


Factors That Restrict Speed in Streamline

Development

Magnus Södergren

magsod@ituniv.se

Zana Leric

zanal@ituniv.se

IT University of Gothenburg, Software Engineering and Management. Gothenburg, Sweden

Abstract

c c c c c c c c c c c

The fast moving area of mobile telecommunication forces

companies to deliver functionality with increasing speed to

customers. To deal with these challenges, Ericsson AB cre-

ated a software process called Streamline Development(SD);

which bridges the gap between long term thinking and agile

development. SD is a process inspired by agile and lean

methodologies, focusing on small efficient teams with an

end-to-end responsibility of development, short life cycles,

and continious code integration. The purpose of streamline

is to take advantage of the benefits of shorter time to market,

and to have a more flexible development set-up to aid the

possibility to make changes at anytime. The goal is to get to

faster development of products with higher quality.

This article investigates SD and searches for different factors

that could have an impact on the development process of a

feature and extend the lead time. The paper will try to answer

which factors restrict speed in Streamline Development? The

results are 34 factors that restrict speed in SD. These factors

are divided into three areas and further divided into 12 cate-

gories.

The research was conducted as a case study at Ericsson

AB as a part of the bachelor thesis project course at the IT-

University of Gothenburg during the spring of 2010.

Categories and Subject Descriptors D.2.9 [Software En-

gineering]: Management: Productivity, Life cycle, Time esti-

mation

Keywords: streamline development, restricting factors,

speed

1 Introduction
The area of mobile telecommunication is moving rapidly for-

ward and companies need to deliver functionality with in-

creasing speed to customers. Frequently changing customer

requirements and new emerging technologies are some of

the major challenges companies need to take into considera-

tion when developing long term strategies (Nerur et al., 2005;

Olsson, 2008; Petersen and Wohlin, 2009; Tomaszewski

et al., 2008). To deal with these challenges, Ericsson AB

has developed a software process called Streamline Devel-

opment which is a process created in-house at Ericsson AB.

SD bridges the gap between long term thinking and agile de-

velopment (Olsson, 2008).

Past research have mostly looked at the SD process from a

high-level perspective and little attention has been given to

the end-to-end flow in the life of a feature from conceptual

idea to integration into finished product. Even though it is

a fairly young process, implementation started 2007, it has

been used in practice for a period of time now giving this

research an insight into how SD works in a more mature set-

ting. While some of the related research have looked into de-

tail at SD, they have done so from the start of implementing

SD in an organization. The problem of aquiring speed us-

ing agile processes in large organizations have been looked

into by resent studies Olsson (2008); Petersen and Wohlin

(2009).

This article looks at a department in a large organization

that has been using SD for over a year and examines the

SD process in detail from feature conceptualization to prod-

uct release. The research question is which factors restrict

speed in SD? To answer this research question, qualita-

tive approach using grounded theory as research method

was chosen. The research was conducted as a case study

at the company Ericsson AB. By reviewing statistics and

other documents related to already implemented features,

the researchers have followed a feature throughout its life.

Through several interviews with carefully chosen key indi-

viduals that represent the organizational framework, the re-

searchers hoped to identify key factors that might lead to an

increase in lead-time. This article shows that SD has not

been easy to fully implement in practice into an existing or-

ganization with established processes. This article presents

34 factors in twelve categories divided into three areas that

reduces speed in SD.

This paper is structured as follows: Section 2 describes SD

in detail. Section 3 presents the research approach and

1

mailto:magsod@ituniv.se
mailto:zanal@ituniv.se


method used. In section 4 the results are presented. Section

5 discusses the results and section 6 gives conclusions and

suggestions for further work.

2 Streamline
Development

When developing project in a traditional development way

a project’s lifespan runs for up to four years. Because the

market moves forward quickly, the customer changes re-

quirements before the product reaches the market due to

the long duration of the projects (Tomaszewski et al., 2008).

Projects done according to a traditional process has prede-

fined scopes and product releases are done continuously.

These projects are large and thus demand large develop-

ment teams to carry them out (Tomaszewski et al., 2008). A

product is released after requirement specification has been

defined and developed. Because the projects are large, it

takes a long time for a product to reach the market giving the

customer plenty of time to change their mind making some

of the requirements obsolete even before the product comes

out on the market. Tomaszewski goes on describing that,

whenever there is a request to change a product, a so called

change request has to be filed. Change requests require a

lot of maintenance and are therefore high in cost. A change

request that is filed to already implemented work leads to

decreased productivity, and decreased productivity in itself

leads to more lead time that leads to less competitiveness

for the company. The lifespan of projects developed accord-

ing to the SD process are significantly shorter (around three

months lead time) than the lifespan of projects developed in

a traditional way(Olsson, 2008; Tomaszewski et al., 2008).

A SD project consists of three phases and must first go

through a stage called early phases. In this stage, the

projects initial time estimations are drawn up, as well as a

study on how much of a need there is on the market for a

product. When there has been decided that a project is con-

ductible, a decision (called GO) is taken to send the project

to a team for potential development. From here, the project

goes in to a feasibility phase where new estimations are de-

cided upon by the assigned team, and the execution of the

project is discussed. When a team decides to start work-

ing on a project a so called Commit decision is made. This

means that the project has gone out of the feasibility stage

and into the execution stage. When a team has finished

developing and testing a feature on their own brach called

LLV(Latest Local Version), the feature is integrated into the

LSV (Latest System Version) through integration and regres-

sion tests. After final testing, the feature is sent into a release

project. The feature is now concidered ready for release. In

the release project a product is getting ready for a potential

release. Before a product is fully released into the market it

is first tested out at one customer site. This is called a FOA

(First Office Application). When a product passes a customer

acceptance test, the product is ready for the market (Olsson,

2008; Tomaszewski et al., 2008).

Teams in SD are called cross-functional teams (XFT). These

teams should be autonomous and each team member has

an area of expertise (i.e. designer, tester, architect, etc.).

Team leaders guides the teams throughout the development

process. The team is fully responsible for the development

of this feature and is free to choose in which way they want

to develop.

SD has the benefits of that the products reach the customers

faster and create a more positive customer response. This

is the main motivation to why SD favours customer respon-

siveness compared to traditional development. Customer

involvement is important since it helps to detect changing

needs early on and thus reduces the waste risk. More fre-

quent releases give faster feedback from customers. Only

the highest customer demanded requirements are imple-

mented (Tomaszewski et al., 2008). Tomaszewski points out

that in SD there is only one product version at any given time

which is another big difference from the traditional develop-

ment way. This also reduces the maintenance risk since only

the latest version needs to be maintained. The biggest dif-

ference between SD and traditional development is that in

SD there is shorter time between identifying product needs

and implementing them. And because there is shorter time

between these two, there is less risk for changing market de-

mands. A product that has been completed is added to the

base product line, and that product line gives the basis for

next project. (Tomaszewski et al., 2008).

SD was created with agile and lean inspiration in mind. Lean

and agile development shares many of the characteristics

that make out the SD process (Cockburn, 2007) Key princi-

ples such as; the focus on teams and individuals, short it-

erations with fast delivery and continuous code integration

are some of the characteristics of agile development that

are said to shorten the lead time of software development

(Cockburn, 2002, 2007). Lean development shares the fo-

cus on shorter project life cycles which, according to mid-

dleton2001lean,schwaber1995scrum has shown to enhance

the software quality of a product. He also discusses in his

paper, the impact on an organization when switching to a

lean principle way of working. The issues of switching mind-

set from traditional way of working into a more incremental

style requires further change for the teams and roles involved

with software development in an organization. Lean and ag-

ile practices, like SD require close, co-located teams to work

together.

3 Methods
The research was conducted as a case study at a depart-

ment at Ericsson. The study involved interviews with people

working with SD. SD had been introduced 2007 to the com-

pany. However, the description of how SD worked with the

company differed from paper to reality. This research was

concerned with the findings of relevant factors that can pos-

sibly explain what in the development process of a feature is

not done according to SD and what the cause of extended

lead-time can be. The study involved interviews with six in-

dividuals, one seminar on architecture and, two introduction

presentations on SD and the company. This was supported

by relevant documents and statistics on features as well as

the researchers own observations.

2



Presentation

Seminars

Interview 

questions

Theory

Interviews

Transcribed 

interviews Analysis

Data

Results

Final analysis 

and validation

Updated and refined eight times

Figure 1: Method model

3.1 Strategy

The case study is a research strategy that is used for learning

and understanding a particular setting or environment and

aspects or phenomena within the environment (Eisenhardt,

1989). The reason for choosing this strategy is suitability

in studying and mapping phenomenas within organizations.

The methods used in case studies, such as document anal-

ysis, interviews and observations (Eisenhardt, 1989), fits the

aim of this research from a methodological perspective, and

therefore the case study strategy became the natural choice

for this research.

3.2 Qualitative approach

Hancock (2002) explains qualitative research as: “Research

which attempts to increase our understanding of why things

are the way they are in our social world and why people act

the ways they do, is qualitative research”.

Some of the characteristics of qualitative research are re-

search involving observations of social environments, inter-

views based upon unstructured interviews using open-ended

questions (Booth et al., 2003; Creswell, 2008; Silverman,

2009). Due to the fact that the researchers did not know

much about SD and even less about what factors could re-

strict speed a more exploratory approach was needed; a

qualitative approach felt like a natural choice as we could

then gradually develop theories after making new discover-

ies about feature implementation using SD. Because we did

not know the explicit problem, only that there was a problem,

it was more logical to discover the problem by making ob-

servations at company site, and to conduct interviews with

individuals that have experience working with feature devel-

opment according to SD (Eisenhardt, 1989; Silverman, 2009;

Strauss and Corbin, 1998)

Grounded theory

The aim of the grounded theory is to come up with new

theories about a phenomenon by collecting and analyzing

data about the chosen phenomena. Primary data collec-

tion techniques are interviews, observations and literature

reviews on information relevant to the phenomena under re-

search(Goulding, 1999). What is unique about the grounded

theory is that the data collection and analysis are conducted

simultaneously by using a process that is called constant

comparative analysis. The data is analyzed and transcribed

directly after it has been collected (Hancock, 2002; Silver-

man, 2009; Strauss and Corbin, 1997, 1998).

Since our focus was on interviews, the grounded theory

approach seemed most appropriate. Interviews conducted

were transcribed and analyzed directly after they have been

conducted. The data collection and analysis happened si-

multaneously and the theory constantly evolved according to

the new findsings after each interview (Hancock, 2002; Sil-

verman, 2009; Strauss and Corbin, 1997, 1998).

3.3 Data collection and analysis methods

Selection of informants

Four interviews were conducted with key-individuals within

four areas in the department under study; these together rep-

resented the SD feature development from the beginning of

a project to the end. Two interviews were conducted with the

team leaders that worked with the observed features.

Interviews

Two introduction presentations about SD and the company

was given by Ericsson which served as basis for finding out

how the organization worked and potential factors that could

restrict speed in development. These presentations and a

seminar on SD architecture served as basis for designing

initial interview questions. Questions that came up during the

presentations and the seminar were mapped into the areas

the interviewees worked in. All informants where choosen

based upon recommendations from the company.

Focus was on conducting semi-structured interviews with

key-individuals both at Ericsson AB and University of

Gothenburg. The interviews were semi-structured because

there was a need to let the interviewee talk both freely but

also to force the person to describe certain pre-defined ar-

eas that might be unclear to the interviewer at that point in

time. The interviews conducted with the team leaders took

place after the first four interviews in order to get a better

overview over the SD process. The new factors that came

up during the first four interviews were used in the interviews

with the team leaders to see if any of the factors occurred

during the actual development of the features. Any follow up

3



questions that came up after an interview were sent by email

to the interviewee in question.

All of the interviews were taped, transcribed and coded using

Atlas.ti along with any document collected that could con-

tribute to the research (Silverman, 2009). Interview tran-

scripts was coded using software and this ensured that the

interpretation of data fits well with the external reality at Eric-

sson AB.

The initial strategy involves thoroughly learning the area

making use of a official process model provided by the com-

pany during one of the presentation to visualize the domain.

This model served not only as a description of the area and

help one to better understand the area but it also served as

a tool in the interviews that the researchers conducted. The

use of a model gave the interviewees a chance to have a

more focused talk about complex domains and at the same

time alleviate some of the issues we might have to follow and

understand what the interviewee was referring to during the

interview.

The four chosen areas to interview helped to better under-

stand the framework of the research area and to identify find-

ings correctly. These stages include: early phase, program

activation board, program execution, and the release project.

The taped interviews with these key individuals together with

the use of a model of the area were used as to more effi-

ciently make use of the interview times. Between each inter-

view the model was updated and the questions prepared be-

fore each interview could be prepared with greater accuracy

to improve a better data collection. From the beginning the

researchers used internal documentation in the form of an

power point documentation containing several illustrations of

each stage or phase of the development process. This doc-

ument together with the model proved to be very useful tools

not only during the interviews but also in the analysis and

preparation of each interview.

Coding

As in any semi-structured interview, not all information was

relevant to the research question but with the use of a quali-

tative data analysis tool (Atlas.ti1) it proved to be a very easy

to extract relevant data. Not only did the tool provide an easy

way to ground the data but also confirm and correlate data

through several interviews or other sources of data. These

sources included one official final report of a project from a

team and several printouts of statistics from the observed

features.

Categorization

Many of the factors identified from the data were grouped

by their relation to each other through actions or milestones

in the development process. The following relations were

discovered: communication between actors and between

phases, internal or external issues regarding teams, and arti-

facts and their relation to phases in the SD process. Several

models, excel-sheets, white board-sessions, and other ways

of abstracting around the data were used in combination in

this work. The most important tool during this phase of the

analysis was Atlas.ti.

1http://www.atlasti.com/

Reliability and validity

The authors of this article used the following definitions given

by Silverman of: reliability as “The extent to which find-

ings can be replicated, or reproduced, by another inquirer.”;

and internal validity as “The degree to which findings cor-

rectly map the phenomenon in question.”; and external va-

lidity as “The degree to which findings can be generalized

to other settings similar to the one in which the study oc-

curred.”(Silverman, 2009). Taped interviews ensured that we

could document everything that has been brought forward in

the interviews more accurately. The risk of taking only notes

could result in that certain information get’s lost. To validate

the truth of our data we compared our findings with internal

Ericsson documentation on features. We also used research

articles that reported similar research to ours to see if we

could map our findings to to previous research, and see if

there were similiarities or differences to our. further discus-

sion of reliability and validity can be found in the discussion

section of this article.

Other data collection

Research literature on SD was reviewed in order to select

the most suited areas in SD to conduct interviews in. Other

sources of data includes an official final report from a team

after a finished project implementing a feature. The re-

searchers also received a power-point document and a tran-

script of implementation hours for two features. A project

report from one feature and feature statistics on the two se-

lected features were also reviewed and used as input mate-

rial to the interviews. These documents were also coded with

Atlas.ti.

4 Results
Outcomes of our analysis are 34 factors in twelve categories

within three areas (see Figure 2). Team is a core concept of

SD and the focus is on strengthening the team by giving them

the mandate to act autonomously. Teams were the first to be

identified as one of the three. Communication is another core

concept of SD. Lead in/Lead out consists of those activities in

the early phase together with the work done by the Program

Activation Board which leads in to a go-decision and a project

for development by a cross-functional team. Lead in/Lead

out also involves all activities from when a development team

starts to make preparations for handing over the feature to

integration, verification and release projects.

4.1 Teams

Team integrity

One of the cornerstones in SD is small and efficient teams

that take an-end-to-end responsibility. This is recognized by

Ericsson which lists several success factors for the imple-

mentation of SD: Strive to allocate people to one team only.

Keep teams together for at least 6-12 months and to have

them co-located within the team. The factors that restrict

speed in the category of Team integrity and stability are:

4

http://www.atlasti.com/


Team

 

Team integrity
 

Customer specific 
feature

 

Trouble reports
 

Team selection
 

Unsupportive 
environment

 

Lead in/Lead out

 

Unforeseen 
dependencies

 

Integration and 
verification

 

Communication

 

Communication 
problems

 

System owner
and product 
management 

 

No architect 
in teams

 

Meetings
 

Figure 2: Areas and categories of factors

F.1 One respondent said teams usually work with 4-5 fea-

tures at the same time.

F.2 The whole team does not always start at the same time.

F.3 The input from the functional test architect can some-

times come too late when team resources are unbal-

anced during a project.

F.4 Product Management makes changes to resources or

to the feature after commit.

F.5 Changing team members during project.

F.6 Change of system test resource during project.

} Do not change the team during a feature. ~ (In-

terviewee)

Customer specific features

The customer specific features are different in relation to fea-

tures Ericsson AB specify themselves.

F.7 Customer specific features are often harder to break

down in their dependencies.

F.8 It can be hard to merge the functionality and architecture

into existing systems.

F.9 The customer usually comes with a lot of input during

the project and this is considered as something that is

disruptive.

} It’s generally the customer specific features that

are hardest to break down, because then you have

to struggle with a solution for the customer and a

good solution for our own system. ~ (Interviewee)

Trouble reports

TR’s can come at any time and having higher priority than

what the team are currently working on, two factors regarding

TR’r that hinder speed in SD are now presented:

F.10 TR’s high priority (higher than the current feature the

team is working on) makes for a disruptive element in a

team’s every day work.

F.11 Work on the current feature would have to stop entirely

if it weren’t for the split of the team and assignment of

one or more persons to handle this work. The team

leaders interviewed described how this is handled by

permanently assigning one or more full time worker who

is changed each month.

} We have selected one person to work with TR’s.

And then it is only that person who is interrupted

and not the others. ~ (Interviewee)

Team selection

There are different opinions whether or not teams should be

assigned features that are outside the team’s area of compe-

tence or not. Some people enjoy the learning experience of

working outside a “comfort zone” and some don’t.

} The organization has grown fairly much the last

couple of years making us not reach the same level

of competence throughout the organization... ~

(Interviewee)

F.12 The competence of the next “free” XFT team doesn’t

always match the next feature on the Feature Priority

List to be implemented and this might cause a delay in

the implementation of that feature. And sometimes the

opposite happens; the team is ready but the material is

not.

Unsupportive environment

The test tool TTCN has been brought up several times by

our interviewees and is considered a strong factor that hin-

ders speed in SD. The tool is so hard to use, reducing the

5



number of test cases produced daily from 4-5 to one, that

teams choose to not use it or have to spend time planned

for education on implementing test cases. An integrated de-

velopment and testing environment is also mentioned as an

issue causing delays in testing.

F.13 The test tool TTCN is so difficult to use that teams are

choosing not to use it or do function tests. With JPacket

teams could produce several test cases each day but

with TTCN they can only produce one.

F.14 Teams want integrated design and testing environment

and not separate as it is today.

F.15 Unreliable test results from testing environment. One

interviewee said that tests done on seperate nodes

were not conclusive because of different results.

} We still have a lot of problems with tools. ~ (In-

terviewee)

} Spend some money to fix the environment prob-

lems because it cost every team a lot of time. ~

(Interviewee)

Having no clear architecture causes added lead-time in

projects through added work from unpredictable actions and

responses from a system or its maintenance structure while

working with it. Ericsson has acknowledged the need for an

architect to be part of the team in order to provide the dis-

semination of high level architecture into the teams. The lack

of a proper architecture is usually associated with legacy sys-

tems.

F.16 There is unclear architecture, especially in legacy sys-

tems. For instance, a small change in a legacy system

may affect over a hundred test scripts that may have to

be updated, causing a delay in testing. Ericsson has

employed several architects that will be working closely

with the teams to ensure that the architecture improves.

} The [department] does not have a real architec-

ture today. ~ (Interviewee)

4.2 Communication

Communication problems

This section mostly brings up communication problems out-

side the team towards other departments, either within Eric-

sson AB or externally.

F.17 Product Management sometimes fails to communicate

an accurate description of a feature and when feedback

from the team comes, it is often not what the Product

Management had in mind.

One action towards closer communication to product man-

agement is going to be solved to some extent now when the

Product Management will have two representatives located

at the site. This management commitment is also recognized

by Ericsson which lists; close collaboration with management

during development, regular meetings, and co-location as

some of the success factors for implementing SD.

} I had much better communication with the Pro-

gram Management when I was sitting over there

than I do now. I have noticed that we have become

more isolated. ~ (Interviewee)

F.18 Miscommunication during CPI-documentation produc-

tion between development team and external company

might lead to customer TR’s based on wrong informa-

tion after delivery.

The CPI documentation is written by an external company.

One interviewee thought there was a problem with communi-

cation between the team and the CPI writers since the writ-

ers were not sitting with the team and had no insight. Several

working hours were spent on phone calls giving very detailed

information on what should be written about the feature in the

CPI document. This was also identified as a source of even

more extra work as incorrectly described features would pro-

duces erroneous trouble reports from customers, when the

customers expected one described functionality and in real-

ity getting another – making the customers act on false pre-

tenses when writing the error reports.

} Yes it is the customers that suffer. They are the

ones who read it [the feature descriptions]. And

then they write trouble reports on faults they find.

~ (Interviewee)

F.19 The release project has a hard time getting valuable in-

formation early. The release project would like to have

high level description of a feature and its compatible-

ness with other system versions or surrounding systems

to be able to work efficiently.

F.20 Test tools and their framework, developed in Shanghai

and Hungary, changes without information reaching the

teams.

F.21 One interviewee said that the feedback from the testing

can take up to six weeks to reach the team and then

that team may not consist of the same people anymore

or the team members don’t remember that feature any-

more.

} The biggest problem is communication, without

a doubt. ~ (Interviewee)

} It is not so much who I should talk to, but that

people are unavailable. ~ (Interviewee)

System owners and product management

A System Owner is a person employed by Ericsson that is re-

sponsible for ordering a feature and responsible for approv-

ing a system’s quality.

F.22 Not having the system owner co-located or closely

working with the team causes uncertainty and added

lead-time. The uncertainty is regarding if the implemen-

tation is going in the right direction and the added lead-

time is from halting important decisions until the SO has

been asked.

} but it is very important that you are close to the

System Owner and the Product Management. . . so

that you don’t shoot wide of the mark but deliver

exactly what they want. ~ (Interviewee)

6



F.23 Not having close contact and regular meetings assisted

by both PDU and PM being co-located can hinder the

communication of overall high-level goals and increase

the risk of miss-communicating the requirements cor-

rectly.

} A new thing is that we will have a couple repre-

sentatives from Product Management on site and

this is very welcomed. ~ (Interviewee)

No architect in teams

Communication, dissemination of over-all system attributes,

and early feedback on high-level architecture are desireable

working routines at Ericsson AB and this factor influences all

of them:

F.24 Having no architect in a team or not being co-located

increases the risk for miscommunication high-level ar-

chitectural goals and also reducing the feedback from

the designers on the architecture towards the architect.

It is difficult for an architect in Sweden to help a team

stationed in Montreal.

“I think so” (The respondents response to the ques-

tion “Do you think it is a good thing to have an ar-

chitect in the team?”)

Meetings

The results show that meetings and problems relating to

making them happen are factors that hinder speed in daily

work.

F.25 The problem of finding a room to hold a meeting in cre-

ates problems. Team leaders have to guess meeting

times several weeks and months ahead of time to be

able to book appropriate rooms for important meetings

at the end of a project.

F.26 The problem of getting key individuals together for one

meeting is very hard.

} I would say that it is getting hold of people that is

the difficult part. It is not so much who I should talk

to but that people are not available. ~ (Interviewee)

4.3 Lead in/Lead out

Unforeseen dependencies

Even though SD preferes that a team themselves decide how

to implement a feature, the team is dependent on the work

done prior to a commit-decision to be able to implement in an

efficient manor. Taking into account the combination of focus

on details whilst considering the over-all goals (i.e. high-level

architecture). This section lists factors that reduces speed in

the implementation of a feature in SD:

F.27 There is today no way of knowing how the re-

prioritization of a feature will influence the development

chain. There is no way of overlooking the implications

at present.

F.28 It is often that the feature description fails to take into

account dependencies in a feature and correctly de-

scribe it from the beginning.

} It is general. There are very few features on

which the estimates don’t grow. Very, very few. ~

(Interviewee)

F.29 Sometimes dependencies in features are identified

even before requirements are set and this is written

down in the material that is given as input to the Early

Phase, but this is done ad hoc. This is seen as a chal-

lenge within Ericsson and they have identified that a bet-

ter collaboration between node developments at system

management level is required.

} So I don’t think we have a formal process for

it [identifying dependencies to other systems], it is

more ad hoc. ~ (Interviewee)

F.30 The quality of the early phase estimate has an impact

on the lead-time of a features implementation.

F.31 It is often the case within DPI that customer requests

and diverging interpretations of, for instance, protocols,

cause additional lead-time.

} - Clear and defined requirements early -> quick

start. ~ Team Evaluation in Final Report

Integration and verification

This point is recognized by Ericsson which has listed speed

restricting factors in integration and regression tests. Erics-

son feel s that frequent anatom deliveries are needed to keep

a low integration debt.

F.32 Features that are dependent on each other might be

delayed at commit if testing on LSV cannot handle any

more features because of failing regression tests on an

earlier feature or if the feature is dependent on another

feature not yet ready.

} Yes it can be. I mean we have dependencies

between the features and the teams so sometimes

it is not possible to test anything until another team

has delivered their part. ~ (Interviewee)

Late information to release project

Much of the research done in regards to SD does not take

into account the later phases in the process of implement-

ing a feature. Our research identifies these factors that slow

down delivery of features to customer and that potentially can

produce unnecessary work:

F.33 The content of a feature is decided or “locked” very late

or its scope is changed by the product management and

this information is needed by the release project. The

dependencies of certain releases are not mapped be-

forehand and this causes delays in the RP. This factor

makes the RP start on assumptions.

F.34 Documentation regarding the implementation of feature

is not updated for each milestone forcing the RP to work

with old and sometimes misleading information and this

can delay IOT-tests when the interfaces for them cannot

be specified and planned.

7



} The program work internally and doesn’t want

that much to do with the release project until they

are done. Then they can say that they are ready

to deliver. But the release project’s different parts

need quite a lot of information during the journey

that we have problem getting here. ~ (Interviewee)

} Our team has made the assessment that chang-

ing a “locked” feature costs too much. ~ (Intervie-

wee)

5 Discussion

5.1 Teams

Team integrity

Teams working on several features in parallel splits focus

within teams (F1). When teams do not start at the same time

(F2), the point of strong cross-functional teams in streamline

gets lost. In one case the developers had already finished

the implementation of the feature before the ST test cases

were finished. The team was not assigned the same ST re-

source on full time for the whole project and that resource

was changed during the project (F5, F6). Errors were discov-

ered during NIV testing because the functional tests had not

been conducted which is not optimal. The late input from the

FT Architect came when delivery was only one week away

and this made the feedback almost redundant (F3). When

product management fails to communicate what they want

in a feature (F4), it has implications on the integrity of the

end-to-end responsible team. Having to re-plan and perhaps

redo work creates a stressful environment. All these factors

in this category produce stress for the team and do impact

the speed of which a feature is developed and tested. It can

also lead to higher development costs and lower quality in

products.

One of SD’s cornerstones is the strengthening of teams and

Olsson (2008) also states this in several places. This is sup-

ported by the identified factors. Interviewees talk about the

importance of having the whole team starts together on a

feature and that those changes of team members during a

project are undesirable. The point that Holmström makes

about having semi-permanent teams is supported by our

findings with an emphasis on not changing the team during

a project (Olsson, 2008). The benefit of co-located teams is

also brought up by our interviewees.

Customer specific feature

Customer specific features are generally harder to break

down and identify dependencies within and this together with

the challenge of finding a suitable solution for an existing sys-

tem increases the lead-time during the feasibility phase (F8).

The previously two mentioned factors in combination with

strong voicing’s and frequent input from the customer can

potentially create unwanted disruptive situations and nega-

tively affect speed (F9).

Trouble reports

Even though the benefits of a low fault density on the LSV

cannot be denied, the disruptive and divisive force of the

TR should not be overlooked (F10). The higher priority of

a TR forces certain teams to split their teams and assigns

one team member to a virtual TR-team to work with the TR

a substantial part of their working day (F11). TR’s reduces

speed in SD.

Team selection

In a rapidly growing organization it can sometimes be hard to

keep a desired level of competence throughout the company

and this is reflected in the selection of teams to implement

a feature (F12). If the next free XFT’s competence does not

match the highest prioritized feature, the implementation of

that feature will be delayed – reducing speed in the develop-

ment process.

Unsupportive environment

The test tool TTCN has been brought up several times by our

interviewees and is considered a strong factor that hinders

speed in SD (F13). The employees have not learned the new

tool so it is hard to use (challenges), reducing the number of

test cases produced daily from 4-5 to one, that teams choose

to not use it or have to spend time planned for education

on implementing test cases. An integrated development and

testing environment is also mentioned as an issue causing

delays in testing (F14). One interviewee pointed out that they

had conflicting test results during a project and they decided

to not test the feature on several nodes leaving some of the

testing undone (F15).

5.2 Communication

Communication problem

Because the CPI-writers were not sitting with the team and

had no insight, several working hours had to be spent on

phone calls giving very detailed information on what should

be written about the feature in the CPI document. This was

also identified as a source of even more extra work as in-

correctly described features would produces erroneous trou-

ble reports from customers (F18). When the customers ex-

pected one described functionality and in reality getting an-

other they acted on false pretenses when they wrote error

reports.

The release project’s momentum is halted by the lack of in-

formation from the implementation phase and this is a fac-

tor that potentially can be easy to solve by providing just a

few lines of information regarding a features dependencies

to other systems and which release-versions it will run on

(F19).

When new updates of test tools and their framework are de-

livered, the persons that will use them have gotten little or no

information regarding the content of a certain release (F20).

This leads to questions such as: “What will there be in this

delivery?” and “What have they changed in the framework?”

This uncertainty cannot be in beneficial to improve speed in

SD.

8



When teams get feedback from regression test loop on the

LSV that can take upward to six weeks to be delivered (F21),

much of the knowledge regarding that feature has almost

been forgotten and the team members can also have been

changed. This puts a heavier workload on teams to try and

remember details regarding a feature than if the feedback

was quicker.

System owner and product management

Communication is one of the strengths of SD Olsson (2008);

Petersen and Wohlin (2009); Tomaszewski et al. (2008), but

the improved communication mentioned in those articles is

usually within the team or a discipline. The factors that in-

fluence the communication in a negative way are between

different departments or phases. This is mainly due to the

lack of co-location of teams to actors they depend on such

as System Owner and Product Management (F22). Regular

meetings can help reduce the risk of miss-communicating

important information to teams and thusly reduce the risk

of missing the overall high-level goals set by management

(F23).

No architect in teams

This factor’s (F24) impact on speed in SD has been reduced

by the fact that Ericsson AB recently put architects to work

more closely with teams in order to convey high-level archi-

tecture and dependencies into the teams. This will also pro-

vide the architects with feedback on their architecture pro-

ducing a good synergetic effect.

Meetings

Even such an, perhaps initially trivial, issue as finding rooms

to hold meetings has been recognized as an important hin-

dering aspect of daily work (F25). Managers might have to

book larger rooms several weeks in advance to hold impor-

tant meetings in. These bookings are made by guessing a

date several weeks in advance when a meeting might be

appropriate. Another aspect identified is the problem of ar-

ranging meetings between key individuals with busy sched-

ules (F26). A busy schedule is perhaps taken for granted

these days but it might have adverse effects in creating a

good environment for effective management of teams. One

can perhaps try to identify which groups of key individuals

that require regular meetings and try to set up meetings in

advance.

5.3 Lead in/Lead out

Unforeseen dependencies

Petersen and Wohlin (2009) describes”Dependencies rooted

in implementation details are hard to identify and not cov-

ered in the anatomy plan.” This issue is also supported in

our findings and maps to our category unforeseen dependen-

cies. The mention of unforeseen dependencies is in regards

to those software or hardware dependencies that a feature

may depend on to work but has not been identified at an

early stage in the life of a feature (F27-F29). Ericsson is

now working with a document that they hope is an improve-

ment to existing procedures. A document called an Anatomy

Plan that maps dependencies between features on a feature

level for two years in advance. Unforeseen dependencies

discovered late in a features life creates extra lead-time and

reduces speed in SD by re-planning and re-prioritization of

projects (F30, F31). The data indicated that a key factor in

reducing the unforeseen dependencies in features lie in the

estimations made in the early phase and how well those es-

timations have been done (F30). It is generally hard to do

cost estimations (Sommerville, 2007). At present date the

estimates are usually increased by a factor of two going from

early phase to commit decision.

Integration and verification

Petersen and Wohlin (2009) also describes their issue’s cy-

cle times may extend lead-time for package deliveries as if a

package is not ready or rejected by testing it has to wait for

the next cycle”. This is supported by our research on sev-

eral occasions and also by Ericsson AB that identifies that

frequent anatom deliveries to the LSV is needed to keep a

low integration debt. This corresponds to (F32).

Late information to release project

Teams sometimes ”lock“ features late in a project. This de-

cision is sometimes taken on the grounds that it costs too

much to change the content of a feature after it has been

locked. It can also be tha the team feel that it is better to

have the feature open to have greater freedom of its content.

The release project needs information regarding what exter-

nal system it interacts with and what releases of LSV it shall

run on. The lack of information forces the RP to start their

work on assumptions regarding the scope of a feature (F33).

This means additional work load and reduced speed in get-

ting the product to customer. The interfaces for the IOT-tests

are also very hard to specify without this information (F34).

5.4 Validity and reliability

The use of Atlas.ti together with the method Selective Coding

(Strauss & Corbin) to code the transcribed interviews gives

this articles presented findings added validity. The unit at

Ericsson where the research was conducted at has been de-

veloping according to SD for more than a year now and is

quite familiar with that way of working. This helps eliminate

some of the initial problems a transition to SD might entail.

Several of the findings in this article may be generalized due

to the fact that they are common in the implementation of

other agile practices. The threat of not understanding the

environment was reduced by first interviewing key individual

from each phase of the development process. The intervie-

wees were carefully selected by key persons within Ericsson

in two sets to ensure a good and representative selection.

The first sets of interviewees were especially selected to give

answers regarding the overall way a feature travels through

the idea-stage to the release project and to”frame“the sec-

ond set of interviews. The last sets of interviews were with

team leaders to get a more in-depth analysis and a more

accurate data collection. All of the interviews were unstruc-

tured but through the use of models, charts, diagrams, and

preparatory questions the authors tried to ensure a common

understanding of the area questions were being asked.

9



6 Conclusion and
further work

The purpose of this article was to identify factors that restrict

speed in Streamline Development. By analyzing the results

found in this research, we are able to conclude that the fol-

lowing factors, presented in their three areas, restrict speed

in SD: Team: We found that when team members do not

start a project at the same time the design might be done be-

fore any input has arrived from the functional test architect.

When teams are working with 4-5 features in parallel and

their resources change during a project, while still retaining

their end-to-end responsibility, there is a possibility that the

organization falls short of implementing SD to a desired ex-

tent. Team integrity play an important role in SD. If product

management or system owners fail in communicating what

they want in a feature it might lead to increased preassure

and stress in a team, when they have to re-plan and redo

work. A co-location of people one is dependent on is a key

factor in solving this issue.

We have shown that customer specific features are harder to

break down and hard to integrate in existing systems. One

other important factor is the disruptive implications of TR’s

from a team’s perspective. Splitting teams by assigning al-

ternating resources to a permanent virtual TR-team.

In a organization that is expanding rapidly it is sometimes

hard to retain a desired level of competence throughout the

organization. This affects the speed of SD during team selec-

tion. The next available team’s competence might not match

the next feature in the pipeline. The feature with the highest

priority. Leaving it to wait for a suitable team that are able to

take on the workload.

One big factor was the TTCN test tool and old test scripts

which might lead to a deterioration of testing in projects when

teams decide the cost of using that tool to do tests are too

high. This can impact speed in SD and quality in the product.

Communication: We identified that communication amongst

team members works well. Poor communication between

teams, product managers, release project, and system own-

ers seems to have a large negative impact on speed. This

issue seems to point to one main factor - distance. For some

teams there are today no representatives from the product

management present on the site at Ericsson where the re-

search was conducted. This increases the risk of misunder-

standings between what the product management expects

from a team and what the team thinks the product manage-

ment wants. This might lead to teams implementing features

and missing the mark when it comes to high-level goals set

by the product management. One other aspect is the impor-

tance of collaboration and synchronization on system man-

agement level is to identify potential dependencies during

implementation of a feature between departments. Difficul-

ties regarding related to sometimes having system owners

in other countries reduces the important face to face com-

munication that teams sometimes need. Another aspect of

disseminating high-level goals is the importance of having

an architect that works closely with the teams to ensure the

team follows the over-all architectural plan.

We conclude that miscommunication during CPI-

documentation exists and that it also can lead to customers

writing TR’s, further increasing the workload and reducing

the speed, based on erroneous information. TTCN men-

tioned in section 5.4 also have implications for speed that

are the result of bad communication. Content of framework

och interfaces in new releases of the test tool are not

communicated to the testers reducing speed when that

information has to be tracked down. This is of the reasons

that the production of test cases drops from 4-5 a day (with

the old tool) to a single test case a day.

Communication also have negative influences further along

in the development process. The release project suffers from

not acquiring relevant information early because teams either

want to ”lock“ a feature late or think it is to expensive to do this

early. The release project needs information regarding what

dependencies a certain feature has to external products and

what system versions it will run on. This lack of information

also affects the IOT-tests by delaying them when the release

project lack the information to design the tests and interfaces

towards other systems.

Lead In/Lead Out: unforeseen dependencies discovered af-

ter a commit-decision will reduce speed throughout the whole

development chain and there is no formal process for han-

dling it. Ericsson is dealing with this issue by using an

anatomy plan. Our research also indicates that features

might be held up if the regression test loop during integration

and verification on LSV fails. One thing that surprised the

researchers was the late feedback from the integration test

loop that could take up to six weeks to come back to the team

that implemented the tested feature. The team responsible

for implementing that feature might not have the same mem-

bers or for that matter, remember the feature. This in com-

bination with high workloads makes it very hard for teams to

quickly deal with late arriving TR’s.

The release project is often delayed because of lack of im-

portant information early and have to start on assumptions

and larger scope than might be necessary and also not be-

ing able to define interfaces for, and to plan, IOT-tests in time

SD focuses very much on the team being autonomous and

being able to plan their work on their own. This is the strength

of SD and what our research have shown is that applying SD

into a large organization with established routines is a chal-

lenge, even for a world leading telecommunications company

like Ericsson AB.

Further research could focus on how team integrity and bet-

ter communication of common goals impact the speed of SD.

It could also be of importance to look into if the organiza-

tion around the cross-functional team can work differently to

achieve a smoother handover of features and responsibility

throughout the life of a feature. Further, more research could

go into the area of conflicting factors identified in this paper

such as TR’s versus team integrity. A more thorough estima-

tion in the early phase with greater understanding of feature

dependencies early versus more autonomous team.

10



Acknowledgements
The authors of this research would kindly like to thank Eric-

sson AB for providing valuable introduction to and seminars

on SD. Helpful documentation and statistics provided by the

company has been of great importance for this research. The

authors would also like to thank the appointed supervisors

for this research. Their knowledge and guidance has been

invaluable. Also, a special thank to all people at Ericsson AB

who kindly agreed to be interviewed, as well as all the peo-

ple at the IT-University who helped and gave advice for this

research.

References
Booth, W., Colomb, G., and Williams, J. (2003). The craft of

research. University of Chicago press.

Cockburn, A. (2002). Agile software development. Addison

weasly.

Cockburn, A. (2007). Agile software development: the coop-

erative game. Addison-Wesley.

Creswell, J. (2008). Research design: Qualitative, quantita-

tive, and mixed methods approaches. Sage Pubns.

Eisenhardt, K. (1989). Building theories from case study re-

search. Academy of management review, 14(4):532–550.

Goulding, C. (1999). Grounded theory: Some reflections on

paradigm, procedures and misconceptions. Citeseer.

Hancock, B. (2002). An introduction to qualitative research.

Trent Focus for research and development in Primary

Health Care.

Nerur, S., Mahapatra, R., and Mangalaraj, G. (2005). Chal-

lenges of migrating to agile methodologies. Communica-

tions of the ACM, 48(5):78.

Olsson, H. (2008). Acting Agile in Streamline Development.

pending.

Petersen, K. and Wohlin, C. (2009). A comparison of issues

and advantages in agile and incremental development be-

tween state of the art and an industrial case. Journal of

Systems and Software, 82(9):1479–1490.

Silverman, D. (2009). Doing qualitative research. Sage Pub-

lications Ltd.

Sommerville, I. (2007). Software Engineering. Eighth.

Addison-Wesley. ISBN 0-321-31379-8.

Strauss, A. and Corbin, J. (1997). Grounded theory in prac-

tice. SAGE Publications, Inc.

Strauss, A. and Corbin, J. (1998). Basics of qualita-

tive research: Techniques and procedures for developing

grounded theory. Sage Publications, Inc.

Tomaszewski, P., Berander, P., and Damm, L. (2008). From

Traditional to Streamline Development—opportunities and

challenges. Software Process: Improvement and Practice,

13(2):195–212.

11


	Introduction
	Streamline Development
	Methods
	Strategy
	Qualitative approach
	Grounded theory

	Data collection and analysis methods
	Selection of informants
	Interviews
	Coding
	Categorization
	Reliability and validity
	Other data collection


	Results
	Teams
	Team integrity
	Customer specific features
	Trouble reports
	Team selection
	Unsupportive environment

	Communication
	Communication problems
	System owners and product management
	No architect in teams
	Meetings

	Lead in/Lead out
	Unforeseen dependencies
	Integration and verification
	Late information to release project


	Discussion
	Teams
	Team integrity
	Customer specific feature
	Trouble reports
	Team selection
	Unsupportive environment

	Communication
	Communication problem
	System owner and product management
	No architect in teams
	Meetings

	Lead in/Lead out
	Unforeseen dependencies
	Integration and verification
	Late information to release project

	Validity and reliability

	Conclusion and further work

