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A Monitoring System for Detecting Starts and Declines of Influenza Epidemics 

Abstract 

Eva Andersson 

Statistical Research Unit 
Goteborg University 

The aim is to detect an influenza outbreak as soon as possible. Data are weekly reports of 
number of patients showing influenza-like symptoms. At each additional observation we 
decide whether a change has occurred or not. 
The methodology of statistical surveillance is used to construct an outbreak detection 
system. The report also demonstrates measures that reflect timeliness, such as the 
probability of successful detection within a specified time and the predictive value at 
different time points. 
A new non-parametric approach is used. The cycles are estimated using only 
monotonicity restrictions. Also different approaches regarding the intensity of the 
change-process are compared. The pros and cons of using an empirical intensity are 
evaluated. 
The time to an alarm is investigated, both for false and motivated alarms. When setting 
the alarm limit, there is a trade-off between the false alarms and the delay of motivated 
alarms. In the evaluation it must be considered that the performance of the system 
depends on when the outbreak begins, in relation to the start of the surveillance. If the 
outbreak begins at the same time as the surveillance is started, then the probability of 
early detection is 0.04, but if the surveillance is started 12 time points before the outbreak 
the detection probability is 0.43. 
The non-parametric approach avoids miss-specifications of the base line. Even a 
"normal" miss-specification results in serious delay. Another drawback is that alarms at 
late time points have low predictive value. 
An empirical prior for the intensity works well when the actual outbreak time agrees with 
the prior. But when the outbreak occurs "earlier than expected", the alarms are seriously 
delayed. A non-informative prior, however, works well. 



1. Introduction 

In on-going cyclical processes, for example influenza cycles, it is often of interest to 
detect a turning point (an influenza outbreak) as soon as possible after it has occurred. 
Many methods have been proposed for detection of turns, see (1) and (2). 
An early indicator is the number of patients showing influenza-like symptoms. It can be 
an advantage to use this indicator instead of the number of confirmed cases (after a 
laboratory analysis), since the latter variable might take longer. A surveillance system is 
constructed with the aim to detect an outbreak at an early stage. 
One aim for monitoring influenza activity is to, as soon as possible, spread the 
information, since an outbreak can put a heavy burden on the medical service. It is 
therefore important to identify the start of an influenza epidemic. According to the 
Swedish Institute for Infectious Disease Control, a reporting system can consist of 
weekly reports of the number of possible cases (patients showing influenza-like 
symptoms), combined with number of confirmed cases (after samples have been analyzed 
in a laboratory). In surveillance, repeated decisions are made: each week, at each new 
additional observation, we decide whether an outbreak has started or not. There are 
several well known methods of surveillance, such as the CUSUM method and the 
EWMA method. A scan statistic is suggested in (3) and (4). A review of surveillance in 
public health is given in (5). 
In an alarm system there is always the risk of false alarms. We want an alarm system with 
few false alarms and high detection probability for an actual outbreak, but if the false 
alarm probability is small, then it also takes longer to detect an actual outbreak. When 
setting the alarm limit, there is a trade-off between the false alarms and the delay of 
motivated alarms. 
Timeliness is very important: when we compare methods we must know how long it 
takes before each method indicates that an outbreak has occurred. Measures that reflect 
timeliness are probability of successful detection within a specified time limit and the 
predictive value of an alarm at a specific time. These measures are further discussed by 
Frisen in (6). 

2. Objectives 

The methodology of statistical surveillance is used to construct a system for outbreak 
detection. Generally, the aim of a surveillance system can be described as discriminating 
between the in-control process and the out-of-control process. Ideally, we want few 
alarms when the process is in-control and we want quick indication when the process has 
gone out-of-control. A system based on the likelihood ratio between in-control process 
and out-of-control process is optimal, see (7). The likelihood ratio has been shown to be 
equivalent to the posterior probability, used in many Hidden Markov model approaches 
(HMM). In (8) a surveillance system using an HMM is discussed. 
In this report we demonstrate measures that reflect timeliness, e.g the probability of 
successful detection within a specified time and the predictive value at different time 
points. The evaluation measures often depend on the time of the alarm or the time when 
the outbreak begins, in relation to the start of the surveillance. 
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3. Methods 

3.1 Non-parametric surveillance 

As mentioned above, the likelihood ratio (LR) is optimal. The LR method gives the 
shortest expected delay for a given false alarm probability. The likelihood for the in­
control process (base line, event D) and the out-of-control process (outbreak, event C) are 
compared. The LR method at time s is defined as 

LR(s) = f(xs Ie)· pee) >k 
f (xs ID). P(D) s, 

where f(xsi m) is the likelihood for xs={ x(1), x(2), ... , x(s)}, conditional of event m, 
m={ C, D} and ks is a time dependent alarm limit. 

The event C (outbreak) is defined in accordance with which outbreaks we are interested 
in detecting. Sometime it is only of interest to detect whether there has been an outbreak 
at the current time point, i.e. whether the time of change is "now". This is expressed as 
C= { t" =s }, where t" =time of outbreak, s=decision time. For this specification of C, the 
LR method above is reduced to only the likelihood ratio of the last observation, xes). For 
our outbreak detection system we are instead interested in detecting all changes since the 
start of the surveillance, i.e. C={ t"::;; s }, that is C ={ Cl, C2, ... , Cs}, where Cj={ t" =j}. In 
this situation the LR method consists of the likelihood ratios of all observations, {x(1), 
x(2), ... , xes)}, 

( ) 
_ f(xs lei)· p(el) f(xs le2)· p(e2) f(xs les )· pees) 

LR s - I + I + ... + I . 
f(xs D)· P(D) f(xs D)· P(D) f(xs D)· P(D) 

The LR method is based on full knowledge of the process under surveillance, X, and of 
the change process (further discussed below). This means that the trend f.1, conditional 

on C and D, is known. In a practical situation f.1 is not known, but can be estimated, for 
example from previous data. The estimation is often done under some parametric 
assumption, using observations from a window of the previous data. One possibility is to 
use the following parametric model for f.1 at time t 

t < 1: f.1(t): {~D (t): ~o + ~I . t, 
~c~(t): ~o + ~l .(1:-1) + ~2 • (t-1: + 1), t ;::: 1: 

where t" is the time of the outbreak. 

The above specification of f.1 results in the following expression of the LR 

LR(s) = :t f(xs Ie). pee) :t f(xs 1f.1 = f.1
c2· pee) . 

j=1 f(xs ID). P(D) j=1 f(xs 1f.1 = f.1 ). P(D) 

It is important to correctly specify the baseline (f.1D) and the outbreak (f.1c). In most 

cyclical processes it is unlikely that the length and shape of the cycles are constant over 
time. If f.1 is estimated from previous data, there is always the risk that the current cycle 
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is different from the previous ones, i.e. that 11 be miss-specified when it is estimated 
from historic data. To avoid miss-specification, the full likelihood ratio is here 
approximated by the maximum likelihood ratio. The new in this approach is that no 
parametric restriction is placed on the cycles. The cycles are estimated using only 
monotonicity restrictions, see (9), (10). Only data from the current batch is used in the 
estimation, thus avoiding the risk of relying too much on the pattern of previous data. 
This approach, hereafter denoted the LRnp method (likelihood ratio, non-parametric), 
was suggested in (11) and evaluated in (12) and (13). 

LRnp(s) = t I(xs \11 = jiCj). P(C) . 
j=! I(xs \11 = jiD). P(D) 

3.2 Intensity of the change-process 

The optimal LR method includes the distribution for the change-point time, r. 
Optimality has been proven for the case when r has a geometric distribution. Much 
theoretic work on statistical surveillance is made under this assumption. The geometric 
distribution is also often assumed in HMM approaches where the transition probabilities 
are constant, see (1). The distribution of r affects the weighting of the partial likelihood 
ratios as well as the alarm limit, as we can see when the maximum likelihood ratio 
method is expressed as 

LR ~ [1(Xs \11 = jiCj)J k' 
np=L.Jwj • \ AD > s' 

j=! I(xs 11 = 11 ) 

where Wj = P(C)/ P(C) and k; = k· P(D)/ P(C). 

What assumptions are reasonable to make about r, the time of the outbreak? Is it 
possible to use previous data here? If we know that during previous influenza seasons the 
outbreak has started approximately 9 weeks after the start of the surveillance, does this 
information improve the performance? The pros and cons of using an empirical prior are 
evaluated in (14). 
Many evaluations of the LR method is made for the situation when r has a geometric 
distribution with parameter v. When the limiting distribution of r is used (when v tends 
to zero), it is called the Shiryaev-Roberts approach, hereafter SR ((15), (16»). In the SR 
approach the weights for the partial likelihood ratios are equal and the alarm limit is 
constant. Using the SR approach can be expressed as having a non-informative prior for 
r. 
The effect of different assumptions regarding r is evaluated. One of the evaluated 
systems is based on the distribution of the empirical change-point times, approximated by 
the negative binomial distribution. This is a very informative prior for r . Another system 
is based on the Shiryaev-Roberts approach, thus a non-informative prior for r. 
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Fig 1: The density of the empirical distribution of the change point time is approximated 
by the negative binomial distribution 

4. Results 

4.1 False alarms 

When an alarm system is evaluated it is important to know how often we can expect a 
false alarm. Here the alarm limit is set so that MRLO=12 (median run length to first false 
alarm). When setting the alarm limit, there is a trade-off between the false alarms and the 
delay of motivated alarms. 
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Fig 2: Thefalse alarm distribution, when MRLO=12 

As we can see, the probability of an alarm tends to one as the time tends to infinity. For 
methods where this probability does not tend to one, it is more difficult to give an alarm 
at late time points. 

4.2 Motivated alarms 

The probability of detection of motivated alarms within 2 time units is shown in Fig 3. 
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Fig 3: Probability of detection within 2 time units, as a function of when the outbreak 
starts in relation to start of surveillance 

If the outbreak begins at the same time as the surveillance is started (h=l), then it is 
difficult to detect quickly (probability of detection is 0.04). This is because we have very 
little information on which to base our inference. If the outbreak instead begins after 12 
time points, then the detection probability is considerable higher, 0.43. 

4.3 Miss-specification of outbreak trend 

One advantage with the non-parametric method LRnp is that the risk of miss­
specification is reduced, since the estimation of the trend avoids using a parametric 
specification. Using parametric assumption regarding Ii based on the previous pattern, 
there is always the risk that the current cycle is different from the previous ones, which 
results in a miss-specification of Ii. In (17) it is demonstrated that a miss-specification of 
the trend after the turn is not so serious. But if both the trend before and after the turn, i.e. 
both the base line and the outbreak, are wrongly specified, it results in very bad 
properties for the alarm system. 

3.0 

2.5 

>. 2.0 til 
(jj 
'"0 
'"0 1.5 ()) 

'0 
()) 
0- 1.0 X 
UJ 

.5 

0.0 

0 10 15 20 

h 

Fig 4: The expected delay of an alarm, as a function of when the outbreak starts in 
relation to start of surveillance. The situation is one where both the base line and the 
outbreak are miss-specified. 
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If the outbreak begins at the same time as the surveillance is started (h=l), then it takes a 
long time to detect it (the delay is 2.5). But if the outbreak begins after 20 time points, 
then the delay is small, 0.45. 
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Fig 5: The predictive value of an alarm, as a function of when the outbreak starts in 
relation to start of surveillance. The predictive value is calculated under assumption of a 
constant intensity, 0.10. The situation is one where both the base line and the outbreak 
are miss-specified. 

In Fig 5, we see that the short delay comes at a price: an alarm at time 20 is not very 
reliable, the predictive value is only 0.34. In order to calculate the predictive value, we 
must have some knowledge of the intensity of the change process and in Fig 5 the 
assumption of a constant intensity is used. 
The above results, where both base line and outbreak are miss-specified, are compared to 
the non-parametric approach. 
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Fig 6: The expected delay, as a function of when the outbreak starts in relation to start of 
surveillance. The non-parametric approach (solid line, filled squares) is compared to a 
parametric approach with miss-specifications (dotted line, unfilled squares). 
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Fig 7: The predictive value, as a function of the time of the alarm. The predictive value is 
calculated under assumption of a constant intensity, 0.10. The non-parametric approach 
(solid line, filled squares) is compared to a parametric approach with miss-specifications 
(dotted line, unfilled squares). 

4.4 Using prior information regarding the intensity 

The weighting of the partial likelihood ratios means that more weight is given to those 
partial likelihood ratios that represent the most likely turning point. The non-informative 
prior gives equal weight to the all partial likelihood ratios, whereas the empirically based 
prior gives highest weight to that likelihood ratio which represents a tum at 9. The alarm 
limit is also affected by the choice of prior for r . The non-informative prior results in a 
constant alarm limit, whereas the empirical prior has an extremely high alarm limit at 
early time points, resulting in few early alarms. In (14) the non-parametric method is 
evalauted for different priors regarding the intensity: the empirical prior is compared to a 
non-informative prior. 
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Fig 8: The expected delay, as a function of when the outbreak starts in relation to start of 
surveillance for the non-parametric method. A non-informativ prior for the intensity 
(solid line, filled squares) is compared to an empirical prior (dotted line, unfilled 
squares). 

7 



Using the empirical prior, the delay is very long, 5.4, for h=l, whereas the non­
informative prior has a shorter delay, 3.5. If the outbreak does not begin at the same time 
as the surveillance, but instead at h=15, then the empirical prior has shorter delay, 
compared to the non-informative (0.02 and 1.64). 
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Fig 9: The predictive value, as afunction of the time of the alarm, for the non-parametric 
method. The predictive value is calculated using the empirical prior for the change 
process. A non-informativ prior for the intensity (solid line, filled squares) is compared to 
an empirical prior (dotted line, unfilled squares). 

But for the empirical prior the short delay at 15 is not of much use. The predictive value 
of an alarm at time 15 is only 0.49 for the empirical prior, whereas it is for the non­
informative prior 0.96. 

5. Conclusions 

In surveillance it is important to use a method with known properties. Since timeliness is 
important, good properties in a surveillance system are measured by, for example, the 
probability to detect an outbreak within 2 time units from the start of the outbreak, or by 
the expected delay of an alarm. An optimal alarm system is based on the full likelihood 
ratio, which yields the shortest expected delay for a specified false alarm probability. 
When a surveillance system is evaluated it is important that timeliness is considered. If 
the outbreak begins at the same time that the surveillance is started, then it is often more 
difficult to detect it, whereas if the outbreak begins later it is easier to detect. The 
predictive value of an alarm differs, depending on when the alarm is called. Often, an 
alarm called at the first time point carry less information than an alarm called later on. 
Thus, the extra dimension of time is needed in the evaluation. 
With cyclical processes, such as influenza cycles, it is difficult to find a suitable 

parametric structure. Here an approximation of the full likelihood ratio is used, where the 
cycles are is estimated without any parametric assumptions regarding the shape. Only the 
assumption of unimodality is used, thus resulting in a very robust method. One advantage 
with the non-parametric approach is that miss-specification, especially of the base line, is 
avoided. 
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The question of how much prior information to use is often raised. If the intensity of the 
change process can be estimated from previous data, does this information improve the 
performance of the surveillance? Of course this depends on whether it is reasonable to 
believe that prior patterns in the change process will repeat themselves. The investigation 
shows that an empirical prior for the intensity works well when the actual outbreak time 
agrees with the prior. But when the outbreak occurs "earlier than expected", the alarms 
are seriously delayed. A non-informative prior, however, works well for all change point 
times. 
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