
Encoding of the contract
language CL into the
Grammatical Framework (GF)

Seyed Morteza Montazeri

Bachelor of Applied Information Technology Thesis

Report No. 2010:016
ISSN: 1651-4769

Academic Supervisor: Gerardo Schneider

University of Gothenburg
Department of Applied Information Technology
Gothenburg, Sweden, May 2010

Encoding of the contract language CL into the
Grammatical Framework (GF)

Seyed Morteza Montazeri
shayanmont@gmail.com

IT University of Gothenburg, Software Engineering and Management. Gothenburg, Sweden

Abstract
c c c c c c c c c c c

Consistent requirement adoption is important in almost all of
the software engineering projects. The demand of conflict
free requirements, requires a way to manage requirements
in more reliable way which means to detect conflict formally.
In this paper, we describe the foundation and implementation
of a tool that enables the requirements written in natural lan-
guage (English) to be represented in a formal language (CL).
This in effect enhances the possibility to apply CLAN (a tool
which analyzes requirements or contracts written in CL) for
analysis. We have also applied our approach to a case study
where the findings show correct detection of conflicts in re-
quirements.

Keywords: Grammatical Framework, Requirements, Con-
tract, Conflict analysis, Natural language

1 Methodological
Aspect

1 Introduction

T HIS project will make an attempt to demonstrate
the application and implementation of tool written in
Grammatical Framework (GF: programming language

for multilingual grammar applications (Ranta, A., 2009)) to
enable the translation back and forth between restricted nat-
ural language and a formal language CL. This is a technical
project, whereby, we also try to demonstrate the application
of the prototype on a case study to achieve and show the
anticipated results.

In the next section we give background of technical terms
used as basis of this research. section 3 reports on classic

transfer based system and its comparisons with our system.
section 4 is where the implementation is discussed. In sec-
tion 5 we evaluate our approach by using a case study. In
section 6 the results of the research and case study are il-
lustrated. The paper is rounded off with sections on related
work, conclusion (where conclusion together with future work
are addressed) and acknowledgements.

Background

Requirements engineering is a process designed to produce
set of clear, consistent and complete requirements by itera-
tive discovery and analysis of requirements. This process
is usually hard and difficult to manage. Set of newer re-
quirements are sometimes inconsistent and in contradiction
with the set of requirements that were already set. The intro-
duction of these inconsistencies in requirements usually may
lead to violation of what is stated as goals of development
(Robinson and Pawlowski, 1999).

Requirements conflict and inconsistency analysis thus is one
of the most vital tasks that must be considered in a software
engineering project and generally in companies where new
set of requirements are aggregated and accumulated in a
time period. In this time period, while set of new require-
ments are added, the old ones are also updated besides the
fact that these lead to development of the requirements doc-
ument overtime (Robinson and Pawlowski, 1999). However,
the document in this situation is usually in a transitory state
where many semantic conflicts exist since one change may
result in myriads of other changes (Robinson and Pawlowski,
1999). On the other hand, most of these conflicts could be
solved if understood by the analysts, though, most of the time
they remain in the document and are only detected late in the
development process.

More and more companies such as Saab AB are challeng-
ing with the problem of identifying inconsistencies and con-
flicts in requirements. Challenges mentioned earlier lead
to the need for some kind of automation that facilitates the

1

mailto:shayanmont@gmail.com

checking of requirements. Much research has been invested
into the usage of formal language such as the one stated
in (Prisacariu and Schneider, 2009) which is designed for
analysis of contracts, requirements contract (RC, 2009) or
any negotiation process such as Internet-based negotiation
and contracting in the e-business and e-government environ-
ments. However, it shouldn’t be forgotten that requirements
and requirements contracts are still written in NL (natural lan-
guage) (Hahnle et al., 2002). Although NL is typically used
for communication and can provide powerful understanding
for human, it is not appropriate for analysis. As a result, there
is a need for some kind of formal languages that can provide
suitable ways for analysis purpose. The contract language
CL is a logic (Prisacariu and Schneider, 2009) which can
help the process of analysis and automation of contracts: de-
tection of contradictions and inconsistencies, identification of
superfluous clauses and checking some desired properties
on a contract. At last, this can help to process the NL which
the requirements are written if presented in a CL. In other
words, we are aiming at building a system or program to be
able to give automatically the correspondent CL formulas of
the NL and vice versa. In this case we would be able to ana-
lyze these formulas for detecting inconsistency.

Problem statement

The Case: Saab AB
"Saab AB serves the global market with world-leading prod-
ucts services and solutions ranging from military defense to
civil security (Saa, 2010)". One of the challenges Saab AB
is facing concerning requirements is how to effectively de-
tect and solve conflicting requirements. During the devel-
opment phases, inconsistencies and conflicts in the require-
ments are usually detected by reviews of requirements. This
process usually takes place early in development phases.
Nevertheless, designers and developers also provide feed-
back in case of detection of any inconsistency during the
development phases to a third party for further fixes. They
are also looking at model based engineering in which the
requirements are replaced with models. In this case any in-
consistencies are to be found when reviewing the model, but
this process is really difficult to automate (Berling, 2010).

In this paper we suggest solutions to the problems and chal-
lenges just mentioned. We show that it is possible to define
a connection between source language in our case CL and
specification language which is natural language (NL) and
thus to be able to write the requirements in a formal language
like CL. This in effect, enhances the possibility to seek and
detect inconsistencies in the requirements by further analy-
sis that could be conducted in CLAN. This process however,
should be back and forth, in other words, the translation back
could be done for two reasons: (i) if the requirements are
written in a formal language like CL and we want to have a
user friendly visualization (ii) if you use CL for conflict detec-
tion and want to show the result in NL. We will concentrate
on CL as a source language but have in mind NL as specifi-
cation language. Our approach is based on the Grammatical
Framework (GF) (Ranta, A., 2009),“flexible mechanism that
allows to combine linguistic and logical methods” (Hahnle
et al., 2002). The main idea is first to specify an abstract
syntax for a source language (in our case CL), and second,

to specify concrete syntaxes and thus map them to NL.

Purpose

The purpose of this paper is to investigate ways to automate
the process of conflict detection in requirements. The scope
of the automation in this paper is the formal language CL and
the implementation language GF (Ranta, A., 2009) which
both have a predominant role in this research. The specific
research questions addressed in this paper are (i) the solu-
tion to map CL and its logical formulas to the abstract syntax
of Grammatical Framework primarily and thus try to find how
it is possible to translate full CL to abstract syntax and vice
versa? and (ii) how it is possible to translate abstract syn-
tax to concrete syntax and from there to natural language
and vice versa? The motivation for doing this study stems
from the fact that more and more companies would be able
to deal with requirements in more efficient and faster way
and thus confining to high standard requirement. The result
is an automation for requirements that supports the detection
of conflicts and inconsistencies in the requirements and thus
a change from a natural language into controlled language
without any conflicts.

2 Methods

Finding an appropriate methodology was not easy, given that
the goal of this research does not follow numerical analysis or
interview based directions researches (Osterwalder, 2004).
However, like many other projects, which their main focus
is on technical aspects, Design Science (DS) paradigm will
be used to address the needs of this research. DS paradigm
boosts to a large extent the capabilities within organization by
mapping what is considered to be a practical needs in to spe-
cific research interest and thus creating new and innovative
artifacts (Hevner et al., 2004). However, these artifacts are
not necessarily full-grown systems than can be used in prac-
tice but rather the innovation which defines ideas (Hevner
et al., 2004). DS was chosen because of its influential pos-
itive effects in accomplishing wide variety of tasks such as
analysis, design, implementation with the use of ideas and
practices based on innovations. It seeks to create “what is
effective” and not to find “what is true” in comparison with
other paradigms (Hevner et al., 2004).

The primary reason for choosing DS is its fundamental
paradigm of problem-solving (Hevner et al., 2004) which it
stems from the fact that causes humans to abandon the pre-
vious problems they encountered (Osterwalder, 2004). “ It
[DS] is solution-oriented, using the results of description-
oriented research from supporting (explanatory) disciplines
as well as from its own efforts, but the ultimate objective of
academic research in these disciplines is to produce knowl-
edge that can be used in designing solutions to field prob-
lems. ” (Van Aken, 2005). The other characteristic worth
mentioning is the heuristic nature of DS toward its abstraction
and representation of means and ends (Hevner et al., 2004).
This nature or strategy usually results in designs that are fea-
sible and appropriate and thus as a result lead to the imple-
mentation of those designs later on (Hevner et al., 2004).
DS research methodology , as a result can be considered

2

as highly effective research methodology for this research
in relation to what is provided as a background of this re-
search, and by indicating the possibility of translating full CL
to abstract syntax of GF through some kind of automation or
artifact.

Philosophically, the arguments regarding design science
stems from the pragmatists (Aboulafia 1991) (Hevner et al.,
2004) and the objectives of this research methodology are
justifiable through pragmatic validity (Van Aken, 2005). Prag-
matism arises out of actions, situations, and consequences
rather than antecedent conditions (Creswell, 2008). John
W. Creswell (Creswell, 2008) also stated that “instead of fo-
cusing on methods, [pragmatic] researchers emphasize the
research problem and use all approaches available to un-
derstand the problem ” (see Rossman & Wilson 1985). For
this research project that can be considered as a technical
one, the pragmatic worldview seems to be an appropriate
paradigm.

Data Collection

In this section a detailed information about the process of
data preparation and collection is elaborated. Different data
was extracted and gathered to facilitate the performance of
set of activities such as decision making and knowledge
sharing. Mainly, these data was gathered in order to gain
information regarding different aspects of this study such as
CL, GF and some conceptual ways to map CL to GF. The pro-
cess of data collection started early in the project and mainly
through literature review. In the next section more detail will
be provided on literature review.

Literature Review

Primarily, the literature review is used to get a hands on pub-
lished materials in different subject area of this research and
to provide theoretical background needed for this research.
Considerable number of articles on different subjects related
to research were read including articles related to CL and GF
to set the basis ground for understanding the roots. On the
other hand, set of other articles were read to get the concept
and structure on how to encode CL into GF. Several search
engines such as Google Scholar, Chans (Chalmers Univer-
sity’s library) were used used to carry out this literature re-
view.

Using literature review for collecting data provided useful in-
formation from valuable references to understand specific
problems and thus gaining valuable ideas on how to solve the
problem. Literature review also falls under pragmatism since
in pragmatic world view, the researcher use all approaches
to understand the problem (Creswell, 2008) and literature re-
view in our case is one of those possible approaches to un-
derstand a problem.

2 Background
1 The Contract Language CL

There are various approaches in defining formal language
for contracts and requirements contracts. Some of them fo-

cus on the definition of contract taxonomies (Aagedal, 2001;
Beugnard et al., 1999), while others provide a formaliza-
tion based on logics, e.g. classical (Davulcu et al., 2004),
modal (Daskalopulu and Maibaum, 2001), deontic (Gover-
natori and Rotolo, 2006) (Paschke et al., 2005), or defeasi-
ble logic (Governatori, 2005) (Song and Governatori, 2004).
Other formalizations are based on models of computation
(e.g. FSMs (Molina-Jimenez et al., 2004) and Petri Nets
(Daskalopulu, 2000)).

As stated in (Prisacariu and Schneider, 2007) the best ap-
proach in defining formal languages for contracts is based
on logic. A logic that contains properties of deontic notions
such as obligation, permission and prohibition but not neces-
sarily based on deontic logic.

CL is a logic based on combination of deontic, dynamic and
temporal logics where “ It designed to reason about contracts
and its goal is to preserve many of the natural properties
and concepts relevant to legal contracts, while avoiding de-
ontic paradoxes, and at the same time to have a suitable lan-
guage for the specification of software contracts” (Prisacariu
and Schneider, 2009). With the help of CL it is possible to
represent deontic notions of obligation, permission and pro-
hibition. In the following table the syntax of CL is defined
and the rest of this section is devoted to possible elaboration
and explanation on notations and terminology of CL follow-
ing(Prisacariu and Schneider, 2009).

C := CO |CP |CF |C ∧ C |[β]C |>|⊥ (1)

CO := OC (α)|CO ⊕ CO (2)

CP := P(α)|CP ⊕ CP (3)

CF := FC (α) (4)

α := 0 |1 |a|α&α|α.α|α+ α (5)

β := 0 |1 |a|β&β|β.β|β + β|β∗ (6)

A contract clause in CL is usually defined by a formula C and
which can be either an obligation (CO), a permission (CP) or
a prohibition (CF) clause, a conjunction of two clauses or a
clause preceded by the dynamic logic square brackets. O ,
P and F are deontic modalities, Obligation to perform α is
shown by the formula OC (α) in the table, illustrating the fact
that one is obliged to perform α if not, the contract is vio-
lated and the reparation contract C must be considered and
executed (a CTD). CTDs, or Contrary-to-Duties, are excep-
tional behaviors which can occur if the violation of obligation
happens. Prohibition to perform α is shown by the formula
FC (α) in the table, illustrating the fact that one is forbidden to
perform α and again if violated the reparation C must be ex-
ecuted (a CTP). CTPs, or Contrary-to-Prohibitions, are also
exceptional behaviors which can be defined as "the penalty
in case a prohibition is violated" (Fenech et al., 2009b). P(α)
is interpreted as permission of performing a given action α.
It should be noticed that the usage of Kleene star (the * oper-
ator) which is representing repetition of actions, inside these
deontic modalities is not allowed. Although they can be used
in dynamic logic style-conditions. As it is shown in the ta-
ble, action β is used inside dynamic modality representing
a condition in which the contract C must be executed if ac-
tion β is performed otherwise the contract is satisfied. Binary

3

constructors expressed in the table such as &,.,+ are repre-
senting concurrency, sequence and choice in basic actions
(e.g. “buy",”sell“) which together (basic actions and opera-
tors) they construct Compound actions, in this case α or β.
Conjunction of clauses can be expressed using ∧ operator
while between certain clauses the exclusive choice opera-
tor (⊕) can be used, > and ⊥ are the trivially satisfied (vio-
lated) contract. 0 and 1 are two special actions illustrated in
the table to represent impossible action and the skip action
(matching any action) respectively. The following example is
an excerpt from part of a contract between Internet provider
and a client, where the provider gives access to the Internet
to the client: "The Client shall not supply false information
to the Clients Relations Department of the provider" (Pace
et al., 2007). If we consider the formalization below:

fi = client supplies false information to Client Relations De-
partment
s = provider suspends service

The CL representation of above formalizations is as follow :

FP(s)(fi) (7)

2 Grammatical Framework

“The Grammatical Framework (GF) is a framework for defin-
ing grammars and working with them” (Ranta, A., 2009). The
history of GF is back to its first implementation in the project
called “Multilingual Document Authoring” at Xerox Research
Center Europe in Grenoble in February 1998 (Ranta, A.,
2009). As explained in (Hahnle et al., 2002) the main idea
of this project was to build an editor which helps a user to
write a document in a language which is unfamiliar as Ital-
ian while at the same time seeing how it develops in a fa-
miliar language such as English. However, GF as functional
programming language was mainly developed at Chalmers
University of technology and Gothenburg University (Ranta,
A., 2009). Like most of the compilers, GF has a central data
structure called abstract syntax based on Type Theory where
special purpose grammars are defined (Ranta, A., 2009). It
also has a concrete syntax part which it specifies how the
formulas defined in abstract syntax can be translated into a
natural language or a formal notation. Some of the applica-
tions of GF in the form of prototype has been used in tourist
information, business letters and natural-language rendering
of formalized proofs. Another example is software specifica-
tions where the specifications can easily be defined in ab-
stract syntax (Hahnle et al., 2002). In order to distinguish
different kinds of rules, GF has a module system. Basically
it has two main modules: the abstract syntax and concrete
syntax modules (Ranta, A., 2009).

Abstract syntax

Abstract syntax is a type-theoretical part of GF where logi-
cal calculi as well as mathematical theories are allowed to
be defined simply by type signatures (Hahnle et al., 2002).
Now, let’s look at the hello world example below where we
define types of meaning which in our case here, are of types
Greeting and Recipient (Ranta, A., 2009):

cat Greeting ; Recipient

we then define Hello as a function for building trees.
The type of Hello has Greeting as its value type and
Recipient as its argument type. As customary in functional
programming languages, argument types and the value type
are separated from each other by an arrow (→) (Ranta, A.,
2009).

fun Hello : Recipient −> Greeting ;

Concrete Syntax

Once an abstract syntax is constructed, “a concrete syn-
tax can be built, as a set of linearization rules that trans-
lates type-theoretical terms into strings of some language ”
(Hahnle et al., 2002). Linearization basically means generat-
ing the language (Ranta, A., 2009). For instance let’s look at
English linearization rules for the function above :

lin Hello r ec i p = {s = " h e l l o " ++ rec i p .s } ;

The lin , defines the linearization of Hello in terms of the
linearization of its argument. This linearization is represented
by the variable recip although the variable name can be
anything such as x or y . The terminal �hello� is in quotes
which is concatenated with the recip.s using concatenation
operator ++, which combines sequence of terminals. The
most important thing to consider in a linearization rule is to
define a string as a function of the variable it depends on
(Ranta, A., 2009).

The example illustrated above shows that the fun rules
should be defined in the abstract syntax modules and lin

rules in concrete syntax modules. Abstract syntax is where
we need to define powerful type theory to express depen-
dencies among parts of texts and in concrete syntax we need
to define “language-dependent parameter systems and com-
plex structures of grammatical objects using them” (Hahnle
et al., 2002). At last, the two main functionalities in GF worth
mentioning here are linearization (translation from abstract
to concrete syntax) and parsing (translation from concrete to
abstract syntax) (Hahnle et al., 2002).

3 Conflict Analysis

Generally, there are four main reasons that cause conflicts in
contracts or requirement contracts. The first one is when obli-
gation and prohibition takes place on the same action (e.g.
obligation to go east and prohibition to go east) in this case
performing any action will lead to a violation of the contracts.
The second conflict type happens when permission and pro-
hibition takes place on the same action (e.g. permission to
pay and prohibition to pay) which will also lead to violation
of contracts. The other two cases are obligation to perform
mutually exclusive actions and, permission and obligation to
perform mutually exclusive actions, in other words, for in-
stance: the obligation to close the gate or open the gate but

4

not both, permission to check the passport details or obliga-
tion to check the luggage but not both, respectively (Fenech
et al., 2009b).

3 Natural language and
Translation

We are aiming at a system for requirement analysis . The
main characteristic of system is that the user is able to com-
municate with it in natural language. The communication with
the system can take place in two ways. First, to deal with the
properties of requirements and logical reasoning which ex-
pressed in NL, the system should be able to translate them
into logical formulas specified in CL syntax which is then,
it is possible to perform analysis and inferences with CLAN
(Fenech et al., 2009b). Second, in order to be able to get the
results back from those analysis to the user, it must be pos-
sible to translate the CL representation of the requirements
back into NL. This is depicted in following figures:

Figure 1: Vauquois Triangle for machine translation (Pace
and Rosner, 2009)

Figure 2: Natural Language triangle

It should be noted that in a classic transfer-based system
there are generally three phases involved in the translation
process which are (i) analysis (ii) transfer and (iii) generation
(see figure 1). In this classical system the transfer phase
"which applies transfer rules to abstract source sentence
representation to yield target-language representations" is
where the actual translation occur (Pace and Rosner, 2009)
. The transfer rule in our case is what GF provides as an
abstract and concrete syntax part where as depicted in the
figure 1 our source language should be confined to the rules
in abstract syntax once encodified and from there the con-
crete syntax yield target-language representation which is
NL. What we consider in this paper as an analysis phase

is quite different from what the classical approach defines. In
our system this phase is performed by CLAN (Fenech et al.,
2009b), whose the result will be fed into the system for fur-
ther translation. The right hand vertex of the triangle repre-
sent the generation phase where a piece of text which fulfills
the task will be generated from concrete syntax in a form of
restricted natural language.

1 Restricted Natural Language

In our prototype, specific English words and sentences are
defined in order to be able to represent CL syntaxes in natu-
ral language. The following table provide a complete picture
of each CL syntax and its correspondence restricted English
in our prototype:

Description CL English
Obligation O(α) It is mandatory to α
Permission P(α) It is permitted to α
Prohibition F (α) It is prohibited to α
CTD OC (α) It is mandatory to α if not α

then any clause
CTP FC (α) It is prohibited to α if α then

any clause
Test Operator [β]C If β then any clause
Conjunction C ∧ C any clause and any clause
XOR C − C any clause or any clause
Concurrency α & β α and β
Sequence α.β α then β
Choice α+ β α or β
Kleene star ∗α As long as|Always|After α
Not !α not α
Continuancy [1∗](C ∧ C) As long as|Always|After any

clause and any clause
Table 1: Restricted Natural Language

Suppose that we have part of original contract or require-
ments in NL and want to find out its correspondence CL
formula by using the program described in this paper. The
important point to consider is that, all of the sentences and
clauses in the original contract or requirement at first step
must be translated manually to English representation de-
fined in table 1. This implies that without translating the orig-
inal contract into above representation, the program would
not be able to give its correspondence CL formula. Now let’s
look at the example below which is taken from a contract be-
tween Internet provider and a client (Pace et al., 2007):

} The Provider is obliged to provide the Internet
Sevices as stipulated in this Agreement ~

To be able to manually translate this, the original concept of
the sentence must be remembered in mind, and not the ex-
act same wordings. Things such as traditional grammars like
subject of sentence should be discarded and the only parts
such as verbs and the concept of the sentence whether it ex-
presses obligation or etc. must be preserved. Thus, in case

5

of above example the sentence implies obligation of perform-
ing an action. By referring to table 1, the sentence can be
expressed as : [Restricted NL] It is mandatory to provide the
Internet Sevices as stipulated in this Agreement. In the end,
to be able to feed this into the prototype, "provide the Inter-
net Sevices as stipulated in this Agreement" must be added
as an action (verb) to vocabulary part of the system (Action)
modules.

4 Implementation
In this section we provide an implementation of GF gram-
mars for CL syntaxes and natural language which in our case
is English (see table 1). At first, we define categories and
functions for handling different CL clauses and actions in ab-
stract syntax part and then we move on to concrete syntax
part where the representation of these in natural language
will be expressed.

1 Abstract syntax

The abstract syntax module as a central structure contains
the basis for representation and formalization of CL syn-
taxes. On the other hand, the linearization of the following
functions and structures into CL symbolic syntaxes and nat-
ural language is simply done by the use of two concrete syn-
tax modules where, with the first one, it would be possible to
write the exact CL syntaxes, and with the latter, it would be
possible to express them in the restricted natural language.
Now let’s begin by defining categories:

−− Abst rac t module (Cl . g f module)

cat Act ; KleeneStarAct ; KleeneCompAct ; Clause ; Clauses ; ClauseP ;←↩
ClauseO ; ClauseF ; And ; Or ; Dot ; CompAct ; Star ; Not ;

−− Concrete module (ClEng . g f module)

lincat

Act , KleeneStarAct , KleeneCompAct , Clause , ClauseO , ClauseP ,←↩
ClauseF , KleeneStarAct , KleeneCompAct , Clauses , And ,Or , Dot←↩
, Act , Star , Not , CompAct = {s : Str } ;

−− Concrete module (ClSym . g f module)

lincat Act , KleeneStarAct , KleeneCompAct , Clause , ClauseO , ClauseP←↩
, ClauseF , KleeneStarAct , KleeneCompAct , Clauses , And ,Or , Dot←↩
, Act , Star , Not , CompAct = {s : Str } ;

Here we define category (type) such as Clause and Act

(types of meanings) since in CL, all the expressions are rep-
resented by certain clauses and different basic, compound
and kleene star actions. Further we defined linearization
type definitions to state that for instance Clause and Act

are records with a string s. In following sections we will go
through a detail explanation of the CL syntax in a form of
function and linearization structure step by step to clearly
show the process of converting these into restricted natural
language and vice versa.

Obligation, Permission and Prohibition

As explained in the background section, obligation, permis-
sion and prohibition are three main clauses of CL which have
the same structure in Cl module.

−− Abst rac t module (Cl . g f module)

fun

Co : ClauseO −> Act −> Clause ;
Cp : ClauseP −> Act −> Clause ;
Cf : ClauseF −> Act −> Clause ;

Clo : ClauseO −> CompAct −> Clause ;
Clp : ClauseP −> CompAct −> Clause ;
Clf : ClauseF −> CompAct −> Clause ;

Obl : ClauseO −> CompAct −> Clauses ;
Per : ClauseP −> CompAct −> Clauses ;
Pro : ClauseF −> CompAct −> Clauses ;

Obligation : ClauseO −> Act −> Clauses ;
Permission : ClauseP −> Act −> Clauses ;
Prohibition : ClauseF −> Act −> Clauses ;

All the functions above such as Co,Cp and Cf are used to
represent Obligation , Permission and Prohibition re-
spectively. Let’s for the ease of explanation call the first three
clauses, the first group, the second three clauses, the sec-
ond group and so on. There are some differences among
these four groups which worth mentioning them here. As it is
clearly shown Act and CompAct are two different argument
types used among the four groups which represent basic and
compound actions respectively. This in effect, will provide the
possibility to be able to express Obligation,Permission

and Prohibition clauses with both basic and compound
actions (Actions will be explained later on in this section).
ClauseO,ClauseP and ClauseF are specifically designed
to express obligation, permission and prohibition statements
that together with the action (verb), form the actual clauses.

The other difference lies among these four groups and
all the others that will be shown further on, is that gen-
erally a Clause itself can consist of different structures
and thus in here a Clause can be either constructed from
ClauseO,ClauseP and ClauseF together with basic or com-
pound actions. However, it should be noted that they are
defined here in this way to just facilitate the conjunction of
clauses and exclusive or operation between clauses but not
the direct linearization and parsing of each structure. For
the latter purpose we specified Clauses as a start category
for parsing and linearization so that each structure can be
linearized and parsed directly. The linearization of these in
concrete syntaxes are as follows:

−− Concrete module (ClEng . g f module)

lin

Co clo acti = {s = clo .s ++ acti .s } ;
Cp clp acti = {s = clp .s ++ acti .s } ;
Cf clf acti = {s = clf .s ++ acti .s } ;

Clo clo compact = {s = clo .s ++ compact .s } ;
Clp clp compact = {s = clp .s ++ compact .s } ;
Clf clf compact = {s = clf .s ++ compact .s } ;

Obl clo compact = {s = clo .s ++ compact .s } ;
Per clp compact = {s = clp .s ++ compact .s } ;
Pro clf compact = {s = clf .s ++ compact .s } ;

Obligation clo acti = {s = clo .s ++ acti .s } ;
Permission clp acti = {s = clp .s ++ acti .s } ;

6

Prohibition clf acti = {s = clf .s ++ acti .s } ;

Basically, Obligation, Permission and Prohibition

clauses are expressed in natural language using restricted
words "It is mandatory to" (clo.s), "It is permitted to"
(clp.s) and "It is prohibited to" (clf.s) as terminals (quoted
words in GF are called terminals (Ranta, A., 2009)) so that
together with actions they formulate the clauses in NL.

As explained before in this paper, we provide another con-
crete syntax module called ClSym.gf to provide a possibility
for the user to be able to write specific CL syntax such as op-
erators, parentheses, brackets and etc to the program. This
possibility is also vice versa which means if writing any spe-
cific clause in NL, the program with the help of this module
would be able to provide CL formulas confine to what was
provided in NL.

−− Concrete module (ClSym . g f module)

lin

Co clo acti = {s = clo .s ++ " (" ++ acti .s ++ ") " } ;
Cp clp acti = {s = clp .s ++ " (" ++ acti .s ++ ") " } ;
Cf clf acti = {s = clf .s ++ " (" ++ acti .s ++ ") " } ;

Clo clo compact = {s = clo .s ++ " (" ++ compact .s ++ ") " } ;
Clp clp compact = {s = clp .s ++ " (" ++ compact .s ++ ") " } ;
Clf clf compact = {s = clf .s ++ " (" ++ compact .s ++ ") " } ;

Obl clo compact = {s = clo .s ++ " (" ++ compact .s ++ ") " } ;
Per clp compact = {s = clp .s ++ " (" ++ compact .s ++ ") " } ;
Pro clf compact = {s = clf .s ++ " (" ++ compact .s ++ ") " } ;

Obligation clo acti = {s = clo .s ++ " (" ++ acti .s ++ ") " } ;
Permission clp acti = {s = clp .s ++ " (" ++ acti .s ++ ") " } ;
Prohibition clf acti = {s = clf .s ++ " (" ++ acti .s ++ ") "←↩

} ;

The structure in above module is quite the same as ClEng.gf
module with the only difference that clo.s, clp.s and
clf.s each represent specific characters such as "O", "P"
and "F" instead of words or sentences.

−− Concrete module (ClSym . g f module)

lin

O = {s = "O" } ;
P = {s = "P" } ;
F = {s = "F" } ;

It is illustrated that in linearization each function correspond
to specific word.

CTDs and CTPs

Contrary-to-Duties (CTDs) and Contrary-to-Prohibition
(CTPs) as both relate to obligation and prohibition clauses
respectively could be expressed as following functions:

−− Abst rac t module (Cl . g f module)

fun

CTD , CTP : Act −> Clause −> Clauses ;

CTDc , CTPc : CompAct −> Clause −> Clauses ;

CTDbc , CTPbc : Act −> Clause −> Clause ;

CTDcc , CTPcc : CompAct −> Clause −> Clause ;

From now on the same differences described in previous sec-
tion will be applied to all other formalization and structures in

following sections as well as this one. The reason for for-
mulating the above structure is the fact that, CTD and CTP
clauses are basically the obligation and prohibition of spe-
cific basic or compound actions which in case of violation,
the reparation which can be itself another clause must be
considered. For the sake of former and latter reason, it is
needed to specify Action (compound or basic) and Clause

as their argument types which together they build a clause
representing the whole CTD or CTP. To avoid confusion dif-
ferent names has been used to declare function names.

−− Concrete module (ClEng . g f module)

lin

CTD acti clause = {s = " I t i s mandatory to " ++ acti .s ++←↩
" i f not " ++ acti .s ++ " then " ++ clause .s } ;

CTP acti clause = {s = " I t i s p r o h i b i t e d to " ++ acti .s ←↩
++ " i f " ++ acti .s ++ " then " ++ clause .s } ;

CTDc compact clause = {s = " I t i s mandatory to " ++ ←↩
compact .s ++ " i f not " ++ compact .s ++ " then " ++ ←↩
clause .s } ;

CTPc compact clause = {s = " I t i s p r o h i b i t e d to " ++ ←↩
compact .s ++ " i f " ++ compact .s ++ " then " ++ clause .←↩
s } ;

CTDbc acti clause = {s = " I t i s mandatory to " ++ acti .s ←↩
++ " i f not " ++ acti .s ++ " then " ++ clause .s } ;

CTPbc acti clause = {s = " I t i s p r o h i b i t e d to " ++ acti .s ←↩
++ " i f " ++ acti .s ++ " then " ++ clause .s } ;

CTDcc compact clause = {s = " I t i s mandatory to " ++ ←↩
compact .s ++ " i f not " ++ compact .s ++ " then " ++ ←↩
clause .s } ;

CTPcc compact clause = {s = " I t i s p r o h i b i t e d to " ++ ←↩
compact .s ++ " i f " ++ compact .s ++ " then " ++ clause .←↩
s } ;

In the linearization of CTD and CTP we have to notice that in
CTD, one is obliged to perform specific action if violated then
the reparation in a form of clause should be considered. This
is also the same for CTP with the only difference that one is
prohibited from doing specific action. Now, let’s look at the
structure in which the logical syntaxes of above is possible to
express:

−− Concrete module (ClSym . g f module)

lin

CTD acti clause = {s = "O" ++ " (" ++ acti .s ++ ") " ++ " _ " ←↩
++ clause .s } ;

CTP acti clause = {s = "F" ++ " (" ++ acti .s ++ ") " ++ " _ " ←↩
++ clause .s } ;

CTDc compact clause = {s = "O" ++ " (" ++ compact .s ++ ") " ←↩
++ " _ " ++ clause .s } ;

CTPc compact clause = {s = "F" ++ " (" ++ compact .s ++ ") " ←↩
++ " _ " ++ clause .s } ;

CTDbc acti clause = {s = "O" ++ " (" ++ acti .s ++ ") " ++ " _←↩
" ++ clause .s } ;

CTPbc acti clause = {s = "F" ++ " (" ++ acti .s ++ ") " ++ " _←↩
" ++ clause .s } ;

CTDcc compact clause = {s = "O" ++ " (" ++ compact .s ++ ") "←↩
++ " _ " ++ clause .s } ;

CTPcc compact clause = {s = "F" ++ " (" ++ compact .s ++ ") "←↩
++ " _ " ++ clause .s } ;

The only important thing to notice here is "_" character as
also defined in (Fenech et al., 2009b) to express the repara-
tion, meaning that the clause after this symbol is the repara-
tion clause which has to be considered in case of a violation
of the contract.

7

Conjunction of clauses (C ∧ C) and XOR operator

Generally, as it is illustrated in background section a CL
clause can be constructed from conjunction of two clauses.
Two clauses might have exclusive or operator in between to
express the choice between two clauses but not both. Now,
in order to be able to express the conjunction and exclusive
or between two clauses the below representation is specified
in GF:

−− Abst rac t module (Cl . g f module)

fun

Conjunction : Clause −> Clause −> Clauses ;
ConjAlways : Star −> Clause −> Clause −> Clauses ;

Xor : ClauseO −> Act −> ClauseO −> Act −> Clauses ;
Xorp : ClauseP −> Act −> ClauseP −> Act −> Clauses ;

XorCompAct : ClauseO −> CompAct −> ClauseO −> CompAct −> ←↩
Clauses ;

XorpCompAct : ClauseP −> CompAct −> ClauseP −> CompAct −> ←↩
Clauses ;

As it is clearly defined in the above representation the struc-
ture used for conjunction of clauses consists of two clauses
which may be any kind of clause such as obligation, pro-
hibition, and etc. In order to be able to express repetition
of action(s) used in conjunction of two clauses, the function
ConjAlways has been specified to enhance the possibility
to define structure (Star) of specific words that show contin-
uanity. In effect, there is no limit in defining the conjunction
operator between clauses with or without continuanity. How-
ever, It should be noted that as discussed before, the ⊕ op-
erator is allowed to be used between certain clauses which
is only between obligation and permission clauses.

−− Concrete module (ClEng . g f module)

lin

Conjunction clause1 clause2 = {s = clause1 .s ++ " and " ++ ←↩
clause2 .s } ;

ConjAlways star clause1 clause2 = {s = star .s ++ clause1 .←↩
s ++ " and " ++ clause2 .s } ;

Xor clo acti clo acti1 = {s = clo .s ++ acti .s ++ " or " ++←↩
clo .s ++ acti1 .s } ;

Xorp clp acti clp acti1 = {s = clp .s ++ acti .s ++ " or " ←↩
++ clp .s ++ acti1 .s } ;

XorCompAct clo compact clo compact1 = {s = clo .s ++ ←↩
compact .s ++ " or " ++ clo .s ++ compact1 .s } ;

XorpCompAct clp compact clp compact1 = {s = clp .s ++ ←↩
compact .s ++ " or " ++ clp .s ++ compact1 .s } ;

what happens here is that we simply take two clauses and
use "and" and "or" as terminals to express conjunction
and exclusive choice between clauses. star.s represents
words like "Always" in restricted English. For the symbolic
linearization we define as below:

−− Concrete module (ClSym . g f module)

lin

Conjunction clause1 clause2 = {s = clause1 .s ++ " ^ " ++ ←↩
clause2 .s } ;

ConjAlways star clause1 clause2 = {s = " [" ++ " 1 " ++ star←↩
.s ++ "] " ++ " (" ++ clause1 .s ++ " ^ " ++ clause2 .s ←↩
++ ") " } ;

Xor clo acti clo acti1 = {s = clo .s ++ " (" ++ acti .s ++ "←↩
) " ++ "−" ++ clo .s ++ " (" ++ acti1 .s ++ ") " } ;

Xorp clp acti clp acti1 = {s = clp .s ++ " (" ++ acti .s ++ ←↩
") " ++ "−" ++ clp .s ++ " (" ++ acti1 .s ++ ") " } ;

XorCompAct clo compact clo compact1 = {s = clo .s ++ " (" ←↩
++ compact .s ++ ") " ++ "−" ++ clo .s ++ " (" ++ ←↩
compact1 .s ++ ") " } ;

XorpCompAct clp compact clp compact1 = {s = clp .s ++ " (" ←↩
++ compact .s ++ ") " ++ "−" ++ clp .s ++ " (" ++ ←↩
compact1 .s ++ ") " } ;

The structure used in above to show continuanity ([1*]) in
conjunction of clauses, corresponds to what was defined in
CL. In order to be able to analyze XOR operation and the
conjunction operator in CLAN, the operator should be repre-
sented as a dash line ("-") between clauses and "∧" opera-
tor symbolizes the conjunction of clauses.

Test Operator:

The grammar we specified in this paper should cover the
whole CL syntax. Among them, there is specific case where
we defined its name here as the test operator where it ex-
presses conditional obligations, permissions and prohibitions
(Pace et al., 2007). As mentioned in background section the
test operator can be interpreted as: if specific action per-
forms then the clause after it must be executed. More over,
it is important to consider that repetition in actions or words
in natural language, specify continuanity of the action(s), are
usually shown by (*), which is allowed to be use inside the
brackets (dynamic logic style) (Fenech et al., 2009b). Re-
garding this, specific type of actions known as Kleene star
(see next section for more information) act shall be used in-
side the brackets. These actions are similar to regular ac-
tions except when some kind of repetition has been defined
in the clause.

−− abs t r ac t module (Cl . g f module)

fun

TestOp : KleeneStarAct −> Clause −> Clauses ;
TestOpc : KleeneCompAct −> Clause −> Clauses ;

TestOpbc : KleeneStarAct −> Clause −> Clause ;
TestOpcc : KleeneCompAct −> Clause −> Clause ;

Ideally, the test operator has the same structure as almost
any other clauses except the actions which can be either
kleene star basic action or compound one.

−− concrete module (ClEng . g f module)

fun

TestOp kleenestaract clause = {s = " I f " ++ kleenestaract .s ←↩
++ " then "++ clause .s } ;

TestOpc kleenecompact clause = {s = " I f " ++ kleenecompact .s←↩
++ " then "++ clause .s } ;

TestOpbc kleenestaract clause = {s = " I f " ++ kleenestaract .←↩
s ++ " then "++ clause .s } ;

TestOpcc kleenecompact clause = {s = " I f " ++ kleenecompact .←↩
s ++ " then "++ clause .s } ;

Notice the use of "If" and "then" words in specifying test
operation in our restricted natural language.

−− concrete module (ClSym . g f module)

fun

TestOp kleenestaract clause = {s = " [" ++ kleenestaract .s ←↩
++ "] " ++ clause .s } ;

8

TestOpc kleenecompact clause = {s = " [" ++ kleenecompact .s ←↩
++ "] " ++ clause .s } ;

TestOpbc kleenestaract clause = {s = " [" ++ kleenestaract .s ←↩
++ "] " ++ clause .s } ;

TestOpcc kleenecompact clause = {s = " [" ++ kleenecompact .s ←↩
++ "] " ++ clause .s } ;

To construct the test operator we should use brackets and for
formulating the clause we use the same technique as before.

Actions:

Defining basic, compound and Kleene star actions in GF is
an easy task, however, it should be noted that since actions
in our case are generally verbs that could be considered as a
specific vocabulary part (domain lexicon) (Ranta, A., 2009),
it is more efficient to use module extension. This in effect
separates the grammar part (Cl module) from a more spe-
cific vocabulary part (Action module) (Ranta, A., 2009). In
other words, the user will be provided with modular system or
program which means more flexibility to modify the modules
and thus more maintainable system. In our case the Action
module extends Cl module which is the main grammar.

−− Act ion module (abs t r ac t syntax)

fun

Pay , Buy : Act ;
CloseCheckIn , CorrectDetail : KleeneStarAct ;

−− Cl module (abs t r ac t syntax)

fun

CompActa : Act −> And −> Act −> CompAct ;
CompActo : Act −> Or −> Act −> CompAct ;
CompActd : Act −> Dot −> Act −> CompAct ;
CompActNeg : Not −> Act −> CompAct ;
CompActNegc : Not −> CompAct −> CompAct ;

The actions specified in above representation can be either
single actions (basic and Kleene star) like "pay" and "buy"

or as it is specified in Cl module, constructed from two basic
actions with different operators in between as discussed in
background section. The compound form of Kleenestar ac-
tion has exactly the similar structure and same properties as
regular compound action but just with different naming con-
vention to apply and show the distinguishes. The lineariza-
tion of the functions specified in Action module (abstract
syntax) is easy to specify:

−− ActionEng module (concrete syntax)

lin

Pay = {s = " pay " } ;
Buy = {s = " buy " } ;
CloseCheckIn = {s = " closeTheCheckIn " } ;
CorrectDetail = {s = " checkThatThePassportDetai lMatch " } ;

The structure of compound actions shows how the opera-
tors’ name has been used as an argument types to build the
functions. However, what we need to focus in translation of
compound actions into the natural language is to know how
each of the operators should be interpreted in natural lan-
guage. As a consequence we end up with the following con-
crete syntax where it is possible to express all the operators:

−− Cl module (abs t r ac t syntax)

fun

CompActa : Act −> And −> Act −> CompAct ;
CompActo : Act −> Or −> Act −> CompAct ;
CompActd : Act −> Dot −> Act −> CompAct ;
CompActNeg : Not −> Act −> CompAct ;
CompActNegc : Not −> CompAct −> CompAct ;

−− ClEng module (concrete syntax)

lin

CompActa acti and acti1 = {s = acti .s ++ and .s ++ acti1 .s←↩
} ;

CompActo acti or acti1 = {s = acti .s ++ or .s ++ acti1 .s } ;
CompActd acti dot acti1 = {s = acti .s ++ dot .s ++ acti1 .s←↩

} ;
CompActNeg not acti = {s = not .s ++ acti .s } ;
CompActNegc not compact = {s = not .s ++ compact .s } ;

Thus, it is possible to express two actions happen concur-
rently (and.s), sequentially (dot.s), a choice (or.s) be-
tween two actions or even the negation (not.s) of the action.
User defined operations such as the above fall under specific
logical symbols which are defined in below:

−− ClSym module (concrete syntax)

lin

CompActa acti and acti1 = {s = acti .s ++ and .s ++ acti1 .s } ;
CompActo acti or acti1 = {s = acti .s ++ or .s ++ acti1 .s } ;
CompActd acti dot acti1 = {s = acti .s ++ dot .s ++ acti1 .s } ;
CompActNeg not acti = {s = not .s ++ " (" ++ acti .s ++ ") " } ;
CompActNegc not compact = {s = not .s ++ " (" ++ compact .s ++←↩

") " } ;

In this manner, the representation of and.s, or.s, dot.sand
not.s are confined to "&", "+","."and "!" logical op-
erators respectively.

The Kleen star compound actions follow the similar structure
as regular compound actions except two specific case:

−− Cl module (abs t r ac t syntax)

fun

KleeneActs : KleeneStarAct −> Star −> KleeneCompAct ;
KleeneActcs : KleeneCompAct −> Star −> KleeneCompAct ;

The above illustration show the possibility to express the con-
tinuanity of single and compound actions with the use of
Star as an argument type.

The following excerpts show the correspondent concrete
syntaxes which enable translation to natural and symbolic
languages:

−− ClEng module (concrete syntax)

lin

KleeneActs kleenestaract star = {s = star .s ++ ←↩
kleenestaract .s } ;

KleeneActcs kleenecompact star = {s = star .s ++ ←↩
kleenecompact .s } ;

−− ClSym module (concrete syntax)

lin

KleeneActs kleenestaract star = {s = kleenestaract .s ++ ←↩
star .s } ;

KleeneActcs kleenecompact star = {s = " (" ++ kleenecompact .←↩
s ++ ") " ++ star .s } ;

9

The usage of star.s in ClEng module represents words
such as "always", "as long as" in natural language and in
ClSym module represents ”*“ symbol.

5 Case Study
In this section we provide part of a case study as an exam-
ple in order to illustrate the process of conflict analysis by
using the techniques mentioned earlier in this paper together
with the help of CLAN. We start by showing an excerpt con-
tract written in NL which is in this case, English and then
representing this English contract, in a more restricted lan-
guage (restricted English) as the one specified in this paper.
The reason for the latter is to be able to feed this restricted
contract written in English into the program explained in the
former section to obtain CL logical formulas corresponding
to what was provided as a restricted English contract. As a
consequence we would be able to run this logical formulas
through CLAN tool in order to observe whether a conflict ex-
ists in the requirements or not. Upon observing the conflict
it would be possible to remove it from the CL formulas and
thus, generate conflict free requirements represented in the
restricted language. The contract is between an airline com-
pany and a company taking care of the ground crew and the
case study focuses specifically on part of a contract related
to check-in process (Fenech et al., 2009b). The extracted
contract clauses expressed in restricted English and CL, are
given below (for complete English contract refer to appendix
A):

1. The ground crew is obliged to open the check-in

desk and request the passenger manifest two hours

before the �ight leaves.

[Restricted English]: If two hours before the flight
leaves then It is mandatory to open the check in desk
and request the passenger manifest if not open the
check in desk and request the passenger manifest then
It is mandatory to issue a fine.

[Program output]: [two hours before the flight leaves]O(
open the check in desk & request the passenger
manifest) _ O(issue a fine)

2. After the check-in desk is opened the check-in crew

is obliged to initiate the check-in process with any

customer present by checking that the passport

details match what is written on the ticket and that

the luggage is within the weight limits. Then they

are obliged to issue the boarding pass.

[Restricted English]: If open the check in then It is
mandatory to check that the passport details match
and check that luggage is within the weight limits and
If check that the passport detail match and check that
luggage is within the weight limit then It is mandatory to
issue the boarding pass if not issue the boarding pass
then It is mandatory to issue a fine.

[Program output]: [1*][open the check in]O(check

that the passport details match & check that
luggage is within the weight limits) ∧ [check that the
passport detail match & check that luggage is
within the weight limit]O(issue the boarding pass) _
O(issue a fine)

3. The ground crew is obliged to close the check-in

desk 20 minutes before the �ight is due to leave and

not before.

[Restricted English]: If twenty minutes before the
flight is due to leave and not before then It is mandatory
to close the check in desk if not close the check in desk
then It is mandatory to issue a fine and If not twenty
minutes before the flight is due to leave and not before
then It is prohibited to close the check in desk if close
the check in desk then It is mandatory to issue a fine.

[Program output]: [twenty minutes before the flight
is due to leave and not before]O(close the check in
desk) _ O(issue a fine) ∧ [!(twenty minutes before the
flight is due to leave and not before)]F(close the check
in desk) _ O(issue a fine)

4. If any of the above obligations and prohibitions are

violated a �ne is to be paid.

[Restricted English]: As long as If close the check
in then It is prohibited to open the check in desk if open
the check in desk then It is mandatory to issue a fine
and It is prohibited to issue the boarding pass if issue
the boarding pass then It is mandatory to issue a fine.

[Program output]: [1*][close the check in]F(open
the check in desk) _ O(issue a fine) ∧ F(issue the
boarding pass) _ O(issue a fine)

As it is shown in the example above, once we run the
logical formulas obtained from the program described in
this paper through the CLAN, we would be able to ob-
serve the existence of any conflicts in the requirements
however due to performance issue of the CLAN we only
examine the clauses that contain conflicts in this case
study. With the help of the CLAN, it would be possible to
obtain instantaneous results showing any conflicts such
as concurrent obligation and prohibition to perform spe-
cific action like issue the boarding pass that occur in
the second and forth clause. If we look at second and
forth clause, we will see that in the second clause one is
obliged to issue the boarding pass if the client has cor-
rect information and as long as the check in desk opens.
furthermore, in the forth clause one is forbidden to issue
the boarding pass if the check in desk closes. The tool
can easily identify an inconsistency between these two
clauses. The problem we are considering here is when
the client provide right information but check-in desk is
closed.

Once the inconsistency identified by the CLAN tool, the prob-
lem can be easily fixed, for instance in our case the second
clause can be changed to It is mandatory for the ground crew
to issue the boarding pass as long as the check in desk is not
closed (Fenech et al., 2009b).

10

6 Results
The primary obtained result is the actual encoding of CL syn-
tax into GF abstract syntax and thus constructing the base
structure in GF for expressing the logical clauses. This initial

step is oriented towards identifying concrete syntaxes which
facilitates the translation to natural languages and vice versa.
At the same time, this is an essential step for covering the
whole picture of automation and as a consequence could be

 CL formulas:
 [buy]O(pay)

 Restricted English:
If buy It is mandatory
 to pay

CL NL

GF

output.txt
Program written
in Java to convert
clauses in txt file
into XML format
with specific tags

contract.txt

result.txt

 CLAN tool:
Analyzes CL clauses
for detecting conflicts

The output of CLAN
shows whether the
requirement clauses have
conflict or they are
conflict free

output.txt

Restricted
 NL

CL

GF

plainText(NL).txt

Manual
Automatic

Not Implemented
yet

cl.gfs

XML.java

Figure 3: result

11

considered as our secondary result. We’ve merged different
knowledge obtained from valuable sources together with our
approach, to build a prototype that can be used for all sorts
of specifications such as requirements, contracts, Internet-
based negotiations and etc. which ensures the representa-
tion of these in formal language needed for analysis purpose
and thus conflict detection. We used the data in the case
study and have applied our approach to be able to present
our results in a formal way. The following figure 3 is the il-
lustration of the result of the whole process explained in this
paper however, it should be noticed that, the research that
has been conducted does not show the complete automa-
tion process as it needs more investigation. Discussions re-
garding the future contribution towards the full automation is
described in Conclusion section.

The figure 3 is an illustration to show and prove the ability of
the program explained in this paper that facilitates the pro-
cess to identify contract inconsistencies and conflicts. For
this purpose, the first step is to manually translate the original
contracts written in NL (plain text in English)(see Appendix
A) into Restricted NL (language needed as an input format
to the prototype) (see Appendix B). After conducting the first
step, we created a script file (see Appendix E) for the proto-
type which automatically import the libraries (also grammar:
the modules written in GF) as well as specific commands
which can linearize and parse the input (Restricted NL or CL)
and thus provides the result in an output file like output.txt.
However, it should be noticed that the path for using libraries
should be set by the user. To be able to use the prototype,
after installing GF, one must use the following command : gf
- -<cl.gfs in GF editor which will provide the user with an out-
put file in txt format. Once obtaining logical clauses (please
refer to Case study for more information) (see Appendix C)
as an output file, we feed in the output file into a program
(XML.java) written in Java to obtain what is needed as input
file in XML format for CLAN (see Appendix D). This can be
done by compiling and running the program by using the ordi-
nary commands (i) javac XML.java (ii) java XML. The file
obtained from this program contains all the logical clauses
correspond to what was specified as Restricted NL and in
XML format, which is needed as an input for CLAN. As a fi-
nal step CLAN tool has been able to analyze these clauses
by using the command java -jar clan-gui-1.0.0-clan.jar con-
tract.txt result.txt which provides the analysis result in or-
dinary text file showing whether the contract contains conflict
or not. In the case of existence of any conflicts in the re-
quirements, the CLAN will also provide a counter example to
show the trace to the conflicts and the conflict clause itself
(see Appendix F).

7 Related Work
There are no earlier efforts regarding the actual translation of
CL to natural language however, researches have been con-
ducted where GF was used in order to implement specific
language. Hähnle, Johannisson and Ranta (Hahnle et al.,
2002) talk about design principle of a tool which helps to
authorize formal and informal software requirement specifi-
cations. “The tool is an attempt to bridge the gap between

completely informal requirements specifications (as found in
practice) and formal ones (as needed in formal methods)”
(Hahnle et al., 2002). Some of the problems outlined in the
paper like authoring well-formed formal specifications, main-
tenance, mapping different levels of formality and synchro-
nization made them to come up with the solution to handle
these problems. The solution outlined in the paper is an il-
lustration of the possibility of connection between specifica-
tion languages in different levels. Their focus as stated in
the paper is on Object Constraint Language (OCL) and Nat-
ural Language (NL) as specification languages and their ap-
proach is based on Grammatical Framework. They managed
to implement different concepts of OCL such as, Classes and
Objects, Attributes, Operations and Queries in GF. Pace and
Rosner (Pace and Rosner, 2009) presented an end-user sys-
tem which is specifically design to process the domain of
computer oriented contracts. The main abilities of the sys-
tem as described in the paper are logical reasoning about
the properties of contracts which relates to internal consis-
tency of a contract and about the status of actions whether
they are prohibited or permitted. They use (controlled natu-
ral language) CNL to specify contracts and they also define
an appropriate logic much the same as CL to analyze CNL
contracts.

8 Conclusions
Generally, contracts or requirements are required to be con-
sistent, to be able to enable safe and dependable contract
adoption (Fenech et al., 2009b) among organizations. In this
paper we have presented an encoding of the contract lan-
guage CL into GF, and back. We have also implemented
a program which can be considered as a prototype that al-
lows the translation back and forth between CL and NL, and
applied this to a case study in which we obtained valuable
results (for more information refer to result section). This re-
search was specifically conducted to detect conflicts in or-
der to reduce inaccuracies in requirements by using a formal
language, CL and its implementation in GF. Currently, this
prototype tool with the help of CLAN enhances the process
of identifying conflict. However, the functionality of translat-
ing the conflict clauses and counter examples obtained from
CLAN, in case of existence of conflict into restricted natural
language is part of our future work. Furthermore, other func-
tionalities such as Passage Retrieval (Buscaldi et al., 2009)
which enables the NL to map to its correspondent Restricted
NL are to be investigated and added to the program.

9 Acknowledgments
We would like to thank Aarne Ranta and Stephen Fenech
for all their supports and guidance with providing ideas and
feedback during this research. Special thanks to Gerardo
Schneider for all the ideas and supports that makes this re-
search possible to be presented to you.

12

References
(2009). Requirements contract Wikipedia. http://en.

wikipedia.org/wiki/Requirements_contract. 2

(2010). Saab in brief. http://www.saabgroup.com/en/
About-Saab/Company-profile/Saab-in-brief/. 2

Aagedal, J. (2001). Quality of service support in development
of distributed systems. PhD thesis, Citeseer. 3

Berling, T. (2010). Personal Communication Saab . 2

Beugnard, A., Jézéquel, J., Plouzeau, N., and Watkins, D.
(1999). Making components contract aware. Computer,
32(7):38–45. 3

Buscaldi, D., Rosso, P., Gómez-Soriano, J., and Sanchis, E.
(2009). Answering Questions with an n-gram based Pas-
sage Retrieval Engine. Journal of Intelligent Information
Systems, pages 1–22. 12

Creswell, J. (2008). Research design: Qualitative, quantita-
tive, and mixed methods approaches. Sage Pubns. 3

Daskalopulu, A. (2000). Model checking contractual proto-
cols. In Legal knowledge and information systems: JURIX
2000: the thirteenth annual conference, page 35. Ios Pr
Inc. 3

Daskalopulu, A. and Maibaum, T. (2001). Towards electronic
contract performance. In dexa, page 0771. Published by
the IEEE Computer Society. 3

Davulcu, H., Kifer, M., and Ramakrishnan, I. (2004). CTR-S:
a logic for specifying contracts in semantic web services.
In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters, pages
144–153. ACM. 3

Fenech, S., Pace, G., and Schneider, G. (2009a). Automatic
Conflict Detection on Contracts. Theoretical Aspects of
Computing-ICTAC 2009, pages 200–214. 14

Fenech, S., Pace, G., and Schneider, G. (2009b). CLAN: A
Tool for Contract Analysis and Conflict Discovery. In Auto-
mated Technology for Verification and Analysis: 7th Inter-
national Symposium, Atva 2009, Macao, China, October
14-16, 2009, Proceedings, page 90. Springer. 3, 5, 7, 8,
10, 12

Governatori, G. (2005). Representing business contracts in
RuleML. International Journal of Cooperative Information
Systems, 14(2-3):181–216. 3

Governatori, G. and Rotolo, A. (2006). Logic of violations:
A Gentzen system for reasoning with contrary-to-duty obli-
gations. Australasian Journal of Logic, 4:193–215. 3

Hahnle, R., Johannisson, K., and Ranta, A. (2002). An au-
thoring tool for informal and formal requirements specifica-
tions. Lecture notes in computer science, pages 233–248.
2, 4, 12

Hevner, A., March, S., Park, J., and Ram, S. (2004). Design
science in information systems research. Management in-
formation systems quarterly, 28(1):75–106. 2, 3

Molina-Jimenez, C., Shrivastava, S., Solaiman, E., and
Warne, J. (2004). Run-time monitoring and enforcement
of electronic contracts. Electronic Commerce Research
and Applications, 3(2):108–125. 3

Osterwalder, A. (2004). The Business Model Ontology-
a proposition in a design science approach. Academic
Dissertation, Universite de Lausanne, Ecole des Hautes
Etudes Commerciales. 2

Pace, G., Prisacariu, C., and Schneider, G. (2007). Model
checking contracts-a case study. Lecture Notes in Com-
puter Science, 4762:82. 4, 5, 8

Pace, G. and Rosner, M. (2009). A Controlled Language for
the Specification of Contracts. 5, 12

Paschke, A., Dietrich, J., and Kuhla, K. (2005). A logic based
sla management framework. In 4th Semantic Web Confer-
ence (ISWC 2005). Citeseer. 3

Prisacariu, C. and Schneider, G. (2007). Towards a formal
definition of electronic contracts. Technical report, Tech-
nical Report 348, Department of Informatics, University of
Oslo, Oslo, Norway. 3

Prisacariu, C. and Schneider, G. (2009). CL: An Action-
based Logic for Reasoning about Contracts. WOLLIC’09,
5514:335–349. 2, 3

Ranta, A. (2009). Grammatical framework : A programming
language for multilingual grammars and their applications.
1, 2, 4, 7, 9

Robinson, W. N. and Pawlowski, S. D. (1999). Managing re-
quirements inconsistency with development goal monitors.
IEEE Trans. Software Eng., 25(6):816–835. 1

Song, I. and Governatori, G. (2004). Nested rules in de-
feasible logic. Rules and Rule Markup Languages for the
Semantic Web, pages 204–208. 3

Van Aken, J. (2005). Management research as a design sci-
ence: articulating the research products of mode 2 knowl-
edge production in management. British Journal of Man-
agement, 16(1):19–36. 2, 3

13

http://en.wikipedia.org/wiki/Requirements_contract
http://en.wikipedia.org/wiki/Requirements_contract
http://www.saabgroup.com/en/About-Saab/Company-profile/Saab-in-brief/
http://www.saabgroup.com/en/About-Saab/Company-profile/Saab-in-brief/

A Plain text of Case
study

Below is original contract clauses in plain English (Fenech
et al., 2009a):

1. The ground crew is obliged to open the check-in desk
and request the passenger manifest two hours before
the flight leaves.

2. The airline is obliged to reply to the passenger mani-
fest request made by the ground crew when opening
the desk with the passenger manifest.

3. After the check-in desk is opened the check-in crew is
obliged to initiate the check-in process with any cus-
tomer present by checking that the passport details
match what is written on the ticket and that the luggage
is within the weight limits. Then they are obliged to issue
the boarding pass.

4. If the luggage weighs more than the limit, the crew is
obliged to collect payment for the extra weight and issue
the boarding pass.

5. The ground crew is prohibited from issuing any board-
ing cards without inspecting that the details are correct
beforehand.

6. The ground crew is prohibited from issuing any boarding
cards before opening the check-in desk.

7. The ground crew is obliged to close the check-in desk
20 minutes before the flight is due to leave and not be-
fore.

8. After closing check-in, the crew must send the luggage
information to the airline.

9. Once the check-in desk is closed, the ground crew is
prohibited from issuing any boarding pass or from re-
opening the check-in desk.

10. If any of the above obligations and prohibitions are vio-
lated a fine is to be paid.

B Restricted NL of Case
study

Below is the representation of extracted contracts in Re-
stricted language:

1. If twoHoursBeforeTheFlightLeaves then It is mandatory
to openTheCheckInDesk and requestThePassenger-
Manifest if not openTheCheckInDesk and requestTheP-
assengerManifest then It is mandatory to issueAFine.

2. After If openTheCheckIn then It is mandatory to
checkThatThePassportDetailsMatch and check-
ThatLuggageIsWithinTheWeightLimits and If check-
ThatThePassportDetailMatch and checkThatLug-
gageIsWithinTheWeightLimit then It is mandatory to

issueTheBoardingPass if not issueTheBoardingPass
then It is mandatory to issueAFine.

3. If twentyMinutesBeforeTheFlightIsDueToLeaveAndNot-
Before then It is mandatory to closeTheCheckInDesk if
not closeTheCheckInDesk then It is mandatory to is-
sueAFine and If not twentyMinutesBeforeTheFlightIs-
DueToLeaveAndNotBefore then It is prohibited to clos-
eTheCheckInDesk if closeTheCheckInDesk then It is
mandatory to issueAFine.

4. As long as If closeTheCheckIn then It is prohibited to
openTheCheckInDesk if openTheCheckInDesk then It
is mandatory to issueAFine and It is prohibited to is-
sueTheBoardingPass if issueTheBoardingPass then It
is mandatory to issueAFine

C CL of Case study
below is the logical clauses obtained from the prototype:

1. [two hours before the flight leaves] O(open the check in
desk & request the passenger manifest) _ O(issue a
fine)

2. [1*]([open the check in] O(check that the passport de-
tails match & check that luggage is within the weight lim-
its) ∧ [check that the passport detail match & check that
luggage is within the weight limit]O(issue the boarding
pass) _ O(issue a fine))

3. [20 minutes before the flight is due to leave and not
before]O(close the check in desk) _ O(issue a fine) ∧
[!(20 minutes before the flight is due to leave and not
before)]F(close the check in desk) _ O(issue a fine)

4. [1*]([close the check in]F(open the check in desk) _
O(issue a fine) ∧ F(issue the boarding pass) _ O(issue
a fine))

D XML output
The following is the logical clauses in XML format: <?XML
version="1.0" encoding="UTF-8" standalone="yes"?>
<contract>
<clauses>
<clause>[1∗]([open The Check In] O(check That The Pass-
port Details Match & check That Luggage Is Within The
Weight Limits) ∧ [check That The Passport Detail Match
& check That Luggage Is Within The Weight Limit]
O(issue The Boarding Pass)_O(issue A Fine))</clause>
<clause>[1∗]([close The Check In] F(open The Check
In Desk)_O(issue A Fine) ∧ F(issue The Boarding
Pass)_O(issue A Fine))</clause>
</clauses>
<concurrentActions/>
</contract>

14

E Script file: cl.gfs

import / home / shayan / test / ActionEng . gf
import / home / shayan / test / ActionSym . gf

parse −lang=ActionEng "If twoHoursBeforeTheFlightLeaves then It is mandatory to openTheCheckInDesk ←↩
and requestThePassengerManifest if not openTheCheckInDesk and requestThePassengerManifest then ←↩
It is mandatory to issueAFine " | linearize −lang=ActionSym | put_string −unlexcode | write_file ←↩
−append −file=output . txt

parse −lang=ActionEng "After If openTheCheckIn then It is mandatory to ←↩
checkThatThePassportDetailsMatch and checkThatLuggageIsWithinTheWeightLimits and If ←↩
checkThatThePassportDetailMatch and checkThatLuggageIsWithinTheWeightLimit then It is mandatory ←↩
to issueTheBoardingPass if not issueTheBoardingPass then It is mandatory to issueAFine " | ←↩
linearize −lang=ActionSym | put_string −unlexcode | write_file −append −file=output . txt

parse −lang=ActionEng "If twentyMinutesBeforeTheFlightIsDueToLeaveAndNotBefore then It is mandatory ←↩
to closeTheCheckInDesk if not closeTheCheckInDesk then It is mandatory to issueAFine and If not ←↩
twentyMinutesBeforeTheFlightIsDueToLeaveAndNotBefore then It is prohibited to ←↩
closeTheCheckInDesk if closeTheCheckInDesk then It is mandatory to issueAFine " | linearize −lang←↩
=ActionSym | put_string −unlexcode | write_file −append −file=output . txt

parse −lang=ActionEng "As long as If closeTheCheckIn then It is prohibited to openTheCheckInDesk if ←↩
openTheCheckInDesk then It is mandatory to issueAFine and It is prohibited to ←↩
issueTheBoardingPass if issueTheBoardingPass then It is mandatory to issueAFine " | linearize −←↩
lang=ActionSym | put_string −unlexcode | write_file −append −file=output . txt

put_string −lexcode " [twoHoursBeforeTheFlightLeaves] O (openTheCheckInDesk & ; ←↩
requestThePassengerManifest)_ O (issueAFine) " | parse −lang=ActionSym | linearize −lang=←↩
ActionEng

put_string −lexcode " [1 *] ([openTheCheckIn] O (checkThatThePassportDetailsMatch & ; ←↩
checkThatLuggageIsWithinTheWeightLimits) ^ [checkThatThePassportDetailMatch & ; ←↩
checkThatLuggageIsWithinTheWeightLimit] O (issueTheBoardingPass) _ O (issueAFine)) " | ←↩
parse −lang=ActionSym | linearize −lang=ActionEng

put_string −lexcode " [twentyMinutesBeforeTheFlightIsDueToLeaveAndNotBefore] O (closeTheCheckInDesk)_ O←↩
(issueAFine) ^ [! (twentyMinutesBeforeTheFlightIsDueToLeaveAndNotBefore)] F (closeTheCheckInDesk)←↩

_ O (issueAFine) " | parse −lang=ActionSym | linearize −lang=ActionEng

put_string −lexcode " [1 *] ([closeTheCheckIn] F (openTheCheckInDesk) _ O (issueAFine) ^ F (←↩
issueTheBoardingPass) _ O (issueAFine)) " | parse −lang=ActionSym | linearize −lang=←↩
ActionEng | write_file −append −file=output . txt

15

F Result of CLAN: result.txt

Conflict

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))))))) ^ ((((F (openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine))))))) ^ ((OissueAFine) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (←↩
issueTheBoardingPass)_ (OissueAFine))))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))))))) ^ (((OissueAFine) ^ (((F (openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn←↩
] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine)))))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (←↩
issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , openTheCheckIn&checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueTheBoardingPass&issueAFine&closeTheCheckIn&←↩
openTheCheckInDesk

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))) ^ (((←↩
OissueAFine) ^ (((F (openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_←↩
(OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))))))) ^ (((F (←↩
issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueTheBoardingPass&issueAFine&closeTheCheckIn&←↩
openTheCheckInDesk

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))))))) ^ (((OissueAFine) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))←↩
^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))) ^ (((F (←↩
issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , openTheCheckIn&checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueTheBoardingPass&issueAFine&openTheCheckInDesk

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩

16

checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))) ^ (((←↩
OissueAFine) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))) ^ (((F (issueTheBoardingPass)_ (←↩
OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueTheBoardingPass&issueAFine&openTheCheckInDesk

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ ((OissueAFine) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))))))))) ^ ((((F (openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine))))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass←↩
)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , openTheCheckIn&checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine&closeTheCheckIn

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))))) ^ ((OissueAFine) ^ (((OissueTheBoardingPass)_ (←↩
OissueAFine)) ^ (([(checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((←↩
OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))))))))) ^ ((((F (←↩
openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))←↩
^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))) ^ (((F (←↩
issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine&closeTheCheckIn

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ ((OissueAFine) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))))))))) ^ ((([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))))) ^ (((F (issueTheBoardingPass)_ (←↩
OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , openTheCheckIn&checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))))) ^ ((OissueAFine) ^ (((OissueTheBoardingPass)_ (←↩
OissueAFine)) ^ (([(checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((←↩
OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))))))))) ^ ((([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine)))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (←↩
issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass&closeTheCheckIn , checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩

17

checkThatLuggageIsWithinTheWeightLimit&issueAFine

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ (([1] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))) ^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (←↩
checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))))))) ^ (((←↩
OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ (([1] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((((F (←↩
openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))←↩
^ (([1] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))))) ^ ((OissueAFine) ^ (((F (←↩
issueTheBoardingPass)_ (OissueAFine)) ^ (([1] ((F (issueTheBoardingPass)_ (OissueAFine)))←↩
^ ([1] ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine))))))))))

checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&issueTheBoardingPass&←↩
closeTheCheckIn

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))))))) ^ ((((F (openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine))))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass←↩
)_ (OissueAFine)))))))

openTheCheckIn&issueTheBoardingPass&closeTheCheckIn , openTheCheckIn&checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine&closeTheCheckIn

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))) ^ ((((F (←↩
openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))←↩
^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))) ^ (((F (←↩
issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&issueTheBoardingPass&closeTheCheckIn , checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine&closeTheCheckIn

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ ([1] ([(* 1)] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))))←↩
) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([(* 1)] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))))))) ^ ((([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))))) ^ (((F (issueTheBoardingPass)_ (←↩
OissueAFine)) ^ ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&issueTheBoardingPass&closeTheCheckIn , openTheCheckIn&checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))) ^ ((([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ ([1] ([(* 1)] ([closeTheCheckIn] ((F (←↩

18

openTheCheckInDesk)_ (OissueAFine)))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ ([1] ([(* 1)] ((F (←↩
issueTheBoardingPass)_ (OissueAFine)))))))

openTheCheckIn&issueTheBoardingPass&closeTheCheckIn , checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits&checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit&issueAFine

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ (([1] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))←↩
^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits))))))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ (([1] ([(checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)←↩
] ((OissueTheBoardingPass)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((((F (←↩
openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))←↩
^ (([1] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))))) ^ (((F (issueTheBoardingPass)_ (←↩
OissueAFine)) ^ (([1] ((F (issueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([1] ([(* 1)] ((F (←↩
issueTheBoardingPass)_ (OissueAFine)))))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&closeTheCheckIn

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ (([1] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))) ^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (←↩
checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))))))) ^ (((←↩
OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ (([1] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((((F (←↩
openTheCheckInDesk)_ (OissueAFine)) ^ (([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))←↩
^ (([1] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))))))))) ^ (((F (issueTheBoardingPass)_ (←↩
OissueAFine)) ^ (([1] ((F (issueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([1] ([(* 1)] ((F (←↩
issueTheBoardingPass)_ (OissueAFine)))))))))

checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&closeTheCheckIn

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ (([1] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))←↩
^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits))))))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ (([1] ([(checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)←↩
] ((OissueTheBoardingPass)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ (([1] ([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine)))))))) ^ ((OissueAFine) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ (([1] ((F (←↩
issueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))←↩
)))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&←↩
issueTheBoardingPass

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ (([1] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))) ^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (←↩
checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))))))) ^ (((←↩
OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ (([1] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ (([1] ([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩

19

OissueAFine)))))))) ^ ((OissueAFine) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ (([1] ((F (←↩
issueTheBoardingPass)_ (OissueAFine))) ^ ([1] ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))←↩
)))))

checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit&issueTheBoardingPass

((((O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)) ^ (([openTheCheckIn] (O←↩
(checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))) ^ (([1] ([←↩
openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits))))←↩
^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits))))))))) ^ (((OissueTheBoardingPass)_ (OissueAFine)) ^ (([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine))) ^ (([1] ([(checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)←↩
] ((OissueTheBoardingPass)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ (([1] ([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine)))))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ (([1] ((F (issueTheBoardingPass)_ (←↩
OissueAFine))) ^ ([1] ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))))

openTheCheckIn&checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit

(((([openTheCheckIn] (O (checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))←↩
^ (([1] ([openTheCheckIn] (O (checkThatThePassportDetailsMatch&←↩
checkThatLuggageIsWithinTheWeightLimits)))) ^ ([1] ([1] ([(* 1)] ([openTheCheckIn] (O (←↩
checkThatThePassportDetailsMatch&checkThatLuggageIsWithinTheWeightLimits)))))))) ^ (((←↩
OissueTheBoardingPass)_ (OissueAFine)) ^ (([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine))) ^ (([1] ([(←↩
checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)←↩
_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([(checkThatThePassportDetailMatch&←↩
checkThatLuggageIsWithinTheWeightLimit)] ((OissueTheBoardingPass)_ (OissueAFine)))))))))) ^ ((([←↩
closeTheCheckIn] ((F (openTheCheckInDesk)_ (OissueAFine))) ^ (([1] ([closeTheCheckIn] ((F (←↩
openTheCheckInDesk)_ (OissueAFine)))) ^ ([1] ([1] ([(* 1)] ([closeTheCheckIn] ((F (openTheCheckInDesk)_ (←↩
OissueAFine)))))))) ^ (((F (issueTheBoardingPass)_ (OissueAFine)) ^ (([1] ((F (issueTheBoardingPass)_ (←↩
OissueAFine))) ^ ([1] ([1] ([(* 1)] ((F (issueTheBoardingPass)_ (OissueAFine)))))))))

checkThatThePassportDetailMatch&checkThatLuggageIsWithinTheWeightLimit

20

	Methodological Aspect
	Introduction
	Background
	Problem statement
	Purpose

	Methods
	Data Collection
	Literature Review

	Background
	The Contract Language CL
	Grammatical Framework
	Abstract syntax
	Concrete Syntax

	Conflict Analysis

	Natural language and Translation
	Restricted Natural Language

	Implementation
	Abstract syntax
	Obligation, Permission and Prohibition
	CTDs and CTPs
	Conjunction of clauses (C C) and XOR operator
	Test Operator:
	Actions:

	Case Study
	Results
	Related Work
	Conclusions
	Acknowledgments
	Plain text of Case study
	Restricted NL of Case study
	CL of Case study
	XML output
	Script file: cl.gfs
	Result of CLAN: result.txt

