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Maximum Likelihood Ratio based small-sample tests 

for random coefficients in linear regression 

Max Petzold and Robert Jonsson 

Department of Statistics, Goteborg University, Goteborg, Sweden 

Abstract 

Two small-sample tests for random coefficients in linear regression are derived from 

the Maximum Likelihood Ratio. The first test has previously been proposed for testing 

equality of fixed effects, but is here shown to be suitable also for random coefficients. 

The second test is based on the multiple coefficient of determination from regressing 

the observed subject means on the estimated slopes. The properties and relations of the 

tests are examined in detail, followed by a simulation study of the power functions. 

The two tests are found to complement each other depending on the study design: The 

first test is preferred for a large number of observations from a small number of 

subjects, and the second test is preferred for the opposite situation. Finally, the 

robustness of the tests to violations of the distributional assumptions is examined. 

MSC: primary 62MlO; secondary 62J05 

Keywords: Exact test; Hypothesis test; Maximum Likelihood; Pre-test; Random 

coefficient regression. 



1. Introduction and assumptions 

Random coefficient regression (RCR) models (Rao [27], Swamy [34]) are 

generalisations of the classical Gauss-Markov model, where the parameters are 

allowed to be random quantities. A special case of the RCR models is the random 

intercept model (Diggle and Heagerty et al. [7]), also known as error components 

regression (ECR) model, where only the intercept parameter is random. Statistical 

inference based on RCR models is more demanding since more parameters are 

introduced in the variance-covariance matrix of the observations. In many cases it is of 

crucial importance to know whether the simpler ECR model is appropriate, e.g. if one 

wants to construct tolerance limits by utilising the longitudinal structure of the data 

(Jonsson [20]). 

In this paper tests for random coefficients in linear regression will be considered. 

Introducing random coefficient variation is to give the dependent variable a different 

variance at each cross-section. Models with this feature can therefore be transformed 

into a particular heteroscedastic formulation and tests for heteroscedasticity can hence 

be used to detect departure from the constant parameter assumption. For detailed 

reviews of various large-sample tests for heteroscedasticity, see Haggstrom [13], 

Greene [11], Kmenta [21], Baltagi [4] and Godfrey [9]. However, the aim ofthis paper 

will be to utilise knowledge about the model and distribution of the parameters for 

deriving more specific tests. Instead of using general tests for heteroscedasticity, which 

are tests for inhomogeneity of variances, we can now test whether the second-order 

moments of certain parameters are zero or not. Some differences between tests for 

random coefficients and tests for heteroscedasticity were discussed in Honda [17], 

where it e.g. was concluded that some proposed large-sample tests for random 

coefficients were more robust to non-normal disturbances than tests for 

heteroscedasticity. 

Two Maximum Likelihood (ML)-based small-sample tests for random coefficients will 

be derived and examined. The following linear RCR model will be considered as the 

alternative hypothesis in the sequel: 

(1) 
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, 
where Y;j is the measured response at Xi = (x?) .. . x;r) .. . x;p)) for the j:th subject. The 

model in (1) is composed of three random components which are, following Swamy 

[33], assumed to be random drawings from the normal distribution. The random 
, 

intercept Aj and the random slopes B j = (BY) ... By) ... B;p)) reflect factors which are 

specific for the j:th subject, and U ij is a residual. Let the expected value of the T-

dimensional normally distributed vector Yj = (l';j" .. fry)' be E (Yj IX )TXI = X (a I P')' 

where X - 1 (XI .•• Xi.·· XT ) and P - f3 ... f3 ... f3 . Further, under the --( I ,) -( (I) (r) (p))' 
Tx(p+l) 

assumption of independence between the U ij 's and the Aj 's and B j 's respectively, let 

the variances be v (Y ·IX) = nX' +O"~I 
J TxT 

where 

••• O"B\Bp j 
... : . Note that the elements of 1: are 

0"2 
Bp 

assumed to be equal among the subjects and constant over the study interval. Since X 
is equal for all subjects we have a balanced design. 

A special case of the general model in (1) will be considered as the null hypothesis 

Ho: Y;j =Aj +x;P+Uij' i=l...T, j=1...n. (2) 

This is an ECR model with a random intercept but fixed and equal slopes p. Under 

Ho the variance matrix is reduced to V(Y·IX) = 0"~11' + 0"~1. 
J TxT 

There are a number of recent papers on tests for random coefficient covariance 

structures. For example, Anh and Chelliah [3] extended the analysis-of-covariance test 

by Swamy [33] to a more general test where the different subjects are allowed to have 

different covariance structures. Haggstrom [13] showed that the score test by Honda 

[17] is applicable also for non-linear regression and extended it for possible time 

effects. In Lundevaller and Laitila [22] another modification of Honda [17]-test was 
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proposed which is robust against heteroscedasticity. Further, in Fujikoshi and von 

Rosen [8] and Andrews [2] tests of the null hypothesis that some random coefficients 

have variance equal to zero were proposed. However, only the asymptotic null 

distributions of these tests are derived, and the properties for finite sample sizes are in 

general unknown. 

In the next section the Maximum Likelihood Ratio (MLR) is derived and two potential 

test statistics based on subparts of the MLR are considered. Two small-sample tests 

based on these test statistics are then proposed in Section 2. The properties of the tests 

are examined in general, and the power functions are thereafter studied in more detail 

for the simple case with one explanatory variable in Section 3. A concluding 

discussion is given in Section 4. Notations not explained in the text are defined in 

Appendix I, and some stated results are derived in Appendix II. 

2. The Maximum Likelihood Ratio and its subparts 

Under the given assumptions the Maximum Likelihood (ML) estimators from Rao [27] 

are minimum variance unbiased. These estimators will be used in the sequel, and 

further properties are given in Swamy [34] Chap. 1.2,3.4 and 4.3. In general, the ML 

estimator of a population parameter cp under H 0 and HI will be denoted as ~ and 1jJ, 

respectively, and the corresponding estimators for the j :th subject will be denoted by 

a subscripted j. 

Following Anderson [l] p. 291 the ML functions can be written as 

LH = 1 exp ( _ nT) and LH = 1 exp ( _ nT). 
o (21C)n:IJ~l1'+J~II~ 2 I (21C)":lxtx'+cT~II~ 2 

and from Swamy [34] p. 111 it follows that the MLR statistic LH I LH can be written 
o I 

as 

3. Ixtx' + cT~II 
(MLR)n =+-------+ 

IJ~l1' +J~II 
(3) 
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To base a test on the full MLR statistic in (3) is appealing since it contains a maximum 

of information, but there are three potential drawbacks with this approach. First, an 

important practical problem is that the exact distribution is hard to derive and critical 

values for tests have to be found by simulation. Second, as noted in Cox and Hinkley 

[6] p. 172 the strong optimum properties, e.g. the Neyman-Person lemma, associated 

with the Likelihood Ratio (LR) method for simple hypothesis are not carried over to 

composite hypothesis problems in general. This means that the test is not guaranteed to 

be uniformly most powerful. Third, from Figure 1 it can be seen that the test can be 

biased, i.e. the size of the test under H 0 is correct (a = 0.05) but the power under HI 

can be less than the size. Hayakawa [16] and Harris and Peers [14] demonstrated that 

MLR tests are not unbiased in general against local alternatives, which is further 

discussed by Stuart and Ord et al. [32] p. 259. The criterion of unbiasedness for tests 

has such strong intuitive appeal that it is natural to restrict oneself to the class of 

unbiased tests. Altogether, the usefulness of the MLR test is limited in practise and it 

will only be used as a reference in the simulation studies in Section 3.2. 

0.050 

. 
'. ' . 

Co . '. " . 
~ . . 

0.049 . . ..... . . ....... .' 

0.048 

0 0.001 0.002 0.003 0.004 0.005 

(j2 / (j2 
B U 

Figure 1. Bias of the MLR test with settings from the simulation study in Section 3.2. 

2.1 The TF, -test 
I 

Test statistics can also be derived from subparts in (3). An obvious candidate is 

o-~ / J~ which expresses the ratio between residual sums of squares where the slopes 
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vary across subjects or not. This quotient can easily be shown to be directly 

proportional to the analysis-of-covariance test statistic F; proposed by Hsiao [18], cf. 

Appendix ITA. Using the notations in Appendix I the statistic can be written as 

Under Ho' the distribution of TF, is well-known to be Fp(n-I),n(T-p-I) ' which for 

completeness also is shown below, where Ho is rejected for large values of TF, . To 

study the distribution of TF, in general, notice that the numerator and denominator are 

independent under H 0 u HI (Rao [27]), and the denominator is distributed as 

(j~ / neT - p -1)· X;(T-P-I) • The distribution of the numerator becomes clear if we make 

use of the decomposition 

, 
D = I{p j -13) Su (p-p) = I{p j -P)' Sxr (p -p)+n{p -13)' Sxr (p-p) = DI + D2 , 

j=1 j=1 

and of the following necessary and sufficient condition for a quadratic form to have a 

chi-square distribution: Let z have a multivariate normal distribution with mean vector 

o and dispersion matrix ~, then any quadratic form z' Az has a chi-square 

distribution with degrees of freedom df = rank (A) if and only if A~A = A (Rao [28] 

Chap 3bA). Further, under H 0 (p j - 13) and (p - 13) are each normally distributed 

with mean vector 0 and dispersion matrices (j~. S; and (j~ / n' S;, respectively. 

From the condition above it is now easily verified that D / (j~ and D2 / (j~ both have 

chi-square distributions with np and p degrees of freedom (df), respectively. From 

Cochran [5] it thus follows that DI / (j~ is chi-square distributed with df = pen -1) . 

This gives the distribution of TF, under H 0 • 

Under HI' (p j - 13) has the dispersion matrix ~ BB + (j~ . S; and it is easily concluded 

from the condition stated above, that neither D nor D2 can have chi-square 

distributions in general. Thus for general p the distribution of TF, under HI is 

complicated. However, the expectation of the statistic can be studied as an indicator of 
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the behaviour of the power function. The expectation can be found by noticing that 

E(DI ) = E(D) - E(D2 ) =(n -I)· trace(Snl:BB + O"~I). From this we get 

[ 

P P J LL~~B T 
E(T ) = 1 + r;1 s;1 ' , n(T - p -I) where s = ''<x~r) _ :x(r) )(x(s) _ :x(s» • 

l'j 2 ( (T I) 2)' rs L.J 1 1 pO" u n - p - - ;;1 

The above expectation will increase with T , through the increasing sums of squares 

Srs' but will be slowly decreasing with n. 

2.2 The TR2 -test 

Another interesting subpart of (3) is the determinant IcY~ (XX r + f:1 which contains 

the informative variance-covariance estimator f:. Let R~.~j be the (sample) multiple 

coefficient of determination from the unconditional regression of the .r;' s on the P j 's 

(cf. Appendix ID). From Appendix IIB, R~.pj can be seen to be a subpart of the latter 

determinant. Since R~. contains the dispersion matrix SBB it retains the information 
Yj.~j 

about the dispersion pattern of the P j 's from f:. A well known test statistic based on 

(n- p-I) 

p 

H 0 is then rejected for large values of TR2' where TR2 under H 0 has the Fp,n_p_1 

distribution which is independent of T , cf. Stuart and Ord et al. [32] p. 528. The 

distribution of TR2 under HI is more complicated, but it can be shown that TR2 then 

has the same distribution as (cf. Johnson and Kotz et al. [19] p. 618): 

X2 (p -I) + (u + 01/2 (.%.2_ )112)2 
n I (n-p-I) 

--------~----------~ 
x2(n- p-l) p 

(4) 

coefficient of determination, and the three chi-square variables and the standard normal 
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variable U are all independent. By noticing that a non-central t-variable with f df and 

non-centrality parameter 0 can be represented t f (0) = (U + 0) / ~ X: / f (cf. Johnson 

and Kotz et a1. [19] p. 514), it follows from (4) that TR2 is distributed as 

where the first term vanishes for p= 1 and where all random variables are independent. 

By utilising that E(t: (0)) = (1 + 02
). n/(n - 2) for each fixed 0, one obtains the 

expected value 

E(TR2 )=(I+(n-l)e)(n- p -l) . 
p (n-p-3) 

In contrast to the expectation of TF, , the expectation of TR2 increases with n but is 

quite unaffected by T which appears in the constant e (cf. Eq. (5) for the p = 1 case). 

3. The simple case with one explanatory variable 

The tests based on the TF, and T 2 statistics utilise information from the data to 
I R 

different extent. To emphasis on inferential issues and to limit the number of 

parameters the simple case where p = 1 will be studied in this section: 

Ho: ~j=Aj+f3Xi+Uij 

HI : ~j = Aj + BjXi +Uij 

The properties of the TF, and T 2 tests will be examined in detail, followed by a 
I R 

simulation study of the powers. Finally the robustness to non-normality is studied. 

3.1 Some properties of the tests 

For p = 1 the statistic proposed by Hsiao reduces to 

T = S.. S BB /(n -1) , 
F, xt SSE /(n(T - 2)) 

where SSE is the total residual sum of squares over all subjects, cf. Appendix Ie. 

Since SBB is distributed as (a~ +a~ / S."J· X;-I (cf. Appendix ill), and SBB and SSE 
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are independent it follows that Tfj -(1+S.u(0"~/0"~))·Fn_l.n(T_2) under HouHI • 

Notice that the power of the test is an increasing function of the dispersion factor Sxx 

and the quotient O"~ / O"~ , and does not depend on O"~ and 0" AB • 

Regarding the TR2 statistic, the X~-I -variable in (4) vanishes for p = 1 and the 

S"!:. 
coefficient of determination simplifies to R: /J = __ YB_ where SYB and S BB now are 

}"} SWSBB 

scalars. It follows that the test statistic can be written 

S"!:. 
T = YB .(n-2) 

R2 S-S -S"!:. ' 
yy BB YB 

which under H 0 has the ~,n-2 -distribution. Unlike the test based on Tfj the TR2 test 

has a complicated distribution under HI also for p = 1 and the power cannot be 

expressed as a known function. However, a maximal power of the TR2 test, i.e. a 

maximum of (4), is obtained for a maximum of 

(5) 

where QA = O"~ / O"~, QB = O"~ / O"~, QAB = 0" AB / O"~ and PAB is the correlation between 

Aj and Bj . The dependencies in (5) are complicated, but since Tfj does not depend on 

O"~ and 0" AB it is interesting to examine the behaviour of B regarding these two 

parameters. First, let x = O. Considered as a function of PAB' B has one local 

minimum for P AB = 0 and maximum for P AB = ±l. Further, B is an increasing 

function of O"~ if P AB = ±l but constant if P AB = O. Second, let x > O. Then B has 

two local minima for p~1 = -x ~ QB / QA and for pf] = ( 1 + (TQA r l 
) / p~1, but it is 
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easily seen that only one of these can be larger than -1. Further, for P AB = 0 it can be 

seen that B now is a decreasing function of (j~ • 

3.2 An illustrative example of the power 

The powers of various test statistics may be compared by computing the asymptotic 

relative efficiency (ARE), cf. Stuart and Ord et al. [32] p. 266. Such a measure, which 

compares the slopes of the powers at the parameter value specified by H 0' is hard to 

use in the present situation. One reason for this is that it is difficult to find the 

distribution function of the TR2 statistic, even in the simple case when p = 1 . Another 

reason is that different parameters are involved in the distribution of the statistics. E.g. 

when p = 1, the distribution of TFi depends only on the variance ratio QB' while the 

distribution of TR2 depends on QA' QB and QAB. Due to the complications involved, 

the comparisons between the powers will be based on simulations. 

The TF, statistic was originally proposed by Hsiao for testing the heterogeneity of a 
I 

fixed number of subject-specific slope parameters. Since the test only makes use of the 

observed Pj 's one can suspect that this test will have a relatively larger power when it 

is possible to estimate the slopes with high precision, i.e. when the number of 

observations (T) per subject is large. The tests based on the MLR and TR2 statistics 

utilise more information about the stochastic distribution of all the parameters, and it 

can thus be suspected that the power of the two latter tests would gain relatively more 

from a large number of subjects (n). 

How the power functions depend on nand T was examined in a simulation study for 

two combinations of nand T , and a nominal test size of 5%. In this section, for 

simplicity, the Xi'S were chosen as equally spaced on the interval [-5,5] yielding 

x = 0 and a maximal power of TR2 for P AB = 1 . From Figure 2a it first seems that the 

TFi test has the largest power for n = 5 and T = 20 throughout the study interval as 

expected, and from Figure 2b it seems that the opposite is true when n = 20 and T = 5 . 

However, from Figure 2c we can see that the power of the TR2 is the largest relatively 
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near Housing the parameter settings from Figure 2a, and from Figure 2d we can see 

that the power of Tr; becomes the larger than TR2 for relatively large values of 0"; I O"~ 
using the parameter settings from Figure 2b. This study thus indicates that the power of 

the TR2 test is larger than the power of the Tr; test for small deviations from H 0 but 

that this relation will be the opposite for large deviations. The shift where the power of 

the Tr; becomes larger will appear closer to Ho if T is relatively large compared to 

n. 

It is notable from Figure 2 that the power of the MLR test is dominated in both 

situations for small deviations from H 0 by the tests based on subparts of the MLR 

statistic. The problem that the optimum properties of the LR method for simple 

hypothesis are not carried over to the composite case in general was treated in Section 

2, which the results here exemplify. From Figure 2 it is obvious that the different 

subparts of the MLR statistic sometimes may work in different directions yielding a 

smaller power for the MLR test than for some of the subpart tests. 

Even if there are differences among the three tests, generally the power was found to 

be relatively large in the studied situations. Also for a very small quotient 0"; I O"~ the 

power is about 80-90%. 
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Figure 2. The power of the MLR, TFj and T
R

, tests for a.) n = 5, T = 20 and b.) n = 20, T = 5 where 

O"~ / O"~ = 1/1 and a = 0.05. In c.) and d.) it can be seen that TR2 has a larger power than TFI for small deviations 

from Ho for the settings in a.) and b.), respectively. 

3.3 Robustness to non-normality 

The two proposed tests are to a different extent based on model assumptions. Here, the 

effect of deviations from the assumption of normal distributed Bj's and U ij 's will be 

examined regarding the nominal test size and power. Two distributional combinations, 

either only the Bj's or both the Bj's and the U ij 's have the exponential distribution, 

will be treated. Here, since a correlation between the normally distributed Aj ' s and the 

exponentially distributed Bj's is complicated to construct, the Xi'S were chosen as 

equally spaced on the interval [1,10] facilitating the use of PAB = O. 
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Starting with the case when both parameters have the exponential distribution we find 

that the tests do not hold the nominal test size under H 0' cf. Table 1. Since O"~ = 0 

under H 0 this is solely due to the non-normal distribution of the U ij 's. As can be seen, 

the T~ test is affected more than the T
R

, test in the studied situations. The nominal test 

size is exceeded by both tests (with up to 60%), and results from a further examination 

under HI will thus be hard to interpret. 

T~ T
R

, 

n=20, T=5 0.053 0.050 

n=5, T=20 0.080 0.065 

Table 1. The observed test size under H 0 for the nominal test size a = 0.05 . 

However, when only the Bj's have the exponential distribution the properties of the 

tests can be studied under Ho uHI. In Figure 3a and 3b the quotients 

R(TF, ) = Power(TF, I B)" - Exp) / Power(TF,) and the corresponding R(T
R
,) are given. 

1 1 1 

A quotient equal to unity means that the power is not affected at all, which e.g. is true 

under H 0 • For small values of O"~ / O"~ > 0 we can see that the power of the tests in the 

exponential case exceed the powers in the normal case. We also have that 

R(T~ ) < R(T
R
,) for small O"~ / O"~ > 0, but this relation shifts to the opposite for larger 

departures from H o. The shift appears earlier for n = 20, T = 5 than for n = 5, T = 20 

and the quotients also approach unity earlier in the previous case. However, the main 

conclusion is that the powers are not heavily affected by the exponential distribution 

which can be regarded as an extreme deviation from the symmetric normal 

distribution. In an applied situation less extreme distributions as lognormal and beta 

may be at hand, which are likely to affect the power even less. 
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Figure 3. The R-quotients for a.) n = 5, T = 20 and b.) n = 20, T = 5 . 

4. Discussion 

Two small-sample tests for random coefficients based on subparts of the MLR statistic 

were proposed. One of the tests was equal to the TF, test proposed by Hsiao [18] for 
1 

testing the heterogeneity of fixed effects. The explicit connection to the MLR statistic 

found in this paper was not noticed by Hsiao who writes (p. 149): "we can test for 

random variation indirectly" by using the TF, test. However, the new result warrants 
1 

the use of TF, for testing random coefficients. 
1 

To distinguish between the hypothesis where the slopes are assumed to be fixed and 

different, and the hypothesis where they are assumed to be random variables with a 

probability distribution, is important. In the former case the inference is conditional on 

the slopes in the sample while the specific assumptions regarding the distribution of 

the slopes in the latter case allow an unconditional inference, Because the conditional 

inference does not make any specific assumptions about the distribution of the slopes, 

it can be used for a wider range of problems. However, if the restrictive distributional 

assumption in the unconditional case is correct, this additional information may lead to 

a more powerful test. The question whether the slopes should be considered as fixed 

and different or random and different are beyond the scope of this paper but have been 

discussed by e.g. Mundlak [24] who argues that individual effects should always be 

treated as random, and by Hausman [15] who proposed a model specification test. 
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The other proposed test, TR2' is based on a multiple coefficient of determination 

derived from the MLR statistic. This test utilises more information about the 

distribution of the parameters. It was found that the TR2 test can be preferable when the 

number of subjects (n) is relatively large but the number of observations per subject (D 

is small. This is a common situation in e.g. routine clinical studies where a large 

number of patients are measured a few times. Figure 2 indicates that the T
R

, test has a 

larger power for small deviations from H 0 for both combinations of nand T . This is 

an important property since the power of the tests generally is small near H 0 and all 

additional contributions to the power are valuable. For larger deviations from H 0 the 

power of the TF, then becomes larger, and the shift appears closer to H 0 when T is 
1 

large. 

The tests were for simplicity compared for p = 1 in Section 3. Letting p > 1 would add 

relatively more information to the Tr2 test since it also utilise (lAB(') ' which may 

increase the power. 

The level of the test size has not been discussed in this paper, but it is important to 

remember that the choice of test size should be guided by the research aim. As 

discussed by NeIder [26] the tests discussed here can be seen as tests of significant 

sameness rather than differences. Such tests are relevant in a modeling situation when 

we are to simplify a complex model by showing that a set of slopes can be replaced by 

a common slope. We then would like to find a non-significant value of the test statistic 

for meaningless differences, and hence a small test size is appropriate. This is also the 

situation when the aim is to predict future observations with small variability where the 

simpler model under H 0 may be preferable. But if the aim is to describe the data, the 

more complex model under HI may be preferable also for small deviations from Ho' 

A large test size then helps to ensure that the power of the test is large. The latter is 

also preferred when testing for poolability of data from different batches of a drug in a 

drug stability study over time. As discussed in Murphy and Hofer [25] and Ruberg and 

Stegeman [29] the Type n error is now considered the more serious error. An incorrect 

pooling of the data may result in unjustifiably long shelf-life, possibly providing the 

consumer with a drug of reduced potency. 
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A remark on the use of the tests as pretests followed by a main test has to be done. As 

noted by Greenland [12], when discussing reanalysis of epidemiologic databases using 

pretesting in Michalek and Mihalko et al. [23], one has to construct confidence 

intervals and interpret tests results obtained from a likelihood function chosen by 

preliminary testing carefully. E.g. it was shown in Sen [30] that pretest estimators 

potentially have asymptotic non-normality, and in Grambsch and Obrien [10] that the 

size of the main test can be influenced by the pretest. 

The TFj and TR2 tests were found to complement each other for different situations, 

and a combined test is thus appealing. Since TFj and TR2 are subparts of the MLR 

statistic, it can be viewed as the natural combination of the two tests. However, the 

MLR test was examined and some important drawbacks were found. An important 

extension of this paper would thus be to construct another combined test of the 

dependent TFj and TR2 statistics, or some other subparts. 
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Appendix I - Definitions of some notations 

A. Miscellaneous notations 

, n T n 
-_(-(1) -(r) -(p)) _"''''( -)(y y-)_'" x - x ... x ... x , SxY - L..L.. Xi -x ij - j - L..SXYj , 

j=1 i=1 j=1 

It can be noted that P j = S;SXY
J 

has a p-dimensional normal distribution 

B. The dispersion matrix of the regression coefficients 

8 ~ [:: ~:] where S M ~ t, (&] - &)' , s(p('} ,p('}) ~ t,(pj'} - p(.} j(pj'} -p('}) , 

8 M ~(s(,8<'l,p('}) t" s" ~(t,( &] -&)(PJ') - ,8<'} ) ... t,( &] -&)(pj'} - P('})J' 

and s" ~ (t, (V; - i')(,8j'l - ,8<') ) ... t, (V; - i')(pj') - p('}) J' . 
From the results in Appendix IA it follows that S BB - W P (~BB + (j~S;, n -1) , i.e. a 

Wishart distribution with dispersion matrix ~ BB + (j~S; and (n -1) df, cf. Srivastava 

and Khatri [31] p. 78. 

C. The total residual sum of squares 

SSE = I(Yj -X(a\p)')'(Yj -X(a\p)')= Syy - Is:yjs;sXYj' 
~ ~ 

It follows from fundamental results in least square theory that SSE is independent of 

SBB and that SSE - (j~ . X;(T-P-l)' 

17 



D. The sample multiple coefficient of determination 

From the unconditional regression of the V;' s on the P j 's the sample multiple 

S~ S-I s-
coefficient of determination is defined as R: 6 = YB BB YB (cf. Johnson and Kotz et 

r) Sw 

al. [19] p. 617). 

Appendix II - proof of some results 

A. Extracting the TFj test statistic from the MLR 

The test statistic proposed by Hsiao [18] p. 18 can be expressed as 

(Syy -S' yP-SSE)/ p(n-I) 
TF, = x / ( ) • In Proposition I below this statistics is extracted 

, SSE n T-p-I 

from a subpart of the MLR in (3). 

Proposition 1: clTF, = c2 (~~ )-1 -1, where C1 and C2 are constants. 
, A2 

au 

Proof: Using the estimators in Section 2 we can write the quotient as 

n , 

( ~~ )-1 __ c-I . SSE + ~ (p j - p) S xx (p j - p) 
" C2-

1 
. T; . Considering that 

A2 2 SSE "~I au 

SSE = Syy - t( S:yjS;SXYj ), it directly follows that C~l (T~ -1) = TFj . 
j=1 

18 

o 



B. Extracting the multiple coefficient of determination from the MLR 

Since S ( n - 1)-1 is an unbiased estimator of ( (Y~ ( X'X) -I + l:) (cf. Rao [27]) we have 

the equality Io-~ (X'X f + f:1 = lSi (n -1) -(p+l) • It then follows directly from Proposition 

2 below that the multiple coefficient of determination R~j.pj can be derived from 

Io-~ (X'Xt + f:1 in (3). 

Proposition 2: lSi = Sw (1- R~.pj ) ·IS BB I 

Proof: From Anderson [1] pAO we have that 

ISI=SAA(l-R:.)·ISBBI=(SAA -P' ..• SAB)·ISBBI where R:. and p' .• =S~~ ·SAB 
~~ ~~ ~~ ~~ 

are the coefficient of determination and the vector of regression coefficients, 

respectively, from the regression of the tXj's on the Pj 's. From regression theory 

SAA = Sw -2X'SYB + X'SBB X , SAB =SYB -SBBX and p .•. =S~~ (SYB -SBBX) = P'y-. -x 
ary} FYJ 

where P~ •. = S~~ . sm . We may now write 
)"t'} 

P' ..•.. S AB = P'y-.•.. SYB - 2p'y- •.. S BB . X + X'S BBX, which finally gives 
art') J"t') rYl 

(SAA -P~j.PJ SAB )ISBBI = (Sw -P~'Pj ·SYB )ISBBI = Sw (1- R~.pJSBBI· o 
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