
Evolution of Version Control Systems
Comparing CENTRALIZED against DISTRIBUTED Version Control models

Carl Fredrik Malmsten

Bachelor of Applied Information Technology Thesis

Report No. 2010:017
ISSN: 1651-4769

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2010



EVOLUTION OF VERSION CONTROL SYSTEMS
Comparing CENTRALIZED against DISTRIBUTED Version Control models

CARL FREDRIK MALMSTEN

Department of Applied Information Technology
IT-University of Gothenburg

malmstec@ituniv.se

Supervisor
BILL SULLIVAN

Department of Applied Information Technology
IT-University of Gothenburg

bill.sullivan@ituniv.se

ABSTRACT
A lot more projects are using a Distributed Version Control System (DVCS) for handling of source

code and documentation nowadays. The reasons are many, but what’s lacking is more support from
companies to utilize the power of this model. In this paper I take a look at open source hosting sites,
blogs and articles to find a reason as to why this model is becoming so increasingly more popular
in contrast to its competitor, the Centralized Version Control System (CVCS). In doing so I try to
cast light on the question whether it’s possible for the distributed model to win ground against the
centralized model and in that way become the future standard of version control systems (VCSs).
What I found was that the distributed model is a better choice in contrast to the centralized model
when it comes to working and is increasing in popularity, and that by converging these two models
it would enable for more productive work in projects altogether.

Index Terms—Evolution, Software Configuration Management tools, Version Control Systems, Centralized
& Distributed repositories, Open Source, Distributed Work

I. INTRODUCTION

THE WORLD IS BECOMING MORE DIS-
TRIBUTED. Distance or time zones are less of
a problem and work can be conducted from

another location thanks to the Internet and increased
capacity for network transfers. It is now possible for
people to travel easier and by that be flexible in how
they work. But in order for this way of working to
really be successful the tools and systems which are
used need to also support distributed work [13].

SCM (Software Configuration Management) is an
important area of software engineering and the VCSs
which are used increase in complexity to support new
functions and work being done [4]. They have evolved
from being something rather unheard of four decades
ago, to something which is used by nearly all de-
velopers around the world today. The improvements
within software makes companies and open source
developers spend a lot of time and effort on different
tools and systems in order to support their needs
when it comes to software development [2]. What we
see today is that the DVCS is becoming more popular
in contrast to the CVCS [19], however the question is
why this is the case.

The goal of this research is to evaluate the two
different version control models and see which model
is working better, whether it being the centralized

model where work is done towards a central repos-
itory or the distributed model which relies more on
a peer-to-peer layout. In addition to this I will find
out whether a DVCS can evolve and become a main
model of choice in contrast to a CVCS, in short to
see where the trend is heading. By saying this my
research question is split into a two parts, both of
them residing in the same area. The first question is:

Question 1: What trend are we seeing in the usage
of the distributed and the centralized model?
and the second question being:

Question 2: How would development become more
productive by utilizing a distributed model?

In this paper I’ve looked at different sites, i.e. blogs
and articles written online where different version
control systems have been evaluated, which utilize
the two different models. By looking at how people
see the different models it can show how work is
preferred and what lessons were learned by using
them. This data is later compared to each other to
see which model has an advantage in the sense of
working. In addition to this data I look at open source
hosting sites, and in doing so I’ll get an indication as
to where we are now and in what direction we are
heading.

The distributed model can change the mentality in
how people can work on tasks and features within

1



programming and by exploring this field it will be
possible to select a version control model based on
how work is to be conducted. Evolution of version
control systems continues and by changing model
can be of interest for everyone within the software
engineering industry.

In the next section I cover some basic concepts
and early history of SCM and version control which
is required for the reader in order to understand
some of the concepts of this paper. After this I bring
up research done so far and what is being done
in the future by going through literature in this
selected topic. In section III, “Research Method”, I
state the research method which I used to uncover
my conclusion and which lays the base for the data
collection. In section IV, “Data collection”, I present
the data which I have found during my investigation.
In section V, “Analysis”, I analyze the data to see
where evolution has taken us so far and where we are
going. Finally in section VI, “Conclusion”, I present my
conclusion and also give example on future research
based on my findings.

II. THEORETICAL BACKGROUND

By laying a strong foundation in the form of theo-
retical ideas and proposals I will be able to present
an interesting analysis in the later section.

II-A. WHAT IS SOFTWARE CONFIGURATION

MANAGEMENT?

Software Configuration Management is about
tracking and controlling items which are said to be of
importance and can change in software. In software
engineering it usually means to track changes done
over time to several files or content of files within
software, also called version control (usually done
on source code) [8]. A need for it was found when
there were several developers working together in
projects and a standardized way of keeping track of
the changes were needed. To find the cause to why
something went wrong when a file was changed is
a reason and to be able to go back in file revisions
was of importance to either reproduce what had been
done or to remove what was done [26]. The idea is to
keep track of files to see if there are two (or more)
developers trying to change the file at the same time
and manages action in this event. If there would be
no control they would overwrite each other’s changes
[26].

Right now, two models exist in how it is possible to
work, a centralized and a distributed model.

II-A1. CENTRALIZED MODEL

The centralized model of SCM involves that the
project has one repository where all developers are
working towards. People are working in the same
sandbox; if a file is changed everyone else who has
access to that project can see the change. If someone
sets up a new branch for i.e. testing it will be possible
for everyone to see it. It means that if something

changes everyone will see it, especially if something
went wrong as that could break test suites which the
project has [26].

Fig. 1. Showing how a centralized model works.

As figure 1 explains and shows the centralized
model is rather straight forward. Peter checks out the
latest version of the repository, after which he adds
the line “Meat”, he then commits that file and “Meat”
is added to the file within the repository. Adam in his
turn checks out the file and adds “Fish” to the file
and commits his change to the repository.

It started with RCS1 which was first released in
1982, at that time this tool could only keep track of
single files, it could not handle entire projects which
consisted of several files and keeping track of these
which for many was a problem. From this tool there
were several successors, CVS2 (1986), being the more
famous one, which was a main tool of choice for many
to keep track of source code or documentation for a
long time. In the year 2000 many switched to use
SVN (Subversion) which basically replaced CVS as
the VCS to use within open source [19].

Right now there is a large base of different kinds
of tools which utilizes a centralized repository to
keep track of changes. A few of the bigged ones are
ClearCase3, Perforce4 and SVN5.

II-A2. DISTRIBUTED MODEL

In the distributed model every developer has their
branch of the project (a copy) and no one can see what
the other developers are doing as it is a local copy of
the project. There is no central location where the
developers are working to (even if this is a possibility
still). If a developer creates a branch of his project
no one else will see that branch. In order for other
developers to see what is going on the developer has
to tell them where they can get a copy of the project
that he is currently working on. Once that is done
they will be able to merge his branch with their own
branch and they will see [25].

1http://en.wikipedia.org/wiki/Revision_Control_System
2http://en.wikipedia.org/wiki/Concurrent_Versions_

System
3http://en.wikipedia.org/wiki/IBM_Rational_ClearCase
4http://en.wikipedia.org/wiki/Perforce
5http://en.wikipedia.org/wiki/Subversion_(software)

2

http://en.wikipedia.org/wiki/Revision_Control_System
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/Concurrent_Versions_System
http://en.wikipedia.org/wiki/IBM_Rational_ClearCase
http://en.wikipedia.org/wiki/Perforce
http://en.wikipedia.org/wiki/Subversion_(software)


Fig. 2. Showing how a distributed model works.

As figure 2 above shows there is some difference
in how work can be conducted. Peter adds “Meat”
to the file and publishes his work. Adam and the
main developer get the change Peter created and adds
that information to their own copy of the project.
Later Peter publishes his work when he adds “Fish”
in the file and the main developer gets that change
into their repository and merges it. It is a bit harder
to comprehend how work can be conducted with a
distributed model as there can be more repositories
spread out during development.

One of the first DVCS was BitKeeper (BK)6. De-
velopment started in 1997 on this tool and is still
ongoing. Other tools following up on this model are
for instance Git7, GNU arch8 and Mercurial9.

II-B. RELATED WORK AND LITERATURE

One can look at this field of study from two different
ways, from a technical aspect (i.e. how information
is stored or different merging algorithms) or a social
aspect (how the model in itself works). While both
go hand in hand when it comes to VCSs I have
nevertheless decided to focus on just the social aspect
in my research The reason being that by focusing
on the social aspects of comparing different models I
focus on the differences in how work is done. I also
in that way will be able to see what model has a
higher probability to evolve further and be the model
of choice.

II-B1. WORKING FROM A DISTANCE

Working from different locations is done all the
time. It was different before due to communication
being problematic for corporations in the way that
network connections weren’t as widely developed.

6http://en.wikipedia.org/wiki/BitKeeper
7http://en.wikipedia.org/wiki/Git_(software)
8http://en.wikipedia.org/wiki/GNU_arch
9http://en.wikipedia.org/wiki/Mercurial_(software)

However, research in the area has been performed.
Sproull and Kiesler [23] give an example of how seven
teams raced to finish a deadline. A few of those teams
used the network for communication (mail, distri-
bution lists, bulletin boards) since they were not at
the same location working. This resulted in a higher
contribution from the team members compared to
those teams which had the opportunity to meet more
often.

But working distributed also has its side-effects in
the way that one misses out on a lot of chatter. By
being at the office and hearing other people talk or
simply getting coffee can be a boost to understand
“what’s going on”. Dourish and Bly [6] present a
smaller solution where cameras are placed around
the office, creating a sort of “presence” for the dis-
tributed worker; it is called “distributed awareness”.
By doing so, they showed that those workers who
were working distributed were able to maintain their
working relationships easier by utilizing that system.

Even though systems, such as the one mentioned
above, can create a sort of awareness of what’s going
on in the team it can’t beat the real thing. Orlikowski
[15] mentions how important it is to meet people you
are working with. In her interview with one employee
at Kappa, a software company, he mentioned a work-
ing model which was called “face-to-face” where peo-
ple should know their colleagues. However by using
this model it created problems, firstly it was that the
project manager had to travel around which is tiring
in the long run and secondly the cost for this kind of
travel. An external auditor at the company did not see
how all this traveling and “no real work” was done,
since “communication with employees” in that way
was not considered to be work in his eyes. By keeping
a face-to-face interaction you can ensure that you
know the colleagues, knowing their credibility’s and
commitment to specific issues and in the end know
how to collaborate together to get things done in a
global distributed and complex product development
environment [15].

II-B2. OPEN SOURCE

Linus Torvalds, creator of Linux, starts a new way
of working once he started the Linux kernel project10.
In it he brings in more and more people to help him
out, as in co-developing on the Linux kernel. In doing
so he is able to find bugs faster and inspires others
to do the same. This model is not similar compared
to how projects were run normally, especially since
people in the project were scattered around the world.
Despite that fact, the project survived and it became
a huge success [14].

Raymond [17] decided to try this model to see why
Linux became so popular and successful. He identi-
fies two models; a cathedral model where source code
is hidden between releases and only available to an
exclusive group of people (the normal model), and a
bazaar model where the public can see the source
code being developed. He tries the latter model with

10http://en.wikipedia.org/wiki/Linux

3

http://en.wikipedia.org/wiki/BitKeeper
http://en.wikipedia.org/wiki/Git_(software)
http://en.wikipedia.org/wiki/GNU_arch
http://en.wikipedia.org/wiki/Mercurial_(software)
http://en.wikipedia.org/wiki/Linux


his own Fetchmail project11 and notices a positive
effect almost instantly. However there is a problem
with a bazaar model, that if there are many develop-
ers working with a distributed model you will create
a “bazaar of cathedrals”. This meaning that in the
event that an individual developer is unable to submit
an important solution for an unspecified amount of
time (due to various reasons) it could make it hard
for the development to continue as it should. This
can severely hamper the development especially if
the functionality which is being worked on was of
importance for the project [10, 17].

Krafft [11] goes further in his research and states
that in the Debian project12 people are reluctant to
use new innovations. He says that there is no real
standardized way to what approaches should be used
within the packaging and packaging maintenance as
some approaches are used while others discarded
quickly. In open source projects people are unwilling
to change too much as they do things on their spare
time [11]. This can produce problems for the devel-
opment of these projects and also be a reason to the
bazaar of cathedral problem stated above. Another
reason for people not changing is that all version
control tools aren’t easy to learn. The learning curve
is high and understanding how these tools work
takes time [11].

This is one of the reasons as to why the Linux
kernel project officially didn’t use a VCS for a very
long time, this caused problems. Chu-Carroll et al.
[3] validates that problems existed in the Linux kernel
project, which in the end lead to the adoption of the
BitKeeper (BK)13 VCS in order to avoid unnecessary
problems (such as merging branches of the kernel)
(see also [14, 17]). There were at the time also other
areas within the project where CVS was used, how-
ever not fully adopted due to Linus Torvald’s “hate
for it with a passion”14. The issue for many was that
BK was a commercial tool and one had to buy a
license to be able to use it fully. This looked bad
in many people’s eyes, especially those who shared
Richard Stallman’s ideology for free software15 [21].
However other problems ascended from the use of
BK. People were allowed to use BK for free as long
as no one copied or tried to reverse engineer it. But
after a reverse engineer attempt to create a client
which would show the meta-data and compare past
versions1617 it made the creator of the BK tool to not
let some of the leading Linux developers use it for
free. This initiated the creation of a new VCS, Git.

II-B3. THE DIFFERENT MODELS

There are big differences between the models and
how the foundation is built; this has big implications

11http://en.wikipedia.org/wiki/Fetchmail
12http://en.wikipedia.org/wiki/Debian
13http://www.bitkeeper.com/
14http://www.youtube.com/watch?v=4XpnKHJAok8
15http://en.wikipedia.org/wiki/Free_software
16http://en.wikipedia.org/wiki/BitKeeper#Pricing_

change
17http://www.linux.com/archive/articles/44147

on how work is done with the different systems.
Estublier [7] states that there are many VCSs which
relies on a central repository but with that you get
problems which can reduce efficiency and availability
and that by using a distributed model where each
workspace “rely on ’its’ own local store” would make
them more efficient[7, pp.283].

By being able to do local commits it is expected
that more commits would be made. Bird et al. [1]
hypothesized that by changing a centralized model
to a distributed model there would be more commits
and the commits in themselves would be fewer lines
of code. Even though that was the case, it was not
that big of a difference as apparently only 2 lines less
per commit was noticed.

Since it’s possible to commit locally with the dis-
tributed model developers may not know what ar-
tifacts are being worked on in parallel. This can
produce conflicts once the work is either uploaded to
a central repository or when merges are done between
different branches. But once these problems surface
there are other tools available to minimize the work
needed to resolve these conflicts (i.e. diff tools for
comparing different versions of the files/content and
the possibility to auto-merge these) [16, 20].

Conflicting files is however not the biggest prob-
lem. DVCSs can be seen as more difficult to grasp
compared to CVCSs. “With CVC changes flow up
and down (and publicly) via a central repository. In
contrast, DVC facilitates a style of collaboration in
which work output can flow sideways (and privately)
between collaborators, with no repository being in-
herently more important or central.”[18, pp. 26]. This
meaning that it is harder to grasp the concepts of how
a DVCS works.

But Lundell et al. [13] states that companies can
receive a lot of benefits by using a DVCS. Most ex-
amples where a distributed model has been in use
have been success stories but only as long as the
team keep good communication channels between
the different departments. Being distributed invokes
more communication between departments to ensure
that problems such as these are removed [13].

However, in order for these systems to evolve people
who use them need to have a better understanding
of the systems they already use. By supporting this
need they can demand better supportive implementa-
tions [5] and the systems will eventually evolve. Dart
[5] also states that for future VCS to be fully utilized,
management in companies need to realize that the
systems are complex and in turn that means that it
will be expensive to implement solutions which are
better than their current ones.

III. RESEARCH METHOD

This research aims to look into the VCS market to
find a possible answer as to where the VCS devel-
opment is going by comparing two different models,
the centralized model which uses a server for storing
information and the distributed which does not. By
looking at open source hosting sites and examples of

4

http://en.wikipedia.org/wiki/Fetchmail
http://en.wikipedia.org/wiki/Debian
http://www.bitkeeper.com/
http://www.youtube.com/watch?v=4XpnKHJAok8
http://en.wikipedia.org/wiki/Free_software
http://en.wikipedia.org/wiki/BitKeeper#Pricing_change
http://en.wikipedia.org/wiki/BitKeeper#Pricing_change
http://www.linux.com/archive/articles/44147


usage from blogs etc. and see the results of these it
will be possible to give an analysis of the compared
result.

III-A. METHOD OF CHOICE

The pragmatism philosophy18 is chosen as I am
comparing two different models to each other based
on statistics and facts from literature which have
been selected. I believe, like the pragmatism philoso-
phy states, that if something works it has to be true,
and that is my goal with this research. In other words
it is a “common sense” philosophy since “actions are
assessed in light of practical consequences” [22, pp.
197].

Furthermore, this research utilizes the Content
Analysis19 method.

Content analysis is defined as “analysis of the man-
ifest and latent content of a body of communicated
material (as a book or film) through classification,
tabulation, and evaluation of its key symbols and
themes in order to ascertain its meaning of probable
effect.” [12, pp.xvii].

There are two types, a quantitative content analysis
and a qualitative content analysis. The first model
focuses on stripping the text of words, counting word
frequencies, space measurements (column centime-
ters in i.e. newspapers), time counts (radio/TV times)
and keyword frequencies [24]. The second one is to
categorize and classify the text [24], which is what
will be done in this paper.

The content analysis method is used when text
is to be reviewed and summarized. Graneheim and
Lundman [9] explain how a text can be summarized
into several smaller parts by picking elements from it.
First the whole text is presented where after the next
step is to make it smaller in two parts. This is called
“condensed meaning unit” where the text is similar
to the original text but written like a summary. The
second step is again to make it smaller but where
the text is written in a different way with the same
meaning. Then one can classify the whole meaning in
a sub-theme what the text is about, written in a few
words, and lastly a classification of the whole theme
of the whole text.

III-B. DATA COLLECTED

By looking at many of the open source hosting
sites where projects are stored I were able to retrieve
data on how many sites supports a certain model
and by that fact I would know what model is more
popular and could witness a trend within open source
projects.

By reading blogs and articles it was possible for me
to gather information related to any of these models
and see what kind of praise and critique they receive.
However, with that in mind it is important to separate
users which are just “hyping” their own favorite tool

18http://en.wikipedia.org/wiki/Pragmatism
19http://en.wikipedia.org/wiki/Content_analysis

and users which actually state their opinion based
on facts. With this data I was able to produce a
table of information, listing pros and cons with the
different models and by that produce an analysis of
the models in general. Collection of the quotes from
the sites which are listed in the data collection section
happened before 10th of May 2010.

III-C. PROCESS OF COLLECTING DATA

By reviewing and taking notes of arguments others
have made will provide me with this necessary foun-
dation of knowledge that I seek. Databases used for
obtaining literature were: Association for Computing
Machinery20, Google Scholar21, GUNDA22, Libris23

among others. Keywords used to obtain literature
were i.e. “distributed model”, “centralized model”,
“software configuration management”, “version con-
trol systems”.

With the literature reviewed I was able to continue
to the more statistical analysis where I went through
various open source hosting sites in order to get
information on what model is the more popular.

Facts were after that drawn from different blog
posts and articles (from now on referred to as “sites”).
The selection of these sites has been merely by
searching on Google with keywords shown above but
by adding keyword i.e. “blog” in the search. The
search was also conducted at http://www.google.
com and not a scientific search engine. I based my
selections on that the blogs had something of im-
portance to say. Basically meaning that there was a
serious undertone and valid arguments for whether
one model was better than the other one.

After the collection of data had been made I related
this to the literature to answer my research ques-
tions.

IV. DATA COLLECTION

In this section and subsections I present data
which have been collected during the research. The
data has been separated into different subsections in
accordance to its relevance.

IV-A. OPEN SOURCE PROJECTS

Open source projects have a tendency to push the
boundaries when it comes to new technology within
software engineering [27] and for that reason there
exist many different open source hosting sites where
new projects can be stored. These sites compete with
each other to support the most projects and thus they
try to maintain as many different VCSs as possible.

There are several different hosting sites available
and all of them support different solutions for revi-
sion control (see table I for a review of the hosting
sites and II for the amount of different systems used).

20http://portal.acm.org/
21http://scholar.google.com
22http://www.ub.gu.se/gunda/
23http://libris.kb.se/

5

http://en.wikipedia.org/wiki/Pragmatism
http://en.wikipedia.org/wiki/Content_analysis
http://www.google.com
http://www.google.com
http://portal.acm.org/
http://scholar.google.com
http://www.ub.gu.se/gunda/
http://libris.kb.se/


TABLE I
SUMMARY OF THE LARGER OPEN SOURCE HOSTING SITES

Number of Version Control Systems
Name Users Projects Centralized Distributed

Assemblaa 170,000 60,000+ SVN Git
Mercurial

BitBucketb 35,000 19,100 - Mercurial
CodePlexc 151,782 9,274 SVN

Microsoft TFS
Mercurial

GitHubd 228,000 747,000 - Git
GNU Savannahe 60,869 3,023 CVS

SVN
Bazaar
Arch
Git
Mercurial

Google Codef N/A 250,000+ SVN Mercurial
Launchpadg 1,061,601 17,140 CVS (import only)

SVN (import only)
Bazaar
Git (import only)
Mercurial (import only)

Project Kenaih 46,000+ 10,000+ SVN Git
Mercurial

SourceForgei 2,600,000+ 161,992 CVS
SVN

Bazaar
Git
Mercurial

Tigris.orgj 137,324 1,547 CVS
SVN

-

a http://www.assembla.com/, b http://bitbucket.org/, c http://www.codeplex.com/, d http://github.com/,
e http://savannah.gnu.org/, f http://code.google.com/, g https://launchpad.net/, h http://projectkenai.com/,
i http://sourceforge.net/, j http://www.tigris.org/,

TABLE II
TOTAL COUNT OF VCS SUPPORTED AT OPEN SOURCE HOSTING SITES

Centralized Models Distributed Models
CVS Microsoft TFS SVN Arch Bazaar Git Mercurial

Total Count: 4 1 8 1 3 6 8

The selection of these sites was done based on num-
ber of users each site had and number of projects. If
the addition of these surpassed the count of 50,000
it was added to the table24.

Within these 10 hosting sites there are in total
three different centralized systems and four different
distributed systems. In total the count for centralized
systems are 13 (SVN count being 8) while the dis-
tributed model counts for 18 (Mercurial count being
8).

By just looking at the different systems it is possi-
ble to see an increase in the distributed model. Table
I along with table II shows all the different systems
available on the major open source sites and there
is a significant larger amount of DVCSs compared to
CVCSs. In reality it’s just CVS and SVN which are
used in a larger amount witnessed from a centralized
model’s perspective. While CVS is being outdated,
SVN is increasing in popularity, this mainly as it’s
seen as the descendant from CVS. A noticeable view
of this can be seen in the amount of sites supporting
the different systems. Four sites having support for
CVS while eight having support for SVN. While saying
that, it’s crucial to know that at those four sites where

24Based on the following article http://en.wikipedia.
org/wiki/Comparison_of_open_source_software_hosting_
facilities

support exists for CVS, there also exists support for
SVN.

In contrast to the centralized model, the distributed
models are rising in number of sites which supports
this model. There is also a larger flavor of DVCSs to
select from, the reason for this is that many of the
systems which are in use were started almost at the
same time, Git and Mercurial being those systems
in particular. Development of these systems were
started almost instantly after licenses from the DVCS
known as BitKeeper, was dropped in the Linux kernel
project, making them the top two systems.

IV-B. BLOG/ARTICLE POSTING

A lot of public attention on these sites are given to
different VCSs. Data obtained from these sources are
coming directly from users of the different systems
(see table III for address’s).

While I investigate the different models people have
a tendency to talk about the different systems in-
stead. So they may say the names such as Subver-
sion and Git instead of using the terms “centralized”
and “distributed”. Even so it presents the different
models because even if the two distributed systems
Git and Mercurial have different functionalities they
still have the same foundation in the term of distribu-
tion. Functionalities per system (as in the difference

6

http://www.assembla.com/
http://bitbucket.org/
http://www.codeplex.com/
http://github.com/
http://savannah.gnu.org/
http://code.google.com/
https://launchpad.net/
http://projectkenai.com/
http://sourceforge.net/
http://www.tigris.org/
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities
http://en.wikipedia.org/wiki/Comparison_of_open_source_software_hosting_facilities


TABLE IV
PROS AND CONS FROM DIFFERENT SITES

Centralized model Distributed model
Pros Cons Pros Cons

Site 1 1.1: Simple centralized
repository.
1.2: Can handle binary
files by utilizing a lock-
ing function on the files.

1.3: Operations are
slow due to functions
are done over network
connection.
1.4: Can’t do local
work.
1.5: Branches are hard.

1.6: Fast to do work
(no network connection
needed).
1.7: Can do local work.
1.8: Branches are easy
to make.

1.9: Too easy to make
branches (can become a
forest of branches).
1.10: Flexible to work
but can be dangerous if
not used well.
1.11: Most teams still
use DVCS as a CVCS.

Site 2 2.1: Branches and tags
convention too visible
and hard to merge.
2.2: No offline commits.

2.3: Commit work to lo-
cal repository and push
changes to others when
you feel ready.

Site 3 3.1: Forced to review
each other’s work.

3.2: Can only commit if
you have privileges.
3.3: Merging is done
harder.

3.4: Every checkout is a
copy of the repository.
3.5: Can work without a
network connection.
3.6: Working offline is
fast.
3.7: Possibility to clean
up your local commits if
a mistake is made.
3.8: Can work in small
steps. No need to com-
mit everything at once.
3.9: Branches are easy.

3.10: Anti-social behav-
ior. Have to put in extra
work in order to share.

Site 4 4.1: One repository to
keep track of.
4.2: Repository doesn’t
allow conflicts.

4.3: No local history. 4.4: Good branching.
4.5: Fast, work is done
locally.

Site 5 5.1: Can’t commit to
repository unless user
has access.

5.2: No central
repository. All working
copies is a clone of the
repository itself.
5.3: Every copy is a
branch and commits
are only done in that
branch.
5.4: Can work without
a network connection.
5.5: Not dependent on
external server for work
5.6: No need to install
or maintain a server.
5.7: No privileged
access required for
doing work.

Site 6 6.1: Branches are easily
seen.

6.2: Too many
repositories to keep
track of in projects.
6.3: Work becomes
hidden since developers
don’t need to push their
changes until they are
done.

between i.e. Git and Mercurial) will not be presented
as pros or cons.

In total, six different sites have been selected where
each site presents pros and cons against the different
models, many of these sites do however present the
same information. The text from these sites can be
found in appendix A, these texts are taken direcly
from the sites and presented as quotes within either
pros/cons for the centralized/distributed model. At
the end of this section, two tables are presented, the
first summarizes what has been said on these sites

(see table IV), the second places each of the pros and
cons in a related category (see table V). The pros and
cons have also been numbered as I will refer to these
later in the analysis section.

V. ANALYSIS

In this section I analyze and discuss the data which
I have collected with the literature that I have gath-
ered. The structure follow the same as in the data
collection section, discussing open source projects

7



TABLE III
SITES AND THEIR URL ADDRESS

Site Address
Site 1 http://java.dzone.com/articles/

version-control-tools
Site 2 http://www.dribin.org/dave/blog/archives/

2007/12/28/dvcs/
Site 3 http://www.wincent.com/a/about/wincent/

weblog/archives/2007/10/why_distributed.
php

Site 4 http://www.dehora.net/journal/2008/04/
06/what-a-dvcs-gets-you-maybe/

Site 5 http://pointbeing.net/weblog/2009/09/
git-for-subversion-users.html

Site 6 http://blog.ianbicking.org/
distributed-vs-centralized-scm.html

first where after discussion of the different sites and
its pros and cons are brought up. Finally a section
which summarize and points out other important
areas within this field is presented.

V-A. OPEN SOURCE PROJECTS

By looking at the open source hosting table above
we see a larger base of systems supporting the dis-
tributed model compared to the centralized model,
so why is the distributed model becoming so much
more popular now on open source hosting sites? One
large issue when it comes to open source projects is
the notion of commit-access. In a CVCS people need
access to commit and do work, this has implications
on security and means that one need to create user
groups of who gets to commit and where they get
to commit. However, in a DVCS the term commit-
access doesn’t really exist. This since there is no real
central location to where people do commits, work
is committed locally instead. After which the other
developers can get the work of their developers by
simply pulling it from them and later merging. This
also has implications in how work is done, the model
changes from traditional working methods, working
towards a central repository to working towards no
central location. However a central location can still
be created in many of the DVCS which exist, and then
one do get the problem of who gets commit-access.

Seeing as open source projects can be rather large
in size of developers it is also important to make it
possible for those who do not have access to help out.
With a CVCS where an outsider can’t commit they
have to do all the work at once. Later when they are
done with their bug-fix or feature improvement which
they have been working on for the last week and want
to send it somehow to the main developers it creates
a problem. By that they would have to send in all
the source code files and the main developer would
have to manually check and verify the differences. In
contrast, with a DVCS, where work can be committed
locally, one can work for a week, do local commits,
do improvements and later ask the main developer
to get their changes from a location. Once they do,
it’s a matter of merging the changes into the code

automatically, doing work this way saves a lot of time
and also helps the outsider to contribute.

But open source projects also have ramifications
on how close to each other developers work. In most
projects the developers are situated at different loca-
tions and meet rarely. And even if the best is to work
close to each other there are ways to improve the
collaboration to overcome distance, i.e. “distributed
awareness” [6] but also by meeting from time to
time as they do in distributed development within
companies [15]. But even so, projects conducted as
tests to witness the effects distribution had on a team
was even reported to be a better way of working [23].
This was noticed during the Linux kernel project,
and later Raymond [17] also saw this when working
distributed that it has its benefits. So by letting more
people help out in projects it will be possible to find
more bugs and develop more features in projects and
by doing so the programs which are developed will be
better. This is something which is made easier with
DVCSs as they increase the usability for a developer
which does not necessarily have access to the central
repository but that would like to help out anyway.
That’s also a reason as to why so many hosting sites
support DVCSs as they see an increase of popularity
from these systems.

V-B. BLOG/ARTICLE POSTINGS

All pros and cons from the sites which were found
can be divided into four categories based on their
themes, these are:

• Location
• Development
• Network
• Security

Table V summarizes all the pros and cons and puts
them in accordance to their theme. These categories
form points of discussion, thus this section has been
divided into four subsections, each focusing on the
separate theme.

V-B1. LOCATION

The centralized model is very straight forward in its
working; this is also noticed by the pros listed for the
CVCS. A (1.1 & 4.1) “simple centralized repository” is
mentioned as a pro, focusing on the fact that it takes
less effort to find where to commit changes or get the
latest changes. This is very different compared to how
DVCSs works or at least can work. For a DVCS it’s
listed as a pro and con (5.2 & 5.5) that there is no
central repository. It’s seen as a benefit in the way
that there are backups everywhere. If one looses ones
work it’s easy to obtain a copy of it. This is a benefit
in the event that the central server, hosting the only
valid copy of the full repository, gets corrupted; it
creates a big problem for the developers. While in a
DVCS everyone has a copy of the project which makes
it easy to get a backup of the project if this would
happen. In contrast it is seen as a con that there are
too many places to keep track of as it’s a lot easier to

8

http://java.dzone.com/articles/version-control-tools
http://java.dzone.com/articles/version-control-tools
http://www.dribin.org/dave/blog/archives/2007/12/28/dvcs/
http://www.dribin.org/dave/blog/archives/2007/12/28/dvcs/
http://www.wincent.com/a/about/wincent/weblog/archives/2007/10/why_distributed.php
http://www.wincent.com/a/about/wincent/weblog/archives/2007/10/why_distributed.php
http://www.wincent.com/a/about/wincent/weblog/archives/2007/10/why_distributed.php
http://www.dehora.net/journal/2008/04/06/what-a-dvcs-gets-you-maybe/
http://www.dehora.net/journal/2008/04/06/what-a-dvcs-gets-you-maybe/
http://pointbeing.net/weblog/2009/09/git-for-subversion-users.html
http://pointbeing.net/weblog/2009/09/git-for-subversion-users.html
http://blog.ianbicking.org/distributed-vs-centralized-scm.html
http://blog.ianbicking.org/distributed-vs-centralized-scm.html


TABLE V
PROS AND CONS FROM FROM ALL SITES SUMMARIZED INTO THEMES

Centralized model Distributed model
Pros Cons Pros Cons

L
o
ca

ti
o
n 1.1: Simple centralized

repository.
4.1: One repository to
keep track of.
4.2: Repository doesn’t
allow conflicts.

5.2: No central reposi-
tory. All working copies
is a clone of the reposi-
tory itself.
5.5: Not dependent on
external server for work
5.6: No need to install or
maintain a server.

6.2: Too many reposito-
ries to keep track of in
projects.

D
ev

el
o
p
m

en
t

1.2: Can handle binary
files by utilizing a lock-
ing function on the files.
3.1: Forced to review
each other’s work.
6.1: Branches are easily
seen.

1.5: Branches are hard.
2.1: Branches and tags
convention too visible
and hard to merge.
3.3: Merging is done
harder.
4.3: No local history.

1.8: Branches are easy
to make.
2.3: Commit work to
local repository and
push changes to others
when you feel ready.
3.4: Every checkout is
a copy of the repository.
3.7: Possibility to clean
up your local commits
if a mistake is made.
3.8: Can work in small
steps. No need to
commit everything at
once.
3.9: Branches are easy.
4.4: Good branching.
5.3: Every copy is a
branch and commits
are only done in that
branch.

1.9: Too easy to make
branches (can become
a forest of branches).
1.10: Flexible to work
but can be dangerous if
not used well.
1.11: Most teams still
use DVCS as a CVCS.
3.10: Anti-social
behavior. Have to put in
extra work in order to
share.
6.3: Work becomes
hidden since developers
don’t need to push their
changes until they are
done.

N
et

w
o
rk

1.3: Operations are
slow due to functions
are done over network
connection.
1.4: Can’t do local
work.
2.2: No offline commits.

1.6: Fast to do work
(no network connection
needed).
1.7: Can do local work.
3.5: Can work without a
network connection.
3.6: Working offline is
fast.
4.5: Fast, work is done
locally.
5.4: Can work without a
network connection.

S
ec

u
ri

ty

3.2: Can only commit if
you have privileges.
5.1: Can’t commit to
repository unless user
has access.

5.7: No privileged ac-
cess required for doing
work.

just have one central location to receive the updates
in the project instead of having 15 different “central
locations” (6.2).

An aspect brought up for the centralized model
which works well is that the repository doesn’t al-
low conflicts (4.2), this is true and also valid for a
DVCS that it doesn’t, even if not listed as a pro. One
always has to resolve conflicts before work can be
committed, and is not generally a point of truth for
just one model. However conflicts can surface easier
in a distributed model due to parallel work being
conducted [16, 20] and once the work is merged it is
possible that one could mess up the local repository
more and in that way it is negative for the distributed
model.

To not having to setup a server and not having to
maintain it during a project is one large and impor-

tant pro for the distributed development (5.6). Setting
up rules i.e. for how and when one can commit and
make sure that the server is up and running, takes
time from the development. One should focus on
what’s really important and not having to think about
these smaller issues. In the event that the central
repository goes down it will basically put development
to a halt if a project uses the centralized model, while
in a distributed model it doesn’t even affect or change
anything.

V-B2. DEVELOPMENT

An aspect, which is both seen as a pro and a con,
is the visibility of branches in centralized models (6.1
& 2.1). Reason being that if one can see them easy
it helps that you know they exist, however it also
adds unnecessary information to the repository as

9



the branches are global in a centralized model. Even
though, branches are pointless unless one can merge
them, which is usually harder to do with a CVCS (1.5
& 3.3).

The distributed model is seen as a better alternative
when it comes to branches, this mainly since every
checkout is a branch in itself (1.8, 3.4, 3.9, 4.4 &
5.3). But also due to the fact that branches are seen
as something which is natural within the distributed
model, which means a lot of focus is put on merging.
In contrast to the centralized model, merging works
very well and is done very often when developers pull
code from one another. However, since it’s very easy
to create branches it can also make work quite messy
which can be seen as quite negative and also makes
it dangerous as one could get lost (1.9 & 1.10).

One feature which the distributed model lacks is to
lock files from being edited by anyone else, a feature
which the centralized models are able to utilize with
ease (1.2). It’s not viable in a distributed model since
there are or can be so many different repositories
which make it impossible to lock specific files. By
having a central server where everything goes, de-
velopers are also forced to review each other’s work
(3.1), compared to how it would be in a distributed
model. There are or can be repositories everywhere
which makes it harder to review each other’s code.
Code reviews can happen once merges are actually
done between the different repositories.

This makes us dive into another similar problem
with the distributed model. By being distributed it
makes people work “offline” more, which in turn can
create problems in that people “hide in their caves”
and doesn’t make much noise until their work is
published (3.10 & 6.3). This relates to a problem
which Raymond [17] noticed and that Krafft [11]
later built upon, the “bazaar of cathedrals”. It can
be negative for the entire project, especially if the
function which is being worked on is of importance.
It would be beneficial if developer-advertising would
be done, stating who’s working on what, which is
usually done by open source projects (i.e. bug track-
ing tools or mailing lists), but not always done well
enough. It is very important to keep good communi-
cation while working distributed [13], and only then
is it possible to succeed fully with a DVCS. Although
relating to this the possibility to keep a local history
in distributed projects creates a somewhat solution
to when the work is submitted. Since it’s possible to
commit locally it is possible for other developers once
they can review the work to see how they came to
their solution. In that way one can follow the flow in a
more exact detail even if they are not communicating
that much during the development (3.7 & 3.8). At
the same time the function which was developed on
is more certainly working by the time it is pushed
to other developers (2.3). In contrast the centralized
model doesn’t support this feature as commits have
to be done to the central repository, which is a draw-
back (4.3).

Most distributed models are used as a centralized
model. This is seen as a con (1.11) as in that way

the model is not taken full advantage of. In most
DVCSs it is possible to work as if one would use a
CVCS; while it isn’t optimized for that sort of usage
it is still more viable since one can do local commits.
The same thing can be seen on the other side. SVN,
while not being able to commit locally, also have
received extensions (such as SVK25) which enables
the possibility to do local work. However while not
many of the two different models do each other’s
work good as of yet, this is most likely where the two
models are heading.

V-B3. NETWORK

An aspect which is seen very negatively upon, at
least after having tried a distributed model, is when
work has to be done over the network. Cons for the
centralized model are all in regards that work can’t be
done locally and everything has to be performed over
a network (1.4 & 2.2). While Internet connections are
getting more widely spread out over our world it can
still take time to do work over the network. Maybe
10 seconds isn’t such a long time to do commits or
to retrieve the latest changes from one revision to
another (1.3), but compared to the distributed model,
where everything is saved on the computer (5.4) and
having an ability to do commits and retrieve logs
between revisions in less than a second26 (1.6, 1.7,
3.6 & 4.5), it becomes a rather big difference. It also
affects the usability as was mentioned in point 4.5
that your mind can “wander away” which could break
the flow in the work.

V-B4. SECURITY

Security of who gets to commit, especially in open
source projects, was discussed in the previous sec-
tion more extensively and seen as one large rea-
son as to why more distributed models were seen
within open source hosting sites. The centralized
model states that this commit-access is necessary
in order to keep a project structured, and it does
so to a certain aspect. The problem is shown when
it’s realized that the group of people who gets to
commit is either too small or too big, and this has
implications on how fast a project moves. By being
able to commit is a big aid for developers if they want
to help out in open source projects. This is something
that the distributed model supports, although if it’s
only locally. If a single developer wants to do a simple
commit it is beneficial for them that they can do
that without having to worry about not being able
to commit to the central repository, since they don’t
have access (3.2, 5.1 & 5.7). If the project later wants
to get that developers code or not is another issue.

V-C. PROLONGED ANALYSIS

An indication of what can be expected in the future
from VCSs can be seen in the last paragraph in the

25http://en.wikipedia.org/wiki/SVK
26This depends of course on what system is used and size

of project and is not always the case for all projects.

10

http://en.wikipedia.org/wiki/SVK


Development section above, that the two models are
converging. It is now possible to work as the other
model is doing, even if more work is needed to set
that up. For a centralized model it means that one
has to add an extension to the initial system (this
at least in SVN’s case), and for a distributed model it
means to somehow find somewhere to set up a server.
The distributed model is, so far, further ahead in this
race, since its local working capabilities which it has,
are harder to implement (and to grasp the concept of
[18]) than it is to set up a server for collaboration and
fix commit-access for developers. But an important
factor is missing in the distributed model. Being able
to lock files, meaning that no one else can work on
those files, is a function worth having. This comes in
handy once a developer need to change a binary file
for instance, since if a binary file gets a conflict it’s
hard to resolve. And while not said to be a good way to
handle files such as these, as it prevents other people
to do work on those individual files, it’s at least one
way of doing so.

Being able to work distributed in today’s world is
quite common, and to do work offline is valuable as
people travel on i.e. airplanes or may find themselves
unable to connect to the central server which makes
them to work less efficient. Valuable time would be
lost, as instead of working one would curse at the
absence of a connection to the central repository for
viewing logs etc.

Open source projects are mentioned a lot next to
the distributed model, mainly since the most atten-
tion is put there and it makes people wonder if there
even is a market for companies to utilize the power of
that system. It’s easy to look past, but the first DVCS
was a commercial system (BitKeeper), and there are
many companies using this system if only on a small
scale. Companies have a tendency to wanting central-
ized systems as that gives them more control of how
work is conducted. However, by looking at working
methods, such as the Waterfall model, we see how it
was the main model of use for a long time before the
agile models started to pop-up. The agile models can
be seen as more unstructured as one does work with
tasks parallel (much like the distributed model) and
eventually that model has won a lot of ground as it’s
now used frequently in projects. So all the distributed
model needs is time to get accepted and once it has
been accepted it will be used more in companies for
sure. It’s usually like that with “new” technology; time
is needed for its establishment and later acceptance.
However, by using a distributed model, where work
can be done locally, it could significantly speed the
process up in the event that a new experimental
function is required. Seeing as most companies have
commit procedures, indicating that everything has
to be tested before commits are made, one can by
a distributed model commit locally and do all tests
required before the whole function is pushed to the
main repository. This means that once companies
realizes the benefits of the DVCSs they will eventually
want to utilize those benefits also as it is possible
to save a lot of time in projects with that model. In

that way work becomes more efficient, as Estublier
[7] previously has stated.

VI. CONCLUSION

I have presented several reasons in this paper as
to why a distributed model would make development
more productive, the main reason being that work
can be done locally without the need of a connection
to the main repository. By utilizing a distributed
model work can be done everywhere and by that fact
it will be easier for developers around the world to
conduct their work and also to collaborate in projects.
It also enables backups to be made easier and creates
in that way a more robust system which is safer
against corruption, since every developer has a copy
of the entire history of the repository and there are or
can be many repositories. And this would ensure that
development would not come to a halt in the event of
(a) corruption of main repository or (b) that the server
crashes.

Needless to say there are of course issues with
the distributed model, issues which if not addressed
could severely set back a project. The notion of bazaar
of cathedrals and big clusters of branches to get lost
in are not to be forgotten. However these issues are
related to learning how to work with the model rather
than holes in the model itself. Once one do learn
how to work with the model, problems like these
are removed. But it could prevent developers from
actively want to change model, as it may prove to
be more difficult to understand and in turn make
companies and their managers less likely to accept
a change from one VCS to another if it proves to be
more complicated to use. But Dart [5] stated that
management need to realize that it is expensive to
implement solutions, better than the current ones.
So even if it is hard to implement something like this
due to being harder to comprehend, it would pay off
in the long run.

Companies and managers desire control in projects
and with a distributed model less control is given to
them, so although the distributed model in itself is a
better choice for developers it takes away the control
from others. There are restrictions and all companies
can’t support a distributed model due to corporation
secrets and a distributed model could prevent them
from sleeping well at night. So even if the trend shows
us that it’s heading towards a distributed model the
model can’t be applied everywhere. Some companies
even want to reduce developers access by only allow-
ing them access to the source code by just letting
them work by remote accessing the repository, thus
giving companies complete control27.

Many projects which use a distributed model still
use it as a CVCS, meaning that they have a central
location to where they are working. A reason for this
can be that it’s more familiar to use it like that first for
the developers and after a while go over to a more ac-
tual distributed model, but then good communication

27Article in swedish: http://www.idg.se/2.1085/1.
312963/accenture-chef-centralisering-ersatter-standardisering

11

http://www.idg.se/2.1085/1.312963/accenture-chef-centralisering-ersatter-standardisering
http://www.idg.se/2.1085/1.312963/accenture-chef-centralisering-ersatter-standardisering


is required to be established between the developers.
Another reason is that it “feels” right for developers
to have one central location to go to where everything
is “up to date”, and for that it seems like the two
models are converging into one, a global VCS, which
has both models benefits. Taking the strengths from
both camps, and it seems like the trend is heading in
that direction.

For future research it would be suggested to eval-
uate work conducted with different solutions for a
converged model which utilize both sides’ strengths
and in that way push evolution forward even more.

REFERENCES
[1] C. Bird, P.C. Rigby, E.T. Barr, D.J. Hamilton, D.M.

German, and P. Devanbu. The promises and perils
of mining git. In Proceedings of the 2009 6th
IEEE International Working Conference on Mining
Software Repositories, pages 1–10. IEEE Computer
Society, 2009.

[2] Tilmann Bruckhaus. Tim: a tool insertion method.
In CASCON ’94: Proceedings of the 1994 conference
of the Centre for Advanced Studies on Collaborative
research, page 7. IBM Press, 1994.

[3] M.C. Chu-Carroll, D. Shields, and J. Wright. Ver-
sion control: A case study in the challenges and op-
portunities for open source software development.
In ICSE 2002, 2002.

[4] Ian Clatworthy. Distributed version control systems
- why and how. 2007.

[5] S.A. Dart. The past, present, and future of config-
uration management, 1992.

[6] P. Dourish and S. Bly. Portholes: supporting aware-
ness in a distributed work group. In Proceedings
of the SIGCHI conference on Human factors in
computing systems, pages 541–547. ACM, 1992.

[7] J. Estublier. Software configuration management:
a roadmap. In Proceedings of the conference on
The future of Software engineering, pages 279–289.
ACM New York, NY, USA, 2000.

[8] J. Estublier, D. Leblang, G. Clemm, R. Conradi,
A. van der Hoek, W. Tichy, and D. Wiborg-Weber.
Impact of the research community on the field of
software configuration management. 2002.

[9] UH Graneheim and B. Lundman. Qualitative con-
tent analysis in nursing research: concepts, pro-
cedures and measures to achieve trustworthiness.
Nurse education today, 24(2):105–112, 2004.

[10] M.F. Krafft. Workflow in distributed volunteer
projects — Intuitive approaches to modern Debian
package development. Phd proposal, Department
of Computer Science and Information Systems Uni-
versity of Limerick, Ireland, October 2005.

[11] M.F. Krafft. Method diffusion in large open source
projects. Phd research proposal, The Irish Software
Engineering Research Centre, CSIS, University of
Limerick, Ireland, August 2006.

[12] K. Krippendorff. Content analysis: An introduction
to its methodology. Sage Publications, Inc, 2004.

[13] B. Lundell, B. Lings, P.J. Ågerfalk, and B. Fitzger-
ald. The distributed open source software devel-
opment model: Observations on communication,

coordination and control. In Proceedings of the 14
th European Conference on Information Systems
(ECIS 2006), Gothenburg, Sweden. Citeseer, 2006.

[14] G. Moody. Rebel code: How Linus Torvalds, Linux
and the open source movement are outmastering
Microsoft. Allen Lane, 2001.

[15] W.J. Orlikowski. Knowing in practice: Enacting
a collective capability in distributed organizing.
Organization Science, pages 249–273, 2002.

[16] B. O’Sullivan. Making sense of revision-control
systems. Communications of the ACM, 52(9):56–
62, 2009.

[17] E.S. Raymond. The cathedral and the bazaar:
musings on Linux and open source by an accidental
revolutionary. O’Reilly & Associates, Inc. Se-
bastopol, CA, USA, 2001.

[18] P.C. Rigby, E.T. Barr, C. Bird, D.M. German, and
P. Devanbu. Collaboration and governance with
distributed version control. 2010.

[19] Nayan B. Ruparelia. The history of version control.
SIGSOFT Softw. Eng. Notes, 35(1):5–9, 2010. ISSN
0163-5948. doi: http://doi.acm.org.ezproxy.ub.gu.
se/10.1145/1668862.1668876.

[20] A. Sarma and A. van der Hoek. A conflict detected
earlier is a conflict resolved easier. Collaboration,
Conflict and Control: The 4th Workshop on Open
Source Software Engineering, pages 82–86, 2004.

[21] M. Shaikh and T. Cornford. Version manage-
ment tools: Cvs to bk in the linux kernel. In 3rd
Workshop on Open Source Software Engineering,
pages 127–131, 2002.

[22] P.M. Shields. Pragmatism as philosophy of science:
A tool for public administration. Research in Public
Administration, 4(1):195–225, 1998.

[23] L. Sproull and S. Kiesler. Connections: New ways
of working in the networked organization. The MIT
Press, 1992.

[24] Wikipedia. Content analysis — wikipedia,
the free encyclopedia, 2010. URL http:
//en.wikipedia.org/w/index.php?title=Content_
analysis&oldid=361259368. [Online; accessed
12-May-2010].

[25] Wikipedia. Distributed revision control —
wikipedia, the free encyclopedia, 2010. URL
http://en.wikipedia.org/w/index.php?title=
Distributed_revision_control&oldid=361573339.
[Online; accessed 27-May-2010].

[26] Wikipedia. Revision control — wikipedia,
the free encyclopedia, 2010. URL http:
//en.wikipedia.org/w/index.php?title=Revision_
control&oldid=363889540. [Online; accessed
27-May-2010].

[27] Y. Yamauchi, M. Yokozawa, T. Shinohara, and
T. Ishida. Collaboration with lean media: how
open-source software succeeds. In Proceedings of
the 2000 ACM conference on Computer supported
cooperative work, pages 329–338. ACM, 2000.

12

http://en.wikipedia.org/w/index.php?title=Content_analysis&oldid=361259368
http://en.wikipedia.org/w/index.php?title=Content_analysis&oldid=361259368
http://en.wikipedia.org/w/index.php?title=Content_analysis&oldid=361259368
http://en.wikipedia.org/w/index.php?title=Distributed_revision_control&oldid=361573339
http://en.wikipedia.org/w/index.php?title=Distributed_revision_control&oldid=361573339
http://en.wikipedia.org/w/index.php?title=Revision_control&oldid=363889540
http://en.wikipedia.org/w/index.php?title=Revision_control&oldid=363889540
http://en.wikipedia.org/w/index.php?title=Revision_control&oldid=363889540


APPENDIX

Below follows the quotes which were collected from
the different sites and the location as to where one
can further read for each individual site.

Site 128 Pros to the centralized model:

1.1 “Subversion encourages a simple central
repository model, discouraging large scale
branching.”

1.2 “Where the artifacts you’re collaborating on
are binary and cannot be merged by the VCS
- for example word documents or presen-
tation decks. In this case you need to re-
vert to pessimistic locking with single-writer
checkouts - and that requires a centralized
system.”

Cons to the centralized model and pros to the dis-
tributed model:

1.3 & 1.6 “Because distributed systems always
give you a local disk copy of the whole repos-
itory, this means that repository operations
are always fast as they don’t involve network
calls to central servers. This is a palpable
difference if you are looking at logs, diffing to
old revisions, and anything else that involves
the full repository. If this is noticeable on
my home network, it is a huge issue if your
repository is on another continent - as we
find with our distributed projects.”

1.4 & 1.7 “If you travel away from your network
connection to the repository, a distributed
system will still allow you to work with the
repository. You can commit checkpoints of
your work, browse history, and compare re-
visions on an airplane without a network
connection.”

1.5 & 1.8 “DVCS encourages quick branching for
experimentation. You can do branches in
Subversion, but the fact that they are visible
to all discourages people from opening up
a branch for experimental work. Similarly
a DVCS encourages check-pointing of work:
committing incomplete changes, that may
not even compile or pass tests, to your local
repository. Again you could do this on a
developer branch in Subversion, but the fact
that such branches are in the shared space
makes people less likely to do so.”

Cons to the distributed model:

1.9 “This last point also leads to the argument
against a DVCS, that it encourages wanton
branching, that feels good early on but can
easily lead you to merge doom. In particular
the FeatureBranch approach is a popular
one that I don’t encourage. As with similar
comments earlier I must point out that reck-
less branching isn’t something that’s par-
ticular to one tool. I’ve often heard people
in ClearCase environments complain of the

28http://java.dzone.com/articles/version-control-tools

same issue. But DVCSs encourage branch-
ing, and that’s the major reason why I in-
dicate that team needs more skill to use a
DVCS well.”

1.10 “A distributed system opens up lots of flexi-
bility in work-flow, but that flexibility can be
dangerous if you don’t have the maturity to
use it well”

1.11 “And although DVCSs give you lots of flexibil-
ity in how you arrange your work-flows, most
people I know still base their work patterns
on the notion of a shared mainline repository
that’s used with Continuous Integration. Al-
though modern VCS have almost magic tools
to merge different people’s changes, these
merges are still just merging text. Continu-
ous Integration is still necessary to get se-
mantic consistency. So as a result even a
team using DVCS usually still has the notion
of the central master repository.”

Site 229 Cons to the centralized model:

2.1 The whole trunk/tags/branches convention.
“I’ve never used it, mainly because I haven’t
felt the need. Also, because it’s hard. Re-
peated merges from a branch are painful”

2.2 No offline commits

Pros for distributed models:

2.3 “Commit to your local repository, and push
out the changes when you have an Internet
connection or when you’re confident the fea-
ture is stable enough.”

Site 330 Pros for the centralized model:

3.1 “With a centralized system, people are forced
to collaborate and review each other’s work”

Cons against the centralized model:

3.2 “With Subversion you can only commit if you
have commit privileges.”

3.3 “Without proper merging the ability to
branch is next to useless; even Subversion
can branch like a champ, it’s just its merging
which sucks.”

Pros for the distributed model:

3.4 “Every "checkout" is actually a full copy of
the entire remote repository (all its branches,
all its history). After a while you just get
used to the idea that you can rapidly look
back at any previous tag (previous releases
for example) and look at any of the branches
that are currently under development (un-
like Subversion where the typical workflow
is to check out only the tip of the "trunk").
This also means that every checkout is a
full backup of everything in the history of
a project. And once you’ve done this initial

29http://www.dribin.org/dave/blog/archives/2007/12/
28/dvcs/

30http://www.wincent.com/a/about/wincent/weblog/
archives/2007/10/why_distributed.php

13

http://java.dzone.com/articles/version-control-tools
http://www.dribin.org/dave/blog/archives/2007/12/28/dvcs/
http://www.dribin.org/dave/blog/archives/2007/12/28/dvcs/
http://www.wincent.com/a/about/wincent/weblog/archives/2007/10/why_distributed.php
http://www.wincent.com/a/about/wincent/weblog/archives/2007/10/why_distributed.php


"checkout" (called a "clone" in Git termi-
nology for obvious reasons) you can do all
this stuff (look at previous releases, switch
branches, explore the history) without any
network access.”

3.5 “I already touched on this above, but the fact
that your local "checkout" is a full-fledged
repository means that you can do basically
everything without a network connection:
commit changes, create branches, perform
diffs against any other point in the project
history, merge, and so forth. You later make
your changes available to the outside world
when you are ready.”

3.6 “Working offline is fast.”
3.7 “Working offline provides you with an ad-

ditional "staging area" (your local, private
repository): if you commit something by mis-
take you can fix it up before anyone else sees
it; this in turn means that you can make
your history cleaner, keep the "noise" down,
and can make your development easier to
understand for others (and for yourself when
you come back to look at it six months down
the track).”

3.8 “With Git you can do anything "the main-
tainer" can do. You can develop your code in
small steps, committing along the way, re-
verting changes if necessary, ensure its cor-
rectness, and then when it’s ready for pub-
lication prepare a patch series that shows
the logical steps you took; this will be much
easier to understand than the monolithic
"all-at-once" patch that you’d have to send
if you were working with Subversion.”

3.9 “Because Git is so good at branching and
merging, it’s dead easy to maintain separate
"experimental" and "maintenance" branches.
But even more so, branching and merging is
so easy that you find yourself making feature
branches.”

Cons against the distributed model:

3.10 “DVCS ... encourages anti-social behavior ...
In a nutshell: in a decentralized system, the
default behavior is for each developer to pri-
vately fork the project. They have to put in
some extra effort to share code and organize
themselves into some sort of collaborative
structure.”

Site 431 Pros for the centralized model:

4.1 “Centralised VCS also results in a bias to-
wards the server as the single point of
truth...”

4.2 “...your local sandbox can get messed up
via conflicts, but a centralised model doesn’t
ever allow you to check in conflicted files. If
the local merge after update fails you have to
cleanup conflicts manually.”

Cons against the centralized model:

31http://www.dehora.net/journal/2008/04/06/
what-a-dvcs-gets-you-maybe/

4.3 “This points to a limitation in centralised
version control systems - the developer local
history of changes is not preserved. It is as
though you have a maintenance/dev branch
where every time you commit to the branch,
the checkin is routed to the code line where
the branch was taken from. That means no
branch history is kept, ever. The information
is thrown away. And if your version of the file
prior to the merge is never versioned, that
in turn that means any post-facto work or
cleanup of mistakes has to been dealt with
manually. You can’t go back through the
history.”

Pros for the distributed model:

4.4 “Better branching, thus control over code”
4.5 “Speed, thus ease of use ... Once you start

using a DVCS for local work, going back to a
centralised model feels slow, as in your mind
wanders and breaks flow, which is the worst
kind of slow.”

Site 532 Cons against the centralized model:

5.1 “If you take an SVN checkout of, say, the
Linux kernel source code, you’re free to play
with it, and make any changes you like, but
you can’t commit those changes.”

Pros for the distributed model:

5.2 “there is no central repository for a project
which is in Git. Another way to look at it
is that every single checkout/working copy -
known as a "clone" - of the project is actually
the repository itself, with its full history and
everything you need to manage it.”

5.3 “Another unfamiliar aspect is that every
working copy is effectively a branch, and
commits to it are isolated from any kind
of notional trunk, or indeed anybody else’s
clone, until such time as you manually
merge two or more clones.”

5.4 “If you travel a lot, or otherwise regularly
find yourself in situations where you don’t
have easy, reliable internet access, you can
continue to work and make commits without
network access.”

5.5 “Thus, a developer is not directly dependent
on an external server, which greatly reduces
the risk of slow response times and server
outages preventing the developer from work-
ing and committing changes.”

5.6 “While Git is designed primarily for collabo-
rative development, dispensing with the re-
quirement for a central repository makes Git
an appealing option for individual developers
or small teams who don’t have the time or
inclination to install and maintain a version
control repository and server.”

5.7 “A user doesn’t require privileged access to
the repository in order to keep a full history
of their own changes.”

32http://pointbeing.net/weblog/2009/09/
git-for-subversion-users.html

14

http://www.dehora.net/journal/2008/04/06/what-a-dvcs-gets-you-maybe/
http://www.dehora.net/journal/2008/04/06/what-a-dvcs-gets-you-maybe/
http://pointbeing.net/weblog/2009/09/git-for-subversion-users.html
http://pointbeing.net/weblog/2009/09/git-for-subversion-users.html


Site 633 Pros for the centralized model:

6.2 “Centralized systems allow you to list the
files and branches and whatnot. Subversion
made an important improvement on CVS
by making the branching and tagging very
transparent, where it was somewhat invis-
ible and mysterious in CVS. That makes a
real and practical difference in the usability
of branching. Distributed systems are a step
back in this respect.”

Cons against the distributed model:

6.2 “But frankly the "server-less" systems they
set up are usually much more complex
in practice than a single well-maintained
server. Now that Subversion has fixed many
of its server problems (with fsfs among other
things), server maintenance is really not a
problem. And we share the work around;
there are far fewer servers than developers,
and that works fine.”

6.3 “But more practically, I think distributed
systems enable private work in a way that is
bad for the community. I think the private
workflow so touted by distributed systems
is a total non-feature, even an anti-feature.
Open source development should happen in
the open; that’s what people usually want to
do, and that’s what we should encourage at
every opportunity.”

33http://blog.ianbicking.org/distributed-vs-centralized-scm.
html

15

http://blog.ianbicking.org/distributed-vs-centralized-scm.html
http://blog.ianbicking.org/distributed-vs-centralized-scm.html

	Introduction
	Theoretical Background
	What is Software Configuration Management?
	Centralized Model
	Distributed Model

	Related Work and Literature
	Working from a Distance
	Open Source
	The Different Models


	Research Method
	Method of choice
	Data Collected
	Process of collecting data

	Data collection
	Open Source Projects
	Blog/Article Posting

	Analysis
	Open Source Projects
	Blog/Article Postings
	Location
	Development
	Network
	Security

	Prolonged Analysis

	Conclusion
	Appendix

