

University of Gothenburg

Department of Applied Information Technology

Gothenburg, Sweden, May 2010

Introducing Requirement
Stability Metrics for Test Case
Success Prediction in RUAG
Space AB

FARNAZ TAHERI

NGUYEN AN DUONG

Master of Software Engineering and Management Thesis

Report No. 2010:063

ISSN: 1651-4769

Introducing Requirement Stability Metrics for

Test Case Success Prediction in RUAG Space AB

Nguyen An Duong
Department of Applied IT

Chalmers| University of Gothenburg
Gothenburg, Sweden

Gusnguyan@ituniv.se

Farnaz Taheri
Department of Applied IT

Chalmers| University of Gothenburg
Gothenburg, Sweden

FTaheri@student.gu.se

ABSTRACT

Context: In every software development method, requirement

gathering and analysis phase plays the most important role.

Stability of requirements potentially makes an impact on the

success of later phases in a software project, including the success

of test cases. Nevertheless, this impact is not well investigated in

either theory or industry. Furthermore, the application of software

metrics can improve the quality of software and efficiency of

software development processes since metrics can help in

controlling and making predictions in software development

projects.

Objective: In this thesis, we intend to introduce requirements

stability metrics for test case success prediction in the context of

integration and verification unit of RUAG Space AB, Sweden.

Method: The research is done by conducting a case study that

includes reviewing the related work, defining a set of requirement

stability metrics, developing an automated tool for the data

collection on a daily basis, and performing empirical evaluations

on validity and usefulness of the introduced metrics in an

industrial context.

Results: The research outcomes present that the proposed

requirement stability metrics can be useful for stakeholders after

making minor changes in their definitions and the metrics can be

applied to integration and verification processes in RUAG Space

AB.

Conclusions: However, more time is required for data collection

to expand the thesis work and to conclude whether the proposed

metrics can be used as predictors for test cases successes in

RUAG Space AB and other companies. The remaining work can

be pursued in future research work.

Keywords

Requirement Stability, Metrics, Test Cases, Success, Prediction,

Measurement Systems, Integration, Verification.

1. INTRODUCTION
Requirements play a driving role during the product creation. The

requirements are captured in the beginning of the project to

conclude what exactly needs to be developed. According to

Brooks [1], the toughest part in building a software system is to

decide precisely what needs to be developed. Furthermore, the

poor requirement gathering and analysis may affect negatively at

a later stage [2, 3]. Moreover, predicting potential results of the

later phases from early time of software development can

obviously help the project team to better deal with the risks of

project rescheduling and resulting in a low-quality product [4, 5,

6]. One of the noticeable aspects of requirement gathering and

analysis phase is measuring the stability of requirements. The

word „stability‟ is defined as „when something is not likely to

move or change‟ [7], and in the case of requirements it is easier to

define the in-stability of them. Hence, requirements instability can

be understood as „how often the requirements change‟. The

problem of measuring requirements stability has been research

from several theoretical angles, but little has been done in terms

of empirical validation of requirements stability metrics.

Requirement stability has also been studied in other ways of

approach such as requirement volatility [4] and requirement

instability [5].

1.1 Problem Statement
The overall goal of this thesis project was to improve the quality

of integration and verification process in RUAG Space AB. Such

a need was raised by the stakeholders in integration and

verification (I&V) department to have a better control over the

test processes. In particular, they wanted to know in advance

whether their test cases will be successful when executed during

the integration stage of their processes. Our role was to evaluate

whether the requirement stability metrics can help as potential

predictors in anticipating the success of test cases.

In general, three research questions were addressed in our work:

 Which requirements stability metrics are important for

RUAG Space AB?

 How to integrate these metrics within the integration and

verification process in RUAG Space AB?

 Can requirements stability metrics be used as a predictor for

test case execution success?

To address these questions an initial set of requirements metrics

was proposed and implemented. After that, an automated tool was

developed to collect metrics‟ values on a daily basis and evaluate

them on a weekly basis with stakeholders at the company. The

evaluation was done through interviews with stakeholders who

are responsible for the integration and verification processes,

including requirement engineers, verification engineers, and

managers. The goal of the evaluation was to find the answers to

the first and the last research questions.

This thesis is organized into 6 chapters. Chapter 2 discusses

related work to the thesis topic. In chapter 3, we describe the

industrial context where the thesis research was conducted.

Chapter 4 presents the design steps of the conducted case study in

the company. Analysis and research results are thereafter

discussed in chapter 5. Finally, the conclusions are presented in

chapter 6.

2. RELATED WORK
In this chapter, we discuss the related work of the thesis. We have

presented a list of existing requirement metrics which are

potentially suitable for RUAG Space AB. We have also given a

short review of the similar research which is related to

requirement stability metrics and software quality.

In the research field of software measurement, there are a number

of contributions for requirement metrics [8, 9, 10, 11]. However,

the requirement metrics found in these contributions do not have a

precisely described measurement method [12], which makes it

hard to reuse these metrics or even implement them in the first

place. Various studies in requirement engineering and software

measurement have been undertaken. As a result, we gathered a

list of requirement metrics in Appendix A. In the list,

requirements metrics are detailed with metric name, description,

purpose, and measurement method. Due to the lack of detailed

procedures for collecting these metrics, we decided to investigate

and implement a set of metrics which are used in another

company in the region, but are not yet published.

Javed, Maqsood, and Durrani [13] in their research on the impact

of requirements instability have proposed a metric named „defects

versus requirement changes‟ to examine the impact of

requirements change on software defect throughout the software

development life cycle and find out the root cause of defects. The

metric is calculated per software release, and categorized into pre-

released and post-released ones. Requirement changes and defects

caused by them are counted using the project documents, such as

function specifications, change requests, project schedule, etc.

The metric is validated using a case study which is performed in

numerous software projects in e-commerce field. Despite the fact

that research carried out some interesting conclusions, it did not

exactly define what should be considered as a requirement

change. In addition, counting the requirement changes in project

documents seems have to be done in a manual process, which

may lead to inaccuracy.

In another approach of using metrics for identifying the

requirement risks, Wyaat et al. [14] in NASA has introduced a set

of measures on content of requirement documents and individual

requirement specifications. The introduced metrics are:

imperatives, incompleteness, option, weak phrases, continuances,

directives, and lines of text. The authors focused on assessment of

requirement document structure and quality of requirement

specifications using a language based approach. Word counting is

the adopted method to calculate the metrics value. The advantage

of this approach is that the metrics calculation can be automated.

However, the drawback is that the metrics are language dependent

and in many situations, it would be difficult to exactly assess the

semantics of requirement specifications.

Ambriola and Gervasi [15] introduce two metrics for requirement

measurement: stability and efficiency. They suggest that

requirements are developed into two steps: writing and polishing.

Requirement stability is defined as variation of information

volume contained in requirement specifications over time.

Information volume is measured and transformed using Fourier

Transformation [16], from which peaks and frequencies are

observed in order to classify the requirement stability into

different classes. This metric may show how smoothly the

requirements are developed. On the other hand, requirement

efficiency is used to measure the efficiency of requirement

analysis process and estimate efficiency of further iterations in

similar conditions. Therefore, these two metrics are helpful for the

assessment of requirement analysis process rather than for

predicting the risks in the later phases.

Loconsole [17] has used GQM model [18] in her research on

measuring requirements management to find out a list of

requirement metrics according to particular need. The introduced

metrics target the requirements changes, which may be applicable

in our thesis context.

Lam, Loomes, Shankararaman [19] has also proposed a set of

metrics for managing the requirement change and action planning.

The metrics are about variances on time, budget, as well as the

quality before and after the requirement changes. This set of

requirement metrics is probably useful for project management

and planning.

3. INDUSTRIAL CONTEXT
In this chapter, we briefly describe the industrial context of this

thesis work. The work was conducted in RUAG Space AB

Sweden which is a leading software and hardware vendor of ESA

(European Space Agency). We investigated the integration and

verification processes of a sample project at RUAG Space AB,

which aims to send an explorer robot to Mars, to perform the case

study. The following chapters present the state of applying

software metrics in RUAG Space, the integration and verification

processes and the supporting tools.

3.1 Applying the Requirement Stability

Metrics
In RUAG Space AB, there were no requirement metrics collected

during the integration work. There is no standard set of metrics

since the stakeholders are not really expected to collect any

metrics at the integration stage.

Metrics of source code are calculated during the code inspection

activities and that kind of information is needed mostly for

process improvement rather than for the use in the current project.

For an instance, the time spent on redesign can be a useful

measurement as a lesson for other projects rather than to be used

in the current project. The company also collects certain cost

related metrics. However this is done after the completion of the

integration stage.

It was important for the stakeholders in RUAG Space AB to have

a better control over the integration process. In particular, they

wanted to know earlier if their test cases will be successful and

whether the requirements stability metrics can be helpful to

predict it. The information they had about the requirement

stability is what they think rather than relying on the exact

numbers. To apply a better approach, their requirement was to use

the requirement stability metrics for the integration and

verification processes to find out a potential prediction model for

success of the test cases.

The requirement stability metrics should have a little impact on

the way of working, especially when it comes to the integration.

The integration is a fairly new way of working for stakeholders,

and they are still trying it out. They are not ready for the detailed

measurements since the process is not yet fully understood.

During the integration, activities are split into smaller steps that

take short time and software engineers quickly switch between

tasks. Adding complicated measurements may mean adding time-

consuming tasks to each of these activities and significantly

increasing the time spent on them. This in turn may add too much

to the cost of integration that should be avoided when integrating

the requirement stability metrics within the integration and

verification processes.

3.2 Integration and Verification (I&V)

Process
In this section, the current project is taken as an example to

describe integration and verification processes in RUAG Space

AB.

At the beginning of the project, a group of project members

created the anatomy of the product. The anatomy consists of

several modules that are the building blocks of the product. Then

the development, integration and verification orders are chosen

for the product. Integration is a framework in which development

and verification activities are carried out, the structure and the

order for the integration tasks are set. The project includes the

requirements and design activities in integration steps which

define what should be ready and when to synchronize between

different parts of the project. After integration, the validation

activities take place. It should not start before the requirements

get frozen and remain stable in the project. Changes may appear,

but the requirements should not change much.

There is an integration plan that divides the project into the

different modules. Implementation of modules is done according

to the integration plan. While different modules have different

integration times, each module has three integration milestones

which are named T0, T1, and T2. The time between these

integration milestones varies depending on how big are the

modules to be integrated. At T0, all the requirements should be

specified and frozen. It means that changes in requirements before

the T0 are acceptable but when the T0 is passed, changes are

undesired. When the project is between T0 and T1, changes are

unwanted because at this stage the developer team begins with

coding the software and the test team starts the implementation of

test cases according to the requirement specifications.

At T2, hardware integration is initiated. All software and

hardware tests and implementations should be completed before

T2. At T2, everything needs to be ready since the integration is

done at this point. Normally, the interval between each integration

step is a couple of weeks and it varies depending on how big the

modules are.

 T0 T1 T2

Requirements

should get frozen

before T0

Software coding and test case

implementation should be

completed before T1

Integration is

done at T2

Figure 1. Integration step milestones

Although the people in integration and verification unit of RUAG

Space AB have a lot of expertise in development, test, and

verification, but they are quite new in the process of integrating

modules. The integration processes in the project are quite new

and not yet completely adapted into the system.

3.3 Supporting Tools
In RUAG Space AB, Telelogic DOORS software is used for

management of requirements. The requirements are organized

into modules, which can be used to categorize the requirements

into different groups. There are links among requirement modules

which allow forming the requirement hierarchy system. The

hierarchy system can be seen in the Figure 2.

In the current project, there are five categories of requirements in

DOORS:

 OBC: Requirements From Customer

 ERD: Equipment Description Requirements

 SSS: Software System Specification

 SRS: Software Requirement Specification

 TSPC: Test Case Specification

Figure 2. Requirement hierarchy

Furthermore, the project team uses MS Excel files to keep the

track of the integration plan as well as the verification status file.

4. RESEARCH METHODOLOGY
The overall goal behind our thesis project was improving the

quality in the I&V unit of RUAG Space AB by proposing a

measurement system that can measure the stability of

requirements before the start of the integration phase. We

addressed the following research questions in our study:

 Which requirements stability metrics are important for

RUAG Space AB?

 How to integrate these metrics within integration and

verification process in RUAG Space AB?

 Can requirements stability metrics be used as a predictor for

test case execution success?

To address the questions we chose the case study research

methodology as it was applicable to our thesis. We had the

opportunity to study the ongoing processes in the unit of

integration and verification at a company, in particular making

interviews with stakeholders was possible for us. Getting the

access to the DOORS requirement management system, test cases

specifications, and test result log files were given by the studied

unit to us. Furthermore, with conducting a case study, it was

possible for us to decide in advance what we want to investigate,

how to design the case study and how to plan to collect the

required data to support it.

OBC

ERD

SSS

SRS
TSPC

Case studies are very suitable for industrial evaluation of the

software engineering methods and tools. They sample from the

variables representing the typical situations [20]. The level of

control over variables is more limited than the level of control in

experiments. [20] It is a preferred technique in situations where

there is no need to have a strict control over the variables of study

[21]. In our project, the only variables we controlled were the

requirement stability metrics that we changed many times in order

to reach to the best set of metrics that fitted the needs of

integration and verification unit. However, we did not have any

control over the other variables in studied unit such as the

verification and integration activities as they were totally

managed by the stakeholders in RUAG Space AB. With this

limited control that we had over the project variables, the case

study was considered as most suitable research method comparing

to the formal experiment method that needs more freedom to have

a control over project variables.

4.1 Case Study Design
The study at RUAG Space AB was conducted between March and

May 2010. In order to address the research questions, we divided

our case study design into four steps: literature review,

introducing initial requirement stability metrics, data collection,

and making interviews with stakeholders to validate the metrics

and evaluate the findings. The following figure shows the steps

taken in the case study, they are discussed in more detail in the

following chapters.

Figure 3. Design of Case Study

4.2 Literature Review
In order to find the related work done in the area of requirement

stability in correlation with test case execution success we

explored the databases of digital libraries, such as:

 IEEE,

 ACM,

 Science Direct,

 Springer-Links,

 Google scholar search engine, and

 DBLP Computer Science Bibliography.

Following are the keywords used to search through the databases

(we combined them with AND and OR to make more extensive

searches):

 Requirement,

 Stability/instability/volatility,

 Metrics,

 Measurement,

 Management,

 Test case,

 Test execution, and

 Failure/success.

In total, we found 35 papers that we had to filter in order to find

the most relevant ones to our study. To achieve this, we read the

abstract, introduction and conclusion parts of the papers. When a

paper was found relevant, we read it completely to investigate it

more. The overall goal of the literature study was to increase our

knowledge in the area of requirement stability, searching for

related work, finding out whether any research has been done in

the area of introducing requirement stability metrics and applying

them as predictors for test case success. We also looked for a list

of requirement-related metrics along with their definitions,

calculation methods and applications in papers, our findings are

listed in Appendix A.

The result of the literature review revealed that although various

studies have been done on requirement stability area, we found no

research specifically focuses on investigating whether

requirement stability metrics can be applied as predictors for test

case execution success.

4.3 Initial Requirement Stability Metrics
As there was no requirement stability metric collection in RUAG

Space AB we proposed five requirement stability metrics based

on an unpublished research at another company and validate them

in a later phase: „Number of Requirements per Test Case‟,

„Number of Requirement Changes per Test Case‟, „Number of

Requirement Changes in Last Seven Days per Test Case‟,

„Number of New Requirements per Test Case‟, and „Number of

Not-Established Requirements per Test Case‟.

In order to better understand the metrics related to requirement

changes, first we describe what the definition of „change‟ in

requirements stability context is, and in the next chapters we

introduce the detailed definition of metrics.

As discussed in Chapter 3, in the company the requirements are

managed in DOORS. Requirements are defined by the three most

important attributes:

 Requirement Text (specification): This attribute contains

requirement specifications in the text format most often. It

can also contain OLE objects which supplement to the

requirement specifications.

 Requirement Status: This attribute is used to mark stability

status of the requirements. There are two values for this

attribute: unstable and established. Whenever a

requirement‟s status is set to established, it is ready for

implementation.

 Links: A requirement can refer to other requirements or test

case specifications. If the requirement refers to a test

specification, we assume it is directly linked to a test case.

Literature Review

Introducing Initial

Requirement Stability Metrics

Data Collection

Evaluation

On the other hand, if a requirement refers to another

requirement which is directly linked to a test case, we

assume the requirement is indirectly linked to a test case.

According to the company‟s process, the requirement status

attribute is manually set by requirement engineers but setting it is

not a mandatory action. Therefore, we do not count change of this

attribute as a real change.

Consequently, we define that a requirement is considered as being

changed if and only if the „Requirement Text‟ attribute is

different from its previous value. Due to the technical limitations,

differences in embedded OLE objects are not counted.

The followings are definitions of the five initial requirement

stability metrics with their pseudo code to calculate them.

4.3.1 Number of Requirements per Test Case Metric
This metric is the total number of requirements which are directly

or indirectly linked to a test case. All the requirements in different

categories and different hierarchical levels are counted in this

metric. The metric is calculated for each test case.

1. test_item = findTestItemInTSPC(TestcaseID)

2. stack = create empty stack

3. for each item in linksIn(test_item)

4. push item into stack

5. end

6. metric_value = 0

7. while stack is not empty

8. pop_item = pop from stack

9. metric_value++

10. for each item in linksIn(pop_item)

11. push item into stack

12. end

13. end

To calculate this metric, all the test items in „Test specification‟

module (TSPC) are traced to find a specific test case. Thereafter,

all the requirements linked to this test case are recursively traced

using a stack in pseudo code to count the number of all linked

requirements.

4.3.2 Number of Requirement Changes per Test Case

Metric
This metric is the total number of changes that have been made to

requirements which are directly or indirectly linked to a specific

test case. All the requirements in different categories and different

hierarchical levels are counted. The metric is calculated for each

test case. The calculation algorithm is as follows:

1. test_item = findTestItemInTPSC(TestcaseID)

2. stack = create empty stack

3. for each item in linksIn(test_item)

4. push item into stack

5. end

6. metric_value = 0

7. while stack is not empty

8. pop_item = pop from stack

9. for each change in changesList(pop_item)

10. metric_value++

11. end

12. for each item in linksIn(pop_item)

13. push item into stack

14. end

15. end

Similar to the previous algorithm, all the requirements linked to a

specific test case are recursively visited using a stack. For each

visited test case, the script checks the changes list, which is daily

updated by comparing two latest versions of the requirements.

The metric value is sum of all the changes found.

4.3.3 Number of Requirement Changes in Last Seven

Days per Test Case Metric
Calculation of this metrics is similar to „Number of Requirement

Changes per Test Case‟ metric, the only difference is that the

changes occurred in the last seven days are counted. The seven

days time frame is used for capturing the weekly aspects of

software projects. This metric is thought to prevent this problem

and show only the recent changes occurred in requirements of a

specific test case. This metric is calculated for each test case using

the following algorithm:

1. test_item = findTestItemInTPSC(TestcaseID)

2. stack = create empty stack

3. for each item in linksIn(test_item)

4. push item into stack

5. end

6. metric_value = 0

7. while stack is not empty

8. pop_item = pop from stack

9. for each change in changeList(pop_item)

10. if change is in last 7 days

11. metric_value++

12. end

13. for each item in linksIn(pop_item)

14. push item into stack

15. end

16. end

This algorithm is almost the same as the previous one. The only

difference is that only the changes which were made in the last

seven day are counted in calculating the metric value.

4.3.4 Number of New Requirements per Test Case

Metric
This metric is the total number of requirements which are newly

added to the project and linked to a specific test case. All the

requirements in different categories and different hierarchical

levels are counted. The metric is calculated for each test case.

1. test_item = findTestItemInTPSC(TestcaseID)

2. metric_value = 0

3. for each item in addedList

4. parent = linkOut(item)

5. while parent is not null

6. parent = linkOut(parent)

7. end

8. if parent = test_item

9. metric_value++

10. End

The given test case is searched in the „Test Specification‟ (TSPC)

module in DOORS. Then the script looks at the added

requirements list, which is updated every day. For each

requirement, the script checks whether it is linked to the given test

case. If so, 1 is added to the metric value.

4.3.5 Number of Not-Established Requirements per

Test Case Metric
This metrics is calculated by counting the number of „unstable‟

requirements in all categories and hierarchical levels in DOORS

which are directly or indirectly linked to a specific test case. The

metric is calculated for each test case.

1. test_item = findTestItemInTPSC(TestcaseID)

2. stack = create empty stack

3. for each item in linksIn(test_item)

4. push item into stack

5. end

6. metric_value = 0

7. while stack is not empty

8. pop_item = pop from stack

9. if statusOf(pop_item) = “unstable”

10. metric_value++

11. for each item in linksIn(pop_item)

12. push item into stack

13. end

14. end

All the linked requirements are recursively traced using a stack.

For each requirement, the script checks whether the status

attribute is set to „unstable‟. If so, the metric value is increased by

1.

4.4 Data Collection
As discussed earlier, in our research, we needed to collect the

metrics data on a daily basis to evaluate their validity. Therefore,

developing a measurement tool with the ability of gathering

metric data was one of the most important tasks in the project.

In a research project that was conducted in Ericsson, Staron et al.

[22, 23] introduced a framework for developing a measurement

system and its industrial evaluation. The framework implemented

the ISO/IEC 15939 standard [12] for the software measurement. It

is based on pre-prepared MS Excel templates to be flexible and

independent of information sources. The idea of this framework

allows the measurement system to be able to work with the

different data sources without changing its internal structure. New

measures can be quickly implemented but do not impact the other

measures. In addition, the framework allows the measurement

system to do any further statistics easily since requirements data

are kept in MS Excel sheets and do not require connecting to data

source again. Therefore, we decided to apply the approach

introduced in this standard to develop our measurement tool. This

framework allowed us to implement our measurement tool in a

standardized manner. However, we customized the framework

implementation to be the best fit in the RUAG Space AB context.

Firstly, by investigating the industrial context, we characterized

the following requirements which the measurement system should

fulfill:

 The ability to extract the requirements data which is required

to calculate the five initial metrics described in the previous

sections.

 The ability to run automatically on a nightly basis without

user intervention and generate accurate results.

 The ability to work transparently and make no changes to the

other current systems at RUAG Space AB.

 The ability to keep the history of metric values to draw the

trend diagrams over the time.

Secondly, the information flow is defined according to the Figure

4. The measurement system takes requirements as input data and

produces metric values and trend diagrams as output.

Figure 4. Measurement tool information flow

The whole scenario of measurement system including the export

of requirement data into the internal MS Excel files, finding

Connect to requirements

management tool

Export requirement

specifications and status

Detect requirements

changes

Calculate metrics using

changes list

Draw trend diagrams

requirement changes, generating trend diagrams and gadget file

are shown in the Figure 5.

Figure 5. Measurement system architecture

The system is developed using MS Excel VBScript and DXL

(DOORS Extension Language)– a scripting language which is

designed for DOORS manipulation and interaction [24].

The Windows Task scheduler is used as the bootstrap loader of

the measurement tool. It triggers a DXL scripts running in

DOORS batch-mode to export requirements data into an MS

Excel file. When the exporting task finishes, the script will

activate the VBScript codes in MS Excel files.

The measurement system uses three different Excel files:

 ReqsDump.xls: This file contains raw requirements data

exported from the DOORS.

 ReqChanges.xls: This file contains all the requirement

changes gathered from the beginning of data collection

process. The changes are categorized into three different

worksheets: new requirements, deleted requirements, and

changed requirements. To identify the requirements changes,

this Excel file keeps two last versions of raw requirements

data. When new requirement data are exported into

ReqChanges.xls, these two versions are updated accordingly,

and then the changes are detected by a simple comparison

between data of two versions.

 VerificationStatus.xls: This file is the extension to the

RUAG Space AB verification status file. As a supplement to

the status columns for each test case, we added five more

columns, in which the test case metrics values are stored.

This file also contains history of metrics values in five

separated worksheets. The trend diagrams are generated by

running a macro in this file. Thereafter, they are exported in

format of .jpg files to be used in representing the trend charts

in gadget HTML.

We used a HTML gadget file to present our system, which

embeds the metrics values, trend diagrams for the individual test

cases, as well as the statistics to show the most noticeable test

cases.

4.5 Evaluation
We held six interviews with four stakeholders from integration

and verification unit in order to evaluate the validity of proposed

metrics and investigate whether they can be used as predictors for

success of test cases. The interviewed people have the following

roles in I&V unit:

 Software validation manager: The responsibility for

software validation implies issuing the software

validation documents (software validation plan,

software validation test specification, and software

validation test report), developing the TASW (Test

Application Software) and validation test scripts. The

person also controls if the software development

process is followed for the software testing. The person

has been software validation manager for four years at

RUAG Space AB.

 Integration responsible: This role is quite new at RUAG

Space AB and it is the first time that the integration

responsible works in this role. The person is responsible

for making the integration plan updated every day

according to the latest changes in the project.

Furthermore, the person has been the technical team

leader (object manger) for both hardware and software

for ten years.

 Software requirement and design responsible: This

person is responsible for writing and maintaining the

software requirement documents. He also implies

defining the overall software structure and specifying

the module interfaces. This employee has worked with

software development for about 30 years and has been

the formal software requirements responsible in various

projects for about 25 years.

 Verification object manager: This role usually implies

acting as the verification object manager for data

handling projects. The main task is to manage the

„Provide Test Equipment‟ development process. This

includes the overall responsibility for all the tasks

included in the „Provide Test Equipment‟ process, and

keeping the time schedule and cost budget. The second

major responsibility is to establish the test specification

and other critical test documents. In some projects the

verification object manager also has the role of

responsible for software validation. This employee has

worked as verification object manager in six major data

handling projects over the last 10 years and has been

with the company for almost 15 years.

The data obtained during the interviews helped us to get a better

understanding of how the requirements change and why the test

cases fail. It also served us to improve the next interviews,

making them more efficient and to the point.

The followings are brief summary of the interviews:

 Interview with software validation manager: We asked the

software validation responsible to check the gadget file daily

and notify us whether any unexpected changes happened in

the requirements linked to a specific test case. In particular,

the questions asked were intended to increase our knowledge

about how requirements, test cases and test execution are

managed in the RUAG Space project, as well as to capture

the unexpected changes, find out the reasons of requirement

instability, and getting feedback to the developed

measurement system and proposed metrics.

 Interview with integration responsible: The interview with

the integration responsible focused on understanding which

parameters are considered when he updates the integration

plan daily every day and whether the proposed metrics and

data presentation in the gadget file can be helpful for him in

updating the plan according to the daily requirement

changes.

 Interview with software requirement and design responsible:

The questions asked to software requirement and design

responsible were intended to find out the interdependency

between requirements of different levels, how changes in

upper level requirements affect the lower level requirements,

the reasons of changes occurring in requirement, getting

suggestions to improve the measurement systems and

metrics.

 Interview with verification object manager: In particular, in

our questions we focused on finding the reason for test case

failures, the effect of requirement instability on failures,

getting the feedback about proposed metrics and asking for

suggestions to add new metrics into our system.

In the next chapter you can find the results of evaluation and

analysis activities on metrics.

5. RESULTS AND ANALYSIS
The results of the thesis are derived from the interviews we held

with people involved in the current project in order to evaluate

how efficient the proposed requirement stability metrics are and

whether they can be used as predictors for test execution success

in integration and verification activities of RUAG Space AB. The

evaluations for each of the initially proposed metrics,

modifications, and introduced new metrics are included in this

chapter.

5.1 Evaluating ‘Number of Requirements per

Test Case’ Metric
According to the opinion of the interviewees, the metric „Number

of Requirements per Test Case‟ is an interesting one as it was

integrated into the gadget file and the stakeholders could observe

the changing trend in the number of requirements easily.

Although in terms of importance this metric had the least

importance among the metrics as it represents the increase and

decrease in number of requirements in gadget file it was

considered helpful to the stakeholders. According to interviewees‟

opinions, the most useful metric is the „Number of Requirement

Changes in Last Seven Days per Test Case‟ since it informs about

the most recent changes occurred in test cases during the last one

week and can be utilized in the integration processes.

Furthermore, the stakeholders suggested us to change the trend

chart of this metric in a way that they could see the T0 milestone

line. It is important for them to see whether the requirement

additions or deletions still happen after the T0 integration

milestone. In fact, all requirements should get frozen before T0 as

the test case implementation and software coding phase starts in

the next step.

Change in number of requirements causes a delay in integration

process. The test cases are dependent on the requirement

specifications and should get updated whenever the requirement

additions or deletions occur in DOORS.

After updating the test cases, they are reviewed by the

requirements engineers to check for correct understanding of the

requirements. Some requirements are un-testable, or difficult to

test with the given descriptions, therefore the requests may be

made for changing them. Once the reviews are performed, the test

cases are updated and the coding of the tests cases begins. The

test case writer follows up with the implementer and reviews the

test code to check that the test code is correctly implemented. The

test code is reviewed, and the code review is the only thing that is

on paper. The code is copied on MS Word documents and

reviewed. The found problems are written down as comments. At

this time the software should be completely module tested and

code reviewed. At the end there is an official run of the tests, the

test log files are saved and reviewed and the results are saved. All

the log files should be reviewed and they are available for the

customer to review. All these tasks should be fulfilled to integrate

a new requirement into the system which imposes a delay in the

whole project if it occurs after T0 milestone.

The metric „Number of Requirements per Test Case‟ is helpful to

find out how many requirement changes occur for each test case

in DOORS. The Figure 6 shows a sample trend chart for this

metric. In the next figure you can see the same chart when the T0

line is added into the diagram.

Figure 6. Number of Requirements per Test Case Trend

Chart

Figure 7. Number of Requirements per Test Case Trend

Chart with T0 integration milestone

As it can be observed in the Figure 7 the T0 milestone appeared

quite late in the studied project, which means that we did not have

a good opportunity, due to the time limitations, to evaluate the

requirements stability metrics after this milestone.

5.2 Evaluating ‘Number of New

Requirements per Test Case’ Metric
During the period of time we observed the gadget charts, we

realized that no changes occurred in the value of the metric

„Number of New Requirements per Test Case‟ as it always

represented a flat line of zero. This can be seen in Figure 8 which

is a snapshot from the new requirement trend chart.

Figure 8. Number of new requirement trend chart

The software validation manager claimed that the new

requirements added into DOORS during the period we collected

data. However, we it was not reflected into our charts. To

investigate more about why this happened, we examined the

history of newly added requirements in our Excel databases. It

was revealed that the new requirements are added into DOORS

but as there are no links provided from them to the test cases it

was not possible to trace them back to the test cases and that was

why for this metric we always received a value of zero.

According to the talk with the software validation manager, this

problem could happen because of the requirement engineers have

not yet finished with the specification of new requirements and it

takes more time to be completed and linked with the test cases.

Therefore, to solve this problem we decided to modify the

definition of „Number of New Requirements per Test Case‟

metric in a way that regardless of having link with test cases we

can see how many requirements are added into system. Hence,

this metric replaced with a new metric of „Number of New

Requirements‟ that is calculated per project, rather than per test

case.

5.3 Evaluating ‘Number of Not-Established

Requirements per Test Case’ Metric
The status of a requirement is set by default to „unstable‟ when a

requirement is added into DOORS. This fact can be seen in the

Figure 9 which is a snapshot from the gadget file. In this chart, the

number of requirements has increased from 27 to 29 for a specific

test case and the same increasing pattern can be followed in the

Figure 10 that represents the chart for the number of unstable

requirements for the same test case.

Figure 9. Number of Requirements per Test Case Trend

Chart

Figure 10. Number of Not-Established Requirements per Test

Case Trend Chart

On the other hand, the number of requirement changes chart, as

shown in the Figure 11, reveals a flat line of zero which means

that no changes occurred when new requirements were added into

DOORS. Thus, by default the status of requirements is set to

„unstable‟ in the beginning when they are added into the system.

Figure 11. Number of Changed Requirements per Test Case

Trend Chart

The status attribute is handled manually by the requirement

engineers. Setting the value of this attribute is not a mandatory

action. It is considered as an extra effort to set this attribute when

adding new requirements into DOORS. In addition, it may happen

that people forget to change the status of a requirement to

„established‟ although in real it occurs and the requirement is

established. Therefore, we did not count the change of this

attribute as a meaningful one and the metric we based on this

attribute „Number of Not-Established Requirements per Test

Case‟ was not a reliable metric for stakeholders.

We suggest it to avoid establishing any metric on this attribute

unless it is managed in a controlled way. Finally, as for our

evaluation the metric „Number of Not-Established Requirements

per Test Case‟ was removed from our list of metrics and the

company decided to be more stringent on setting the attribute

“established” at T0 that this was not the case before our research.

5.4 Evaluating ‘Number of Requirement

Changes per Test Case’ Metric
There are various reasons for changing the specifications of the

requirements, which are described as follows:

 Some changes in the requirements are demands from the

customers. RUAG Space AB sends the specification of

requirements in the form of documents to the customers to be

reviewed and confirmed. If the customers are not satisfied

with the specifications, they request changes in the

requirements. This type of change is considered as an

external change into the system.

 The internal reviews on requirements specifications are done

in RUAG Space AB by requirement engineers to ensure that

the customer needs are fulfilled in them. It is possible that

some changes occur at this stage.

 Some changes occur internally by people from different

departments of RUAG Space AB (e.g. system department,

software design department, hardware department) into

system. When people work on the design and

implementation phase they change the requirements so often,

that it affects the system. This kind of change is considered

as internal as is a demand from inside the company.

Additionally, misunderstanding between the different

departments of RUAG Space AB in the definition of the

requirements can be another reason for changing the

requirements. Also, it may be considered that there is not

enough input for the tests so testers may need adding more

details into the requirements.

 Most often, no change occurs in the requirements after the

execution of test cases. However, sometimes, after analyzing

the result of the test execution some requirements should be

updated. This type of change does not occur often and is not

a main reason for changing the requirements.

 Sometimes the hardware does not work properly as expected.

Therefore, they should change the related requirements

accordingly.

 Existing bugs in the requirements and working on

incomplete requirements cause changes in the requirement

specifications. If bugs are found after T0, they cause a delay

in the integration plan as the requirements should be fixed

before the start of the integration process.

 It may be found out that there is not enough input for the

tests so people add more details into the requirements.

 There is interdependency between requirements of different

levels. For example, if any change occurs in the SSS level

requirements most likely the SRS requirements should get

updated accordingly. It is likely that changes in the SSS and

SRS affect the test cases. The test cases linked to these

requirements should be updated as well since they must

cover all aspects of the requirements. There is a direct link

from TSPC (TC Specification) to the SSS, SRS, ERD, and

OBC Spec requirements so it is highly possible that

requirement changes demand changes in TSPC as well.

Regardless of the reason for changing the requirements, the metric

„Number of Requirement Changes per Test Case‟ captures all of

the changes occurring in the „requirement text‟ attribute of the

requirements linked to a test case. The verification object

manager (verification and validation) believes that this metric is

useful for the system as it reflects how stable the requirements

related to a specific test case are. He found it likely that there is a

correlation between this metric and failure of test cases as after

changing the requirements the test cases should be updated as

well and if they are not updated most probably the test case

execution will face failure. This, in turn, prolongs the process of

integrating test cases into the system. Sometimes the test team

does not realize when a new requirement is added to DOORS.

A change is critical into system when it passes the T0 integration

milestone as every requirement should be frozen after that. It was

very important for the stakeholders to know whether any changes

occur after T0, and if it happens how many requirements have

been changed. The current chart for the metric „Number of

Requirement Changes per Test Case‟ does not show T0 line but as

a future effort we should implement it in our gadget file.

Furthermore, the verification object manager suggested that we

implement the existing metrics per integration step instead of per

test case as there are a few requirements in DOORS that do not

have any link to the test cases so their changes cannot be reflected

in our metrics.

To investigate the relation between the failed test cases and the

stability of requirements, we looked for the test cases in test status

log file, which failed due to the problems in the integration stage.

The status of these test cases is reported as NOK (not Ok) in this

file. Then we checked their situations in the gadget file to see

their change trend in the requirement stability metrics. The result

showed that out of 17 failed test cases reported in the verification

status, 13 test cases experienced a stable situation in their

requirements and had flat lines in their charts. This fact revealed

that besides volatility of requirements there were other reasons for

failure of the test cases at the integration time. After having

discussed the matter with the stakeholders, we summarize the

reasons for the failure as follows:

 The failure can occur because of a crash in the software.

 Another reason is failure of hardware in lab.

 Existing bugs in the test case code that is the most common

reason for failure.

 A change can also occur in the specification of tests, as test

cases are updated by test team until they are fixed and stable.

The change can happen because of the new functionalities

added to the system that are not specified enough or maybe

the person working on them is not enough experienced and

therefore change them several times until they are fixed.

Although there were different origins for test case failure, the

verification object manager still believed that the requirement

stability metrics could be helpful indicators to receive earlier

warnings before the test cases are failed. To justify his claim, he

pointed out that there is no systematic way to inform the test team

about the change in requirements when they get updated by the

requirement engineers. They inform the test team about updates

only in an informal verbal way. It may even occur that they forget

to report the changes. Additionally, sometimes people think that a

requirement change does not require updates in the corresponding

test cases so they just simply ignore them and do not inform the

test team about updates. Thus, when a not-updated test case run

on the system it is likely that it fails.

Similarly, the test team does not always realize when a new

requirement is added to DOORS. Again, this is because of the fact

that there is no controlled way to inform newly added

requirements to the test team.

5.5 Evaluating ‘Number of Requirement

Changes in Last 7 Days per Test Case’ Metric
The evaluation of this metric is the same as the last metric,

„Number of Requirement Changes per Test Case‟ as it has the

same functionality. The only difference is that it shows the

number of recent changes occurred in the last 7 days and its value

is cumulative just for the data from one week. But, the „Number

of Requirement Changes per Test Case‟ metric counts all the

changes occurred from the beginning time of data collection and

its value is cumulative for the whole period of data collection.

This metric was considered as the most helpful one for the

verification object manager as he can see the most recent changes

in requirements.

According to the suggestions from stakeholders, the T0 line which

is a milestone in the integration activities should be drawn in the

trend charts related to the two last metrics. The current trend

charts do not show this line.

6. CONCLUSIONS
In this thesis, we implemented and evaluated five requirement

stability metrics applied to an industrial project in RUAG Space

AB. A case study was conducted as our research methodology to

evaluate the metrics.

We successfully developed a measurement system which collects

the metrics data on a daily basis. This tool which implements

ISO/IEC 15939 standard is able to run automatically without user

intervention. The system was presented at RUAG Space AB and

found very interesting for engineers and managers. They believed

that the tool is very useful to integrate in their daily work.

The interviews were held with the project members to validate the

proposed metrics and find out whether any of them can be used as

predictor of test case execution success in RUAG Space AB.

During the interviews, the metrics and trend charts were presented

to the members to make them realize how unstable the

requirements behave in DOORS and to get their opinions as well.

The stakeholders did not have the opportunity to observe the

requirements changes before the implementation of our

measurement system, so it was found very interesting to them that

we could expose the information that were hidden for the

stakeholders. The automated data collection, analysis and

presentation were integrated into integration and verification

processes and found very useful in the daily work at RUAG Space

AB.

The evaluation of outcomes showed that among the introduced

metrics, „Number of Requirement Changes per Test Case‟ is the

most probable candidate to be an indicator for success of test case

execution while „Number of Changes per Test Case in Last 7

Days‟ caught the attention of the verification object manager, who

wanted to know what happened in the project recently. „Number

of Requirements per Test Case‟ can also be considered as an

indicator to show the complexity of the test cases. Meanwhile, the

two other metrics „Number of New Requirements per Test Case‟

and „Number of Not-Established Requirements Per Test Case „

did not make so much sense due to the fact that the integration

and verification process was not fully standardized in RUAG

Space AB. In addition, a number of metrics were suggested as an

improvement: „Number of New Requirements per Project‟ and

„Number of Requirement Changes per Integration Step‟.

Although the problem of measuring requirements stability has

been researched from several theoretical angles, but little has been

done in terms of empirical validation of requirements stability

metrics. The impact of requirement instability on the success of

test cases has not been investigated in industry. In our research,

we could study the problem of requirement instability in relation

with success of test cases. We implemented five requirement

stability metrics and empirically validated them to reach to a final

set of metrics applicable in the RUAG Space AB context.

The previous studies on requirement stability metrics lack

providing a precise definition to the metrics that creates ambiguity

in understanding the meaning and functionality of metrics. We

resolved this issue by providing clear metric definitions. We

wrote pseudo code algorithms for measurement of metrics to clear

their definitions. The algorithms can be reused by others.

Only a few requirement stability metrics that were introduced in

previous studies have a clear measurement method. However, we

have developed a measurement system which conform a

standardized framework and is able to capture the requirement

data, run automatically, and can work transparently within RUAG

Space AB‟s existing systems.

Comparing to the requirement stability metrics that are only

helpful in the assessment of requirement analysis, project

management and project planning processes, our implemented

metrics provide a better control over the test process that may

occur in later phases of software projects.

However, because of the time limitation, the thesis needs further

work in the future. So far, we did not find enough evidence that

requirement stability metrics can be helpful in anticipating the

success of test cases. The project will only start the execution of

test cases after the thesis is finished. Therefore, we are not able to

perform a full empirical validation for the potential of the metrics

to act as predictors. The implementation and validation of the new

suggested metrics are also necessary to be done in the future.

To sum up, the thesis achieved useful results which can make

contributions to the progress of research and application of

software metrics in industry. We have set up a ground at the

company for future work, which can be used for a longer period

of time to collect the data and provide more advanced analyses

about the requirements stability of test case execution success. As

it was not possible to perform the full empirical validation of the

metrics, we suggest RUAG Space AB to continue our work to

extend the results in the future.

ACKNOWLEDGMENTS
We would like to thank RUAG Space AB for providing the

possibility of doing this study and their support to us. We would

also thank our supervisor, Dr. Miroslaw Staron, for suggesting us

this project, giving support through whole project and providing

helpful feedbacks to improve our thesis report.

7. REFERENCES
[1] Brooks, F. 1987. No Silver Bullet: Essence and Accidents of

Software Engineering. IEEE Computer, Vol. 20, No. 4, April

1987, 10-19.

[2] Jayaswal, B. K., Patton, P. C. 2006. Design for Trustworthy

Software: Tools, Techniques, and Methodology of

Developing Robust Software, 1st Edition. (September 2006),

Prentice Hall edition.

[3] Zowghi, D. 2002. A Study on the Impact of Requirements

Volatility on Software Project Performance. Proceedings of

Ninth Asia-Pacific SE Conference (APSEC‟ 2002), IEEE

Computer Science.

[4] Taghi, M., Khoshgoftaar, N., Sundaresh, N. 2006. An

empirical study of predicting software faults with case-based

reasoning. (June 2006), Software Quality Control.

[5] Jiang, Y., Cukic, B., Ma, Y. 2008. Techniques for evaluating

fault prediction models. (October 2008), Empirical Software

Engineering.

[6] Arisholm, E., Briand, L. C., and Johannessen, E. B. 2010. A

systematic and comprehensive investigation of methods to

build and evaluate fault prediction models. Journal of

Systems and Software 83, 1 (Jan. 2010), 2-17.

[7] Cambrige Advanced Learner's Dictionary. 2008. 3rd edition.

Cambridge University Press, (April 2008).

[8] Henry, J. and Henry, S. 1993. Quantitative assessment of the

software maintenance process and requirements volatility. In

Proceedings of the 1993 ACM Conference on Computer

Science (Indianapolis, Indiana, United States, February 16 -

18, 1993). CSC '93. ACM, New York, NY, 346-351.

[9] Li, L., Shu-guang, H., Er-shi, Q. 2008. On Software

Requirement Metrics based on Six-Sigma. Advanced

Management of Information for Globalized Enterprises,

AMIGE 2008.

[10] Rosenberg, L.H., and Hyatt, L. 1996. Developing an

Effective Metrics Program. In proceedings of the European

Space Agency Software Assurance Symposium, the

Netherlands, (March 1996).

[11] Malayia, Y.K., Denton, J. 1999. Requirements Volatility

and Defect Density. 10th IEEE International Symposium on

software reliability Engineering, Boca Raton, Florida, (Nov

1999), 28-39.

[12] ISO/IEC 15939:2007, Systems and software engineering -

Measurement process:

http://www.iso.org/iso/catalogue_detail.htm?csnumber=4434

4

[13] Javed, T., Maqsood, M. e., and Durrani, Q. S. 2004. A study

to investigate the impact of requirements instability on

software defects. SIGSOFT Software Engineering Notes 29,

3 (May. 2004), 1-7.

[14] Wyatt, V., DiStefano, J., Chapman, M., Aycoth, E. 2003. A

Metrics Based Approach for Identifying Requirements Risks.

Software Engineering Workshop, Annual IEEE/NASA

Goddard, p. 23, 28th Annual NASA Goddard Software

Engineering Workshop (SEW'03), 2003.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=44344
http://www.iso.org/iso/catalogue_detail.htm?csnumber=44344

[15] Ambriola, V. and Gervasi, V. 2000. Process Metrics for

Requirements Analysis. In Proceedings of the 7th European

Workshop on Software Process Technology (February 21 -

25, 2000). R. Conradi, Ed. Lecture Notes In Computer

Science, vol. 1780. Springer-Verlag, London, 90-95.

[16] Kammler, D. W. 2000. A First Course in Fourier Analysis,

1st Edition. Upper Saddle River, NJ: Prentice Hall.

[17] Loconsole A. 2001. Measuring the Requirements

Management Key Process Area. Proceedings of ESCOM -

European Software Control and Metrics Conference,

London, UK (April 200).

[18] Solingen, R. V., Berghout, E. 1999. The

Goal/Question/Metric Method. McGraw-Hill Education, US

(January 1999).

[19] Lam, W., Loomes, M., and Shankararaman, V. 1999.

Managing Requirements Change Using Metrics and Action

Planning. In Proceedings of the Third European Conference

on Software Maintenance and Reengineering (March 03 - 05,

1999). CSMR. IEEE Computer Society, Washington, DC,

122.

[20] Wohlin, C., Runeson, P., Höst, M. 1999. Experimentation in

Software Engineering: An Introduction. Springer (December

1999).

[21] Fenton, N. E., Pfleeger, S.L. 1997. Software Metrics: A

Rigorous & Practical Approach. PWS publishing company,

Boston.

[22] Staron, M., Meding, W., and Nilsson, C. 2009. A framework

for developing measurement systems and its industrial

evaluation. Information and Software Technology. 51, 4

(Apr. 2009), 721-737.

[23] Staron, M. and Meding, W. 2009. Using Models to Develop

Measurement Systems: A Method and Its Industrial Use. In

Proceedings of the international Conferences on Software

Process and Product Measurement (Amsterdam, The

Netherlands, November 04 - 06, 2009). A. Abran, R.

Braungarten, R. R. Dumke, J. J. Cuadrado-Gallego, and J.

Brunekreef, Eds. Lecture Notes In Computer Science, vol.

5891. Springer-Verlag, Berlin, Heidelberg, 212-226.

[24] DOORS DXL Guidelines:

https://www.ibm.com/developerworks/wikis/display/dxl/Ho

me

http://www.amazon.com/s/ref=ntt_athr_dp_sr_1?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Claes%20Wohlin
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Per%20Runeson
http://www.amazon.com/s/ref=ntt_athr_dp_sr_3?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=Martin%20H%C3%B6st
https://www.ibm.com/developerworks/wikis/display/dxl/Home
https://www.ibm.com/developerworks/wikis/display/dxl/Home

APPENDIX A: LIST OF REQUIREMENT-RELATED METRICS

Metric Object Description Used for Calculation method

Defects versus

requirement

changes [13]

Project's

release

Number of defects

found due to

requirement changes

throughout SDLC

Examining the

impact of RC on

software defects

throughout the SDLC

and the root causes of

those defects

1) Requirement changes are categorized into Pre-

Release changes(before the system has been

deployed) and Post-Release changes (after the

system has been deployed)

2) Requirement changes are collected from FS,

Change request, Project schedules, then assigned

high/medium/low severity

3) Defects are counted in Defect Repository

System which are linked to requirements and

assigned severity 1 and 2.

4)Metric value is calculated by number of defects

with particular severity which is caused by pre-

release/post release requirement changes in

particular with particular severity

Imperatives/Inco

mpletes/Option/

Weak

phrases/Continu

ances [14]

Individual

requiremen

t

specificatio

n

1) Imperatives: Words

and phrases that

command that

something must be

provided

2) Incompletes:

Indications of

incomplete

requirements

3)Option: Words that

loosen the

specification by giving

the developer latitude

4) Weak phrases:

Multiple

interpretations or

ambiguous terms

5) Continuances:

Phrases that follow an

imperative and

introduce lower level

specification

requirements

Assessing the

structure and quality

of individual

specification and the

vocabulary used to

state requirements to

assist in identifying

risks associated with

poorly specified

requirements that

could impact the

project

Search a requirement specification's text to count

number of keywords and phrases identified as

quality indicators. Details are:

1) Imperatives: "shall"

2) Incompletes: "TBD","TBR", "etc."

3) Option: "should"

4) Weak phrases:

5) Continuances:

Directives Requireme

nt

specificatio

n document

Measure of references

to figures, tables

Providing indications

of requirements

document quality but

not individual

requirement

indications

Count number of figures and tables in the

requirements specification document

Lines Of Text Requireme

nt

specificatio

n document

Measure of physical

lines of text

As above Count number of physical lines (CR-LF) in the

requirements specification document

Stability [15] Requireme

nt

document

Measure how smooth

the two phases of

writing and polishing

requirements are

integrated

Predicting

requirements

document quality

1) Define:

- F(t): Amount of information contained in the

requirement at time t. Information volume can be

counted as:

 + Functional score

 + Behavioral complexity

 + Static complexity

 + Document size

- δF(t) = F(t)-F(t-1)

2) Use Fourier transform to analysis the frequency

of δF(t)

3) Classify into 4 classes:

- Low peaks on high frequencies

- Low peaks on low frequencies

- High peaks on low frequencies

- High peaks on high frequencies

Efficiency [15] Requireme

nt

document

Measure efficiency of

the analysis process

Estimating the

expected efficiency

of further iterations

of requirements

process in similar

conditions

1) Define:

 δF(t) as above

 where [a,b] is time interval

 ε(a,b,F) is the metric value

Number of

initial

requirement [17]

Project Number of

requirements at the

beginning of project

Measuring level of

stability of the

requirements

Total number of requirement established before

implementation

Number of final

requirement [17]

Project Number of

requirements at the

end of project

Measuring level of

stability of the

requirements

Total number of requirements after delivery

Number of

changes per

requirement [17]

Project Number of changes

made to the

requirement

Measuring level of

stability of the

requirements

Total number of changes made to a particular

requirement

Number of test

cases per

requirement [17]

Requireme

nt

Number of test cases

linked to the

requirement

Measuring impact of

requirement to testing

Total number of test cases to verify the

requirement

Number of

changes to

requirements

proposed [17]

Project Number of changes

made to requirements

in Proposed status

Measuring

manageability of

requirement changes

Total number of changes made to all requirements

with Proposed status

Number of

changes to

requirements

open [17]

Project Number of changes

made to requirements

in Open status

Measuring

manageability of

requirement changes

Total number of changes made to all requirements

with Open status

Number of

changes to

requirements

approved [17]

Project Number of changes

made to requirements

in Approved status

Measuring

manageability of

requirement changes

Total number of changes made to all requirements

with Approved status

Number of

changes to

requirements

incorporated

into base line

[17]

Project Number of changes

made to requirements

which are not base-

lined

Measuring

manageability of

requirement changes

Total number of changes made to all requirements

which are not base-lined

Number of

changes to

requirements

rejected [17]

Project Number of changes

made to requirements

in Rejected status

Measuring

manageability of

requirement changes

Total number of changes (?) made to all

requirements with Rejected status

Number of

requirement

affected by a

change [17]

Requireme

nt

Impact of a change to

all requirements

Measuring impact of

a change

Total number of requirements affected when a

change is implemented

Number of

changes to

requirements per

unit of time [17]

Time Total number of

changes made to the

requirement in a

specific time unit (day,

week, month)

Measuring if number

of changes decrease

with time

Total number of chances(?) made to all

requirements in a given reporting period

Number of

TBDs in

requirement

specifications

[17]

Requireme

nt

Number of

requirements that

contain "TBD", "To be

done"

Measuring

completeness of

requirements

Total number of requirements whose

specifications contain "TBD" or "To be done"

Number of

TBDs per unit of

time [17]

Unit of

time

Number of

requirements that

contain "TBD", "To be

done" in a specific unit

of time (day, week,

month)

Measuring if

incompleteness of

requirements

decrease with time

Total number of requirements whose

specifications contain "TBD" or "To be done" in a

given reporting period

Number of

requirements

scheduled for

each software

build or release

[17]

Build/Relea

se

Size of release/build Measuring how many

requirements were

scheduled for

implementation

Total number of requirement taken to be

implemented in the specific build/release

Number of base-

lined

requirements

[17]

Project Number of

requirements which

are base-lined

Measuring how many

requirements were

base-lined

Total number of all requirements which are base-

lined

Change Effort

[19]

Change Effort to implement

requirement change

Assisting

maintenance project

planning and the

production of

software maintenance

contract

Equal to the effort (in person-hours or person-

month) required to implement the requirement

change

Change Cost

[19]

Change Cost to implement

requirement change

Assisting

maintenance project

planning and the

production of

software maintenance

contract

Equal to the actual cost of implementing the

change

Delivery Time

[19]

Change Time to implement

requirement change

Assisting

maintenance project

planning and the

production of

software maintenance

contract

Equal to time (in hours or days, months) to

implement the change

Quality

Variance [19]

Change Impact of

implementation of

requirement changes

into quality

Protecting and

maintaining specific

quality aspects of a

software product

Define quality levels of the system

Measure quality level before and after

implementation of the change

Quality variance equal to the differences of the

two measured levels

Budget

Reduction [19]

Change Monetary effect of a

requirement change on

the project budget

Managing software

maintenance budget

Equal to difference of budget before and after

implementation of change

Requirements

Dependency

[19]

Requireme

nt

Dependencies that

exist among

requirements in project

Providing a loose

measure of the

coupling of the

system

Equal to number of requirements that are

dependent on a particular requirement

Change Density

[19]

Requireme

nt

Times the requirement

changes

Distinguishing

between stable and

instable requirements

Equal to number of times a particular requirement

or particular type of requirement has changed

within a given reporting period

Requirements

Addition/Modifi

cation/Removal

[19]

Requireme

nt

Different types of

requirement change

Providing a measure

of maturity of a

system

Equal to number of requirements that

added/modified/removed within a given reporting

period

Error Rate [19] Requireme

nt

Error rate of

implementing

requirement change

Assessing how

proficient an

organization or team

implement

requirement changes

Equal to number of errors produced per

requirement as result of implementation of

requirement changes

Fix cost [19] Requireme

nt

Fix cost of

implementing

requirement change

Assessing how

proficient an

organization or team

is implement

requirement changes

Total cost (money/effort) to fix all errors

produced per requirement as result of

implementation of requirement changes

Acceptance Rate

[19]

Project Acceptance rate of

implementation of

requirement changes

Measuring customer

satisfaction of

implement

requirement changes

% of requirement changes accepted by customer

ar delivery time within a given reporting period

Timescale

Variance/Budget

variance [19]

Change Delivery effectiveness

of implementation

requirement changes

Measuring how

effective the

organization is at

estimating changes

Difference (both positive and negative) between

actual and estimated delivery timescale/budget

