses (2003), Bock et al. (2004) and Zeileis et al. (2004) 
hypothesis tests for retrospective detection of structural change are combined with the 
prospective aspect of surveillance, i.e. a hypothesis is repeatedly tested each time a 
new observation becomes available. The false alarms are controlled by a fixed size. 
Chu et al. (1996) implemented tests based on cumulative sums of observations in a 
prospective setting to monitor the stabil ity of regression parameters in a model for the 
conditional mean. Leisch et al. (2000) and Zeileis et al. (2004) used statistics based on 
a moving window of observations. Carsoule and Franses (1999) and Bock et al. 
(2004) considered prospective tests of stability of the variance and Carsoule and 
Franses (2003) joint tests for changes in the autoregressive and variance parameters of 
an autoregression. 

In this paper the aim is to compare the behavior of monitoring methods where the 
false alarms are controlled in either of two ways: by using a fixed asymptotic size or a 
fixed measure reflecting the timeliness of false alarms. 

In on-line detection it is not only important that the change is detected, it is also 
important that it is made quickly without having too many false alarms, i.e. the 
timeliness of alarms is relevant. Therefore, the behavior is investigated in terms of the 
timeliness of motivated alarms and different specifications of utility, expressing the 
different costs for the gain of a motivated alarm and the loss of a false alarm. 

The plan of this paper is as follows. Notations and specifications are given in 
section 2. In section 3 different ways of evaluating surveillance systems are presented 
and in section 4 the methods under study are presented. In section 5 a comparison is 
made between the two approaches. We discuss drawbacks and advantages of the 
different approaches in different situations and specifications of the utility. Some 
concluding rem arks are given in section 6. 

2 NOTATIONS AND SPECIFICA TIONS 

The process under surveillance, denoted by X, is measured at discrete time points 
t={1, 2, ... }. The observation X may be some summary statistic such as an average or 
the residual of an estimated time series model. We consider the case of a regime shift 
that occurs in the expected value /-l of the process 

X(t) = /-l(t) + e(t) (1) 
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from an acceptable level ~ to an unacceptable level JlI where JlI > ~ and E(t)-iid N[O, 
(j'2], t=l, 2, ... The assumption in (1) is in general too simple for economic time series 
and extensions could be motivated by the features of the data or economic theory. 
Model (1), however, is used here to emphasize the inferential issues. Without loss of 
generality we impose ~ = O and standard deviation (j' = 1. Hence the size of the shift 
is specified by JlI. The shift occurs at an unknown time point, denoted by t such that 

Jl(t)= .' {
Jlo, t < t 

Jlp t 2 t 

When Jl = ~ the process is said to be in controi whereas when Jl = JlI it is said to be 
out-of-control. The parameters ~ and JlI are regarded as known and t is arandom 
variable with intensity 

In this paper we treat the case of a constant intensity v that is t has a Geometric 
distribution. 

At each decision time s, s={ 1,2, ... }, we make a decision whether there has been a 
regime shift or not. In statistical surveillance this is expressed as discriminating 
between two events, C(s) and D(s), where C(s) is the critical event implying that the 
process is out-of-control and D(s) implies that the process is in-control. The two 
events can be specified in various ways and different methods are optimal for 
different specifications. For the situation when it is important to see whether there has 
been a change since the start of the surveillance, the following specification is used 

C(s)={ t S; s} and D(s)={ t> s}, 

where C(S)={U:=ICt} and where Ct={t = t}, t={l, 2, ... , s}, are disjoint. Thus for a 

change in Jl we have 

Ct={Jl(1)=Jl(2)= ... =Jl(t-l)= ~ and Jl(t)= ... =Jl(s) = Jld 
D(s)={Jl(1)=Jl(2)= ... =Jl(s) = ~}. 

When the monitoring is done from a repeated hypothesis testing angle, then at each 
time s a new observation becomes availab1e, we formulate it as a testing of a null 
hypothesis 

Ho(s): No change has occurred up to time s, (2) 

Le. Jl(1)=Jl(2)= ... =Jl(s) = ~. This Ho(s) corresponds to D(s)={ t> s}. The event C(s)= 
{ t S; s} corresponds to the alternative hypothesis 

HA(S): A change has occurred at some time point t S; s, 

i.e. Jl(1)=Jl(2)= ... =Jl(t-l)= ~ and Jl(t)= ... =Jl(s) = JlI. Hence, there is a different null 
and alternative hypothesis for each s. 
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An alarm set A(s) is constructed, with the propert y that as soon as XsE A(s) we 
infer that a change has occurred. The alarm set consists of a function p(Xs) and a limit 
g(s), where the time of an alarm, tA, is defined as 

tA= mints: p(Xs) > g(s)}. 

The alarm limit g(s) is determined in order to controi the false alarms and this can be 
done in various ways to be described below. 

3 EVALUATlON IN ON-LINE MONITORING 

In the traditional hypothesis testing framework the behavior of the procedure under 
the null hypothesis is usually characterized by the error probability P(reject Hol Ho 
true), referred to as the size. The evaluation under the alternative hypothesis is made 
using the power, P(reject Hol HA true). Since this paper concerns on-line monitoring, 
we want an evaluation with a timeliness aspect. There is no information in the power 
about when the alarm was called in relation to the regime shift, for example how long 
after the shift the alarm was given. In the classical hypothesis testing situation, we 
only make one decision: can the null hypothesis be rejected or not? The monitoring 
situation on the other hand is characterized by repeated decisions as well as not 
having fixed hypotheses and an increasing sample size. 

Many methods that were originally developed for testing one hypothesis are 
actually used for on-line detection, which involves repeated decisions. With repeated 
decisions it is important to consider the timeliness aspect in the evaluation. A natural 
evaluation measure in an on-line situation is the delay of a motivated alarm. Desirable 
properties of a surveillance method are that the delay between the time of the alarm, 
tA, and the time of the change, 't, is short and that there are not too many false alarms. 

As mentioned above, on-line monitoring is often made by repeatedly testing a 
hypothesis each time a new observation becomes available. If we define the alarm set 
such that at each decision time the type I error is fixed to e.g. 5%, then the probability 
of ever falsely rejecting the null hypothesis will tend to l as we repeat the test. This 
has sought to be avoided by instead constructing alarm sets in such away that this 
probability is fixed below one. 

The probability that a false alarm is given before time i, as i tends to infinit y, is 
hereafter referred to as the asymptotic size or u. It is defined as 

lim u(i) = u 
i-7OO 

(3) 

where u(i)=P(tA ::;; il Ho) and Ho is defined in (2). The u(i) is therefore equal to 
p(tA::;;il't>i). The alarm limit is constructed so that we have a sequence of alarm sets, 
resulting in u < l and hence it is a situation with strict significance testing. When u<l, 
the false alarm probabilities, P(tA = il 't > i), will not sum to 1 and then tA is not a 
random but a generalized random variable. 

In the methodology of statistical surveillance the type I error is characterized by 
the run length distribution of the false alarms. Usually in the quaiity controlliterature 
the average run length, conditionai of no change, summarizes the information, 
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ARLO = E[tA I 't = 00]. 

A similar measure is the median run length conditionai of no change, MRL o = 
Median[tA I 't = 00]. Another summarizing measure of the false alarm distribution is the 
probability of a false alarm (PFA), 

(4) 

As mentioned above there are several measures which reflect the timeliness of a 
motivated alarm. In some applications, such as medical intensive care (petzold et al. 
(2004) and Frisen (1992)) and tuming point detection in business cyc1es (Andersson 
et al. (2004)), an alarm that comes too late is of no value. The probability of 
successful detection within d time units measures how good a method is when we 
only have a limited time for action. It is defined as 

PSD(t, d) =p( tA -t < dltA ~ 't, 't = t) (5) 

where d ~ 1. Another aspect of the timeliness can be reflected by the delay of a 
motivated alarm, here presented as the conditional expected delay 

CED(t) = E[tA - titA ~ 't, 't = t]. (6) 

An evaluation measure that is of ten used is the average run length 

which equals CED(1)+ 1. A widely used optimality criteria in the literature on quaiity 
controi is that of a minimal ARL1 for a fixed ARL o. This criterion might be suitable in 
an industrial manufacturing process where one considers various start-up problems. 
There are however some drawbacks with this optimality criterion. First, this criterion 
only considers changes that occur at the start of the monitoring, which is not realistic 
in e.g. economics. Second, the average run length provides us with limited 
information about the behaviour of methods, especially since the ron length 
distributions are of ten skewed (Frisen (1992)). A third reason is that degenerated 
methods which would never be used in practice satisfies this criterion (Frisen (2003)). 

Apart from the delay of an alarm, another important aspect when evaluating a 
method, is the trust you should have in an alarm at a specific time. The predictive 
value of an alarm at time t 

PV(i) = P(C(i) I tA = i) 

has been suggested as a criterion of evaluation by Frisen (1992). 
Optimality criterions that reflect timeliness is treated by Girshick and Rubin (1952) 

and Shiryaev (1963), where the utility is specified in the following way: the gain of an 
alarm is a linear function of the expected delay and the loss associated with a false 
alarm is a function of the same difference. The utility is 
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(7) 

where the function h(tA-t) is an arbitrary function and al is typically negative. In a 
situation where the intensity of a change, Vb is constant, the full likelihood ratio 
method (LR, described in section 4.1) maximizes the expected value of the utility (see 
Frisen and de Mare (1991)). If the function h(tA-t) is specified as a constant b, the 
expected utility is 

E[u(t A , .)] = b· PFA + al· ED + a 2 , 

where ED is the expected delay, defined as 

ED = I:l( t = t)· ED(t) , 

where ED(t) = E[max(O, tA-t)lt=t]=CED(t)-P(tA~ t). When PFA is fixed, the 
expected utility is maximized for a minimal ED (the expected delay criterion). 

4 METHODS 

4.1 The Shewhart and the Moving average methods in statistical surveillance 

It was shown by Frisen and de Mare (1991) that the optimal method for 
discriminating between events D and C is based on the likelihood ratio (LR) between 
C(s) and D(s), and an alarm is given when 

fXs(xsIC(s)) "S 
f

xs 
(xsID(s)) = L..t=l w(t)· L(s, t) > g(s), 

where L(s, t)=fxs(xslt=t)/fxs(xsID) is the partial likelihood ratio when t = t, w(t) = 
P(t=t)lP(t ::5 s) is the weight for L(s, t) and g(s) is a time dependent limit equal to 
k-P('t::5 s)lP(t> s), k> O. 

Many methods are based on the LR, where the difference depends on how the 
partiallikelihood ratios are weighted. When C(s)={t = s} the LR method simplifies to 
the Shewhart approach which puts all weight to the last partiallikelihood ratio L(s, s) 
and signals an alarm as soon as L(s, s) exceeds the alarm limit. For independent 
variables with a Gaussian distribution the Shewhart approach gives an alarm as soon 
as 

X(s) - !lo> g, (8) 

where g is a constant and !lo is the expected value of the X given the process is in
controI. 

When C(s)={ t=s-p+ 1} and D(s)={ t>s}, the LR method simplifies to the Moving 
average (MA) approach which puts all weight on the partial likelihood ratio L(s, s-
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p+l). For independent variables with a Gaussian distribution, the MA approach gives 
an alarm as soon as 

2::=S-P+l (x(i)-~o) > g, 
(9) 

where p is the window width and g is a constant. The methods in (8) and (9) are 
hereafter referred to as ShewSur and MASur, respectively in order to distinguish 
methods derived in the literature on surveillance from those of the next section. In the 
evaluation in section 5, a window width of two observations (p=2) is used for MASur. 

In the culture of statistical surveillance, when we compare several methods, their 
respectively alarm limits are adjusted to yield the same false alarm propert y (e.g. 
ARLo=100). For the ShewSur and MASur methods in (8) and (9), respectively, the 
probability of exceeding the alarm limit is the same for each decision time s, given 
that all observations used in the statistic is from the same state (regime). The 
cumulative probability of a false alarm no later than at time i from the start, P(tA ::;; il 't 

> i), is 

(lO) 

and 

for the ShewSur and MASur, respectively, where <1>0 is the standard Normal 
probability distribution function. Both the probability expressions above tend to l as 
i-Ho, which means that a false alarm will be given with probability 1. 

4.2 Shewhart and MA methods modified to allow Jalse alarms controlled by afixed 
asymptotic size 

If we want a system that satisfies a < l, the alarm limit should not be a constant as 
above, nor should the limit grow at too slow a rate. 

Leisch et al. (2000) suggested the following alarm limit for decision time s 

g(s) ={c r.
c·vlns 

, s::;; e 

, else 

where e ::::; 2.718 and c>J2 is a constant to be determined. The methods giving an 
alarm as soon as 

2::=S-P+l (x(i)-~o) >g(s) 
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are for p=l (only the last observation) and p2:2 hereafter referred to as ShewTest and 
MATest, respectively. In the evaluation in section 5, a window width of two 
observations (p=2) is used for MATest. 

Theorem: ShewTest with c> J2 yield u < 1. 

Proof: According to theorem 4.1 in Frisen and de Mare (1991), it hold s that ud if 

and only if p(tA=slt>s, tA2:s)<l for all s and L~=I P( tA = s I tA 2: s, 7> s) < 00 • 

We have that p(tA=slt>s, tA2:s)=l-<D(g(s»d since <I>(g(s»>O for all s. 

L~=l(tA =sltA 2: s, 7>S)= L~=I(l-<D(g(s»))= 

L~ (2.nt2
. r exp(_z2j2)dz~~OO_ (2.nt/2· r -Z_.exp(-z2j2)dZ= 

s=1 .!g(s) L.Js_I .!g(s) g(s) 

L~=I (2.nr
1l2 

.exp{ -g2(s)j2}/g(s) = 

(2/n t 2 
. c·1 

. e·
c2

/2 + L:3 (2·n t/2 . (c . .Jln s r . s-02/2. The last sum converges for 

c> J2 by Abel' s convergence test since the sequence {( c . .Jln s r} is monotone and 

converges to zero for c;t:(), s> 1 and L~=I s-02/2 is convergent for c>J2 . Therefore u<l 

forc>J2 . 

Leisch (2000) gave a related theorem in continuous time. 

5 A COMPARISON BETWEEN THE TWO APPROACHES 

In this section we discuss the two aFProaches for controlling the false alarms, a fixed 
asymptotic size u and a fixe d ARL . We will demonstrate the consequences of these 
two approaches in terms of the timeliness of alarms. The in-control and out-of-control 
properties are investigated in section 5.1 and 5.2, respectively. The predictive value 
and the utility of alarms are discussed in section 5.3 and 5.4, respectively, where the 
technique of using a utility function to determine which method to choose is 
illustrated by a case of trading a stock index. 

Chu et al. (1996) argues, having applications to economic time series in mind, that 
sampling under the null hypothesis is costless, whereas resetting the monitoring 
system af ter a false alarm does create a large cost. Thus false alarms are severe and 
from this point of view we should set the asymptotic size to a small value, e.g. 10 % 
(a=0.10), since the cost of a false alarm is high. 

In a situation where the cost of a false alarm is low, we can instead set the 
asymptotic size to a large value, e.g. 90 %. 

The respective alarm limits of ShewTest and MATest are adjusted to give u = 
{0.1O, 0.90}, and ShewSur is adjusted to give ARLo = {50, 100, 250}. The limit of 
MASur is adjusted to give ARLo ={50, 100}. For MASur and MATest, a window 
width of two observations (p=2) is considered and simulations determine the alarm 
limits. To distinguish between the same methods with different values of ARL o or u, 
the value will be given as argument, e.g. ShewSur(50) and ShewTest(O.lO). 
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5.1 ln-control properties 

We assess the in-control properties of the methods by the run length distributions of 
the false alarms and associated summarizing measures. In Fig 1 below, the false alarm 
probability and the cumulative false alarm probability for ShewSur and the ShewTest 
are shown. For ShewSur and ShewTest, the cumulative false alarm probability P(tA~ il 
T> i) is given by (10) and 

respectively. 

petA = il t > i) 

i 

1-II <D (gO)) , 
j=1 

petA $; il t > i) 
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a b 
Fig 1. Panel a: False alarm probability, Panel b: Cumulative false alarm probability. ShewTest(O.lO) 
(-), ShewSur(SO) (- -), ShewSur(lOO) ( ••• ). 

Fig 1, panel a, shows that the probability of a false alarm for the ShewTest 
becomes small very fast, so that almost all alarms are located at early time points. For 
ShewSur the alarm probabilities decrease more slowly. Panel b shows that 
ShewTest(O.lO) quickly reach the size level 0.10. 

The pronounced left-skewness in the false alarm density of methods that use a 
fixed asymptotic size has been pointed out by Chu et al. (1996), Leisch et al. 
(2000)and Zeileis et al. (2004). A result of the skewness is that the detection power is 
highly concentrated to early time points. The tendency to give earlyalarms for the test 
approach is an important difference to the surveillance approach. Consequences of the 
allocation of the false alarms on the ability to detect changes will be considered in the 
next section. 

The PF A in (4) summarizes the false alarm distribution in Fig 1, panel b by 
weights with the distribution of T. When the Geometric distribution with intensity v is 
used, the PFA for ShewSur equals 

l-v/(l-(l-v) . <!>(g) ). 
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PFA is illustrated as a function of the intensity v in Fig 2 below. 

PFA 
l 

,8 -ir----------------, 

,6 ~ 

:I 
-\ 
:\ 

,4 :\ 

:\ 
~\ 

2 : \ , ~ \ 
'. "-... '-.. 
~' ...... 
I ~:-0,0 ,.,.,. .... lit ....... 

0,0 ,2 ,4 ,6 ,8 1,0 

v 

Fig 2. The probability of a false alarm, as a function of the intensity v. ShewTest(O.lO) (-), 

ShewSur(SO) (--), ShewSur(1OQ) ( ..... ). 

The difference in level between the two surveillance methods (ShewSur) is due to 
the difference in the value of ARLo. When v tends to 1, PFA tends to zero. The reason 
is that v close to 1 implies that the density of T will be much concentrated to the left 
which means that the probability of an early change is large. Therefore onlyalarm 
probabilities at early time points influence PFA. When v = 1 it follows that P(T = 1) = 
1 which implies that PFA = O. When the intensity v tends to zero, the density of T 
tends to a uniform distribution, which means that the regime shift is equally likely to 
occur earlyas very late. Most of the alarms are therefore false. When v tends to zero, 
PFA for the test methods tends to the fixed size (e.g. 0.10), whereas PFA for the 
surveillance methods tends to 1, as is seen in Figure 2. 

The above investigation was for the situation when the alarm statistic was based on 
only the last observation, the Shewhart approach. We also briefely investigate the 
moving average with p=2. For all approaches data is collected from time t=l. The 
alarm statistic of the moving average approach is based on the likelihood ratio L(s, s
p+ 1) where p=2 and can hence not be constructed at t=l. Therefore, we start the 
monitoring at t=2 as in Ryan (2000) and Wetherhill and Brown (1991). In Fig 3 below 
the false alarm probability and the cumulative false probability for MASur and the 
MATest are shown. 
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P(tA = il 'o i) 
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Fig 3. Panel a: False alarm density. Panel b: False alarm distribution. MATest(O.lO) (-), 

MASur(SO) (--), MASur(100) ( .. a _). 

Apart from that the alarm probability by construction is zero at the first time point an 
d very high at the first decision time 2, the shapes of the curves in Fig 3 are similar to 
those of the Shewhart approaches (Fig 1). 

5.2 Out-of-control properties 

In this section, we analyze the out-of-control behaviour, that is the ability to detect a 
change. It was proved by Frisen (1994) that methods which have ad also have a low 
probability of a late false alarm (a false alarm long af ter the monitoring has started): 

since 

This explains the shapes of the false alarm probability of the test approaches in Fig 1 
and 3 in the previous section (the probabilites tend to zero). 

That the false alarm probability is low might at a first glance seem like a good 
property. But the probability of a false alarm at time j gives an indication of the 

overall alarm probability at that time. If the false alarm probability, P ( t A = j I t A ~ j) , 

tends to zero, the probability to detect a change that happens a long time after the 
monitoring has started also tends to zero. This was pointed out by Pollak and 
Siegmund (1975) and Frisen (1994). The reason is that a false alarm probability that 
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tends to zero, implies that the alarm limit tends to infinit y as j-00. Therefore also 

lim P ( t A = j ! t A ~ j, 't = j) = O . Consequences of this will be illustrated below. 
j-'>= 

The case where the change occurs at the same time as the surveillance was started 
('t=1) is the most widely considered case for evaluation in literature. The mn length 
density when the change occurred immediately, P(tA=i !'t=1), is shown in Fig 4 for 
111=1. For ShewSur it is ca1culated as 

and for the ShewTest as 

i-I 

(1- <I>(g(i) - 111) ) . II <I>(gG) - 111) . 
j=1 

P(tA = i I t = 1, ~l=l) 
,20..--------------, 

,15 ~ 

o 10 20 30 40 50 60 

Fig 4. The density of the time of an alarm, when the change occurred immediately and ~l=l. 
ShewTest(O.lO) (-), ShewSur(50) (--), ShewSur(100) ( ••• ). 

The probability of an alarm at the very first time points is highest for the 
ShewTest. 

ARL1 is the average mn length, given a change at the start of the monitoring. This 
corresponds to 't = 1 and 't = 2 for the Shewhart and MA approach with p=2, 
respectively. ARLI, for 111=3, is presented in Table 1. 

Table 1. Values of ARL1 when ~1=3 
ARLu ShewSur MASur 

50 1.208 2.454 
100 1.334 2.586 
250 1.5722 

a ShewTest MATest 
0.10 1.185 2.443 
0.90 1.049 2.212 
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For ShewSur, ARL1 =l/(l-<D(g-~)). The test approaches yield the smallest ARL1
• 

Thus in terms of ARL 1 
, the test approaches are better and the reason is that they 

allocate the alarms early. This is especially emphasized when a = 0.90, where the 
false alarm rate is high as a result of the low alarm limit and this low alarm limit, in 
tum, results in a short ARL1

• The trust of these earlyalarms are however low (see 
section 5.3). 

When a < 1, the probability of successful detection, PSD in (5), tends to zero as the 
time of the change tends to infinit y . We have that 

and for the test methods limP( tA = t + j I tA ~ t, 't = t) = O, j = {O, 1, ... }. Therefore 
t--7~ 

limPSD(t, d) = O for any d ~ 1. For the ShewSur and the ShewTest the PSD(t, d) is 
t--7~ 

equals to 

and 

d-l 

1-II <D (g(t + j)-~l) 
j=O 

respectively. For ShewTest, the PSD(t, d) is decreasing (not always strict) with t, 
since the alarm limit is increasing (i.e. PSD(t, d) ~ PSD(t+ 1, d) for all t and d, since 
g(t):::; g(t+1) for all t and ~l). The PSD(t, d) functions are shown in Fig 5, panel a and 
b, respectively, when d=2 and ~l=l. 

PSD(t, d=21 ~1=1) PSD(t, d=21 ~1=1) 

,7....----------------, ,7r----------------, 

,6 ,6 

,5 ,5 

,4 ,4 

,3 ,3 

,2 ,2 

,1 ,1 

O,O+--_~--~-~--..__-_,__l 
o 4 8 12 16 20 o 4 8 12 16 20 

a b 
Fig S. The probability of successful detection PSD(t, d=2) for different values of the time of the change 

when ~l=l. Panel a: ShewTest(O.lO) (- *) ShewTest(O.90) (-\7), ShewSur(SO) (- -), 

ShewSur(100) (a a ~), ShewSur(2S0) (---- ),PaneI b: MATest(0.10) (- *), MATest(O.90) (-\7), 

MASur(SO) (--), MASur(100) (e a ,,). 
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We show ed above that PSD tends to zero for the test methods, which means that if 
the regime shift occurs late, these methods have very little chance of detecting it. This 
drawback can not be overeorne by changing u. As seen in Fig 5, the behavior is the 
same for u = 0.10 and u = 0.90 and the difference is mainly in the level but not in the 
general shape of the curve. 

As the probability of a motivated alarm becomes smaller the later the change 
occurs, the delay of alarms will consequently be higher the later the change occurs, as 
was pointed out by Pollak and Siegmund (1975). This was in fact noticed by Chu et 
al. (1996), Leisch et al. (2000) and Zeileis et al. (2004) and Bock et al. (2004) from 
simulation experiments. However, it was not recognized as a direct consequence of 
the way the false alarms are controlled but as a consequence of the way the alarm 
limit changed with time. 

Finding alarm limits that increase the detection power at later time points has been 
discussed by Leisch et al. (2000) and Zeileis et al. (2004). Among other things, alarm 
limits that depend on a specified prior distribution for T has been briefIy suggested. 
This means that the intensity of a regime shift is considered, i.e. how of ten we can 
expect a regime shift. In the modeling of economic series, there are some results 
regarding different approaches for the intensity. The intensity can be allowed to 
change with the time spent in the state, which is referred to as duration dependence, 
see Durland and McCurdy (1994) and Zuehlke (2003). Another approach is to let the 
intensity depend on explanatory variables, see e.g. Filardo (1994) and Filardo and 
Gordon (1998). In a surveillance context, Andersson (2004) used the official tuming 
points times in the Swedish business cyc1e to construct and use an empirical 
distribution of T in several surveillance systems. The disadvantage of using an 
empirical prior distribution of T is that the ability to detect a change that takes place at 
an unexpected time point is poor. In many surveillance approaches to economic and 
financial tuming point detection, T has a geometric distribution, i.e. the intensity is 
constant as in Hamilton (1989), Koskinen and Öller (2003), Marsh (2000), 
Dewachter (2001). Though the alarm probability can be increased for certain time 
points in this way, the ability to detect late changes will still be low. 

Chu et al. (1996) motivated using a fixed asymptotic size in terms of the cost of 
false alarms, but the cost of the delay of motivated alarms was not taken into account. 
Here the delay is summarized by the conditionai expected delay (6). For ShewSur 

for all t and for ShewTest, 

i-l 

CED(t)=t· (1-<1> (g(t)-Jll)) + I:t+l i· II <1> (g(j)-Jll)· (1-<1> (g(i)-Jll) )-t . 
j=t 

The CED functions are shown in Fig 6 and 7 for Jl1=3. 
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CED(tl Jll=3) CED(tl Jll=3) 

2,5.-----------------, ,5..-------------------, 

2,0 ,4 

1,5 ,3 

1,0 ,2 ----

,5 ,1 

O,O+-__ ~--___,_----r---__I 0,0 -I------.------r-___,_--,----,-----l 
o 5 10 15 20 o 5 10 15 20 25 30 

a b 
Fig 6. The conditionai expected delay CED(t) for different values of t (the time of the change) when 

Jll=3. Panel a: ShewTest(O.lO) (- *), ShewSur(lOO) ( •• II), ShewSur(2S0) (- - - -). Panel b: 

ShewTest(O.90) (---"\7), ShewSur(SO) (--), ShewSur(lOO) ( ... II)' 

CED(tl Jll=3) 

1,6.-----------------, 

1,4 

1,2 

1,0 

,8 

,6 

,2+-=------.------.------1 
o 10 20 30 

Fig 7. The conditional expected delay CED(t) for different values of the time of the change when Jll=3. 

MATest(O.lO)(-*), MATest(O.90) (---"\7), MASur(SO) (--), MASur(lOO) ( ...... ). 

The CED(t) of the test approaches are seen to increase with t and we confirm what 
was pointed out by Pollak and Siegmund (1975) and later proved by Frisen (1994); 
the delay of alarms will be higher the later the ch ange occurs. 

Generally, the CED(t) can be written as 

which is the same as 
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For the ShewTest we have that PSD(t, d) ~ PSD(t+ 1, d) for all t and d, and then it 
follows that CED(t) :5 CED(t-l), i.e. CED(t) is increasing with t. Since 
limPSD(t, d) = O when u < 1, CED(t) will tend to infinit y as t~oo for the test 
t~~ 

approaches. Comparing the PSD and CED curves of the test approaches for u=O.lO 
and 0.90, there is a large difference in level but not substantially in the shape. The 
limited ability to detect changes that occur late remains at any level of u. This 
drawback can not be helped by choosing a large asymptotic size and though different 
alarm limits can increase the detection power at later time points the probability of a 
motivated alarm will still tend to zero. 

5.3 Predictive value 

An important thing to consider in the monitoring is what to do if an alarm is given. 
The problem of what kind of action to take can be seen in the light of the trust that 
you have in an alarm and the utility of an action given an alarm. The predictive value 
at time i, PV(i), reflects the trust of an alarm at that time and can be expressed as 

PV(i)= PMA(i) 
PMA(i)+PFA(i) 

where PFA(i) = petA = il i < t)· P(t> i) is the probability of a false alarm at time i and 

and PMA(i) = L ~=I P ( t = j) . p ( t A = iIt = j) is the probability of a motivated alarm at 

time i. For ShewSur and the ShewTest, the PFA(i) is equal to (l-vi· (1- <D(g)). <D(g)i-I 
i-I 

and (l-V)i. (l-<D(g(i))· II <D(g(j)), respectively, whereas PMA(i) is equal to 
j=1 

( ) {
<D(g-P-I)i - ((l-v)· <D(g) Y} 

l-<D(g-P-I) . V . 
<D(g-P-I )-(l-v)· <D(g) 

and 

. j-I i-I 
L~=I v· (l-V)j-I . II <D(g(t))· II <D(g(t)-P-I)' (l-<D(g(i)-P-I)) 

t=1 t=j 

for these two methods. For ShewSur, the PV(i) has the asymptote v/( v+(l-<D(g)).c) 

when i~ 00, where c = ( (l-v) . <D(g)-l ) / ( <D(g) . (l-<D(g-P-I) ) + 1/ <D(g) . In Fig 8 and 9 the 

predictive value is shown as a function of the time of the alarm. 
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PV(i I fl!=l) PV(i I fl!=l) 

1,0 1,0 

,9 

,8 

,8 

,6 ,7 

,4 

,5 

,2 
,4 

5 10 15 20 25 5 10 15 20 

a b 
Fig 8, The predictive value as a function of i when fl!=1. Panel a: v =0,01, Panel b: v =0.1. 

ShewTest(O.lO) (-*) ShewTest(0.90) (-y), ShewSur(50) (--e), ShewSur(lOO) (a _ .), 

ShewSur(250) (----0 ). 

PV(i I fl!=l) PV(i I fl!=l) 

25 

1,0,---------------, 
1 ,O r-----=;::;:R''lFlf--r---, 

,8 

,8 

,6 

,6 

,4 

,4 
,2 

O,O+-_--r __ ~--~-___.,~--l ,2+-----r __ -r-__ ~-_,--~ 

o 5 10 15 20 25 O 5 10 15 20 25 

a b 
Fig 9. The predictive value as a function of i when fl!=1. Panel a: v =0.01, Panel b: v =0.1. 

MATest(O.lO) (-*) MATest(0.90) (-y), MASur(50) (--e), MASur(lOO) ( •• Il)' 

The test approaches have predictive values that are lower than the surveillance 
approaches at early time points. Alarms given early by the test approach are therefore 
not reliable. The opposite relation appears at late time points. However the probability 
to get a late alarm with the test approach is very low. Thus the better predicted value 
in this case has no practical importance. 

For all approaches under consideration, especially the test approach, the predictive 
value varies substantially with time. A constant predictive value with respect to time 
can be a good propert y as it simplifies matters if the same action can be used 
whenever an alarm occurs. For the method that is optimal, the LR method, the 
predictive value was found by Frisen and Wessman (1998) to be relative ly constant. 
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5.4 Utility 

Timeliness can be measured indirectly, as the amount gained by an action after an 
alarm is given at the "right" time. In the specification of utility (7) in section 3 the 
gain of an alarm is a linear function of the expected delay and the loss associated with 
a false alarm is a function of the same difference, 

In a situation where the intensity of a change is constant, the LR method maximizes 
the expected value of the utility, E[U(tA, 't)]. The LR does not have a fixed size below 
one. Methods which have a fixed size will, as pointed out by Frisen (1994), not be 
optimal in the sense that we maximize E[U(tA, 't)]. Now we discuss some factors 
influencing E[U(tA, 't)] and illustrate the calculation of it. 

5.4.1 Example: Trading Hang Seng Index 

The techniques of using a utility function to determine which method to choose will 
now be illustrated by (a slightly simplified version of) the problem of trading of the 
Hang Seng Index (HSI). For a timely trading of assets in the financial markets, for 
example shares of a stock index fund or currency, it is important to determine rules 
which give maximal utility. Bock et al. (2003) and Lam and Yam (1997) considered 
trading closing HSI using different surveillance systems. HSI is a marked-value 
weighted index of the stock prices of the 33 largest companies on the Hong Kong 
stock market. The weight each stock is assigned in the index is related to the price of 
the stock. HSI can thus be seen as the price of a portfolio of stock. 

The aim was to timely detect tuming points and buy or sell units of HSI as soon as 
an alarm was given that a trough or and peak had occurred, respectively. An 
assumption made in Lam and Yam (1997) and Bock et al. (2003) was that the 
logarithm of the price in Hong Kong dollar had a piecewise linear trend around the 
tum (a linear regression on time, where the slope changes sign at the tum). A tum 
then implies a shift from one constant mean level to another of the differentiated 
series. The case of a peak corresponds to a change from a positive to a negative level 
(!-ID ~ O, Il! < O) or vice versa (!-ID :5 O, Il! > O) in case of a trough. One of the methods 
considered by Lam and Yam (1997), further relied on the assumption that the slope of 
the linear trend is equally steep before and after the tum, which in the case of a trough 
implies that !-ID = - Il!, III > O, for the differentiated series. 

5.4.2 Utility and return 

Different specifications of the utility function (7) are possible. The E[U(tA, 't)] depends 
on the in- and out-of-control properties, characterized by the false alarm behavior and 
the delay properties of motivated alarms. Depending on which function is chosen for 
h(tA-'t), the E[U(tA, 't)] will be influenced by the false alarms in different ways, e.g. 
sol ely through the PFA (4) when h(tA-'t)is a constant b. 

What are reasonable specifications of the uti lit Y function? One measure of the gain 
of an action is the return earned by timely buying and selling financial assets. The 
return (r) is often measured along the log-price scale. If the asset is bought at t=O and 
sold at t=tA, the return can be defined as 
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where X is the logarithm of the price and c ::::; O would depend on e.g. the transaction 
eost. The utility function can be defined as the expected return, i.e. 

(11) 

Hence forward we exemplify the turning point with a peak and in that situation, 
E[r(tA)!tA, t] is maximized at the peak, i.e. when tA = t-l. 

The return does not explicitly take the timeliness of an alarm into account. 
However, when the return is a known function of time, return and timeliness are 
related as discussed in Bock et al. (2003) where for a cyclical stock price process in 
which the expected return increases as tA approaches the time of the change t a 
piecewise linear utility function was suggested. If the X function in the return 
expression above can be modelled by a piecewise linear trend, then (11) can be 
written as 

(12) 

where t is the frrst time after the peak and J1<> and fll are the pre-peak slope and post
peak slope respectively. In some cases, e.g. that of trading HSI, (12)is a reasonable 
specification of the utility function. The expected value of (12) depends on the 
behavior of both false and motivated alarms and given t=t, 

For false alarms (tA< t), 

is the expected time of a false alarm given t=t, which is summarized with respect to 
the distribution of t by EFA = E[EFA(t)]. For motivated alarms (tA;:: t), recall from 
section 3 that CED(t)=E[tA-t!tA~ t, t = t]= E[tA-H1!tA~ t, t = t]-l and 

ED(t) = E[max(O, tA-t)!t =t]=CED(t)·P(tA~ t). 

Since E[tA-H l!tA;::t, t=t]-P(tA~ t) equals ED(t)+P(tA~t), summarizing 
E [tA-H l!tA~t, t=t]-P(tA;:: t) with respect to the distribution of tyields ED+E[P(tA;:: t)]. 
When we summarize the whole utility with respect to the distribution of t, we get 

E[U(tA, t)] = c+J1<>· {EFA+E[ t·P(tA ~ t)]-E[P(tA;:: t)] }+fll· {ED+E[P(tA;:: t)]}. 

When t follows a geometric distribution with intensity v such that P(t=t)=V·(l-vY-\ 
exact expressions can be found for ShewSur: E[t·P(tA;::t)]=V/{ l-(l-v)-<D(g)}, 
ED=(v·(ARLl-1»/{ l-(l-v)-<D(g)}, EFA(t)={ l-<D(g)t-l·(<D(g)+t-t·<D(g» }/(l-<D(g» 

and EFA=I:l(t= t)·EFA(t), i.e. 
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v {V.<D(g) v V.<D(g)} 
EFA= (l-<D(g))· l-l-(l_V).<D(g) - (l-(1-v).<D(g)f + (1_(1_V).<D(g))2 . 

For ShewTest the values of E[P(tA~ t)], E[t·P(tA ~ t)] and EFA can be numerieally 
approximated. ED for ShewTest is 

ED="~ P(t=t)."~ (i-t)·P(tA =iltA ~t,t=t).P(tA ~t) . ..L., l-l ..L., 1=1 

A lower boundary for ED is 

In the ealculations of ED in seetion 5.4.4 below, the lower bound is ealculated using 
T= 200 and T'= 100. T represents the number oftA-points and T' the values of t used 
in the ealculation. Basing U(tA, t) on values of tA up to 200 and t up to 100 is 
reasonable in view of the situation at hand with the length of a eycle (trough to 
trough) of approximately 100 days (see seetion 5.4.3 and 5.4.4). 

5.4.3 The costs of different errors 

The relation between the eosts for false alarms and the delay of a motivated alarm 
determines the relative importanee of the false alarm distribution and the delay 
properties in influeneing E[U(tA, t)] and that determines which of the surveillanee and 
test approaehes that gives the best utility. 

Chu et al. (1996) motivated using a monitoring system with a fixed asymptotie size 
in terms of the eost of false alarms but did not take the eost of the delay of motivated 
alarms into aeeount. This means that the gain of an action caused byamotivated 
alarm does not depend on the delay, i.e. al = O in (7). If al=O, then the maximization 
of the expeeted utility E[U(tA, t)] would imply a method whieh never gives an alarm. 
A less extreme ease is when the loss of a false alarm is relatively large eompared to 
the gain of a motivated alarm. Then the false alarm properties would still dominate the 
utility. 

The transaction eost differs between types of investors and can sometimes be 
negligible. The eost of ten depends on what priee and quantity the asset is being traded 
at and can therefore be non-eonstant. If there is no transaction eost then c = O in (12). 
We will use that value in the utility illustration below. 

The period February lo to May 28, 1999 for HSI (analyzed by Bock et al. (2003)) 
including a peak is used to estimate reasonable values for the parameters in the utility 
expression. The pre-peak slope is slightly steeper than the post-peak slope (the ratio 
between the slopes is 1.09). In the illustration below, a symmetrie peak is considered a 
reasonable approximation, i.e. J.I<J=-Jll=Jl > O where Jl is set to the average of the 
absolute values of the two slopes, which yields Jl= 0.0069. Then 

E[U(tA, t)]=W {EFA-ED+E[ t·P(tA ~ t)]-2· E[P(tA~ t)]}, 

which is maximized for a minimal E[ltA -( t-l )11. That is beeause 
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which is equals to -{E[U(tA, 't)]-maxtA {E[U(tA, 't)]} }/11 where maxtA {E[U(tA, 't)]}= 
E[('t-1)]. Since for a given v, E[('t -1)] is a known constant, the minimization of E[ltA
('t-1)11 is the same as maximizing the utility . 

5.4.4 The influence of the parameters of the process 

The parameters of the X process influence the relation between the utilities for the 
two approaches (test and sur). In what ways do the intensity vand the shift size 111 
influence E[U(tA, 't)]? The false alarm distribution depends on vand the delay 
properties depend on both vand 111. 

The smaller the size of the shift (111), the larger the delay and the larger the impact 
of ED on E[U(tA, 't)] as compared to the impact ofEFA. Thus for very small shifts, the 
utility is dominated by the delayand the cost of it and therefore the differences in 
false alarm properties will not be important. Thus for small shifts the surveillance 
approach will be preferred since the delay is shorter, except possibly for very large 
values of vbecause then the delay for the test approach is small. 

If on the other hand the size of the shift tends to infinit y, the delay is small and the 
false alarm distribution and the cost of false alarms, are instead of major importance. 

Reasonable values of the shift size 111 vary in different practical situations. For the 
above mentioned period of HSI including a peak in the logarithm of the price, the 
corresponding standardized (J1D=0 and (j2=1) downward shift (negative 111) in the 
differences had an estimated size of 0.82, by Bock et al. (2003). 

For a shift of such size, the level of the CED curve for the Shewhart approaches 
will be substantially higher than in Fig 6 where 111=3, so it is reasonab1e to say that 
much concentration is on the delay and the false alarm properties are not important. 
Then the surveillance approach will be preferred except possibly for very large values 
of v. For HSI in the above mentioned period, v was estimated to 0.018, which is not 
very large. 

As an illustration of the technique of expected utility, we ca1culate it for the 
estimated parameters of the period of HSI. With the costs and parameters discussed 
above we have E[U(tA, 't)] equal to 0.149 and 0.174 for ShewSur with ARLo equal to 
50 and 100, respectively. The utility in (11) depends on the return, r, which is a 
function of the price at time t, p(t). If we approximate E [p(tA)/p(O)] by 
exp{E[u(tA,'t)]}, the price at which the HSI is sold is, on the average, 16% higher than 
it was bought for, for ShewSur(50). The corresponding figure for ShewSur(lOO) is 
19%. When E[U(tA, 't)] is ca1culated for ShewTest(O.lO), the delay is very long. This 
results in a highly negative value for the utility (the value is less than -0.442), even 
though the figure is conservative because of the truncation when calculating ED (see 
section 5.4.2). The price at which the HSI is sold is hence on average less than 64% of 
the price it was bought for. The ShewTest will here yield such large delays that an 
alarm will be of no practical value. This illustrates that in the current setting the test 
approach is not a reasonable method. 
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6 DISCUSSION AND CONCLUDING REMARKS 

The properties of two approaches for monitoring have been investigated. A process 
(e.g. price of stocks) is monitored and when there is enough evidence that a regime 
shift has occurred an alarm is called. Sometimes this alarm can be false. The two 
approaches that are compared here differ with respect to how the false alarms are 
controlled: by a fixed asymptotic size (below 1) or by a fixed measure reflecting the 
timeliness of the false alarms (e.g. ARLo). The approaches are denoted test methods 
and surveillance methods respectively. 

To use a monitoring method with a fixed size (a test method) is convenient in the 
sense that ordinary statements of hypothesis testing can be made. Chu et al. (1996) 
argue in favor of this when sampling under the null hypothesis is costless but resetting 
the monitoring system af ter a false alarm does create a large cost. 

One argument against monitoring methods controlled by a fixe d size is that 
ordinary statements for hypothesis testing do not consider the timeliness of alarms. 
For example, the power of a test does not give any information about the time of the 
alarm. The use of a fixed size gives the result that the probability of making an alarm 
is very low, if a change occurs a long time af ter the monitoring has started. Hence the 
ability to timely detect a ch ange that occurs late will be low. Consequences of this 
were illustrated here by the delay of a motivated alarm and the probability of 
detection within two time units. The expected delay was shown to have a limiting 
value of infinit y, i.e. the delay gets longer when the regime shift occurs later. The 
probability of successful detection has a limiting value of zero, i.e. no detection ability 
for late occurring regime shifts. These drawbacks can not be adjusted by choosing a 
large asymptotic size (e.g. 0.90). The limited ability to detect changes that occur late 
remains at any level of the size. Though different alarm limits can increase the 
detection power at later time points, the probability of a motivated alarm will still tend 
to zero. 

The methods under study that are controlled by a fixed size yield many early but 
few late alarms compared to the surveillance methods, where the timeliness of false 
alarms are controlled. A consequence of the many earlyalarms is that the predictive 
values are lower for test methods, compared to surveillance methods, at early time 
points. The predictive value of the test methods is higher at late alarms. Therefore, the 
alarms given early by the test methods are less reliable compared to those of the 
surveillance methods. The better predicted value of late alarms has no practical 
importance since they are rare and tend to be given with great delay. 

In order to compare different methods, a utility function can be used. In a situation 
of on-line detection, the utility often consists of two parts: one conceming the false 
alarms and the other conceming the delay of motivated alarms. In terms of the utility 
of a false or motivated alarm, methods controlled by a fixed size consider that the cost 
of the delay of an alarm is ignorable, compared to the cost of a false alarm. 

Which of the two approaches that is best in terms of utility depends on the 
specification of the utility function and the relation between the costs of an alarm that 
is given too earlyor too late. AIso the parameters of the process have an influence as 
they affect the false alarm and delay properties. 

The smaller the size of the shift, the larger the delay and the larger the impact of 
the delay on the utility as compared to the impact of false alarms. If on the other hand 
the size of the sh if t tends to infinit y, the delay is small and the false alarm distribution, 
and the cost of false alarms are instead of major importance. As the false alarms are 
fewer for the test approaches, the se might then be preferred. 
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When the aim is on-line detection, and not hypothesis testing, methods for 
surveillance are suitable, as they have high probability to detect regime shifts at early 
as weIl as late time points. 
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