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Summary 
Unconditional confidence intervals (CIs) for the difference between marginal 
proportions in matched pairs data have essentially been based on improvements of 
Wald’s large-sample statistic. The latter are approximate and non-conservative. In 
some situations it may be of importance that CIs are conservative, e.g. when claiming 
bio-equivalence in small samples. Existing methods for constructing conservative CIs 
are computer intensive and are not suitable for sample size determination in planned 
studies. This paper presents a new simple method by which conservative CIs are 
readily computed. The method gives CIs that are comparable with earlier conservative 
methods concerning coverage probabilities and lengths. However, the new method 
can only be used if the proportions in the discordant cells p and q satisfies 

ppq 21 −+≤ , but this is luckily the case in most applications and several examples 
are given. The new method is compared with previously suggested approximate and 
exact methods in large-scale simulations.  
 
Key words: Binomial variables, Conservative limits, Pivotal statistic 

 

1 Introduction 

Data consisting of matched proportions in a 2 x 2 table arise in many biomedical studies. 

Typical examples are when measurements are made on the same patients at baseline and after 

a period of medical intervention, or when the effects of two drugs are compared on the same 

patients in a medical trial. The hypothesis of equal marginal proportions may be tested by Mc 

Nemar’s test (Mc Nemar, 1947) or some improvement of the latter (Suissa and Shuster, 

1991).  If the hypothesis is rejected one may want to quantify the magnitude of the difference. 

Then, focus is on the construction of a confidence interval (CI) for the difference. CIs can be 

constructed also without first performing a test. E.g. when claiming equivalence between a 

drug and a reference drug it may be sufficient that the entire (two-sided) CI for the difference 

falls within predetermined equivalence margins (Lewis, 1999, p. 1921). Wonnacott (1987) 

gives an interesting discussion on the informative value of classical hypothesis test, p-value 

and CI and concludes that the CI conveys the most comprehensive information in the one-

parameter case.  
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    CIs for the difference can be constructed either by conditioning on the outcomes in the 

discordant cells, or not. Conditional methods have been shown to be no good, Tango (1998), 

and therefore only unconditional methods are considered in this paper. CIs can also be 

classified as approximate and exact. Most approximate methods have been based on 

asymptotic normality and these are non-conservative in the sense that coverage probabilities 

can be less than pre-specified nominal levels. However, sometimes exact methods are needed 

that guarantees that coverage probabilities are within stipulated limits. E.g. in pharmaceutical 

studies there may be a need to maintain a high safety protection for consumers, or in 

equivalence studies it may be required that conservative CIs are used. Unfortunately, the few 

exact mehods that have been proposed are very computer intensive (see Hseueh, Liu and 

Chen, 2001 and Tang, Tang and Chan, 2005) and hard to use (cf. Section 2.3 below). Since 

the CI has to be found numerically from each particular sample it is practically impossible to 

use these methods for sample size determination in a planned study. There seems to be a need 

for simpler alternative exact methods that are of comparably quality. 

    In the present paper three approximate methods, two earlier suggested exact methods and 

one new exact method are compared regarding coverage probability and average lengths of 

the CIs. The methods are described in Section 2, and in Section 3 the performance of the 

methods are studied in large-scale simulations. Results in the present paper are also compared 

with results that have been reported earlier. The paper ends with some concluding remarks.  

 

2 Confidence intervals for the difference between marginal proportions 

Consider the following frequencies and theoretical proportions (in parentheses) in the 
matched 2 x 2 table . 

 
  After   
  Success Failure Total 
Before Success )( 1111 pN  )( 10 pN  )( 11011 ++ pNN  
 Failure )( 01 qN   )( 00001 ++ pNN  
  )( 10111 ++ pNN  )( 00010 ++ pNN  n 

 
 Here the notations p and q are used for simplicity, instead of 10p  and 01p , respectively. The 
object is to construct a CI for the marginal difference qppp −=−= ++ 11δ . Such intervals 
can be based on the statistic nNNnDn /)(/ 0110 −= , which is unbiased for δ  . An expression 
for the probability function (pf) of nD is given in Appendix (A1) and from the latter it is seen 
that: (i) The distribution depends only on the parameters p and q. (ii) The distribution is only 
symmetric if qp = . (iii) The pf has the property ( ) ==== bqapdDP n ,:

)( 0000 pN
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),:( aqbpdDP n ==−= . It is however far from clear how CIs can be constructed from the 
pd of nD . Below some approximate CIs of the Wald-type and exact CIs are considered. 
 

2.1 Approximate intervals of the Wald type 

All Wald type CIs are based on the fact that the standardized statistic 

 

nqpnDV
nDV
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=                                (1) 

 

has a standard normal distribution as ∞→n . However, for small n the distribution of nZ is 

heavily dependent on p and q. To demonstrate this, let 1z be the largest value for which 

2/)( 1 α<< zZP n  and let 2z be the smallest value for which 2/)( 2 α<> zZP n , so   

     

                                                 α−≥≤≤ 1)( 21 zZzP n                                                            (2) 

 

The percentiles 21  and zz may change substantially even for small variations in p and q and 

are far from those of the standard normal distribution. When 05.0=α and n = 10 one gets 

)66.1,32.2( 21 =−= zz  for p = 0.05 and q = 0.20 and )86.1,86.1( 21 =−= zz for p = 0.05 and q 

= 0.25, the latter values being calculated from the exact distribution of nD in the Appendix 

(A1). The statistic in (1) can not be used directly for constructing CIs for δ , but it is the basis 

for various approaches. 

    The most radical way to get rid of the nuicance parameters p and q in (1) is to replace the 

variance in the denominator by an estimator. In this way one gets a statistic nẐ  which only 

depends on the parameterδ . The inequality in (2) can now be inverted to get a CI forδ . From 

Slutsky’s Theorem (Casella and Berger, 1990, p. 220) it follows that also nẐ has a standard 

normal distribution for large n, but the convergence goes slower than for nZ . The 95 % CIs 

for δ  obtained in this way are (cf. Agresti and Min, 2005, and Tang, Tang and Chan, 2005) 
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The first of these CIs is denoted Wald and the second Waldcc (with correction for continuity). 

A problem with (3) is that simulations (not presented here) show that the distribution of nẐ in 

small samples is even more dependent on p and q than the distribution of nZ , so the use of 

the percentile 1.96 may be put in question. Anyhow, several studies have shown that Waldcc 

yields a higher degree of conservative CIs in small samples than Wald (see e.g. May and 

Johnson, 1997) and therefore only the former method is considered in the sequel. 

    Rather than estimating all parameters of the variance in (1) one may only estimate qp + , 

so the variance in the denominator is replaced by [ ] nnNNVn //)(~ 2
0110 δ−+= . A CI forδ is 

obtained from the set ofδ -values that satisfies { }21
~: zZz n ≤≤δ , where 

nnn VnDZ ~/)/(~ δ−= . The CI limits forδ are then found as the roots of a quadratic function 

inδ , see May and Johnson, 1997. Despite the intuitively appealing idea of this method that 

reduces the number of parameters to be estimated, it was concluded by May and Johnson 

(1997) that there was no clear choice between this method and Waldcc regarding coverage 

probabilities. One reason for this may be that a large variance in the denominator is likely to 

increase the length of the CI, and in the Appendix (A2) a proof is given for the rather 

unexpected result that the variance of nV̂ is smaller than the variance of nV~ provided that 

 

 ppq 21 −+<                                                                             (4) 
 
 

This region is depicted in Figure 1 in Section 2.2 in a different context, where it is 

furthermore demonstrated that in many applications the ),( qp -values are found within this 

region. The fact that CIs based on nV~ are less reliable than those based on nV̂  within the 

region defined by (4), was furthermore confirmed by simulations (not shown in this paper). 

Therefore this method is not considered further. 

    Another way of improving Wald was suggested by Agresti and Min (2005).The frequencies 

0110  , NN  and n were replaced by 4/* and 4/ ,4/ 01
*
0110

*
10 NnnNNNNNN +=+=+= , 

respectively. The choice N = 2 turned out to give the best coverage performance and this was 
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also supported by Bayesian arguments. Let ** ˆ and VDn denote the statistics based on the new 

quantities. Then the Wald+2 CI forδ is 

 ** ˆ96.1/ nn VnD ±                                                                  (5) 

    It was noticed above that the percentiles of the Z-statistics were far from those given by the 

standard normal distribution in small samples. One way of improving Wald might therefore 

be to replace 1.96 by percentiles that are closer to the actual percentiles. To this end 

simulations were performed in order to study how the 2.5 % and 97.5 % percentiles of nẐ

varied for n =10, 25, 50, 100 and p, q = 0.05,…(0.05)…,0.70, subject to 1<+ qp . For each 

value of n, p, q a simulation with 50,000 replicates was performed. The distribution of nẐ was 

mostly skew with exception for the case qp = when it was symmetric. It was furthermore 

found that the variance of nẐ was constantly larger than 1 and increased linearly with qp + . 

Table 1 summarizes some characteristics of the percentiles. The absolute percentiles  
 

Table 1 Mean, standard deviation (std) and range of the percentiles 21  and zz when p 
and q vary between 0.05 and 0.70. 
 
  1z   2z  
n Mean (std) Range Mean (std) Range 
10 -2.14 (0.36) -3.00, -1.50 2.14 (0.34) 1.50, 3.00 
25 -2.11 (0.22) -2.51, -1.63 2.10 (0.25) 1.63, 2.80 
50 -2.03 (0.12) -2.25, -1.83 2.03 (0.11) 1.84, 2.25 
100 -1.99 (0.07) -2.09, -1.87 1.98 (0.06) 1.87, 2.11 

 
 
decreased with increasing n but were far above 1.96. By fitting a model, ‘largest absolute 

mean percentile’ n
ADJ baz ⋅== , to the four positive means in Table 1 one gets (the coefficient 

of determination being 98.5 % for the linearized model) 

 

 10010 ,32.2 30/1 ≤≤⋅= − nnz ADJ                                                        (6) 

 

An alternative approximate CI where the percentile has been adjusted, Waldadj, is thus 

obtained by 

 nADJn VznD ˆ/ ±                                                                (7) 
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    Several other approximate unconditional methods have been suggested. E.g. Tango (1998) 

introduced a score method based on a statistic similar to nZ~ , but where p and q are replaced 

by ML estimators subject to the restriction that δ=− qp . The score method was compared 

with Wald+2 and it was concluded that the methods are comparable regarding coverage 

probabilities, Agresti and Min (2005). There are also approximate methods based on the 

trinomial distribution with estimates inserted for the parameters, Newcombe (1998) and Tang 

et al. (2005). These require more heavy computations and do not seem to perform 

substantially better than Waldcc and Wald+2, although it is hard to draw definite conclusions 

from the small-scale simulations that have been reported earlier 

2.2 Conservative intervals based on a transformation 

Introduce new parameters 21  and pp by putting 21 ppp = and )1)(1( 21 ppq −−= . Then it is 

shown in the Appendix (A3) that the following holds: 

Lemma nD can be expressed as nBA nn −+ where nn BA  and are independent binomial 

variables such that ),( is  and ),( is 21 pnBBpnBA nn .  

    Solving for 1p yields ( ) 2/4)1(1 2
1 pqpqpp −−+±−+=  and the requirement that 

21  and pp are real-valued leads to the condition in (4), but without strict inequality. The 

admissible (p,q)-area is shown in Figure 1  

 

 

Fig. 1 Plot of the admissible area ppqq 21max −+=≤ compared with the maximal (p,q)-

area pq −≤1 . 
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Notice that there is no need to specify an upper limit also for p, qqp 21 −+≤ , since the area 

defined by the latter is easily seen to be identical with the former admissible area. 

    In practice one may want to estimate the maximal admissible value of q. This can be done 

by simply insert the p-estimate yielding max 1q̂ , say. Since p̂ is biased for p  it is better to 

replace p̂  by pnpp ˆ8/)ˆ1(ˆ −+ , obtained from a Taylor approximation. The upper limit 

of q estimated in this way is denoted max 2q̂ . Some examples are quoted in Table 2, where it 

is seen that all q-estimates are well inside the admissible limit. 
 

Table 2 Cell frequencies in six data sets together with q-estimates and maximal   
admissible values. For the meaning of the last two columns see text. 

Source 11N
 

10N
 

01N  00N
 

n q̂  max 1q̂  max 2q̂  

Jones and Kenward (1987) 53 8 16 9 86 0.093 0.323 0.318 
Ward et al. (2000) 8 3 1 2 14 0.071 0.288 0.258 
Kao et al. (2002) 22 2 0 1 25 0 0.514 0.482 
Hsueh et al. (2001) 39 5 4 2 50 0.080 0.468 0.453 
Karacan (1976) 4 9 3 16 32 0.094 0.221 0.210 
Elston and Johnson (1984) 21 17 37 105 180 0.206 0.480 0.476 

 
 

 Since 121 −+=− ppqp the initial problem of finding a CI for qp − has been turned into 

the problem of finding a CI for 21 pp + (essentially), based on the distribution 

∑ −≤==≤+
i

nnnn ixBPiAPxBAP )()()( . The latter can in principle be obtained by first  

generating a sequence of largest lower and smallest upper points ),( UL xx such that  

α−≥≤+≤ 1)/)(( UnnL xnBAxP  for all possible values of 21 pp + , thereby creating a  

confidence contour (cf. Figure 1). The CI produced by the estimate ynBA nn =+ /)( is then  
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Fig. 2 Confidence contour obtained for 20 and 21 == npp  

 
determined by ( ))(),( 11 yxyx LU

−−  (cf. Casella and Berger, 1990, p. 420 and Stuart, Ord and 

Arnold, 1999, p.122). This approach would require a step-wise search over all 21 pp + that 

would not be less computer insive than existing methods, see e.g. Hsueh et al., 2001. 

However, if 021 ppp ==  say, then 12 0 −=− pqp and nDBA nnn +=+ is distributed 

),2( 0pnB . Exact conservative CIs for 0p can now easily be obtained by using the well-

known relation between the binomial and F distributions (Jowett, 1963 and Casella and 

Berger, 1990, p. 449). It follows that a conservative )%1(100 α− CI for δ is obtained from 
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( )
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(8) 

 
In (8) ),( 21

2
1

ffF α
−

denotes the )%2/1(100 α− percentile of the F-distribution with 21  and ff  

degrees of freedom. The expression in (8) does not cover the cases nss 2 and 0 == . In the 

former case the lower end-point is put equal to 0 and in the latter case the upper end-point is 

put equal to 1 (Casella and Berger, 1990, p. 449). This method for constructing CIs is denoted 

Trans. 
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    The CI in (8) is based on the assumption that 021 ppp == , but which are the properties of 

the CIs  when 21 pp ≠ ? To study this, 95 % CIs forδ were simulated with 21 , pp = 

0.1,…(0.1)…0.9, n = 10 and with 50,000 replicates  for each value of npp  and  , 21 . The 

results are summarized in Table 3a (coverage probabilities) and Table 3b (average lengths). 

Both tables are symmetric around 21 pp = with few exceptions due to random deviations since 

50,000 replicates are not sufficient to reach stability in all three figures after the decimal point 

(cf. Section 3.1). All coverage probabilities are above the stipulated level 95 %. However, 

when hpp =− 21  is large the coverage probabilities tend to be very large, indicating   

Table 3a Coverage probabilities (%) obtained by using (8) for various 1p and 2p  . 
1p       =2p  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

0.1 98.9 97.9 98.2 97.3 98.8 98.8 99.2 99.6 99.8 
0.2 98.0 97.8 96.4 97.9 97.6 97.8 98.3 99.0 99.6 
0.3 98.2 96.2 97.6 97.0 96.5 96.9 97.4 98.3 99.1 
0.4 97.3 97.9 96.9 96.3 96.2 96.2 96.8 97.8 98.8 
0.5 98.8 97.7 96.8 96.0 95.7 96.0 96.7 97.5 98.8 
0.6 98.9 97.8 96.9 96.3 96.0 96.3 97.0 97.9 97.3 
0.7 99.2 98.3 97.5 96.9 96.7 96.9 97.6 96.2 98.3 
0.8 99.5 98.8 98.3 97.8 97.7 97.9 96.3 97.7 98.0 
0.9 99.9 99.5 99.1 98.8 98.8 97.4 98.1 97.9 98.9 

 
Table 3b Average lengths obtained by using (8) for various 1p and 2p . 

1p       =2p  0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
0.1 0.584 0.668 0.736 0.788 0.830 0.862 0.884 0.898 0.905 
0.2 0.669 0.736 0.786 0.827 0.853 0.880 0.893 0.890 0.898 
0.3 0.736 0.786 0.827 0.855 0.877 0.890 0.895 0.893 0.884 
0.4 0.789 0.827 0.858 0.876 0.888 0.893 0.890 0.879 0.861 
0.5 0.830 0.858 0.880 0.888 0.892 0.888 0.877 0.858 0.830 
0.6 0.862 0.880 0.893 0.893 0.888 0.876 0.856 0.826 0.789 
0.7 0.884 0.893 0.890 0.890 0.877 0.855 0.826 0.786 0.736 
0.8 0.898 0.899 0.880 0.880 0.857 0.827 0.785 0.735 0.669 
0.9 0.905 0.848 0.862 0.862 0.830 0.789 0.735 0.669 0.583 

 

over-conservativeness. Also the lengths tend to increase as h increases. CIs determined by (8) 

will thus perform well provided that h is not too large, but it is hard to determine how likely 

this is without making further distributional assumptions. Assume e.g. a uniform distribution 

of ),( qp  over the admissible region in Figure 1. Then it is easily shown that in the present 

example h has a probability function given by  0 ,1.0,...,8.0,81/)109()( −−=+= hhhp and 

8.0 ,...,1.0 ,0 ,81/)109()( =−= hhhp . From the latter it is seen that large values of h are less 

probable. 
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    (8) can only be used if p and q falls within the admissible area, otherwise there is no 

guarantee that the CI is conservative. To illustrate this consider the case and 50.0=p

10.0=q . Here q is larger than the upper limit 0858.050.0250.01max =−+=q , but close 

to it. Simulation with 50,000 replicates and 100=n yielded a 95 % coverage probability of 

just 94.8. When the ),( qp -values are far from the admissible area the coverage probability 

can be much smaller. 

    Since the CI in (8) is given in closed form it is readily calculated. It can also be used to 

determine the sample size needed to obtain a CI of desired length, either from a pilot study or 

from reasonable assumptions about the magnitude of s (cf. Altman, 1990, p. 160), the choice 

ns = yielding the widest interval. As an example consider the data from Ward et al. in Table 2 

where n = 14. The observed difference between the marginal proportions is 14/)13(ˆ −=δ  = 

0.093 and by using (8) with s = 3-1+14 a 95 % CI for δ is (- 0.256, 0.511), indicating non-

significant difference from zero at the 5 % level. Assume that the data is the outcome of a 

pilot study used for determining the sample size in a final study. Two extreme cases are ns =  

(corresponding to 0ˆ =δ ) and ns 5.1=  (corresponding to 5.0ˆ =δ ). By using (8) one may 

study how the length of 95 % and 90 % CIs depend on n. This is demonstrated in Figure 3 

from which several conclusions can be drawn, e.g. that a sample size of about 50 is likely to 

yield a 95 % CI that is half of the one obtained with n = 14.    
 

 

Fig. 3 Length of 95 % CIs (filled lines) and 90 % CIs (dotted lines) plotted aginst sample size 
(n). The upper of each of the two lines is obtained with s = n and the lower with s = 1.5n. 
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2.3 Some previously suggested exact conservative intervals 
Hsueh et al. (2001) suggested a method that is based on inverting two one-sided score test 

statistics. By using the correspondence between hypothesis testing and CI, CIs can be 

constructed that are conservative. However, the CI limits have to be found by numerical 

calculations of trinomial tail probabilities and this makes the procedure extremely computer 

intensive. It was reported that a computer time of  about 200 minutes was needed in order to 

construct a CI from a particular sample with 50=n . A similar conservative procedure was 

suggested by Tang et al. (2005), the latter being based on inverting one two-sided score test 

statistic. These two methods, denoted EUM_1 and EUM_2, respectively, were compared in 

the latter article and it was found that the coverage probabilities of  EUM_1 never were 

smaller than those of EUM_2, and that EUM_1 yielded wider CIs. However, by using these 

methods it would not be feasible to determine the sample size in planned studies. 

 

3 Simulation results 

In this section the three approximate methods Waldcc, Wald+2, Waldadj and the conservative 

method Trans are compared in large-scale simulations. The results are then compared with 

those obtained in previous studies. The method Trans is also compared with the two 

conservative methods mentioned above. Since it is important that the simulation results are 

reliable a first section is devoted to design considerations. 

3.1 Design of the simulation study 

Two properties of the CIs were evaluated, coverage probability and average length. It was the 

aim to compare results from the present study with previous ones, but this turned out to be 

troublesome for several reasons. The outcome of a simulation is determined by choice of 

sample size n, choice of parameters p and q, and choice of the number of replicates in each 

simulation. Choice of n was the least problem since many of the previous studies use n = 10, 

25 and 100. Choice of p and q was more cumbersome since the latter are seldom reported, but 

only the value of qp −=δ . The number of replicates used in each simulation has in earlier 

studies varied between 100 and 10,000, but the latter numbers were found to be too small, 

especially for estimating coverage probabilities. The reliability when estimating coverage 

probabilities and lengths are illustrated in Table 4 with 1000 and 50,000 replicates. From the 

table it is concluded that even 50,000 replicates are not sufficient for reaching three stable 

figures after the decimal point. 
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Table 4 Variation limits of estimates computed from 10 simulations each with 1000 
and 50,000 replicates and with n = 10, qp == 25.0  

 Coverage probability  of 95 % CI Average length  

Method 1000 replicates 50,000 replicates 1000 replicates 50,000 replicates 
Waldcc 96.5 - 97.8 97.2 - 97.3 1.010 - 1.026 1.015 - 1.017 
Wald+2 92.5 - 97.8 93.2 - 93.4 0.759 - 0.766 0.763 - 0.764 
Waldadj 92.5 - 94.4 93.2 - 93.4 0.932 - 0.952 0.942 - 0.944 
Trans 95.0 - 96.7 95.6 - 95.8 0.890 - 0.893 0.892 

 
    Based on these considerations it was decided to use n = 10, 25, 50, 100 and δ =0, 0.2, 0.4, 

0.6, 0.8 with various p and q inside the admissible region. (Forδ = 0.6 and 0.8 just one 

combination of p and q was used since the admissible region is very narrow.) When 

comparing Trans with the exact methods EUM_1 and EUM_2 the case δ =0.3 was 

furthermore considered. Only positive values ofδ were used since negative values yielded the 

same coverage probabilities and lengths. Simulations, each with 50,000 replicates, were 

performed sequentially in steps until three stable figures after the decimal point of the 

sequential averages was reached and it turned out that 2-4 steps were needed. All simulations 

were based on random number functions in SAS version 9.1. A computer program is available 

from the author on request.  

3.2 Results 

The performance of the four methods is summarized in Table 5, from which the following 

conclusions are drawn.  

    Waldcc: For 25≥n all coverage probabilities were above 95 %. CIs were generally wider 

than those obtained by the other approximate methods and occasionally even wider than those 

obtained by the conservative method Trans. The method seems thus to be reliable but yields 

wide CIs. 

    Wald+2: Rather unexpectedly, this method was more reliable for the smallest sample size n 

= 10, in which case 5 out of 8 coverage probabilities in the table were above 95 %. For larger 

n the reliability was lower, even if the coverage probabilities were just below 95 %. On the 

other hand this method produced the shortest CIs among the compared methods, with few 

exceptions. 

    Waldadj: The method was extremily poor for n = 10, where only 1 out of 8 coverage 

probabilities were acceptable. For larger n it was slightly more reliable than Wald+2 but the 

latter yielded shorterCIs. A conclusion is that very little is gained by trying to adjust the 

percentiles in small samples by means of an adjustment to the mean percentiles.  
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    Trans: The method works well as far as 1p does not deviates too much from 2p . E.g  when 

25.0=p  and 25.0=q  (corresponding to 50.021 == pp ) the lengths are in most cases 

shorter than those of the approximate cases. On the other hand, when 05.0 and 05.0 == qp  

(corresponding to 05.01 =p  and 95.02 =p ) the method yields coverage probabilities of 100 

% or just below and the price that has to be paid for this are wide CIs. 
 

Table 5 Coverage probabilities of the 95 % CIs and average lengths of four methods 
when p, q  and n are varying. Bold italic figures signals that coverage probability is 
below 95 %. 

                                                Coverage probability                      Average length 

p q δ  Method n =10 n=25 n=50 n=100 n=10 n=25 n=50 n=100 

0.05 0.05 0 Waldcc 100.0 99.5 99.1 97.9 0.493 0.307 0.209 0.142 
   Wald+2 99.8 99.5 97.5 95.9 0.441 0.262 0.180 0.126 
   Waldadj 65.0 90.7 94.8 95.8 0.338 0.245 0.177 0.124 
   Trans 100.0 100.0 100.0 100.0 0.908 0.578 0.406 0.285 
0.25 0.25 0 Waldcc 97.2 96.1 96.3 96.0 1.018 0.620 0.427 0.295 
   Wald+2 93.4 94.3 94.5 94.6 0.765 0.521 0.380 0.273 
   Waldadj 93.4 95.4 95.3 95.0 0.945 0.586 0.406 0.281 
   Trans 95.8 96.5 96.4 95.9 0.892 0.573 0.404 0.283 
0.21 0.01 0.2 Waldcc 90.4 97.0 97.0 96.3 0.668 0.401 0.271 0.185 
   Wald+2 90.4 91.4 94.1 95.0 0.530 0.335 0.236 0.167 
   Waldadj 89.7 91.4 94.5 95.0 0.541 0.349 0.243 0.168 
   Trans 99.9 99.9 99.9 99.9 0.889 0.556 0.398 0.280 
0.36 0.16 0.2 Waldcc 96.1 96.4 96.4 96.1 0.995 0.609 0.419 0.290 
   Wald+2 94.3 94.8 94.7 94.8 0.755 0.514 0.373 0.268 
   Waldadj 93.7 95.4 95.5 95.0 0.921 0.572 0.398 0.275 
   Trans 96.4 97.1 95.9 95.7 0.876 0.563 0.396 0.279 
0.41 0.01 0.4 Waldcc 94.5 96.0 96.9 96.4 0.786 0.470 0.319 0.219 
   Wald+2 95.6 93.2 94.7 94.3 0.621 0.398 0.282 0.200 
   Waldadj 94.5 95.8 95.9 94.6 0.682 0.424 0.293 0.203 
   Trans 99.7 99.3 99.1 98.9 0.833 0.531 0.374 0.262 
0.49 0.09 0.4 Waldcc 95.0 96.3 96.0 96.0 0.927 0.574 0.394 0.272 
   Wald+2 95.5 95.3 95.1 94.8 0.732 0.488 0.352 0.251 
   Waldadj 95.0 94.5 95.0 95.0 0.852 0.536 0.372 0.258 
   Trans 97.4 97.1 96.2 95.5 0.826 0.529 0.373 0.262 
0.64 0.04 0.6 Waldcc 92.7 95.0 96.7 96.1 0.781 0.509 0.349 0.240 
   Wald+2 96.0 94.5 96.2 94.9 0.886 0.442 0.313 0.222 
   Waldadj 92.7 94.4 95.3 94.5 0.710 0.486 0.324 0.224 
   Trans 97.9 96.6 96.8 96.0 0.734 0.467 0.328 0.230 
0.81 0.01 0.8 Waldcc 87.7 96.3 97.1 96.1 0.524 0.377 0.270 0.184 
   Wald+2 97.4 95.9 95.8 95.7 0.601 0.367 0.249 0.171 
   Waldadj 87.4 88.8 93.6 93.8 0.455 0.337 0.241 0.168 
   Trans 98.9 97.0 95.5 96.7 0.584 0.361 0.251 0.175 

 



14 
 

As expected, the lengths of the CIs decreased with increasing n for all methods. A similar, but 

less apparent pattern, is seen for the coverage probabilities, which tend to approach 95 % as n 

increases. From the table it is evident that, when different methods are to be compared, it is 

not enough to just study the performance of the methods for various qp −=δ without taking 

account of both p and q. 

3.3 Comparison with previous studies 

A large number of comparative studies have been published on the issue, especially on the 

performance of approximate methods. It is beyond the scope of this article to review all of 

these, so below just a few are reviewed that seems to be relevant for this study. The findings 

in these are then contrasted with the results in the preceding section. First approximate 

methods are considered and then exact conservative methods. 

    May and Johnson (1997) compared Waldcc, Wald and the method based on the statistic nZ~  

(cf. Section 2.1). Here n = 50, 75, 100, 500 and the discordant cell proportions p and q were 

chosen such that p+q ranged from 0.055 to 0.1040. The number of replicates was 10,000. It 

was concluded that Waldcc performed better than Wald, but there was no clear choice 

between Waldcc and the method based on nZ~  regarding coverage probabilities. However the 

CIs obtained with Waldcc were wider. 

    Tango (1998) compared Wald with a proposed score method. In this study n =30, 50, 80, p 

= 0, 0.05, 0.10, 0.20 and two values of q were chosen such that ∆− ( qp in their notation) = 0 

and 0.1. Each simulation was performed with just 1000 replicates (in contrast to 10,000 

replicates that was used to study the power of the corresponding tests.). From the table on p. 

902 in the latter paper it is evident that the score method is more reliable than Wald. A curious 

pattern, that is not commented in the paper, is that the score method seems to be less reliable 

for the largest sample size n = 80. 

    Agresti and Min (2005) compared Wald, Wald+2 and the score method of Tango. The used 

n = 25 and varied the marginal proportions ) and (not   and 11 qppp ++ such that δ = 0 and 0.1. 

The number of replicates in the simulations was not reported. The conclusion was that 

Wald+2 performed better than Wald and that the coverage probabilities obtained with 

Wald+2 were comparable with those obtained with the scoring method of Tango, but yielding 

wider CIs.  
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    Tang et al. (2005) investigated the performance of five approximate methods, including 

Waldcc and the scoring method of Tango. Sample sizes were chosen as n = 7, 10, 15, 20, 25, 

30 and δ = 0, 0.3, 0.6, 0.95, without reporting what values of  p and q that where used. In the 

table on p. 3574 it is seen that Waldcc yielded coverage probabilities below 95 % in 8 out of 

24 cases, whereas the same figures for the score method was 6 out of 24 cases. The CIs 

produced by Waldcc were however wider. 

    Results from several other simulations have been reported but they are hard to compare 

with those above. E.g. Newcombe (1998) studied coverage probabilities of ten unconditional 

methods. 100 triplets of three functions of ),,( 11 qpp were chosen from uniformly distributed 

random number, using n =10, 11,...,100. Coverage probabilities were then calculated from the 

100 x 91 =9100 outcomes. Here it is hard to draw conclusions about the effect of n, p and q 

upon coverage probability and length.  

    Previous studies seem to confirm that Waldcc and Wald+2 have about the same reliability. 

This is not in accordance with the results in Table 5 which clearly shows that Waldcc is more 

reliable than Wald+2 for 25≥n . Earlier studies have also demonstrated that Waldcc yields 

wider CIs than Wald+2 and this agrees with the results in Table 5. 

    Now, consider the conservative methods EUM_1, EUM_2 and the new method Trans. The 

performance of these methods are summarized in Table 6. Since no values of p and q were 

reported in Tang et al. (2005) but only of δ , it is hard to draw any definite conclusions about 

the merits of the methods. However, from the table it is seen that the method Trans is 

comparable with the other methods. The coverage probabilities obtained by Trans are found 

between those obtained by the other methods, with exception for the case 05.0== qp  which 

yields over-conservativeness (cf . Section 3.2). Also, the lengths of the CIs obtained by Trans 

are not generally larger than those obtained by the other methods.  
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Table 6 Comparison between three exact methods for constructing CIs. Figures for 
EUM_1 and EUM-2 are quoted from tables IV and VI in Tang et al. (2005). Figures 
for Trans are taken from Table 5. When δ = 0 two figures are shown, one with 

25.0== qp  marked with *, and one with  qp = = 0.05 marked with **. Figures for 
Trans when δ = 0.3 are obtained with 12.0,42,0 == qp . 
 

                       Coverage probability                             Average length 

n δ  EUM_1 EUM_2 Trans  EUM_1 EUM_2 Trans  

10 0 97.838 97.838 95,8* 100.0** 0.911 0.823 0.892* 0.908** 
10 0.3 98.367 96.460 96.9  0.932 0.865 0.855  
10 0.6 98.897 96.577 97.8  0.863 0.831 0.734  
25 0 96.769 95.936 96.5* 100.0** 0.557 0.537 0.573* 0.578** 
25 0.3 96.922 95.541 96.4  0.589 0.562 0.549  
25 0.6 97.118 96.391 96.6  0.536 0.512 0.467  

 

4 Conclusions and suggestions for further studies 

In a first round three approximate methods and one conservative method to construct CIs for 

the difference between marginal proportions were compared. The approximate methods were 

based on improvements of Wald’s large-sample statistic. Of these, Wald’s method with 

continuity correction (Walcc) was found to be more reliable than methods that either adjust 

the percentiles (Waldadj) or the standard error (Wald+2), but Waldcc yielded wider CIs. 

Waldadj was based on an adjustment of the percentiles to the actual mean percentiles, but 

other types of adjustments may be taken into consideration, e.g. adjustment to the actual 

median percentiles. Also combinations of the methods may be worth considering, so that the 

high reliability of Waldcc is maintained while the length of the CI is reduced. One argument 

for using CIs of the Wald type being simplicity and the possibility to determine sample sizes 

in planned studies. However, CIs produced by the new method Trans has the same properties 

but having the advantage of being conservative provided that p and q are in the admissible 

region. Trans was shown to have coverage probabilities and lengths that were comparable 

with those obtained by the much more labouring exact methods EUM_1 and EUM_2. 

However, the comparisons were made for just a few p,q-values and a more extensive study is 

required to reach any definite conclusions.  
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Appendix 

 

(A1) The probability function (pf) of nD  
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Notice that for qp = the two variances are equal. For qp ≠ it is easily seen that the variance on the 

left hand side is smaller if 2)(1)(2 qpqp −+<+ , i.e. if ppq 21 −+< . 
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(A3) Proof of the Lemma in Section 2.2.2 

nD can be expressed as ∑
=

n

i
iZ

1

, where qpZPqZPpZP iii −−===−=== 1)0(,)1(,)1( and 

where the iZ s are independent. iZ has the probability generating function (pgf) )(sG
iZ = 

qsqpsp /1 +−−+ . Putting 21 ppp = and )1)(1( 21 ppq −−= yields ⋅−+= )1()( 11 pspsG
iZ  

1
22 )1( −⋅−+ spsp , which is the pgf of 121 −+ ii YY  where iY1  and iY2 are independent Bernoulli 

variables. Therefore, )()1()1()( 2211 sGspsppspsG nBA
nnn

D nnn −+
− =−+−+= and the Lemma 

follows (cf. Feller (1968), Chapter X1). 
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