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MONITORING MACROECONOMIC VOLATILITY 

By David Bock*l, Dick van Dijk and Philip Hans Franses 

* Statistical Research Unit, Goteborg University 
Econometric Institute, Erasmus University Rotterdam 

ABSTRACT 

In this paper we develop testing procedures for monitoring the stability of the variance 
of a time series. While the traditional approach to testing for structural change is 
retrospective, applying a single test to a historical time series of given length, we 
consider testing stability in a prospective framework, where the time series are 
observed online and monitored continuously. The proposed testing procedures have 
controlled asymptotic size, in that the probability of a false alarm during an infinitely 
long monitoring period is fixed. A Monte Carlo study is performed to evaluate the test 
statistics with respect to size and power under different circumstances. We apply our 
methods to US GDP and its major components in order to investigate when the 
documented decline in volatility of the US economy during the latter part of the 
twentieth century could have been detected in real time. 

Key Words: Structural change, monitoring, variance, stability, robust, moving 
window, cumulative sum. 

1 INTRODUCTION 

In many areas in economics and finance, correct and timely detection of structural 
changes in the statistical properties of time series variables is of utmost importance. 
Examples include detection of business cycle turning points and changes in volatility 
of financial asset returns. The reasons for desiring accurate and fast detection of 
structural changes are obvious as well. For example, if a time series model is not 
updated to be in accordance with changing properties of the data, forecasts generated 
from the model will be misleading. 

The traditional approach to testing for structural change in, for example, the mean 
or variance of time series employs retrospective tests, where a historical data set of 
given length is analyzed and tests for structural change are applied only once. In this 
setting tests have been developed both for confirming a hypothesized (fixed) change
point for the (conditional) mean of a time series as in Chow (1960), and for an 
unknown change-point. For the latter case, Andrews (1993) and Andrews and 
Ploberger (1994) developed tests under the assumption of a specific alternative, 
whereas others have proposed tests, sometimes referred to as fluctuation tests, that do 
not assume a particular pattern of deviation from the null hypothesis, see Kuan and 
Hornik (1995). A similar classification can be made for retrospective tests for changes 
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The outline of the paper is as follows. In section 2, we describe our notation and 
some further specifications. Criteria of optimality and measures of evaluation are also 
briefly discussed in this section. In section 3 the monitoring test procedures are 
described, both for a Gaussian process and procedures robust against deviations from 
that assumption. In section 4 we perform extensive Monte Carlo experiments in order 
to examine the empirical performance of the different test statistics. The empirical 
application to U.S. macroeconomic data appears in section 5 and we conclude with 
some remarks in section 6. 

2 NOTATION AND SPECIFICATIONS 

Consider the linear time series representation 

Yt=f1+Ur, t=l, 2, ... , (1) 

where Ut is an independent and identically distributed process with zero mean and 
variance crt The observations yfn)={ Yt; t ::;; n} form the historical data set. The 
assumptions of a constant conditional mean )l is made only for ease of exposition. It is 
straightforward to extend the analysis presented below to the situation of a general 
nonlinear model for the conditional mean, by replacing )l in (1) with G(Xt;(}) for some 
nonlinear function G(·;·), where Xt is a vector of explanatory variables containing 
lagged values of Yt and possibly exogenous variables Zit, .•. , Zkt. and () is a vector of 
parameters. Furthermore, without loss of generality, we impose p=O. 

Our purpose is to test the null hypothesis that the variance of y(t) is constant, that is 
a(=ai < 00 for all t, where ai is unknown. In this paper we will restrict ourselves to 
the alternative hypothesis where there is a single change at an unknown point in time, 
denoted by 1; that is under the alternative 

where also a/ is unknown. 
In a retrospective setting, this hypothesis would be examined with "one-shot" tests: 

given observations YJ, Y2, ... ,Yn, where the length of the time series n is fixed, the tests 
aim to detect a structural break within this given time series. In a prospective or 
monitoring context, the situation is completely different. In such situations, we start 
with the historical data set consisting of observations yfn)={ Yt; t::;; n}, but continue to 
observe the time series after t=n. Assuming that the variance of the time series was 
constant, and equal to ai, for all 1::;; t ::;; n, we now would like to test the null 
hypothesis that the variance remains constant during the so-called monitoring period, 
that is 

Ho: a/ = ai for all t > n, 

against the alternative hypothesis 

Ha : a/ changes at some unknown time r> n. 
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3.1 Two tests based on cumulative sums 

Inc1an and Tiao (1994) use a centered cumulative sum of squared observations for 
retrospective testing for a change of the variance of an independent and identically 
distributed sequence of random variables. At time m ::;; n, let 

(2) 

where Cn = I:I y/2 and n is the number of observations in the historical data set. 

Under the null hypothesis and the assumptions regarding the process outlined in 
section 2, Dm has zero mean (see Inc1an and Tiao (1994), Appendix A). A rejection of 

the null hypothesis is made when ~n/2 maxlDml exceeds a critical value. Inc1an and 
l:S;m~n 

Tiao (1994) show that under the null hypothesis, ~n/2 D[n.t], where t=mln, converges 

weakly to a Brownian bridge 

Wet) = Wet) - t· W( 1) 

where W is a standard Wiener process. The boundary is determined from this 
asymptotic result. Inc1an and Tiao (1994) prove this result for tE [0,1], but it can be 
extended to tE [0, (0), that is to a monitoring framework where m > n. Note that, 

under the assumption of normality of the time series Yt. the statistic ~n/2Dm is in fact 

based on the estimated cumulative score process 

where m ::;; nand 0-; = -!;-I~=l Y; is the maximum likelihood estimator of the variance. 

Here we use a (centered) cumulative sum of squared observations for monitoring 
stability of the variance, that is for m>n>2. Define 

D 
_ Cm _m-2 

m- . 
Cn n-2 

(3) 

where (m-2)/(n-2) is the expected value of Crr/Cn under the null hypothesis, and the 
assumption that Yt has an iid Gaussian distribution. In order to guarantee that the 
probability of a false alarm during an infinitely long monitoring period is not larger 
than a; that is lim P(tA< il Ho)::;;a; we use Theorem 3.4 in Chu et al. (1996). The 

i~oo 

theorem states that if our test statistic converges in law to a standard Wiener process, 
~im P(tA< il Ho) is approximately equal to the probability that the absolute value of a 
l--->~ 

Wiener process W(t), t> 1 crosses at least once the path of a boundary function bet). 

One such function is b(t)=~t(A2+ln(t)) where A is a chosen constant. Values of A 
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The statistic (7) is used together with the boundary in (4) and is hereafter referred to 
as CUSUMQes, where "es" is an abbreviation for empirical scaling. 

3.2 A test based on moving sums 

Chu et al. (1996) found that their test gets increasingly insensitive for detecting 
changes that occur late in the monitoring period. Leisch et al. (2000) explained this by 
the shape of the boundary function given in (4), which is said to grow too fast. In 
Zeileis et al. (2004) it was shown that the empirical density of the time points where 
the null hypothesis is incorrectly rejected actually has its peak at early time points. 
Two ways to remedy this effect have been suggested. In Zeileis et al. (2004) a 
different boundary function was suggested for the test, yielding a more uniformly 
shaped density compared to when (4) is used. Leisch et al. (2000) proposed a 
monitoring statistic based on a moving window of observations instead of a 
cumulative sum. Zeileis et al. (2004) showed that for a CUSUM based test converging 
to a Brownian bridge, a moving sum (MOSUM) version of the test converges to the 
increments of a Brownian bridge. More precisely, the test statistic with a window of 
width p has a limiting behavior characterized by the increments 

WO(t)- WO(t-h) 

where h=p/n is the window width expressed as a fraction of the number of 
observations in the historical data set. A test referred to as MOSUMQes that uses 
observations from a moving window of fixed length p is here proposed for detecting a 
change in the variance. The test statistic, denoted by Mm, p, is calculated by taking the 
p-th difference of the statistic Sm in (5) but where the scaling coefficient given a 
Gaussian distribution is replaced by the empirical scaling coefficient given in the 
previous section; 

which is equal to 

(8) 

Based on the argument above, since Sm converges to a Brownian bridge, Mm, p in 
(8) converges to the increments of a Brownian bridge. A boundary function for the 
increments of a Brownian bridge that, at least approximately, yields a fixed 
asymptotic size is given in Theorem 4.2 in Leisch et al. (2000). For t=m/n> 1, the 
function has the form 

{

Z(h).fi 
bz(z(h), t)= ,---_ 

z(h).j210g t 

t::;; e, 
(9) 

otherwise 
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and the boundary function (4) such that we have the stopping rule 

tA =min{m;::: n: IRml> b1(A, m, n)}. 

4 MONTE CARLO STUDY 

We want to investigate the properties of the proposed test procedures from different 
aspects. First, we wish to see whether the empirical size is close to the asymptotic 
controlled size. We do it for three situations, namely when the process that is being 
monitored has a Gaussian distribution with or without isolated additive outliers and 
when it has a t distribution. The two latter processes are of interest to look at since 
economic time series data often have outliers and the distributions often have tails that 
are thicker than those of a Gaussian distribution. Here we will use a t distribution with 
six degrees of freedom in order to ensure the existence of the fourth moment. We then 
evaluate the power for different situations under the alternative hypothesis. First, we 
evaluate the behavior of the empirical power for different sizes of the shift. Second, 
we study the power for different time points of the change during the monitoring 
period. In addition, we look at the aspect of timeliness of the methods in terms of the 
time required to detect a change. 

In theory, the monitoring period is infinite. However, in order to assess the 
properties of the procedures empirically by Monte Carlo simulations, or to simulate 
certain critical values, the monitoring period must obviously be finite and we have a 
finite number of decisions to make regarding the acceptance or rejection of the null 
hypothesis. For the MOSUMQes test we will use the simulated asymptotic critical 
values given in Leisch et al. (2000). For them to be valid we will use the same 
combinations of lengths of the historical and monitoring period as in Leisch et al. 
(2000). In that paper the number of observations in the historical period (n) is 1000 
and the total lengths of the historical period and the monitoring periods, hereafter 
denoted by T, are set to 4000, 6000, 8000 and 10 000. The properties of the methods 
for smaller samples can be found in section 5.3 and for CUSUMQ also in Carsoule 
and Franses (1999). 

4.1 Size properties 

In this subsection, we present results on the size properties of the tests. The size when 
the observations come from a Gaussian distribution with or without isolated additive 
outliers and a t distribution with six degrees of freedom has been estimated by 
calculating the rejection frequencies in 100,000 replications. The total length of the 
historical period and the monitoring period, denoted by T are given in the first column 
from the left in the tables below. The variance under the null hypothesis is 002 = 1. 

In Table 1 we see that at a 5% significance level, all procedures but the robust 
(RCUSUMQ) are more or less over-sized. The shorter the window width is, that is 
used in MOSUMQes, the larger is the empirical size. At the 10% significance level 
(Table 2), all methods are conservative except for the MOSUMQes tests, which are 
slightly over-sized. 
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Table 6. Empirical size for different values of T given an asymptotic size of 10%. lID Gaussian 
distribution with isolated additive outliers. 

CUSUMQ CUSUMQes RCUSUMQ MOSUMQes MOSUMQes MOSUMQes 
10% 
4000 0.463 0.465 
6000 0.499 0.501 
8000 0.517 0.519 
10000 0.527 0.529 

0.076 

0.081 

0.083 

0.086 

h=0.25 h=0.50 h=1 

0.659 0.603 

0.706 

0.724 

0.734 

0.647 

0.667 

0.678 

0.562 

0.607 

0.627 

0.639 

We simulate a Gaussian distributed process with isolated additive outliers using the 
model Yt = Ut+l;dt where Ut- iid N(O, 1), I; = 3 and dt is an iid process with density P(dt 
= 0) =l-p and P(dt = 1) = P(dt = -1)= pl2 for p = 0.01. The rejection frequencies of the 
test under the null hypothesis are given in Table 5 and 6. The empirical scaling 
coefficient seems to be of no use here and all tests but RCUSUMQ appear to be very 
sensitive to isolated additive outliers. 

4.2 Power properties 

Evaluating the methods ability to detect a change in the process can be made for 
numerous situations. In order to keep the computational burden moderate, we only 
consider a limited number. In real data we expected that the conditional mean will 
change as well as the variance. Here however, we assume that the expected value of 
the process remains constant. The power functions below were estimated by 
calculating rejection frequencies from 10,000 replications of an iid Gaussian 
distributed process and a process that has a t distribution with six degrees of freedom. 
The total length of the historical period and the monitoring period considered below is 
T =4000 and the variance under the null hypothesis is cyi = 1. 

4.2.1 The effect of the size of the shift 

We look at the power of rejecting the null hypothesis for different values of the 
variance under the alternative when the change occurs at different time-points T. More 
precisely, in Figures 1 to 3 below the estimated probability P(tA < T I Ha) is shown for 
r=1100, r=3000 and different magnitudes of the shift. The results of CUSUMQ and 
CUSUMQes are identical when the process is iid Gaussian distributed. Therefore 
CUSUMQes is omitted in Fig. 1 and 2. 

All curves are more or less symmetric for the length of the historical and 
monitoring period that is used here. CUSUMQ appears however to have a slightly 
steeper curve when there is an increase in the variance compared to a decrease, which 
confirms the results of Carsoule and Franses (1999). RCUSUMQ is asymmetric in the 
opposite way; the power is lower for detecting an increase than a decrease. 
MOSUMQes, h=0.25, is slightly biased, i.e. the power under the alternative 
hypothesis can be less than the size. For an increase in the variance, the power curves 
are almost identical for the different window widths. However, for a decrease, 
MOSUMQes, h=0.25, has almost as low power as RCUSUMQ though it is the most 
over-sized method of them all (see Table 1 and 2). For a very small decrease, it has in 
fact lower power than RCUSUMQ. Carsoule and Franses (1999) investigated the time 
required by CUSUMQ for rejecting the null hypothesis for different values of the 
variance under the alternative. They found that the relation between the time of 
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4.2.2 The effect of the time of the structural change 

We consider different time-points 't where a change in the variance occurs. Given the 
research question on stability in this paper, we first examine the case where the 
variance decreases. We also examine the situation of an increase. More precisely, in 
Figures 4 and 5 below the estimated probability P(tA < T I Ha) is shown for (YJ2 = 0.5, 
(YJ2 = 1.5 and different values of T. The results of CUSUMQ and CUSUMQes are 
identical when the process is iid Gaussian distributed. Therefore CUSUMQes is 
omitted in Fig. 4 and 5. 
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Fig. 4. 0/ = 0.5. Vertical axis: Values of the power. Horizontal axis: Different values oft. lID 

Gaussian distribution. Asymptotic size: Panel a: 5%, Panel b: 10%. CUSUMQ (--0), RCUSUMQ (_ 

- 11::.), MOSUMQes, h=0.25 (-e), MOSUMQes, h=0.50 (- 'f.), MOSUMQes, h=1 ( __ .). 

In the Figures above we see that for all methods the power becomes lower the later 
the change occurs. The reason for this is that as the change point time gets closer to 
the end of the monitoring period, the fewer are the time points after the shift where we 
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Fig. 6 below shows the median time required to correctly reject the null hypothesis 
at the 5% level, given the rejection is made during the remaining monitoring period 
after r. It is shown for different values of r and for both a decrease and an increase in 
the variance. The total length of the historical period and the monitoring period 
considered below is T=4000 and the variance under the null hypothesis, (J'j = 1. The 
number of replications used in the simulations are 50,000. The results of CUSUMQ 
and CUSUMQes are identical when the process is iid Gaussian distributed. Therefore 
CUSUMQes is omitted in Fig. 6. 

600.----------------, 1200..------------..., 
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100 

,itt 

~,; , 

... ' 
;I!" 

.I>' 
-------~- -------,-

/ , 

a b 
Fig. 6. Asymptotic size: 5% level. Vertical axis: Values of the median time required to correctly reject 
the null hypothesis given the rejection is made during the remaining monitoring period after r. 
Horizontal axis: Different values of T. lID Gaussian distribution. Panel a: decrease in the variance to (J'1

2 

= 0.5, Panel b: increase in the variance to (J'/ = 1.5. CUSUMQ (----,:]), RCUSUMQ ( - - A ), 

MOSUMQes, h=0.25 (-e), MOSUMQes, h=0.50 (- "), MOSUMQes, h=l ( __ .). 

We confirm what was pointed out by several authors; the later a change occurs, the 
longer the (median) time required to detect the change for methods using the 
boundary (4). These methods outperform window based methods for early changes 
but the relation is reverse for later changes because window based methods have a 
constant detection delay as was also noticed by Zeileis et al. (2004). The asymmetry 
of RCUSUMQ with respect to the direction of the change is easily seen here. 

Zeileis et aI. (2004) pointed out that a possible solution to the choice of boundary 
function is to base it on a specified prior distribution for the timing of the shift. The 
advantage is that the detection power is concentrated to those time points where is the 
change is most likely to occur. However the obvious disadvantage is that the ability to 
detect a change that takes place at an unexpected time point is poor. 

5 MONITORING U.S. MACROECONOMIC TIME SERIES 

The stability of the U.S. economy is a topic of much recent research. The two key 
questions, which are common to most studies on stability, concern the selection of the 
appropriate variables and the choice for the most insightful statistical method or 
econometric model. Examples of studies with a specific focus on the first question are 
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In most of the cases where the null hypothesis is rejected, it is made in favor of a 
smaller alternative that is a decrease in the volatility. CUSUMQ tends to be the 
method that mostly give the earliest rejections followed by RCUSUMQ and the 
MOSUMQes tests. The time of rejection differs a lot between CUSUMQ and 

CUSUMQes and unreported results show that when (ko -1) is replaced by 2 in the 

MOSUMQes statistic, the rejections are also made earlier. As the residuals of the 
estimated models have more or less excess kurtosis, this is not surprising because the 
simulations showed that a seriously misspecified scaling coefficient generate too 
frequent rejections of the null hypothesis. Given the estimated change-point time 
1984Ql and the revised data being used, it could have been detected in the late 1980s 
using the proposed methods. 

5.2 Monitoring growth contributions 

In this section the variances of the growth contributions of the components of GNP 
are monitored. With growth contributions we measure by what magnitude the 
components contribute to the relative growth rate of GNP. We compute the growth 
contributions by dividing the first differences of the variables by the lagged value of 
the Real GNP. For the the Real GNP the relative growth is monitored. We use the 
same time periods as in the previous section. Figure 9, panel a to h, plots the growth 
contributions of the variables. 

In order to deal with the problem of serial correlation, we proceed in the same way 
as we did in the previous section. We test for structural change in the variance in the 
monitoring period with a controlled asymptotic size of 10%. For MOSUMQes, the 
simulated critical values used in the previous section are used. 
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The results of the monitoring of the period 1984Q 1 - 2003Q3 by the testing 
procedures are given in Table 8. 

Table 8. Date of rejection of the null hypothesis when monitoring growth contributions. i and t indicate 
that the null hypothesis is rejected in favour of an increase and a decrease in the variance, respectively. No 

. . f th II h h· f bT . d d b NR V . bl . aI rejectIon 0 enu ypot eSIS 0 sta 1 Ity IS enote >y ana es are III re quantItIes. 
CUSUMQ CUSUMQes RCUSUMQ MOSUMQes MOSUMQes MOSUMQes 

Variable h=O.25 h=O.50 h=1 

GNP 1989Ql t 1994Ql t 1987Q2 t NR 1996Ql t 1999Q3 t 

Consump. NR NR NR NR NR NR 

Invest, bus. 
fixed NR NR NR NR NR NR 

Invest, 
residential 1988Q3 t 1991Q3 t 1987Q2 t 2000Ql t 1995Ql t 1997Ql t 

Invest, 
inventories NR NR NR NR NR NR 

Government 
purchases 1998Q4 t 1999Q4 t NR NR 1993Q3 t 1990Ql t 

Exports 2001Q2 i 2001Q4 i 2002Q4 i 2000Ql i 2001Ql i 2001Q2 i 

Imports NR NR NR 2002Q4 i NR NR 

The relation between the methods with respect to time of rejection is more or less 
the same as for the growth rates. Like the growth rates, in most of the cases where the 
null hypothesis is rejected, it is made in favor of a smaller alternative that is a 
decrease in the volatility. There are slightly fewer cases where the null hypothesis is 
rejected compared to growth rates. 

Compared with growth rates, the times of rejection in favor of stability are made 
earlier for Real investment, residential and more frequently for the variable Real 
government purchases of goods and services. We find the opposite to hold for Real 
investment, changes in inventories and Real imports of goods and services where 
growth rates appear to give a clearer indication of stability. Given the estimated 
change-point time 1984Q1 and the revised data being used, it could have been 
detected in the late 1980s using the proposed methods. 

5.3 Small sample properties of the tests 

A drawback with a Monte Carlo study is that the model used in the simulations 
might not be representative of the process we want to study. Though an actual data set 
is certainly representative of the specific time period and situation at hand, it might 
deviate randomly from the process of interest. However, it is impossible to know 
whether an outcome is extreme or not if not several examples are available or if the 
process is replicated. 

To assess the sample behavior of the tests in the case study above, we investigate 
their properties for a historical data set and a monitoring period of length 120 and 79 
respectively. For an 110 Gaussian distributed process and a controlled asymptotic size 
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Though size distortions and the ability to detect structural changes that occur late 
can be coped with, we find that the performance of some of the suggested solutions 
are highly dependent on the size and direction of the change. 

In the empirical illustration of the methods on a set of macroeconomic variables of 
the U.S. economy, we found that in most of the cases where stability is rejected, it is 
made in favor of a decrease in the volatility. Given the estimated change-point time 
1984Q1 of the volatility drop and the revised data being used, the change could have 
been detected in the late 1980s using the proposed methods. 

Not all relevant factors influencing the tests have been examined here. The 
question remains what effect e.g. autocorrelation, skewed distributions, temporary 
changes and smooth transition between the alternatives have on the tests. Also the 
properties of the tests for smaller samples than those used here is worth receiving 
more attention. Furthermore, considering a moving window based version of the 
proposed robust test might be a scope for further study. 
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