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Abstract

Attractions between colloidal particles are often so strong that non-equilibrium
behavior results. However, dissolved non-adsorbing polymer can be added
to give a weak attraction between particles so that equilibrium phase tran-
sitions appear at moderate polymer concentrations. At higher polymer con-
centrations and small polymer-colloid size ratios non-equilibrium effects like
gelation occur, for which a complete understanding is lacking.
Monte Carlo and Monte Carlo-like computer simulations have been used to
investigate the role of many-body effects and the structures that colloidal
particles adopt under influence of a polymer-induced depletion attraction.
The phase diagram proves difficult to determine for these systems by direct
application of the Gibbs ensemble Monte Carlo method, especially for small
polymer-colloid size ratios that correspond to short-range attractions. How-
ever, a sequential equilibration scheme is shown be able to give equilibrated
fluid-fluid coexistence data where usual application of the method fails. The
dynamics of colloidal particles along this fluid-fluid coexistence curve is stud-
ied by a Brownian dynamics algorithm, corrected for the use of a large time
step. The dynamics slows down as the particle and polymer concentrations
are increased, but the systems appear to reach equilibrium for the cases stud-
ied. This is in contrast to what is found by applying mode coupling theory; it
predicts glass-like transitions already at modest polymer concentrations for
short-range attractive systems, which is an issue that is investigated to some
extent. In addition, a number of approximate theories have been developed
and tested against the results from the computer simulations.
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Chapter 1

Introduction

Colloidal dispersions are important not only because of their widespread oc-
currence in everyday items related to food, paint, inks, coatings, and systems
found in the pharmaceutical industries, they serve also as important model
systems for many biological systems and for the study of fundamental prob-
lems in condensed matter science, such as crystallization, gelation, and glass
transitions. The phase behavior of colloidal dispersions is of considerable
industrial importance but it is also of great fundamental interest. Colloidal
particles usually only interact with each other over distances significantly less
than the size of the particles. This is particularly the case for attractions [1].
In this sense colloidal attractions can be said to be short ranged compared
to those between atoms and molecules. This has a profound influence on the
structure, phase behavior, and dynamics of the system, and it is the sub-
ject of this thesis. Colloidal particles interacting with short and moderately
strong attractions can undergo both equilibrium and non-equilibrium tran-
sitions. While the former is well known, an example of the latter is physical
gelation. It has been observed experimentally in several, very different col-
loidal systems and it appears to be a common phenomenon in these types of
systems. During the last decade, intensive scientific attention has been given
to the gelation phenomenon in attempts to understand the mechanisms be-
hind this process. In spite of this, gelation is far from understood [2]. Clearly,
the knowledge of both the microstructural and dynamical behavior as well
as the precise characterization of the equilibrium phase diagram is impor-
tant for investigations of the nature of gel phases. While these processes
are sometimes difficult to control precisely in an experiment, computer sim-
ulations are characterized by well defined parameters and hence represent
an ideal tool to explore the properties of colloidal dispersions. Furhermore,
computer simulations bridge the distance between the complexibility of real
experiments and the approximate description of theories.
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The aim of this thesis is to improve our understanding of the equilibrium
and non-equilibrium behavior of colloidal systems of particles interacting
via short- and moderate-range attractions. In this process several methods
of computer simulation are used and are in many cases optimized for this
purpose. Another aim is to to develop, refine, and test some useful theories
of structure, phase behavior, and dynamics against results from computer
simulations.

We perform a systematic study of the structure, phase behavior, and
dynamics of short- and moderate-range attractive systems by use of mainly
computer simulations within well-defined model systems. During the course
of this study a careful assessment of the model and methology is performed
and in Paper I the validity of the model used in the main part of this work, the
Asakura-Oosawa-Vrij model [3–5], is examined. Accurate liquid structures
within this model are obtained by Monte Carlo simulations and given these
liquid structures predictions of the mode coupling theory for the boundary
of attractive glass/gel transitions are compared against experimental data.
In Paper II the fluid-fluid phase behavior is investigated for a polydisperse
version of the same model. It proves difficult to equilibrate the short-range
attractive systems of interest in the usual way by Monte Carlo simulations.
A sequential equilibration scheme is developed, which enables determining
fluid-fluid equilibration data down to reasonably short ranges of attraction.
The fluid-fluid phase boundary obtained from this work is used in Paper III
as starting point for investigations of the dynamics of the same system. This
is done by so-called smart Brownian dynamics simulation, which is shown to
be a method that can be used to reach the long time scales necessary to study
slow dynamics close to glass transitions. Finally in Paper IV, we return to
the mode coupling theory and investigate how it performs for systems with
particles interacting via very short-range attractions. In this limit it becomes
possible to simplify the theory.

The four scientific papers described above serve as the basis for this thesis.
In what follows, I start to provide some background information. In Chapter
2 a general description of colloidal systems, their interactions and phase
behavior is given. A description of the models used is given in Chapter 3 and
since most of this work is based of computer simulations, I give a summary
of the simulation methods used in Chapter 4. In chapter 5 I provide some
theoretical background and I also summarize some theoretical models that
have been developed as part of this thesis work. The results contained in
Papers I-IV are summarized in Chapter 6, and in Chapter 7 some conclusions
are given together with suggestions for further work.
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Chapter 2

Background

2.1 Colloids

Colloidal systems have been known for a long time and they have been stud-
ied systematically since the middle of the 20th century. Colloidal particles
are particles within a size range of about one nanometer to some few mi-
crometers, in at least one of their dimensions. These limits are not sharply
defined; a colloidal particle should be large enough so that the solvent under
most circumstances can be treated as a continuum, i.e. the solvent molecules
enter the effective interactions between the colloidal particles only in an av-
eraged way, and so small that it shows thermal motion, commonly referred
to as Brownian motion. Brownian motion is relevant only when thermal
displacement is a sizeable fraction of the linear dimension of the particle dur-
ing experimental time ranges. Sedimentation due to gravity provides often
a more practical definition of the upper size limit; displacement under the
action of gravity should be limited to an extent that allows for experiments
on processes for which Brownian motion is relevant. Colloidal dispersions
may appear in a variety of ways; they can be aerosols, solid or liquid parti-
cles dispersed in a gas, like smoke, fog or hairspray. Solid particles dispersed
in a liquid medium are called a dispersion or a sol. Examples of this are
printing ink and paint. They can be liquid particles dispersed in a liquid.
Such so-called emulsions are, e.g., milk and mayonnaise. Moreover, they can
be gas, liquid or solid particles dispersed in solid medium giving rise to solid
foam-like structures, solid emulsions like ice cream, and solid dispersions like
some alloys. Colloidal dispersions are commonly divided into three classes
where the colloidal particles are rigid entities, large flexible macromolecules,
or aggregates of small molecules in thermodynamic equilibrium with their
environment, like micelles and other self-assembling systems.
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To summarize, colloidal dispersions characterize a class of materials that
are very common in everyday life. Many industrial products, such as paints,
glues, polishes, lubricants, food products, and pharmaceuticals are colloids.
Biological materials, like viruses, bacteria, blood, proteins are also colloidal
in nature. Colloidal dispersions are also important as model systems. Their
characteristic length- and time-scales are such that they allow for direct
experimental observations using advanced microscopy techniques down to
single-particle resolution and experimental studies in the light scattering
regime with fine time resolution. Since the first experiments of Perrin at the
beginning of last century [6], colloids have been used as model systems to
study fundamental problems of statistical physics, like crystallization, fluid-
fluid phase separation, nucleation, and the wetting of solid substrates. More-
over, the properties of colloidal suspensions can often be changed in such a
way that both the strength and the range of the interactions can be controlled
independently, giving rise to complex and fascinating phase behaviors, with
no counterpart in the atomic world [7].

2.2 Colloidal interactions

In a colloidal system, a repulsive interaction due to the size of the partice is
always present. Also present are van der Waals forces which originate from
the polarizabilities of the atoms building up the colloidal particles. These,
often strong, attractions can be minimzed by matching the refractive indices
of the particles and solvent molecules. In addition, interactions of electro-
static origin can be present, and additives to the dispersion, like polymers,
may influence the interaction between the colloidal particles. In the case
of polymers, they can be grafted on the particle surfaces or free in solution.
When the polymers are free in solution they may induce a so-called depletion
interaction.

Depletion interactions

The colloid-colloid interaction can be changed by adding a second component
to the dispersion. Here we consider the case of non-adsorbing polymers.
Although these types of interaction can in general be complicated, the focus
here is on the case of polymer coils under “theta solvent” conditions where
the interactions between the polymers is weak.

Adding a second component, for example a non-adsorbing polymer, to
the colloidal dispersion induces an effective interaction between the colloidal
particles: a so-called depletion interaction. The depletion interaction is of
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Figure 2.1: Illustration of the depletion interaction. Left: The polymer coil

(green) center of mass is excluded from a region around the colloidal particle, the

depletion zone (dashed line). Right: As two colloidal particles approach each

other, their depletion zones start to overlap (red region). The polymer coils find

more volume available to them and their translational entropy is increased. This

increase in entropy leads to an effective attraction between the colloidal particles.

entropic origin. As illustrated in figure 2.1, the polymer coil center of mass
is excluded from a region around the colloidal particle, called the depletion
zone. When the colloidal particles start to approach each other, their de-
pletion zones overlap and the polymer coils have access to more volume and
their translational entropy increases. The increase in entropy can be de-
scribed by an effective attractive interaction between the colloidal particles
even though the particles and polymers may in actuality not exert any at-
tractions on each other at all. This effective attraction can also be viewed
as arising from an unbalanced osmotic pressure pushing the colloids together
as polymer coils are excluded from the depletion zones between the colloids.
By changing polymer concentration and/or polymer molecular weight, the
strength and range of the effective attraction can be systematically varied and
colloid-polymer mixtures have been developed as an important experimental
model system. A particularly simple model for colloid-polymer mixtures was
proposed independently by Asakura and Oosawa [3, 4] and by Vrij [5], and
it is often referred to as the Asakura-Oosawa (AO) or Asakura-Oosawa-Vrij
(AOV) model. In spite of its simplicity, it captures the main features of
colloidal-polymer systems. As the AOV model is used in the majority of this
work, it will be described in detail in section 3.1.

2.3 Phase behavior

Colloidal systems exhibit a rich and fascinating phase behavior. Also a rela-
tively simple system of spherically isotropic particles show a phase behavior
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which depends in a sensitive manner on the interactions characterizing the
system. The simplest colloidal system, the hard sphere system, show both
equilibrium and non-equilibrium phase transitions [8]. Below the volume
fraction φ = 0.494, it is in a fluid state and above φ = 0.545 it freezes
completely into a fcc crystal [9]. Between these two volume fractions, the
fluid and crystal phases coexist. The equilibrium state above φ = 0.545 is a
fully crystalline state up to close packing of φ = 0.74 for fcc crystals. The
crystalline state of a hard sphere system is a purely entropic effect; the par-
ticles have access to more volume when in a crystal than they would have in
a fluid phase at the same volume fraction. Besides these equilibrium tran-
sitions also non-equilibrium transitions occur under some conditions. The
hard-sphere system shows a glassy state above φ ≈ 0.58 [8,10]. In this repul-
sive glass, the particle dynamics slows down and the system shows solid-like
properties but is structurally disordered, like a fluid. This dynamic slowing
down and arrest is most often explained by the so-called cage effect [10, 11].
The particles experience themselves as being trapped in a cage made up by
their surrounding neighbors. To escape from the cage, which is necessary
for behaving like an equilibrium fluid, the cooperative movement of many
particles simultaneously is needed. The equilibrium phase behavior is well
understood for the hard-sphere system but the glass transition continues to
attract scientific attention. When including additional interactions besides
the hard-sphere repulsion the situation becomes more complicated.

Adding additional interactions, either repulsive, attractive, or a combi-
nation of both, complicates the phase behavior. In this work the focus is on
systems composed of spherical hard-core particles with an additional short-
or moderate-ranged attraction. If the range and strength of attraction is large
enough the colloidal fluid can phase separate into a low-density, i.e. dilute,
colloid fluid and a higher-density colloidal fluid, similar in some ways to the
gas-liquid transition in the atomic case. At higher particle concentrations the
freezing transition occurs. So far, the phase diagram is similar to that of an
atomic system; it has a critical point and a triple point. This is the situation
illustrated in the left part of figure 2.2. The phase behavior of the attractive
system depends sensitively on the range of attraction [12–14]. Decreasing
the range of attraction, the critical point drops because stronger attractions
are needed for phase separation to compensate for the shorter range. Even-
tually the fluid-fluid coexistence line or binodal becomes metastable with
respect to crystallization. For a suffiently short-ranged attractive system,
the thermodynamic equilibrium state is either a low-density fluid, a crystal
phase, or both in equilibrium with each other, as illustrated in the right
part of figure 2.2, where also the metastable fluid-fluid binodal (solid line)
is shown. The critical point becomes metastable when the range of attrac-
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Figure 2.2: Schematic equilibrium phase diagram in terms of strength of at-

traction and volume fraction for systems characterized by attractive interactions.

Left: Here the attraction is of longer range relative to the particle size. The sys-

tem exhibits fluid-fluid phase separation and it has a critical point and a triple

point. Right: For sufficiently short-range attractions, the fluid-fluid binodal is

metastable with respect to crystallization and the critical and triple points are

absent.

tion is lower than about 15 % of the particle diameter if one replaces the
interaction by an effective square-well potential [15]. The equilibrium crystal
phase is a fcc crystal, but Bolhuis and Frenkel [16] have predicted that for
very short-ranged attractions also a crystal-crystal phase transition occurs
at high densities.

Also the attractive systems show non-equilibrium transitions. At high
densities and low attraction strength, the situation is similar as that for the
hard-sphere model – a repulsive glass is formed. At these high densities it
has been found that by increasing the attraction strength a melting of the
repulsive glass takes place, which means equilibrium is recovered by adding a
weak attraction. The interpretation is that a weak clustering of the spheres
opens up the cage and the particles may more easily escape and the glass
melts [17]. Increasing the attraction strength further, the attractions be-
come strong enough for the particles to “bond” physically to each other and
an attraction-driven glass is formed [17–21]. For systems with short-range
attractions, glass-like transitions occur also at lower volume fractions [22],
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where they are commonly referred to as gels or physical gels because the
bonds between the particles are non-covalent. Colloidal gels are being stud-
ied quite intensely and it seems that they are created during the interplay
between fluid-fluid phase separation and some form of structural arrest [2,23].
There is some indication that this structural arrest may come from the attrac-
tive glass regime which many times comes in close proximity to the fluid-fluid
binodal.

For these types of systems the equilibrium phase behavior is reasonably
well understood, albeit not easily predicted with quantitative accuracy the-
oretically or determined by computer simulations. Polydispersity in particle
size complicates matters and only some qualitative trends are known. Even
less is known of the effects of polydispersity on glass and gel transitions. It is
known that phase separation of polydisperse systems is associated with frac-
tionation to varying degree, such that the coexisting phases not only differ
in volume fraction from the ‘parent’ system but also in composition. This
effect requires consideration in studies of colloidal phase behavior because
colloidal systems are almost invariably polydisperse to some degree.
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Chapter 3

The Model

Colloidal dispersions are complex fluids, and the theoretical treatment of
them usually has to rely on coarse-graining techniques. Due to the large time-
and length-scale differences between the colloidal particles and the solvent
molecules in the dispersion, the solvent can under most circumstances be
treated as a continuum. The solvent degrees of freedom are integrated out,
and the resulting effective interaction energy between the colloidal particles
is a free energy, a potential of mean force, U(rN ). Generally, U(rN), is
complicated and depends on the coordinates of all N particles. Usually pair-
wise additivity is assumed, i.e. the interaction potential is expressed as a
sum over pair-potentials, which for spherically symmetric particles is:

U(rN) =
1

2

N
∑

i

N
∑

j 6=i

u(| ri − rj |) (3.1)

Pair-wise additive model potentials have been shown to give results in good
agreement with experimental data in many cases. Within the Asakura-
Oosawa-Vrij model used in this work, the assumption of pair-wise additivity
is exact for polymer-colloid size ratios smaller than about 0.1547 [12,24] and
we have shown in Paper I that pair-wise additivity is a good approximation
also for the case of the somewhat larger size ratios used in our work.

3.1 The Asakura-Oosawa-Vrij model

The Asakura-Oosawa-Vrij (AOV) model was proposed already in the 1950’s
by Asakura and Oosawa [3, 4] and later also independently by Vrij [5]. The
AOV model aims to describe the depletion interactions present in a system of
hard-sphere colloids dispersed in a polymer solution at near-theta conditions.
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The model can be described in two, under some circumstances, equivalent
ways. In Vrij’s formulation of the model, it is described as a non-additive
binary hard-sphere mixture [5,25]. The colloids are modeled as hard spheres
whereas the polymers are treated as an ideal gas, i.e. they are freely able
to penetrate one another, but with a hard-sphere interaction with respect to
the colloids, i.e.

ucc(r) =

{

∞ r < σc

0 r > σc
(3.2)

ucp(r) =

{

∞ r < σcp

0 r > σcp
(3.3)

upp(r) = 0 (3.4)

Here, r is the center-to-center separation distance, σ is the particle diame-
ter, the subscripts c and p denote colloids and polymers, respectively, and
σcp = (σc + σp)/2.

Alternatively, the system can be described as an effective one-component
system in which the colloidal particles interact in a pair-wise additive man-
ner; they possess a hard-core repulsion preventing overlap plus an attractive
interaction, given by the so-called Asakura-Oosawa (AO) potential:

βuAO(r) = −φ(R)
p (1 + ξ)3

[

1 − 3

2

(

r/σc

1 + ξ

)

+
1

2

(

r/σc

1 + ξ

)3
]

(3.5)

The size ratio, ξ = σp/σc, determines the range of the attraction and the

volume fraction of the polymer φ
(R)
p sets the magnitude of the attraction.

Actually it is the osmotic pressure of the polymer solution that determines
the magnitude of the attraction so it is more correct to state that it is the
number density of polymer, viz. Π = n

(R)
p kBT , that to leading order accounts

for the well depth. Also it is important that the volume fraction be based on
the volume available to the polymers as indicated by the superscript [13,22].

For small size ratios, ξ ≤ 2/
√

3 − 1 ≈ 0.1547, all three- and higher body
contributions to the effective potential vanish [12] and these two descriptions
become equivalent provided the mapping between them is done in a self-
consistent way [24]. The key parameter in this context is the free-volume

fraction α = φp/φ
(R)
p of such an idealized colloid-polymer mixture, relating

the polymer volume fractions φp and φ
(R)
p to one another. The free-volume

fraction depends not only on the volume fractions but also implicitly on the
colloid structure as [24]:

α =
φp

φ
(R)
p

= 1 − φc (1 + ξ)3 − 12φ2
cξ

3

φ
(R)
p

∫ 1+ξ

1

drr2gcc(r;φc, φ
(R)
p )βuAO(r) (3.6)
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Here, r has been made non-dimensional with σc, and gcc(r;φc, φ
(R)
p ), the

colloid-colloid radial distribution function, is obtained from a system of col-
loids interacting via the AO-potential in equation 3.5.

The AO potential, extended to take polydispersity into account, for two
spheres i and j with diameters σi and σj , respectively, in the presence of
monodisperse polymer with diameter σp is given by [26]:

βu(z) = −φ(R)
p

{

(1 + η)3 − 3

2
z (1 + η)2 +

1

2
z3 − 3

8

1

z
(ηi − ηj)

2 [z − (1 + η)]2]
}

(3.7)
where z is the distance between particles i and j normalized with the polymer
diameter, z =

rij

σp
, and ηi = σi

σp
, and η = 1

2
(ηi + ηj). The polydispersity causes

differences in the interaction between different pairs of particles. Apart from
the differences in the hard-core interaction resulting from the differences in
particle diameters the attractive well depth also increases with particle size.

In spite of its simplicity, the effective AO pair potential is known to
capture the main features of polymer-colloid mixtures. The fully tunable
character, both in terms of magnitude and range of the attraction, of the
AO-potential makes it not only interesting from a theory and simulation
point of view, but colloid-polymer systems have become established as the
experimental model systems of choice for systematic studies of, e.g., struc-
ture, dynamics, and phase behavior [7].

3.2 Square well potential

Another commonly used model system for describing colloidal systems is the
square well (SW) model. The SW potential is given by a hard core repulsion
and an adjacent attraction in the form of a well.

u(r) =







∞ 0 < r < σ
−ǫ σ < r < λσ
0 λσ < r

(3.8)

where ǫ is the well depth, λ = 1 + δ, characterizes the range over which the
attraction acts, and r is the center-center distance of separation.

3.3 Schulz distribution

Colloidal dispersions are with some exceptions known to exhibit a size dis-
tribution, a shape distribution and in the case of charged particles also a
charge distribution. While the shape distribution often can be avoided, it
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is harder to completely reduce the size- and charge distributions. The size
polydispersity of many colloidal systems is known to be modeled well by the
Schulz distribution [27, 28], which is given by:

f(σ) =

(

z + 1

σ

)z+1
σz

Γ(z + 1)
e(z+1)σ

σ (3.9)

where σ is the particle diameter, Γ(z) is the gamma function and z is a
parameter controlling the width (polydispersity) of the distribution.

In a computer simulation of a finite number of particles, it is appropriate
to work with a discrete representation of the continuous Schulz distribution.
Following the methology developed by D’Aguanno and Klein [29], it is pos-
sible to approximate the continuous distribution by a discrete N-component
mixture by requiring equality of moments. Working with normalized mo-
ments:

M
∑

i=1

xi =

∫ ∞

0

dσf(σ) = 1 (3.10)

M
∑

i=1

xi

σi

σ̄
= σ̄−1

∫ ∞

0

dσσf(σ) = 1 (3.11)

M
∑

i=1

xi

(σi

σ̄

)2

= σ̄−2

∫ ∞

0

dσσ2f(σ) =
z + 2

z + 1
(3.12)

M
∑

i=1

xi

(σi

σ̄

)3

= σ̄−3

∫ ∞

0

dσσ3f(σ) =
(z + 3)(z + 2)

(z + 1)2
(3.13)

and so on. Here, xi is the mole fraction of particles belonging to component
i with diameter σi.

Already a small number of components in the mixture give quantitative
results for many applications. In the approach by D’Aguanno and Klein a
discrete M-component representation of the continuous Schulz distribution is
obtained by matching the first 2M moments and solving equations like 3.10-
3.12 for M mole fractions and M diameters. In a computer simulation we
require integer numbers of particles and therefore only the first M moments
can be enforced, whereby M equations are solved for the diameters for a set
of prescribed mole fractions. For a ternary mixture only equations 3.11 - 3.13
have to be solved for the three diameters given appropriate mole fractions.
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Chapter 4

Computer simulations

Computer simulations have, all since computers became available for non-
military use in the early 1950s, developed as an increasingly important tool
in a variety of scientific areas. The reasons for their importance are nu-
merous. They can be ethical; for example, the use of animal experiments
and chemicals affecting the environment can be minimized by replacing ex-
periments with computer simulations. Computer simulations are accessible
where real world experiments are difficult or even impossible to perform.
They can be done under conditions of extreme temperatures and pressures
or under conditions inappropriate for reasons like hazardness. They can also
be used to investigate materials which are very rare or which have not been
prepared yet and they are often cost effective. In computer simulations, the
microstructure of a material is easily obtained, i.e. the detailed informa-
tion of the positions of all particles are available. This information, which
is important for the fundamental understanding of how and why different
processes occur, is often difficult to determine experimentally. Computer
simulations are also important for the development of theories. Theories are
invariably approximate to varying degree. As computer simulations provide
an exact result within a given model, they serve as critical tests for approx-
imate theories. In this work, we have used mainly Monte Carlo or Monte
Carlo-like computer simulations to investigate both microstructures, phase
behavior, and dynamics of colloidal systems and to test theories.

4.1 Monte Carlo simulations

The name Monte Carlo simulation originates from the heavy use of computer
generated random numbers by the method. The Monte Carlo (MC) simula-
tion method relies on statistical mechanics and can be performed in a variety
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of ensembles. In what follows, a brief description of the methods used in this
work, canonical MC, Gibbs ensemble Monte Carlo (GEMC), and a so-called
smart Brownian dynamics method, is given. [30]

4.1.1 Canonical Monte Carlo

In a Monte Carlo simulation in the canonical ensemble, i.e. a simulation of
a system with fixed number of particles (N), in a given volume (V ), and
at a given temperature (T ), the classical partition function for N identical
particles reads as

QNV T =
1

h3NN !

∫

dpNdrNe−βH(pN ,rN ) (4.1)

where the Hamiltonian (H) is the sum of the kinetic (K) and the potential
(U) energies, H = K+U , of the system. rN and pN are the coordinates and
the momenta, respectively, of all N particles. Integrating over the momenta,
pN , gives

QNV T =
1

N !λ3N
ZNV T (4.2)

where λ is the thermal de Broglie wavelength and Z is the configurational
partition function:

ZNV T =

∫

drNe−βU(rN ) (4.3)

While in experiments time averages for a given quantity usually are de-
termined, the corresponding averages calculated in Monte Carlo simulations
are ensemble averages. The so-called ergodic hypothesis states that, provided
all configurations can be realized in a finite amount of time, the time and
ensemble averages are identical. An ensemble average of a phase function
A(pN , rN) is defined as:

〈A〉 =

∫

dpNdrNe−βH(pN ,rN )A(pN , rN)

QNV T

(4.4)

and the probability density, P , of finding the system at the phase point
(pN , rN) equals

P =
e−βH(pN ,rN )

QNV T

(4.5)

When the function A has a simple dependence on the momenta it can
be integrated over analytically and we can focus on the configurational part,
given by the configurational ensemble average

〈A〉 =

∫

drNe−βU(rN )A(rN)

ZNV T

(4.6)
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and later one can add the contribution from the momentum-dependent part.
The configurational probability density function, ρNV T

ρNV T =
e−βU(rN )

ZNV T

(4.7)

is the probability to find the system in configuration rN irrespective of the
momenta. Numerical integration requires descretizing using L points along
each of the 3N coordinates; the integrand has thus to be evaluated L3N times
for each configuration. Also, the probability of realizing any configuration is
proportional to the strongly varying Boltzmann factor e−βU and numerical
integration schemes usually works best for functions that are smooth over
distances corresponding to the mesh size. Clearly, numerical integration of
these types of integrals is impossible for real systems. Moreover, integrating
the integrand in for example a dense liquid, the Boltzmann factor is van-
ishingly small for the overwhelming majority of phase points. It would be
preferable to sample many points along the trajectory where the Boltzmann
factor is large and a few elsewhere. This is the principal idea of importance
sampling. In general, it is not possible to evaluate an integral such as in
equation 4.3 by direct Monte Carlo importance sampling. However, in many
cases, it is not the integral itself which is interesting but averages of the
type in equation 4.6. Hence, it is the ratio of two integrals which has to
be evaluated. Metropolis et.al. [31] devised a scheme to sample such a ra-
tio by construction of an importance-weighted random walk in configuration
space, generating points in configurational space with a probability density
proportional to the Boltzmann factor.

In the NV T -Monte Carlo method, where a system with N particles in
a constant volume V and at temperature T is simulated, this is achieved
by displacement of the N particles according to certain acceptance criteria.
The acceptance rules are chosen such that these configurations occur with a
frequency prescribed with the desired probability distribution, the Boltzmann
distribution.

MC simulations of a fluid system aim to provide information about the
properties of a macroscopic sample. Due to computer limitations, most simu-
lations probe the structural and thermodynamical properties of a system of a
few hundreds to a few thousands of particles or perhaps tens of thousands on
some occasions. Clearly, this number is far from the thermodynamic limit.
In order to simulate bulk phases it is essential to choose boundary condi-
tions that mimic the presence of an infinite bulk surrounding the N -particle
model system. This is usually done by employing periodic boundary condi-
tions (PBC). The use of PBC proves to be an effective method to simulate
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homogeneous bulk systems, at least away from a continuous phase transition,
where problems, mainly due to density fluctuations and a growing correlation
length, with PBCs can be expected.

4.1.2 Gibbs ensemble Monte Carlo

NVT-MC is not the proper choice of method to determine coexistence curves,
at least not if a system with a moderate number of particles is simulated. If
two phases coexist in such systems, a relative large fraction of all particles
reside in or near the interface between the phases. This is a non-negligible
effect even for quite large systems. A relatively important free-energy cost is
associated with the creation of an interface, so much so that, for sufficiently
small systems, it is favorable for the system not to phase separate at all [30].
There exist several schemes to study phase coexistence without creating an
interface. For fluids, a well known method is the Gibbs ensemble Monte
Carlo (GEMC) method.

With the GEMC method by Panagiotopoulos [32], phase equilibria can
be studied in a single simulation. In the GEMC method, where phase equi-
librium is simulated under conditions where the pressure, temperature and
chemical potential(s) of the coexisting phases are equal, the system sponta-
neously finds the densities and compositions of the coexisting phases. Here,
focus is on the version of the GEMC method were the total number of parti-
cles and the total volume of the two boxes remains constant, i.e. at constant
N, V, T conditions.

The partition function for N particles distributed over the two volumes
V1 and V2 and at temperature T is [33]

QG(N, V, T ) ≡
N

∑

n1=0

1

V λ3Nn1!(N − n1)!

∫ V

0

dV1V
n1
1 (V − V1)

N−n1

∫

dsn1
1 e

−βU(s
n1
1 )

∫

dsN−n1
2 e−βU(s

N−n1
2 ) (4.8)

where, again, λ is the thermal de Broglie wavelength. si is the coordinates
for all particles in box i, scaled with the box length, i.e. sni

i = rni

i /Li. The
indices indicate the box association. The two volumes, V1 and V2, can change
in such a way that the total volume, V = V1+V2, remains constant. It follows
that the probability of finding a configuration with n1 particles in box 1 with
volume V1 and positions sn1

1 and sN−n1
2 is given by:

P (n1, V1, s
n1
1 , s

N−n1
2 ) ∝ V n1

1 (V − V1)
N−n1

n1!(N − n1)!
e−β[U(s

n1
1 )+U(s

N−n1
2 )] (4.9)
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From equation 4.9 it follows that, to sample all possible configurations
of two subsystems which can exchange particles and volume, three types
of moves are needed: displacements of particles, changes of volume under
the condition that the total volume is unchanged, and transfer of particles
between the two boxes. Depending on how the moves are constructed, the
acceptance criterion is adjusted so that the desired probability distribution
is obtained.

The GE method is known to perform well for determination of phase
transitions, at least away from the closest vicinity of the critical point. Its
main limitation is that it breaks down when at least one of the two phases
become so dense that it becomes impossible to exchange particles effectively.
Moreover, it is possible to determine the chemical potential in either box
directly from the particle exchange move via an insertion formula [33]

µa = −kBT ln

{

λ−3

〈

V a

Na + 1
e−βUa+

〉}

(4.10)

where U+ is the energy change that results from inserting a particle in box
a, and µa, V a, and Na are the chemical potential, volume, and number of
particles in box a.

4.2 Smart Brownian dynamics

The Brownian Dynamics (BD) simulation method is a technique used to
simulate the dynamics of particles that undergoes Brownian motion. This
technique takes advantage of the fact that it is a large time and length scale
difference between the Brownian particles and the solvent molecules. The dy-
namics of the coarse-grained system, neglecting hydrodynamic interactions,
can be described by the Langevin equation:

Ftot
i (t) = Fint

i (t) + FF
i (t) + FB

i (t) (4.11)

The total force on particle i is expressed as a sum of the net interaction force
between the particle i and the other Brownian particles, the force which
derives from the potential of mean force Fint

i (t), and the forces due to inter-
actions between the particle and the solvent molecules. Treating the solvent
as a continuum, the systematic collisions with the solvent molecules are de-
scribed by a determinisic friction force, FF

i (t) = ζ ṙi (t), and a stochastic force
FB

i (t) which aims to mimic the random collisions of the solvent molecules
and the Brownian particle. Here, ζ is Stokes’ friction coefficient, FB

i (t) is
Gaussian-distributed with 〈FB

i (t)〉 = 0 and 〈FB
i (t)FB

j (t′)〉 = 2kBTζδij(t−t′).
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Averaging the Langevin equation over a time interval ∆t large compared
to the solvent time scale, the particle accelerating term in the above momen-
tum Langevin equation can be neglected,

mr̈i (t) = Fint
i (t) − ζ ṙi (t) + FB

i (t) ≈ 0 (4.12)

and using the Stokes-Einstein relation, the positional Langevin equation can
be written as:

ṙi (t) = βD0,iF
int
i (t) + βD0,iF

B
i (t) (4.13)

The Brownian Dynamics simulation is performed by integrating this stochas-
tic differential equation forward in time by an appropriate algorithm. A
commonly used algorithm is the Ermak scheme [34]:

ri (t0 + τ) = ri (t0) + βD0,iF
int
i (t0) τ +

√

2D0,iτn (4.14)

where τ is the time step and n is a vector of independent Gaussion-distributed
random numbers with zero mean and unit variance.

The standard Brownian Dynamics method employing the Ermak scheme
requires finite and continuous forces. Since the Asakura Oosawa model sys-
tem used in this work includes a hard-sphere repulsive potential we have cho-
sen to use so-called Smart Brownian Dynamics [35–39], a method designed
to deal with hard-sphere interactions and other steep repulsive interactions.
It is a force-bias MC method in which the Ermak scheme is used to generate
the trial displacements of the particles. The moves from the old state (o) to
the new state (n) are then accepted with a probability min(1, Po→n), where
Po→n is:

Po→n = exp
[

− β (Un − Uo) − 1
2
(rn

i − ro
i )β (Fn

i − Fo
i )−

1
4
D0,iτβ

2 (Fn
i · Fn

i − Fo
i · Fo

i )
] (4.15)

The change in energy (Un − Uo) is familiar from the usual un-biased Monte
Carlo algorithm and the remainder, which derives from enforcing detailed
balance, serves to correct for the biasing of the moves in the direction of the
acting force that results from applying equation 4.14

In brief, the Smart BD algorithm reads as follows:

1. Select a non-overlapping configuration.

2. Choose a random permutation of particle indices.

3. Sample a new position of particle 1 according to the Ermak scheme
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4. Accept the move with probability min(1, Po→n). If the move is rejected
the old state is counted again.

5. Repeat steps 3 and 4 until all particles had one chance to move.

6. Time is advanced by τ after each particle had a trial move.

where we have used Fisher-Yates shuffling [40] to generate the random per-
mutations of particle indices in step 2 above.

The Smart BD algorithm fulfills detailed balance under all conditions.
Correct equilibrium averages are obtained after equilibration even when a
large τ is used and, hence, Smart BD allows for larger time steps than stan-
dard BD does. If the generated trajectories are used to calculate dynamic
properties, like the mean-square displacement, the Smart BD algorithm be-
comes exact in the limit τ → 0 only, i.e. where all moves are accepted. In
that case, the Smart-BD and the Ermak standard BD schemes are the same.
The Smart BD algorithm can be extended to include hydrodynamic interac-
tions [41] , i.e. when the particle mobility βD0 depends on the configuration.
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Chapter 5

Theories

As a potential of mean force and in many cases an effective pair potential can
be obtained for the colloidal particles, statistical mechanics combined with
theories developed for simple liquids can be used to describe the equilibrium
behavior of a colloidal system. Because of this many existing theories can be
directly applied to colloidal systems. However, in many cases they need to
be modified to include, e.g. polydispersity, and for dynamic properties it is
only appropriate in some circumstances to adopt directly a theory for simple
liquids.

5.1 Correlation functions

The radial distribution function is an important property used to characterize
the microstructure of a fluid. It expresses the probability to find a particle at
a certain distance from another particle. The radial distribution function is
directly measurable by microscopy experiments and indirectly by scattering
experiments on colloidal dispersions. It also plays a central role in theories
of liquid state. Numerical results for g(r) can be compared with theoretical
predictions and thus serve as a criterion to test a particular theory. Once
g(r) is known, and provided that the particles interact through a pair-wise
additive interaction, all thermodynamic properties are accessible since they
can be written as integrals over g(r).

The total correlation function, h(r12), defined as h(r12) = g(r12) − 1 was
by Ornstein and Zernike divided into two parts, one direct and one indirect
part [42]

h(r12) = c(r12) + ρ

∫

c(r13)h(r23)dr3 (5.1)

The above Ornstein-Zernike (OZ) equation defines the direct correlation func-
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tion c(r), expressing the direct correlation between particle 1 and 2. The
latter part corresponds to the indirect part of the total correlation function.
The generalization of the OZ equation for mixtures is:

hij(r12) = cij(r12) + ρ
∑

l

xl

∫

hil(r13)clj(r23)dr3 (5.2)

where the sum runs over all components of the mixture and xi is the mole
fraction of component i. The integral equation theories are generally based
on a number of exact relationships between different distribution functions.
These relationships are turned into closed, solvable systems of equations by
some approximate closure relation. A closure relation, known to give accurate
results for systems with short range interactions, is the so-called Percus-
Yevick (PY) approximation [42]:

g(r) ≈ e−βu(r) [1 + h(r) − c(r)] (5.3)

cij(r) = (1 − eβuij(r)))gij (5.4)

The PY theory can be solved analytically for hard spheres [43, 44] and so-
called adhesive hard spheres [45] but solutions are normally done numerically
in an iterative manner.

The PY approximation is known to give accurate results for systems with
short-range interactions. This is found to be the case for short-range attrac-
tions of the effective one-component description of the AO model but is not
true for the binary AO system. Since the polymer-polymer direct correlation
function vanishes in the PY approximation for the binary AO model, we are
left with the following equations,

hcc(r12) = ccc(r12) + ρc

∫

ccc(r23)hcc(r13)dr3 +

ρp

∫

ccp(r23)hcp(r13)dr3 (5.5)

hcp(r12) = ccp(r12) + ρc

∫

ccp(r23)hcc(r13)dr3 (5.6)

hpp(r12) = ρc

∫

ccp(r23)hcp(r13)dr3 (5.7)

involving the total and direct correlation functions, hij(r) and cij(r). As
a further approximation one can replace equation 5.5 by the effective one-
component equation: heff

cc (r12) = ceffcc (r12)+ρc

∫

ceffcc (r23)h
eff
cc (r13)dr3, where the

colloids interact via the AO potential. This equation is solved subject to the
one-component Percus-Yevick closure, which leads to a revised PY theory.
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Since the AO potential contains the polymer fugacity zp rather than ρp, a
connection between them is needed. This is given by equation 3.6, which is
exact for ξ . 0.1547.

As shown in Paper I, a second approximate theory can be derived by ne-
glecting higher order correlation functions. This gives expressions for gcp and
gpp as integrals over gcc. Once we have gcc from solving the one-component
PY theory with the AO potential, these can be determined. In Paper I this
approximation is shown to be slightly worse than the revised PY theory.

5.2 Semi-grand-canonical ensemble and free-

volume fraction

Considering a colloid-polymer mixture in which the polymers are in equilib-
rium with a reservoir, the natural statistical mechanic ensemble to choose
is the semi-grand-canonical ensemble in which the polymer fugacity, zp =
λ−3

p eβµp , is fixed along with the number of colloids Nc , the volume V , and
the temperature T . µp and λp denote the chemical potential and the thermal
de Broglie wavelength respectively of the polymer coils. The two-component
partition function is in the semi-grand-canonical ensemble defined as:

ψ =

∞
∑

Np=0

z
Np
p

Np!

1

Nc!λ3Nc
c

∫

drNp

∫

dRNce−βU(RNc ,rNp) (5.8)

where the subscripts c and p denote colloids and polymers, respectively, U is
the potential energy, and R and r denote the colloid and polymer coordinates,
respectively. Differentiating with respect to zp one readily obtains

(

∂ lnψ

∂zp

)

V,T,Nc

=
〈Np〉
zp

(5.9)

where 〈·〉 is a semi-grand-canonical ensemble average. If the polymers are
taken as ideal, i.e. zp = ρr

p, the above yields a relation for the so-called
free-volume fraction α = ρp/ρ

r
p.

In addition, for the AO system in which the polymers do not interact
with themselves, upp = 0, it is useful to define an effective colloid potential
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as

e−βΩ(RNc) =
∞

∑

Np=0

z
Np
p

Np!

∫

e−β
PNc

i=1

PNp
j=1 ucp(Ri−rj)drNp

=

∞
∑

Np=0

1

Np!

(

zp

∫

e−β
PNc

i=1 ucp(Ri−rj)drj

)Np

= ezp

R

e
−β

PNc
i=1

ucp(Ri−rj )
drj (5.10)

where ex =
∑∞

n=0
xn

n!
was used in the last step. As shown first by Gast

et al. [12] and later by Brader et al. [24] for the AO system, for size ratios
σp/σc ≤ 2/

√
3−1 ≈ 0.1547 the effective potential is exactly pair-wise additive

and given by

−βΩ(RNc) = zpV − π

6
zpNc(σc + σp)

3 − β
Nc
∑

i>j

uAO(Rij) (5.11)

where the effective AO potential is given by equation 3.5. Inserting equation
5.10 in the partition function in equation 5.8 and using equation 5.9 leads to
an insertion formula [46] for the free-volume fraction

α =
〈

e−β
PNc

i=1 ucp(|Ri−r|)
〉

(5.12)

where the average is the configurational average in the one-component col-
loidal system with particles interacting via the effective AO potential. By
similar steps, insertion formulas can be derived for the pair correlation func-
tions involving the polymers. The polymer-polymer radial distribution func-
tion is given by

gpp(|r1 − r2|) = α−2
〈

e−β
PNc

i=1 ucp(|Ri−r1|)e−β
PNc

i=1 ucp(|Ri−r2|)
〉

(5.13)

and the colloid-polymer radial distribution function is found from

gcp(|r|) = α−1
〈

e−β
PNc

i=1 ucp(|Ri−r1|)V δ(R1 − (r + r1))
〉

(5.14)

where the delta function indicates that insertions of a polymer sphere are
made relative to a colloidal particle in the mixture. In all cases the insertions
are made in a system governed by the colloid-colloid potential ucc plus the
effective potential in equation 5.11. In other words, the pair correlations can
be determined by inserting one or two polymer spheres in the colloidal system
by a MC simulation scheme for any value of zp even though the polymers are
not present explicitly in the system.
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5.3 Free-volume theory of colloid mixtures

Generalizing the semi-grand-canonical ensemble to a (M+1)-component sys-
tem, where again, the polymers are in osmotic equilibrium with a reservoir
gives the following partition function

ψ(zp, N1, . . . , NM , V, T ) =
∞

∑

Np=0

z
Np
p

Np!

1

N1!λ
3N1
1 · · ·NM !λ3NM

M

×
∫

e−βU(rNp ,RNc)drNpdRNc (5.15)

where Nc = N1 + . . .+NM , and as before lower-case coordinates are used to
distinguish the Np polymers from the remaining enclosed particles.

Interpreting −kBT lnψ as a Helmholtz energy A(zp, N1, . . . , NM , V, T ),
we can integrate equation 5.9

A(zp, N1, . . . , NM , V, T ) = A(0, N1, . . . , NM , V, T ) +
∫ zp

0

α(z′p, N1, . . . , NM , V, T )dz′p (5.16)

which is the starting point for the so-called free-volume theory. If we follow
Lekkerkerker et al. [13] in their work on monodisperse systems and assume
that the free-volume fraction in equation 5.16 can be replaced by α(zp =
0, N1, . . . , NM , V, T ), we obtain

A(zp, N1, . . . , NM , V, T ) = A(0, N1, . . . , NM , V, T ) +

zpα(0, N1, . . . , NM , V, T ) (5.17)

We note that A(0, N1, . . . , NM , V, T ) and α(0, N1, . . . , NM , V, T ) are quanti-
ties for a hard-sphere mixture for which approximate expressions are available
from the so-called BMCSL equation of state [47–49] and the scaled-particle
theory [50]. When these are substituted in, an analytical expression for
the free energy is obtained and one can find the chemical potentials from
µα = ∂A

∂Nα
and the osmotic pressure from Π = − ∂A

∂V
. For a mixture of a few

components it is possible to solve the set of coupled equations that one gets
from equating chemical potentials and osmotic pressures between phases.
This leads to predictions of the fluid phase behavior of the mixture, which
can be used to understand qualitatively how a system phase separates into
coexisting phases not only with different overall volume fractions but also
with different compositions.
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5.4 Mode coupling theory of glass transitions

The theory known as mode coupling theory (MCT) has been very successful
at describing the dynamics of dense atomic and colloidal systems [51]. It
also provides an idealized mechanism for the glass transition in such systems,
namely as a transition to a nonergodic state where particle positions remain
correlated in the limit of long times [52]. The interpretation is that this
transition is caused by particles becoming trapped in cages made up by
the nearest neighbors. In the following a brief presentation is given of the
elegant derivation due to Zaccarelli et al. [53] of the MCT. It is based on
classical Newtonian dynamics but the same result is also obtained for diffusive
dynamics appropriate for colloids if hydrodynamic interactions are neglected
[54].

Zaccarelli and co-workers consider the fluctuating number density ρ(r, t) =
∑N

j=1 δ(r− rj(t)) and its Fourier transform ρ(k, t) =
∑N

j=1 e
ik·rj(t). An equa-

tion of motion for the number density is obtained by examining the second
time derivative

ρ̈(k, t) =

N
∑

j=1

ik · r̈j(t)e
ik·rj(t) +

N
∑

j=1

(ik · ṙj(t))
2eik·rj(t) (5.18)

and substituting in Newton’s second law for a pair-wise additive interaction
potential

mr̈j(t) = −
N

∑

l=1,l 6=j

∂

∂rj

u(|rj − rl|)

= (2π)−3

∫

(ik′)e−ik′·rju(k′)ρ(k′, t)dk′ (5.19)

where it was assumed that the pair potential can be Fourier transformed.
Using equation 5.19 in equation 5.18 results in an equation describing the
dynamic behavior of the number density

mρ̈(k, t) = F(k, t)

= −(2π)−3

∫

(k · k′)u(k′)ρ(k′, t)ρ(k − k′, t)dk′ −

m
N

∑

j=1

(k · ṙj(t))
2eik·rj(t) (5.20)

where F(k, t), can be thought of as a force simply from the analogy with
Newton’s second law. The next step is to divide this force in a part that
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is correlated with the number density and another part that is not. It is
possible to show that

〈

ρ(−k, t)

[

F(k, t) − kBTk
2ρ(k, t)

S(k)

]〉

= 0 (5.21)

where the static structure factor is defined as S(k) = N−1 〈ρ(−k, t)ρ(k, t)〉
and where 〈·〉 is an equilibrium average in the canonical ensemble. Another,
so-called residual force is then defined by writing

mρ̈(k, t) +
kBTk

2

S(k)
ρ(k, t) = F resid(k, t) (5.22)

which is totally uncorrelated with the number density. The reason for this
division is that the number density is a conserved variable because the num-
ber of particles and the volume are constant. The number density in a part
of the system can then only change value by particles moving a significant
distance and it is therefore expected to change slowly in time. One can then
hope that F resid(k, t), because it is uncorrelated with the number density,
changes faster and is of less importance for the dynamics at long times.

The residual force is written as a sum of a dissipative term with a so-called
memory function and a noise term, according to

F resid(k, t) = −
∫ t

0

γ(k, t− t′)
∂ρ(k, t′)

∂t′
dt′ + fnoise(k, t) (5.23)

where γ(k, t) is the memory function, which describes how the current state
of the system depends on its past. The memory and noise are related through
a fluctuation-dissipation theorem (FDT),

〈fnoise(k, t)〉 = 0

〈fnoise(−k, t)fnoise(k, t′)〉 = NkBTk
2γ(k, t− t′) (5.24)

which guarantees that the system evolves to the correct Boltzmann equi-
librium distribution. An exact expression can be derived for the memory
function [53] by substituting equation 5.23 and the expression for F resid(k, t)
(from equations 5.20 and 5.22) into equation 5.24. In it appears averages of
multiple number densities, i.e. products of number densities. If the number
density itself evolves slowly in time then it is possible that such averages also
change slowly in time. The mode coupling theory aims to take account of this
additional slowness. It is obtained from the exact memory function by as-
suming the noise and the number density are fluctuating Gaussian variables.

27



This means Wick’s theorem applies and multiple averages of number densi-
ties can be reduced to averages of products of only two number densities [55].
With this assumption the memory function becomes [53]

γ(k, t) ≈ ρ2kBTk
2S(k, t) (c(k) + βu(k))2 −

ρ (βu(k) + c(k))

∫ t

0

γ(k, t− t′)
∂S(k, t′)

∂t′
dt′ +

ρ

2(2π)3kBTk2

∫

[(k · k′)u(k′)(k · (k − k′))u(|k− k′|)]2 ×

S(k′, t)S(|k − k′|, t)dk′

where S(k, t) = N−1 〈ρ(−k, 0)ρ(k, t)〉 is the dynamic structure factor. How-
ever, if the number density is a fluctuating Gaussian quantity then the so-
called random phase approximation (RPA) applies, which means that the
direct correlation function is just c(k) = −βu(k). Thus the following sim-
pler, mode coupling expression is obtained

γ(k, t) ≈ ρkBT

2(2π)3k2

∫

[(k · k′)c(k′) + (k · (k − k′))c(|k − k′|)]2 ×

S(k′, t)S(|k− k′|, t)dk′ (5.25)

where the direct correlation function replaces the pair potential. However,
in actual applications of mode coupling theory the RPA closure is typically
not used, thus violating the consistency of the approximation.

In experiments one measures the dynamic structure factor, which is gov-
erned by the following equation of motion (obtained from equation 5.22),

mS̈(k, t) +
kBTk

2

S(k)
S(k, t) = −

∫ t

0

γ(k, t− t′)
∂S(k, t′)

∂t′
dt′ (5.26)

When taken together with the mode coupling approximation in equation 5.25
it is seen to be fully predictive for S(k, t) if the direct correlation function
is specified. It is also a non-linear equation with respect to S(k, t). If one
defines f(k, t) = S(k, t)/S(k) and f(k) = f(k, t → ∞) and takes the limit
t→ ∞ in equation 5.26, the following equation is obtained

f(k)

1 − f(k)
=

ρ

2(2π)3k4

∫

S(k)S(k′)S(|k − k′|) ×

[(k · k′)c(k′) + (k · (k − k′))c(|k− k′|)]2 ×
f(k′)f(|k − k′|)dk′ (5.27)

which was first derived by Bengtzelius et al. [52]. It can be solved for f(k)
by iteration. The result f(k) = 0 is always a solution to equation 5.27,
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implying that the dynamic structure factor decays to zero as expected for
liquids. However, for strong interactions f(k) 6= 0 is also a solution, and it
has been shown to be the correct solution for S(k, t → ∞)/S(k) [56]. This
means that S(k, t) does not decay to zero and that particles are correlated
even in the limit t→ ∞, which describes a glass transition, though idealized
in the sense that real systems usually exhibit some slow relaxation towards
equilibrium.
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Chapter 6

Results

6.1 Summary of Paper I

Prediction of structures and gel transitions in systems

of colloids with moderate-range attractions

The purpose of Paper I is to provide a careful assessment of the accuracy of
the effective one-component description of the depletion interaction within
the Asakura-Oosawa (AO) theory. Furthermore, some approximate theories
for the radial distribution functions are developed and tested against MC
simulation results. In addition, these liquid structure theories are used as
input to MCT to obtain predictions for the occurance of so-called attractive
glass states.

From previous work it is known that for polymer-colloid size ratios above
ξ ≈ 0.1547 the mapping between the binary AO model and the effective
one-component description of the same model is not exact since effects of
many-body correlations start to contribute [12, 24]. As a consequence, the
full interaction is no longer given by a pair-wise addition of the AO pair
potential. To examine whether, in spite of this, the effective one-component
model gives a fair description of the binary AO model also for the size ratio
ξ = 0.25, we compare liquid structures as obtained from the effective one-
component description with those obtained from the binary version of the
model. As seen in figure 6.1, the two determinations of the colloid-colloid ra-
dial distribution functions gcc resulting from the different descriptions agree
closely, both concerning the overall shape and also in the contact value of
the radial distribution functions. Note that the one-component model is even
able to capture the splitting of the second peak of gcc. This feature is usually
associated with metastable or precursor states close to crystallization [57]. To
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Figure 6.1: Radial distribution functions gcc, gcp, and gpp as a function of the

separation distance normalized by the colloid diameter for ξ = 0.25, φc = 0.30, φp =

0.20, and φ
(R)
p = 0.42. The lines correspond to MC simulations of the binary AO

model and the symbols to MC simulations of the effective one-component system

interacting via the AO potential combined with the particle insertion method.

compare the results of the two models it is necessary to apply some iterations,
because φ

(R)
p instead of φp enters in the one-component model. Therefore,

given φp from a simulation of the binary system one has to estimate φ
(R)
p

to be used for the one-component simulation from which φp is determined
by random insertion of a polymer sphere (cf. equation 5.12). In figure 6.1,
also the colloid-polymer radial distribution function gcp and polymer-polymer
radial distribution function gpp as obtained by the two descriptions are com-
pared. Polymers are not explicitly present in the effective one-component
description, but, as described in section 5.2. and as derived in Paper I, it is
nevertheless possible to extract the remaining radial distribution functions.
Since the presence of polymer is reflected in the configurations of colloidal
particles, which are seen to be essentially the same from gcc in figure 6.1, the
configurations can be sampled by insertions of polymer particles. Inserting
one or two polymer spheres during the course of a MC simulation within
the effective one-component AO model lets one determine gcp and gpp. Here,
these distribution functions are used to determine whether the mapping re-
mains accurate for the complete pair-level structure for this size ratio. Again
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the results from the two different descriptions agree closely, and it follows
that for ξ = 0.25 the pair-wise additivity of the AO potential is an excellent
approximation, i.e. the effective one-component model remains an accurate
description of the AO model. Note that the insertion procedure for gcp and
gpp is only exact below ξ ≈ 0.1547 but that it then holds for any polymer
concentration.

Percus-Yevick (PY) integral equation theory is known to provide good
results for short-ranged attractions [42]. This holds also in the case of the ef-
fective one-component AO model. In general, PY theory compares favorably
for low to moderate polymer concentrations. For high polymer concentrations
the theory tends to overestimate somewhat the contact value of the radial dis-
tribution function. Overall, however, PY theory provides near-quantitative
predictions for the colloidal microstructure in the single-phase fluid regime.
As shown in Paper I, this holds also in terms of the colloid-colloid struc-
ture factor, Scc(k). Deviations between PY theory and simulation results for
Scc(k) appear, however, when polymer concentrations become high.

While PY theory captures the liquid structure well for the one-component
AO system, the two-component version of the theory does so only when the
polymer concentration is kept low. Exploiting that accurate results are ob-
tained for the one-component PY theory, we suggest in Paper I two approx-
imate theories to predict the remaining radial distribution functions. The
so-called revised PY theory as described in section 5.1 is in good agreement
with the simulation result for gcp but underpredicts somewhat the result for
gpp, where it fails to produce the expected result, gpp(0) = 1/α [58]. A so-
called low-order approximation slightly overpredicts the simulation result for
the first correlation peak and is slightly low just prior to the second peak
in gcp. It tends to overpredict the small-r structure of gpp. The predictions
improve on the whole, however, with decreasing size ratio, but the revised
PY integral equation theory appears to give better structural predictions.

The ability of the MCT to model the low-density gel transitions for
moderate-range attractive systems is tested. This is done within the AO
model and the results are compared with experimental data. Results are
reported for larger polymer-colloid size ratios that what has been reported
on before but still sufficiently small that gel states have been recorded ex-
perimentally. As already discussed, PY integral equation theory produces
accurate liquid structures for size ratios of ≈ 0.25 and it is used to provide
the static input needed for MCT. Analyzing the glass transitions as pre-
dicted by MCT for the size ratios ξ = 0.20, 0.25, and 0.30, it is found that
for φ

(R)
p = 0 the glass transition starts at the hard-sphere glass transition

value, φc = 0.5159 [52], using PY as input. For small values of φ
(R)
p the
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Figure 6.2: Comparison of MCT prediction for the glass transition against ex-

periments on model colloid-polymer mixtures for ξ ≈ 0.24, reproduced from [22],

in terms of polymer mass concentration and colloid volume fraction. The sym-

bols denote experimental data: fluid(circle), liquid + crystal (plus), gas + crystal

(square), glass + liquid + crystal (cross) , and no visible crystallization (triangle).

The line is the MCT prediction along with the PY spinodal (marked by small

circles) for ξ = 0.25. Note that the colloid volume fraction in the theoretical pre-

dictions has been shifted to agree with the experimental glass transition value for

hard spheres, φc ≈ 0.58 [10,59,60], viz. φc = φtheory
c 0.58/0.516.

transition tends to larger colloid volume fractions, but when increasing the
polymer volume fraction further the glass transition starts to migrate toward
lower φc. It follows that there is a small region of reentrant glass melting,
meaning one goes from glass to fluid to glass again at the same particle vol-
ume fraction by adding polymers. For the three size ratios studied here,
increasing the polymer concentration sufficiently leads to the MCT transi-
tions meeting the PY spinodal on the dense fluid side in all cases, but as the
attraction range is reduced the transition occurs closer to the critical point.

A detailed experimental phase diagram, identifying locations of not only
equilibrium phase coexistence but also non-ergodic gel states, is available
from the work of Ilett and co-workers for ξ ≈ 0.24 [22]. This phase diagram
is reproduced in figure 6.2 in terms of added polymer mass concentration and
colloid volume fraction. Included in the figure is the MCT prediction for the
glass transition along with the PY prediction for the spinodal for ξ = 0.25.
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There is reasonable agreement between results from theory and considering
there are no adjustable parameters except for ξ. For the ξ = 0.25 size ratio
the predicted glass transition line has a slope that agrees approximately with
the cessation of crystal formation in the experiments, which we interpret as
non-ergodic gels.

6.2 Summary of Paper II

Equilibration of fluid-phase coexistence in polydisperse

particle systems with short- and moderate-range deple-

tion attractions

In Paper II a study of the fluid-fluid coexistence of systems interacting via the
AO potential is undertaken. The aim is to examine to what extent Gibbs
ensemble Monte Carlo (GEMC) simulations can be used to obtain phase
equilibrium data for systems with short ranges of attraction.

For short-range attractive systems the fluid-fluid binodal is metastable
with respect to crystallization [12, 13, 61]. In spite of its metastability there
is considerable interest in determining the location of this transition. Since
crystallization is usually a slow process the metastable fluid behavior can
sometimes be observed for long times [62]. Also, the fluid-fluid transition,
even though it is metastable, can affect how fast crystallization occurs and
also the quality of the crystals [63]. Also, polydisperse samples may not crys-
tallize, in which case the fluid-fluid transition becomes an equilibrium transi-
tion also for short-range attractive systems. In this study size-polydispersity
was incorporated into the AO model to avoid effects of crystallization, i.e.
the interactions were described by equation 3.7.

The GEMC method is generally well suited to simulate fluid-fluid coex-
istence. However, it is not always straightforward to determine the location
of the fluid-fluid transition for short-range attractive systems. In this case
particles exhibit an increased tendency to stick to one another in long-lived
aggregates, and sampling in phase space becomes difficult, as does the de-
termination of points on the coexistence curve [64]. This is indeed what we
find in applying the GEMC method directly for the short-range polydisperse
AO model, where the interaction range corresponds to a dimensionless poly-
mer size ξ = 0.10. This is illustrated in figure 6.3 where the resulting phase
diagram is shown in terms of polymer and colloid volume fractions, with
the circles having been generated from the same initial crystalline lattice.
Filled and open circles correspond to results obtained with two different ran-
dom number generator seeds. The triangles in the same figure corresponds
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Figure 6.3: Resulting “phase diagram” for the polymer-colloid size ratio ξ = 0.10

in terms of polymer reference and colloid volume fractions, with the circles having

been generated from the same initial crystalline lattice. Filled and open circles

correspond to results obtained with two different sequences of random numbers.

Nearly equilibrated points of fluid-fluid coexistence are shown as triangles. The

insets show the end configurations of the equilibration period corresponding to

φ
(R)
p = 0.30 and at colloid volume fractions as indicated by the arrows. Colloid

polydispersity is mimicked by three discrete particle sizes: small (grey), middle

(red), and large (blue).

to the (nearly) equilibrated fluid-fluid coexistence curve. One sees that the
simulations get stuck on the way towards equilibrium. Inset into the figure
are snapshots of configurations at compositions as indicated by the arrows.
These configurations are characterized by large-scale inhomogeneities in the
form of clusters and voids in at least the denser of the two simulation boxes.
Both the clusters and voids reach the size of the simulation box, leading to
only small volume changes being accepted in the GEMC simulation.

For longer-range attractions, greater than about 50% of the particle di-
ameter, the convergence towards equilibrium proceeds smoothly. On taking
an equilibrated configuration for a longer-range depletion attraction as a
starting configuration for a GEMC simulation at a somewhat shorter-range
attraction, the phase coexistence curve is moved in the phase diagram as seen
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Figure 6.4: Fluid-fluid coexistence data in terms of polymer reference and colloid

volume fractions for different dimensionless polymer sizes ξ, as labeled.

in figure 6.4. The dense phase is further densified whereas the dilute-fluid
phase becomes more dilute. The stepwise movement of the fluid-fluid co-
existence envelope persists even on reaching polymer-colloid size ratios that
would get pinned during direct equilibration. Furthermore, we find that the
chemical potentials of the species [33, 65] reach equal values in the two sim-
ulation boxes within error bars. However, in contrast to the simulations for
the medium- and longer-range attractions, it becomes difficult to ascertain
whether equilibrium has been reached for ξ = 0.1. One test is given by
recovery of the phase boundary on perturbing the systems. Taking the con-
figuration for ξ = 0.1 at the highest φ

(R)
p in figure 6.4 as input, several of the

remaining coexistence pairs of volume fractions in figure 6.4 for ξ = 0.1 could
be reproduced within error bars. This suggests that in terms of the overall
concentration the system reaches equilibrium also for this shorter depletion
range.

The chemical potentials of the small- and medium-size particles in the di-
lute fluid vary smoothly and rapidly settle at steady values while the chemical
potential of the large-size particles in the dilute phase shows some smaller
jumps before it eventually converges. However, the chemical potentials of
the species in the dense fluid phase are slow to converge to steady values and
exhibit occasional jumps during the accumulation of data for the ensemble
averages. The jumps are caused by individual particle insertions that some-
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times result in very low energies and therefore very large contributions to the
ensemble average in the expression for the chemical potential (cf. equation
4.10). To obtain reasonable averages in these cases it is necessary to sample
many such rare, low-energy insertions, which requires very long simulation
runs. Equilibrium is eventually reached for the small- and medium-size com-
ponents for the lower φ

(R)
p but some of the larger particles never enter the

dilute phase in spite of thousands of attempts. In other words, for most of
the points on the ξ = 0.10 curve in figure 6.4 compositional equilibrium is
not reached, presumably due to some of large particles clusters that remain
intact throughout the simulations.

6.3 Summary of Paper III

Brownian dynamics of colloidal liquids characterized by

short-range depletion interactions

In this paper we examine how the structures in the concentrated phases
generated by the GEMC method in Paper II behave dynamically. In Paper II
for the smallest polymer-colloid size ratios it was found that some particles,
particularly the large ones, did not transfer between phases and that full
phase equilibrium was not reached because of this. This effect was attributed
to the fact that large particles attract each other more strongly and that some
structures of these are formed that cannot be broken up easily by Monte Carlo
moves. It is thus of interest to see whether these structures can be identified
in simulations of the dynamics.

Colloidal particles undergo Brownian motion and Ermak’s Brownian dy-
namics (BD) algorithm based on the position-Langevin equation captures
this process if hydrodynamic interactions are neglected [34]. The Ermak al-
gorithm cannot be used with hard-sphere or other discontinuous interactions
and it is therefore most common to use a steep but smooth repulsion in the
interaction potential. This mean that small displacements of particles can
result in very large forces and because the Ermak algorithm is only correct
to leading-order in time such interactions require very small time steps. As
described in section 4.2 the so-called Smart BD method [35–39] uses instead
Monte Carlo moves to accept or reject trial displacements generated from the
Ermak algorithm and it is therefore well suited to dealing with hard-sphere
interactions. However, the trajectories generated by Smart BD are known
to depend on the time step used [38]. To take account of this dependence, a
rescaling of time by the fraction of accepted moves has been suggested [36].
We verify in Paper III that applying this rescaling results in mean-square dis-
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Figure 6.5: Mean-square displacement of particles at φc = 0.605 as a function of

time and polymer concentration as labeled. The dashed line shows the short-time

behavior given by the average Stokes-Einstein diffusion coefficient 〈D〉 = 0.832D1

in terms of the diffusion coefficient of the small spheres D1.

placements that overlap for concentrated systems even though very different
time steps are used, which means that Smart BD simulations can be run to
times that are of interest in studies of structural slowing down in connection
with glass formation.

The mean-square displacement characterizes the average movement of
particles as a function of time. According to Einstein [66], a diffusion coef-
ficient can be defined when the mean-square displacement becomes a linear
function of time. Figure 6.5 shows the mean-square displacement as a func-
tion of time and polymer concentration for a highly concentrated system at a
volume fraction of φc = 0.605. At short times the mean-square displacement
is linear with a slope given essentially by the Stokes-Einstein diffusion coeffi-
cient. At very long times it almost becomes a linear function again, but with
a much smaller slope characterized by the long-time self-diffusion coefficient.
As the polymer concentration is increased, which moves the system towards
the fluid-fluid phase transition, the mean-square displacement is gradually
slowed down. However, for all the systems studied the mean-square displace-
ment is an increasing function of time and no arrest of the dynamics is found.
In the GEMC simulations in Paper II, some percentage of particles, partic-
ularly the large ones, were localized throughout the simulations. In GEMC
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Figure 6.6: Distribution of squared displacements of particles for φc = 0.614 and

φ
(R)
p = 0.325 at specific times t∗. The distributions decrease in height along the

left-hand side as a function of time in the following order t∗D1/〈σ〉2 = 9.1 · 10−4,

2.3 ·10−2 , 0.24, 2.3, 4.3, and 7.3 where D, is the diffusion coefficient of the smallest

particles in the mixture. The inset shows the distribution for t∗D1/〈σ〉2 = 0.24

with the three components resolved according to, from top to bottom along the

left-hand side, large-, middle-, and small-size particles, showing that the small

particles make up most of the “fast” tail of the distribution.

one attempts to exchange particles between the dense fluid and a dilute fluid.
Such moves are often associated with large energy increases, and they are as a
consequence most often rejected by the Monte Carlo algorithm. In the dense
fluids, studied here in isolation, the surrounding particle structure provides a
scaffold of low-energy particle-particle contacts on which any given particle
can diffuse dynamically without experiencing too much of an energy change.

Figure 6.6 demonstrates that the dynamics of the displacements is not
simple. It shows the probability distribution for particles having reached a
certain squared displacement after a certain time. This distribution is shown
for several different times, ranging from those where particles have not yet
passed the range of attraction to those where they have reached as much as a
particle radius. The distributions broaden as time progresses and eventually
develop a tail at intermediate times when a fraction of the particles have
passed the range of the attraction. For the longest times shown in figure 6.6
the distribution develops a shoulder near a squared displacement of 0.1〈σ〉2.
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This corresponds to distances significantly greater than the range of the de-
pletion attraction and it is more likely to be connected to the cage of nearest
neighbors, which particles need to penetrate and escape from for structural
relaxation to occur. Presumably, for somewhat higher particle concentra-
tions, this shoulder might develop into a separate peak corresponding to a
population of fast particles as has been observed for glassy systems [67, 68].

6.4 Summary of Paper IV

Low-density nonergodicity transitions from the ideal-

ized mode coupling theory

Applying mode-coupling theory (MCT) of glassy dynamics [52] to systems
of attractive colloids has been met by a considerable degree of success [20].
Recent studies [69], however, have shown that MCT predictions for systems
associated with very small ranges of attraction wrongfully predicts structural
arrest in the (metastable) single-phase fluid region at low colloid concentra-
tions. In Paper IV we examine in greater detail how the attraction-driven
glass transition behaves within MCT as the attraction range among colloids
is shortened. The aim is ultimately to understand the tendency of MCT to
overpredict structural arrest. This is done for a square-well interaction. We
also develop some simplifications of the theory.

The dynamic structure factor S(q, t) can be measured by dynamic light
or X-ray scattering. For gels and glasses S(q, t) does not decay completely
with time. The remainder is related to the so-called non-ergodicity factor
f(q) = limt→∞ S(q, t)/S(q). MCT provides a closed equation for this quan-
tity (equation 5.27), which can be solved if a static structure factor S(q)
or direct correlation function c(q) = (S(q) − 1)/nS(q) is known, usually
from some approximate theory. For short-range attractions it is known that
solutions for f(q) are dominated by large wavevectors [18, 19, 70]. Two ap-
proximations can be made. The direct correlation function can be expressed
as

c(q) = (A cos q −B cos qλ)/q2 (6.1)

where A = 4πg(σ+) and B = 4πg(λσ+)
(

eβǫ − 1
)

, and all the structure
factors in equation 5.27 can be set equal to unity. In addition, from MC
simulations of square-well fluids one sees that the radial distribution function
inside the well width of the square-well interaction does not vary so much
so that | g(λσ−)−g(σ+)

g(σ+)
| ≪ 1. In this case it is possible to reduce the MCT
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equation to a one-parameter model in terms of

Γ =
6φcδ

π2
g(σ+)2

(

1 − e−βǫ
)

(6.2)

where the parameter Γ characterizes how strongly coupled the system is.
Above a certain value, Γ = 0.721, f(q) becomes non-zero, which means
that MCT predicts structural arrest. In other words, to evaluate whether
the theory predicts an arrest transition it is just necessary to compute the
contact value of the radial distribution function and to compare the result
of the right-hand side of equation 6.2 with the critical Γ value. One can use
PY theory to accomplish this or one can use MC simulations. In figure 6.7
both MC simulations and PY theory have been used for a system with a
5% well width. In addition, an estimate of the critical point has been given,
using a relation suggested by Noro and Frenkel [15]. The simple formula in
equation 6.2 has been verified in Paper IV to reproduce the predictions of
the full MCT up to φc of about 0.5 for sufficiently short-range square-well
interactions. In figure 6.7 most points shown would probably correspond to
fluid-crystal coexistence if the system had been allowed to reach equilibrium.
In this case the systems were instantaneously brought from fluid points at
ǫ/(kBT ) = 1.5 to the points shown. After an initial, rapid change in the
structure a metastable radial distribution function could usually be extracted
as also shown in figure 6.7. As also seen, it does not matter too much whether
MC simulations or PY theory is used. In both cases MCT predicts structural
arrest well on the fluid side of the critical point.

It is instructive to examine the MCT predictions (using PY theory for
g(σ+)) as the well width is decreased further, and how it compares to the
critical point and the fluid-crystal freezing transition. In figure 6.8 this is
done for a volume fraction of 0.15 and τ−1 = (12δeβǫ) which is related to
the second virial coefficient. For larger well widths there are MC simulation
results available [64,71–74], which suggest that the critical point approaches
a constant τ value equal to that found by Miller and Frenkel for the so-called
Baxter limit [45, 76]. In contrast, the MCT prediction for arrest approaches
incorrectly higher τ as δ is decreased. The same, however, seems to be the
case for the freezing transition. This suggest that the type of transition that
MCT predicts for very short ranges of attraction is more related to crys-
tallization than fluid-fluid phase separation. Indeed similarities have been
noted between the structure of the MCT equations and theories used to
predict crystallization [77]. Gels, however, are typically found in the vicin-
ity of fluid-fluid transitions, and it seems clear that MCT is not capable of
describing gel formation for systems with very short-range attractions.
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Figure 6.7: Phase diagram showing MCT predictions based on results from Monte

Carlo simulations for g(σ+) and g(λσ+) in terms of scaled well depth and volume

fraction for a square-well system with λ = 1.05. The equilibrium fluid-crystal phase

boundary is not shown. Open circles and inverted triangles, represent ergodic

fluid and nonergodic states, respectively. The critical point estimate is shown by

the horizontal error bar. The system shown by the open square crystallized too

rapidly for evaluation of a liquid-like g(r). The inset shows g(r) at φc = 0.325 for

ǫ/kBT = 2.85 (crystalline), 2.9, 2.95, and 3.0. The dashed line represent results

based on PY input.
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Chapter 7

Conclusions and future outlook

Computer simulations are an important tool in research, particularly for in-
vestigating systems that are difficult to study and for which properties are
difficult to interpret. Colloidal particles with short-range attractions fall in
this category. It is difficult experimentally to determine the phase behavior
when multiple phases coexist and combine with non-equilibrium processes,
like gelation and glass transitions. In this thesis aim was taken at staying
close to the experimental systems but at the same time without overly com-
plicating matters. The one-component AO potential was selected for most
of this work but a two-component AO model was considered in Paper I to
make sure many-body contributions were small. In this context, it was shown
that insertions formulas can be derived which allow for Monte Carlo deter-
minations of radial distribution functions and some approximate theories
were suggested and tested. Polydispersity, which is almost always an issue
experimentally, was considered in Paper II and the effects it has on phase
behavior. Also, the Gibbs ensemble method was applied in a novel way to
speed up equilibration of two-phase systems that would otherwise get stuck
on their way to equilibrium. Rather than using molecular dynamics, a Brow-
nian dynamics algorithm more appropriate for colloidal particles was tested
and used in Paper III in which the dynamics was followed. Even though the
dynamics was slowed down for high particle and polymer concentrations, no
structural arrest could be identified, perhaps because it requires even higher
stronger attractions. The predictions of MCT were compared in Paper I for
intermediate-range attractions and was seen to qualitatively match the region
where gels are found. For very short-range attractions the theory predicts
such transitions in the fluid-phase region where none are found experimen-
tally. In Paper IV MCT predictions were shown to follow the fluid-crystal
freezing transition instead of the fluid-fluid critical point, which shows that
the theory is not appropriate for such short-range attractive systems.
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There are several issues that have come up during this work that warrant
further study and some examples are given here. In Paper II it was found that
direct application of GEMC simulations to AO systems with a small polymer-
colloid size ratio, i.e. systems characterized by a short-range attractions, got
stuck on the way towards equilibrium. Since only 500 particles were used,
the scale of the structures formed in these stuck configurations were small,
but they are nevertheless reminiscent of microscopy images of actual colloidal
gels with connected particle clusters and voids [23, 78]. Therefore, it should
be of interest to conduct GEMC simulations of considerably larger systems
in the same way to examine the types of structures generated and how they
compare with microscopy data.

Obtaining fully equilibrated phase equilibria data for short-range attrac-
tive systems is an obvious target for future study. The sequential equilibra-
tion scheme suggested in Paper II begins to break down at AO attraction
ranges of about 10% of the mean particle diameter. The method is in many
ways a manual way of conducting so-called parallel tempering. It is most sim-
ilar to the parallel tempering method developed by Bunker and Dünweg [79]
in which they allow for Monte Carlo exchanges of configurations between
systems, simulated in parallel, characterized by different values for the pa-
rameters of the interaction potential. This parallel tempering method was
tested briefly but all the configurational exchanges between systems with
small values of the size ratio were rejected in applying the Monte Carlo ac-
ceptance criterion. Perhaps a better way can be found to choose the potential
parameters for the different systems, making exchange of configurations more
likely.

Although the dynamics, as found by BD simulation, slows down as one
increases the polymer concentration, no clear signs of structural arrest were
observed. This is in contrast to experiments [22] in which structural arrest is
found at what should be comparable polymer concentrations and ranges of
attraction. One could follow what has been done using molecular dynamics
simulations [80, 81] and examine the dynamics for even stronger attractions
using higher polymer concentrations. Since, according to Paper II, particles
do not exchange between phases in the GEMC simulations, it may be that
structural arrest is facilitated by introducing regions of dilute fluid (essen-
tially voids) in the dense-fluid structure, in effect introducing the interface
between phases that is removed in GEMC method. This could be done by
diluting the dense fluids studied in Paper III. It would then also be of inter-
est to compare structures obtained by the usual path of raising the polymer
concentration at constant volume fraction of colloidal particles.
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