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A FURTHER LOOK AT SHORT-TERM 

INTEREST RATE DYNAMICS 

 

Short-term interest rate analysis is one of the most important topics in finance and 

economics. This paper looks at short-term interest rate dynamics using three different 

interest rate proxies with different maturities, one-month Eurodollar deposit rate, 

overnight Federal Funds rate, and Three-month Treasury bill yield under one flexible 

parametric specifications. This flexible parametric specification is one-factor 

diffusion model with several nested cases. The analyzed data series and used flexible 

parametric specification encompasses enormous literature in the area, used in books 

and analyzed in articles.  The result evaluates the nonlinear drift specification and 

linear drift specifications. The name of the paper is inspired by its guiding article by 

Turan G. Bali et al. (2006).  Their theoretical framework is base of this paper. 
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Introduction 
Having strong implications on interest rate derivatives and fixed income securities’ 

pricing, short-term interest rate is one of the core concepts of asset pricing theory.  

Therefore there is a great interest for derivation of an effective model for its 

dynamics. This leads it to one of most important subject in theoretical as well as 

empirical finance. Diffusion process is used by most of the researchers, using 

continuous time arbitrage arguments, for derivative pricing. One might feel 

inevitability of high research demand on stochastic behavior of short-term interest 

rate. A huge range of study and effort has been put for the understanding of 

movement of short-term interest rate.  Different data sets, unalike range of times 

series, and various parametric or nonparametric specifications were used for 

understanding this phenomenon almost 40 years. Results were confusing, conflicting, 

contradictory and inconsistent with same range of data sets, and specifications. This 

paper is influenced by one paper of Turan G. Bali and L. Wu (2006) named, “A 

comprehensive analysis of the interest-rate dynamics”.  As described by them in their 

paper and I quote, “Fundamental questions remain unanswered: (i) Is the short-rate 

drift linear or nonlinear? (ii) How sensitive is the conclusion to the choice of interest-

rate series and parametric specifications? ” Turan G. Bali and L. Wu (2006, p. 1270). 

I will follow their study to past year’s interest-rate series with same parametric 

specification. The reasons and needs for that follow up are simple and straight. First 

and most important reason is that their interest-rate series is up till 1999. Second 

reason is the economic dynamics, which I have been noticed past years. 

Large range of studies to understand short-term interest rate dynamics using diverse 

historical interest rate data as proxy for short-term interest rate are focusing on 

parametric specifications. Lack of adequacy to fit all interest rate data gave urge to 

researchers to use non-parametric or semi parametric specifications for more 

flexibility. In this paper I will use one flexible parametric specification as proposed by 

Turan G. Bali and L. Wu (2006) with various constrained versions. The parametric 

specification encircles most of the short-term dynamics used in literature.  

First parametric specification is one-factor diffusion framework.  I will go to follow 

rather simple single-factor diffusion process. It has been noticed that the significance 
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of nonlinearity depends upon selection a certain specification and preferred proxy for 

interest rate series.  Significance of nonlinearity depending on the data series shows 

inconsistent result when conditional variable moves from affine function to fifth-order 

parametric function and then general form.  Nonlinearity declines as the maturity of 

an instrument increases for example Eurodollar deposit rate to yield of Treasury bull.  

I have organized my thesis by explaining preliminary and necessary theory for 

interest rate dynamics with focus to one-factor diffusion model. I will rise from minor 

details, which built up interest rate theory or so-called asset pricing theory. This 

background study will help me, and reader to understand the passage to sophisticated 

knowledge of asset pricing. This section will also explain the thesis with general level 

of interest. Next section will be based on the literature review, which is self-

explaining. I will concentrate on important authors in the area of my study. Since vast 

majority of authors have written their papers using different parametric of non-

parametric specification using different data series, but it seems difficult to 

differentiate or given importance due to their method selection of estimation 

differences. Empirical model will finally introduce the one factor model, which I 

chose to study short-term interest rate dynamics. I am following the article of T.G. 

Bali and L. Wu (2006), which proposes a flexible parametric specification to simulate 

short-term interest rate dynamics. I will explain the model selected and estimation 

technique used by me in this section. Showing result will be the next section for this 

paper. Here I will explain the statistics and results approximated by model. Explain 

and reason the arguments to justify the study. Conclusion will be final section of my 

paper where I will explain and wrap up the thesis paper with future interest and 

verdict.  

Theoretical Background 

Stochastic Process 

Starting from the basics let me introduce the well-known concept of stochastic 

process. On a same probability space   (Ω,F,Ρ)  a collection of random variable 

Xt ,t ∈T  is called stochastic process. In other words, collection of random variables 

which lies on same probability space from time t to T is stochastic process.  

Stochastic process can be further explained by discrete parameter process and 
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continuous parameter process depending on T, time, is in discrete time steps i.e. T= 1, 

2, 3, 4, 5 … T.  Continuous parameter process occurs when T is not countable 

likeT = [0,∞] .  To prove that certain stochastic process Xt( )  is stationary one 

assumes that for any n ≥ 1 and t1,t2 ,t3,t4 ...tn ∈T , where the finite-dimensional 

distributionFs+ t1 ,s+ t2 ,ts+3 ,ts+4 ...,s+ tn , s + t ∈T  is independent of s, which is defined as 

follows: 

Let Xt1,....,Xtn  and t1,t2 ,t3,t4 ...tn ∈T  has a specific joint distribution function of 

random variables: 

Ft1 ,t2 ,t3 ,t4 ...,tn (x1, x2 , x3, x4 ,...., xn ) = P(Xt1 ≤ x1,Xt2 ≤ x2 ,Xt 3 ≤ x3,Xt 4 ≤ x4 ,....,Xtn ≤ xn )  

Finite-dimensional distribution is the collection of all disjoint distributions 

Ft1 ,t2 ,t3 ,t4 ...,tn (x1, x2 , x3, x4 ,...., xn )  of random 

variablesP(Xt1,Xt2 ,Xt 3,Xt 4 ,....,Xtn ),n ≥ 1,t1,t2 ,t3,t4 ,....,tn ∈T . 

Brownian Motion 
I am specifically interested and concentrate on Brownian motion Wt which is a 

process if it has following properties: 

• Process starts at 0 or more precisely,W0 = 0  with probability 1. 

• Wt  is almost surely continuous for every t ≥ 0  

• Wt  has independent increment and has normal distribution with mean 0 and 

variance . One can say that for all 0 ≤ s ≤ t , the increment 

Wt −Ws ~ Ν(0,t − s)  

Discretization Using Euler Scheme 

Now I will discuss the discretization of almost any continuous time model using Euler 

approximation. This technique is significant due the fact that one can only monitor 

data in discrete time. For discretization will concentrate only on Euler scheme, after 

all most of the literature use Euler discretization or Milstein scheme but I will use the 

same technique for my further investigation into short-term interest rate dynamics.  

Euler Scheme is mostly used for discretization of continuous process and easy to 

handle form of Taylor approximations.  
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As I have a stochastic process X = Xt ,t0
≤ t ≤ T{ } , which satisfies following simple 

stochastic differential equation: 

dXt = a(t,Xt )dt + b(t,Xt )dWt  

the initial value at time t0 ≤ t ≤ T  is 

Xt0 = X0  

Divining the time interval from t0  to T  into N intervals 

with t0 < t1 < t2 < t3..... < tn = T , Euler scheme will have following expression 

Yn+1 = Yn + a(tn ,Yn )(tn+1 − tn ) + b(tn ,Yn )(Wtn+1 −Wtn )  

for n=0,1,2,3,….,N-1 the initial value will be 

Y0 = X0  

In case the intervals are equal between two observations the Euler Scheme will not 

look so messy. So I can write Euler scheme   

Yn+1 = Yn + aΔ + bΔWn  

Moments and Moments Generating Function 

Now I am going to dig little deeper in the theory and go forward to random variable 

moments and moment generating functions.  The first moment of the random variable 

about the origin is conditional mean of random variable. Starting by letting X as 

random variable, discrete and probability density function be f (x), the kth moment 

about the origin of X is  

µ′r = E(x
k ) = xk

x
∑ p(x)  

Where k = 1,2,3,....,n  and  | xk |
x
∑ p(x) < ∞  

Now letting X be a random variable, continuous and f(x) be its probability density 

function. The kth moment about the origin of X is  
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µ′r = E(x
k ) = xk f (x)dx

−∞

∞

∫  

Where | xk | f (x)dx
−∞

∞

∫ < ∞  

These two versions, continuous and discrete moment about the origin of a random 

variable is self-explanatory and moment about the origin’s value depends only on the 

probability distribution. 

One knows the value of mean for a certain random variable by calculating the first 

moment about its origin. Variance of the random variable can be calculated but with 

extra calculations.  Even though the calculations seem messy but the fundamental 

principal used for a general variance calculation.  

Again I let X be random variable and its mean calculated as per moment about its 

origin formulae depending upon if continuous or discrete variable. Probability density 

function is given, kth moment about its mean, and it can be showing as follows, if X 

is discrete: 

  
µr = E[( X − µ)k ] = (x − µ)k

x
∑ p(x)  

Here power k is used symbolically this shows the kth moment about the mean. Where 

k = 1,2,3,....,n . 

For continuous X random variable the moment about its mean is: 

µr = E[(X − µ)k ] = (x − µ)k f (x)dx
−∞

∞

∫  

Assuming that | (x − µ)k | f (x)dx
−∞

∞

∫ < ∞  

The 2nd moment about the random variables mean is variance. Now it is known that 

for any random variable, continuous or discrete, the mean and variable exists, 

emancipating through first moment about its origin and second moments about its 

mean respectively.  
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Sometimes one has to use moment generating functions, as calculating moments of 

random variable using direct can be difficult.  

Moment generating function for a random variable X, given probability density 

functions, is shown as follows: 

Mx (t) = E(e
tx ) =

etx p(x)
allx
∑

etx f (x)dx
−∞

∞

∫

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

 

Assuming the existence of expected values at all x, and for discrete random variable 

X | etx | p(x)
allx
∑ < ∞  and for continuous random variable X etx f (x)dx

−∞

∞

∫ < ∞ . 

Using moment generating functions one can easily find moments about the random 

variable’s origin. After finding moment generating functions under above certain 

mention assumptions then kth moment about random variable is: 

 Mx
k (0) = E(Xk ) = µ′r  

Maximum Likelihood Method Parameter Estimation 

Parameter estimation is no doubt the most popular procedures during almost all the 

econometric studies. Parameter estimation is the major part of model estimation and 

using it. Parameters are the building blocks of model. The parameter estimation can 

be done in various manners. Taking random observations sample from the population 

and using these observations for parameter estimation is most common practice.   I 

am going to use maximum likelihood due to flexibility and effectiveness or perhaps 

its most commonly used method in given literature.  This helped me understand the 

concept at wide spectrum and facilitated the drawing connections between other 

papers and my paper.  For the sake of coherence, cross reference and verification 

Maximum likelihood method was a definitive choice for me.   

Vasicek Model and Cox, Ingersoll, and Ross Model  
I am going to show the parameter estimation of CIR model and Vasicek model. These 

models are ineffective to show the dynamics of short-term interest rate but these are 

commonly used due to their mathematical tractability. The process and behavior of 
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short-term interest rate dynamics may be shown by following stochastic differential 

equation (SDE): 

dr(t) =κ (θ − r(t))dt +σr(t)γ dW (t)  

Where κ ,θ,γ ,σ  are model parameters, and Zt  are Brownian motion. When applied 

different restriction to the generic stochastic differential equation, come up with 

different single factor models; this can be defined as follows: 

Model SDE form Restriction 

Vasicek dr(t) =κ (θ − r(t))dt +σdW (t)  γ = 0  

CIR drt =κ (θ − r(t))dt +σ r(t)dW (t)  
γ =

1
2

 

 

Vasicek Model and Parameter Estimation 
I will consider general form continuous time process, which satisfies following 

stochastic differential equation: 

dr = µ(r,t)dt +σ (r,t)dW  

Where W is standard Brownian motion 

To be precise for Vasicek model introduced by Vasicek, it can be showed that 

instantaneous spot rate follows an Ornstein-Uhlenbeck process with positive constant 

coefficients (Vasicek, 1977): 

dr(t) =κ (θ − r(t))dt +σdW (t)  

Where W (t) = B(t) + φ(s)ds
0

t

∫  

The model shows mean-reversion with kappa is speed of reversion to mean,  if rate is 

greater than theta which is long term mean value kappa will make drift negative 

resulting in rates moving to long term mean value. In case rate is smaller than long 

term mean value the kappa makes drift positive resulting an increase in rates. This 

phenomenon makes sense after all in case of high interest rate market tends to slow 

down resulting in a decrease in interest rate and vice versa. Even though model has 
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disadvantages, the plus point is its explicit solution. Here I am showing solution to 

Vasicek model. 

Letting X(t) = r(t) −θ    

Now the model is dX(t) = −κX(t)dt +σdB(t) ;Ornstein Uhlenbeck process. 

Now Let 

Y (t) = eκ t X(t)  

which will result in  

dY (t) =κeκ t X(t)dt + eκ tdX(t)  

substituting dX(t) = −κX(t)dt +σdB(t)  in above expression one gets 

dY (t) = eκ tσdB(t)  

and  

Y (t) = Y (0) + eκ sσ dB(s)
0

t

∫  

Using above expression one can show 

Y (0) = X(0)  

and that 

eκ t X(t) = X(0) + eκ sσ dB(s)
0

t

∫  

X(t) = eκ t[X(0) + eκ sσ dB(s)
0

t

∫ ]  

Now putting value of X(t) into above expression r(t) can be calculated as follows, one 

gets following form with each t ≤ s : 

r(t) = r(s)e−κ (t− s ) +θ(1− e−κ (t− s ) ) +σ e−κ (t− s )
s

t

∫ dB(s)  



 12 

so that r(t)    is  normally distributed with conditional mean  given  as 

 E(r(t) Fs ) = r(s)e
−κ (t− s ) +θ(1− e−κ (t− s ) )   

and conditional variance is  

 
Var(r(t) Fs ) = E((σ e−κ (t− s ) dB(s))2 Fs

s

t

∫ )  

and 

 
Var(r(t) Fs ) =

σ
2κ

2

(1− e−2κ (t− s ) )  

The major drawback of Vasicek model is undesirable negative interest rate 

possibility, which is certain impossibility during course of life of one interest rate. 

The reason of the popularity is its  mathematical tractability and easy implementation.  

Now I can go further with it and with discrete time observations of steps 1, 2,… ,T, I 

can determine the analytic form of likelihood function. 

L = (r1,r2 ,....,rT ;φ)  

Now I can transform original continuous time process by Euler approximation, which 

will have following equation form: 

rt = rt+1 + µ(rt+1;φ) +σ (rt+1;φ)ε  

where ε  is Gaussian white noise. Now I must calculate parameter set φ = θ,κ ,α{ }  

using maximum likelihood method for Vasicek model.  

L = (2Πσ 2

2κi=1

n

∏ (1− e−2κΔt ))
1
2 exp(− 1

2
v2 (rt ,rt+1,Δt))  

where v
2 (rt ,rt+1,Δt) =

rti+1 − (θ + (rti −θ)e
−kΔt

varti
 

and varti =
σ 2

2κ
(1− e−2kΔti )  
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This may become little complicated but I can simplify the likelihood function as our 

observations have equal interval. So using time homogeneity property: 

L = 2Πσ 2

2κ
(1− e−2κΔt )

N −1
2 exp(− 1

2
v2 (rt ,rt+1,Δt)

i=1

n−1

∑ )  

Furthermore its easier to maximized log likelihood function as compare to likelihood 

function so I will take log of likelihood function for ease of use. 

ln(L) = N −1
2

ln2Π−
N −1
2

ln(σ
2

2κ
(1− e−2κΔt ))2 − 1

2
v2 (rt ,rt+1,Δt)

i=1

n−1

∑  

Now I can maximize log likelihood function using with parameter set φ = θ,κ ,α{ }  . 

which can found using following equation: 

 φ̂ = argmax(ln(L))  

Vasicek Closed form Maximum Likelihood 
Rewriting the Vasicek model interest rate dynamics as  

dr(t) = (b − ar(t))dt +σdW (t)   

Integrating the stochastic differential equation for s<t one gets 

r(t) = r(s)e−a(t− s ) + b
a
(1− e−a(t− s ) ) +σ e−a(t−u )

s

t

∫ dW (u)  

with condition on information at s the r(t) is normally distributed with mean and 

variance as follows: 

E(r(t)) = r(s)e−a(t− s ) + b
a
(1− e−a(t− s ) )  

Var(r(t)) = σ
2a

2

(1− e−2a(t− s ) )  

Which demands to estimate β =
b
a
,α = e−aΔtandV 2 =

σ 2

2a
(1− e−2aΔt ) , the maximum 

likelihood estimators can be solved into following:  
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α̂ =
n riri−1 − ri ri−1

i=1

n

∑
i=1

n

∑
i=1

n

∑

n r2i−1 − ( ri−1
i=1

n

∑ )2
i=1

n

∑
 

β̂ =
(ri − α̂ri−1)

i=1

n

∑
n(1− α̂ )  

V̂ 2 =
1
n

(ri − α̂ri−1 − β̂(1− α̂ )
i=1

n

∑ )2  

These estimated numbers give full information of delta transition probability for 

process r under objective  measure allowing single day discrete time steps, which 

makes estimation robust and effective.  

Cox, Ingersoll, and Ross Model and Parameter Estimation  
Cox Ingersoll and Ross model can be shown as following stochastic differential 

equation with nonnegative constants (Cox et all, 1985): 

dr(t) =κ (θ − r(t))dt +σ r(t)dW (t)  

Cox et all.(1985) introduced square root to original Vasicek(1977). This model has 

also been widely used due to its tractability along with Vasicek model. After 

integrating the stochastic differential equation one gets: 

r(t) = r(s) +κ (θ − r(s))ds
s

t

∫ +σ r(s)
s

t

∫ dW (s)  

applying Ito’s Formula one gets  

r(t)2 = r(s)2 + 2κ (θ − r(s))ds +
s

t

∫ 2σ r(s)2/3

s

t

∫ dW (s) +σ 2 r(s)
s

t

∫ ds  

Rearranging above expression one gets  

r(t)2 = r(s)2 + (2κθ +σ 2 ) r(s)ds
s

t

∫ − 2κ r(s)2 ds +
s

t

∫ 2σ r(s)2/3

s

t

∫ dW (s)  

Writing r(t) in terms of its initial value: 
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r(t) = r(0) +κ (θ − r(s))ds
0

t

∫ +σ r(s)
s

t

∫ dW (s)  

the unconditional mean using above expression is  

E(r(t)) = r(0) +κ (θt − E(r(s)ds
0

t

∫ )  

solving equation one gets 

E(r(t)) = θ + (r(0) −θ)e−κ t  

Rearrange above expression one gets final conditional mean  

 E(r(t) Fs ) = r(s)e
−κ (t− s ) +θ(1− e−κ (t− s ) )  

similarly one can use r(t)
2
 expression which I got after using Ito’s formula to 

calculate unconditional variance 

E(r(t)2 ) = r(0)2 + (2κθ +σ 2 ) E(r(s)ds)
0

t

∫ − 2κ E(r(s)2 ds)
s

t

∫  

substituting the value of mean into above expression and using second moment one 

gets conditional variance: 

var(r(t)) = σ 2

κ
(1− e−θt )[r(0)e−θt + κ

2
(1− e−θt )]

 

and conditional variance will be as follows: 

 
var(r(t) Fs ) = r(s)

σ 2

κ
(e−κ (t− s ) − e−2κ (t− s ) ) +θ σ

2

2κ
(1− e−κ (t− s ) )2

 

In order to develop closed-form likelihood function again I will consider general form 

continuous time process, which satisfies following stochastic differential equation: 

dr = µ(r,t)dt +σ (r,t)dW  

Where W is standard Brownian motion and with discrete time observations of steps 1, 

2,…, T, I can determine the analytic form of likelihood function. 
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L = (r1,r2 ,....,rT ;φ)  

Now I can transform original continuous time process by Euler approximation, which 

will have following equation form: 

rt = rt+1 + µ(rt+1;φ) +σ (rt+1;φ)ε  

where ε  is Gaussian white noise. Now I must calculate parameter set φ = θ,κ ,α{ }  

using maximum likelihood method for CIR model. 

L = (2Πσ 2

2κi=1

n

∏ (e−κΔt − e−2κΔt ) +θ σ
2

2κ
(1− e−κΔt )

1
2 exp(− 1

2
v2 (rt ,rt+1,Δt))  

Where v
2 (rt ,rt+1,Δt) =

rti+1 − (θ + (rti −θ)e
−kΔt

varti
 

and varti =
σ 2

κ
(e−κΔt − e−2κΔt ) +θ σ

2

2κ
(1− e−κΔt )2  

As one can assume time-homogeneity of model, I can simplify it further as follows: 

L = 2Πσ 2

κ
((e−κΔt − e−2κΔt ) +θ σ

2

2κ
(1− e−κΔt ))

N −1
2 exp(− 1

2
v2 (rt ,rt+1,Δt)

i=1

n−1

∑ )  

Now I will take log of likelihood function will make calculation easier. So I will 

transform our likelihood function into log likelihood function as follows: 

ln(L) = N −1
2

ln2Π−
N −1
2

ln(σ
2

κ
((e−κΔt − e−2κΔt ) +θ σ

2

2κ
(1− e−κΔt )))2 − 1

2
v2 (rt ,rt+1,Δt)

i=1

n−1

∑ )

 Now I can maximize log likelihood function using with parameter set φ = θ,κ ,α{ }  . 

which can found using following equation: 

 φ̂ = argmax(ln(L))  

Standard Error Estimation 

Standard error for parameters estimated by maximum likelihood method can be 

calculated by using numerical Hessian (2nd derivative). The inverse of hessian matrix 

can be seen as Covariance matrix. Let me define theoretical how to estimate Standard 

and Covariance Matrix.  
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As I am using and explaining theory which involved more than one parameter let me 

define: 

φ = (φ1,φ2 ,....,φk )   are parameters and φ̂ = (φ̂1,φ̂2 ,....,φ̂k )   are parameters estimated by 

using Maximum likelihood  

Our log likelihood function can be defined generically: 

Lm = log f (Xi;φ)i=1

n∑  

the 2nd derivatives of likelihood using all parameters will give us Fisher Information 

Matrix 

In (φ) = −

Eφ (H11) Eφ (H12 ) ... Eφ (H1k )
Eφ (H21) Eφ (H13) ... Eφ (H21)

. . . .
Eφ (Hk1) Eφ (Hk2 ) .... Eφ (Hkk )

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

 

Now taking inverse of Fisher Information Matrix, Let following be inverse of FIM: 

Jn (φ) = In
−1(φ)   

Standard Errors for estimated parameters are the diagonal values of Inverse Fisher 

information matrix.  

Literature Review 
Several attempts have been taken by researchers in the past to probe the behavior of 

short-term interest rate dynamics, which resulted in conflicting results. There have 

been developed and used throughout the time. Some of the most important models are 

Black-Scholes (1973), Merton (1973), Vasicek (1977), Cox, Ingersoll, Ross (1985). 

Chan, Karolyi, Longstaff, and Sanders (1992) used a common framework and 

compared different single-factor specification short-term interest models. K. B. 

Nowman (1997) used Chan, Karolyi, Longstaff, and Sanders (1992) techniques and 

analyzed for short-term interest rate for British data. They came up with contradictory 

results from US that volatility of interest rate does not depend on high interest rates. 

Treepongkaruna, Sirimon (2003) compared different widely accepted short-term 
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interest rate models for Australian data and came up contradictory results as 

compared to K. B. Nowman (1997). This may give an idea on selection of proxies for 

interest rate series. These studies differ in different data set and various specifications. 

Yacine Ait-Sahalia (1996) proposed a nonparametric (semi-nonparametric) estimation 

procedure to examine stochastic model. Yacine Ait-Sahalia (1996) used revised 

nonlinear specification and come up with interesting results. Further Yacine Ait-

Sahalia (2002) solved explicitly the parametric specification using Hermite 

expansion; this made maximum likelihood estimation effective for discrete time 

observation of interest rate.  Richard Stanton (1997) studied continuous time diffusion 

process using a nonparametric specification technique on daily observations of three 

and six months Treasury bill. Their study resulted in significant non-linearity in drift 

function. The guiding article of Chan et al. (1992) almost same results with 

parametric specification, this increases inconsistency of results in different studies 

using different specifications. George J. Jiang (1998) used a flexible nonparametric 

model of interest rate term and showed that nonparametric models gives more than 

satisfactory results and traditionally used models are developed on wrong grounds 

such as Chan, Karolyi, Longstaff, and Sanders (1992) and Yacine Ait-Sahalia (1996). 

Matt Pritsker (1998) worked on nonparametric tests of Yacine Ait-Sahalia (1996) and 

showed that its asymptotic distribution of kernel density estimators was ineffective, 

urged using the combination of parametric and nonparametric model for analyzing 

real time data (Matt Pritsker, 1998). He further notices that non-linearity in drift 

function is not statistically significant. David A. Chapman and Pearson (2000) worked 

on model of Yacine Ait-Sahalia (1996). The conclusion of David A. Chapman and 

Pearson (2000) paper is rather of skeptical nature.  In other word they concluded that 

nonparametric or semi-nonparametric models tested in the paper are no efficient to 

show nonlinearity in drift of short-term interest rate (David A. Chapman and Pearson, 

2000).  Another attempt to correct boundary bias of the kernel estimator was 

introduced Yongmiao Hong and Haitao Li (2005).  They rejected a series of one-

factor diffusion process models on daily Eurodollar rate data and some multi-factor 

affine models on monthly US Treasury yields.  They concluded that nonparametric 

models could be reliable tool for financial data (Yongmiao Hong and Haitao Li, 

2005). 
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Christopher S. Jones (2003) used a new Bayesian method to examine diffusion 

process.  He described that nonlinear drift in interest rates can be confirmed only 

under prior informative distribution and rejects nonlinearity of drift; results differ on 

the choice of sampling procedure, model and frequency (Christopher S. Jones, 2003). 

Christopher S. Jones (2003) urges the need and use of other factors effecting 

nonlinear drift, for example long-term yields and interest rate options, which can be 

challenging.   

Garland B. Durham (2002) came up with conclusion that volatility is important factor 

in short-term interest rate analysis. Garland B. Durham (2002) found that CEV model 

might not fully explain the short-term interest rate dynamics, highly flexible volatility 

models.  

Use of proxy for short-term interest rate is highly controversial.   The study of short-

term interest rate dynamic is mostly based on three or six-month Treasury bills, 

federal funds rate and Eurodollar rates. Christopher S. Jones (2003) argue against use 

of seven-day Eurodollar deposit rate data as proxy for short-term interest rate due to 

noise. On the other hand David A. Chapman et al. (1999) is not satisfied with longer 

time maturity proxies. According to David A. Chapman et al. (1999), for nonlinear 

model using three-month Treasury bill yield is not smart.  

T.G. Bali and L. Wu (2006) used three widely used interest rate series and tested on 

them with flexible parametric specifications; single factor with nonlinear parametric 

drift and variance functions, and GARCH volatility with non-normal innovation. 

(T.G. Bali and L. Wu, 2006) It feels like that T.G. Bali and L. Wu (2006) have same 

conclusion about proxies as David A. Chapman et al. (1999) that longer maturities 

proxies do not proved to be best choice for short-term interest rate dynamics.   In this 

paper I am going to follow footsteps of T.G. Bali and L. Wu (2006). I will study the 

consistency of results with updated and new data.  

So question unanswered or made rather more confused is parametric specification or 

nonparametric specification and longer maturity proxies or short-term maturities 

proxies? 
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Theoretical model 
The empirical side of my study will lead us to model which I m going to use for short-

term interest rate dynamics. I have chosen one-factor model introduced by T.G. Bali 

and L. Wu (2006).  The model is used without and with various restrictions. Showing 

short-term interest rate process by following stochastic differential equation 

drt = µ(rt )dt + ν(rt )dWt  

Where  

rt = Interest rate at time t  

Wt =Wiener process or Standard Brownian motion 

µ(rt ) = Flexible drift function 

ν(rt )=Flexible variance function 

There are various authors, which have used different nonparametric, parametric or 

semi-parametric specifications for drift and variance function. Yacine Ait-Sahalia 

(1996) has introduced the famous nonlinear specification for drift function. Brenner, 

Harjes, and Kroner (1996) have also included nonlinear drift function in their study. I 

will stick to T.G. Bali and L. Wu (2006) flexible specification for it covers almost all 

of the one-factor models in past years. The drift, in Laurent series expansion with 

degree of five and negative one, and variance, combination of Constant Elasticity 

volatility (CEV) and an affine specification, except that I increased another parameter 

 which is an addition to all these given models. Here functions are shown as 

follows: 

µ(rt ) = α0 +α1rt +α2rt
2 +α 3rt

3 +α 4rt
4 +α5rt

5 +α6rt
−1  

ν(rt ) = β0 + β1rt + β2rt
2 + β3rt

β4
 

here rt  is interest rate at time t, α0 ,α1,α2 ,α 3,α 4 ,α5 ,α6 ,β0 ,β1,β2 ,β3,β4  are unknown 

parameters.  

This model is very generic in nature, encompasses different alternative short-term 

interest rate models, which is a reasonable and heuristically and with mathematical 



  21 

logic.  Here are some of the important alternative models which has been develop 

with course of time using different restriction on above-mentioned generic model.  

Models α0  α1  α2  α 3  α 4  α5  α6  β0  β1  β3  β4  

Ait-Sahalia 
    0 0 0     

CKLS 
  0 0 0 0 0 0 0   

Vasicek 
  0 0 0 0 0  0 0 0 

BS 
  0 0 0 0 0 0  0 1 

CIR 
  0 0 0 0 0 0  0 .5 

CEV 
 0 0 0 0 0 0 0 0   

Merton 
 0 0 0 0 0 0  0 0 0 

Duffie et al. 
  0 0 0 0 0   0  

Ahn et al. 
0   0 0 0 0 0 0  3 

Jones 
   0 0 0  0 0   

In order to put the theory into practice I face some limitations, big one is continuous 

process cannot be empirically tested. In order to overcome or honestly speaking 

escaping from this problem, I need to transform the continuous time model into 

discrete time form. I can use first order Euler scheme for discretization. After 

applying Euler approximation on model, I can show our model as follows: 

rt − rt−Δ = µ(rt )Δ + ν(rt )Δεt  

or  

rt − rt−Δ = (α0 +α1rt +α2rt
2 +α 3rt

3 +α 4rt
4 +α5rt

5 +α6rt
−1)Δ + (β0 + β1rt + β2rt

2 + β3rt
β4 )Δεt

 

Here = 1/252, denotes time interval between two consecutive observations, εt  

shows independently identically normally distributed error terms or  

εt ~ N(0,1) . 

I am going to use most common quasi-maximum likelihood estimation for parameter 

estimation under assumption that transition density is Gaussian.  Because probabilities 

function of most of above mentioned models are not developed or known, especially 
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our model. Euler-based Gaussian maximum likelihood is an approximation, which 

works fine if the time steps are small. For that I used smallest possible time interval.  

For that I assume that the distribution of our finite sample with interval delta is 

normal, which is not the case in reality. But this will make our model into practice.  

Using the assumptions and Euler approximation the likelihood function is: 

L =
T −1
2
ln(2Π) − .5 ln(rt−Δ )Δ +

(rt − rt − µ(rt−Δ )Δ)
2

ν(rt−Δ )Δ
⎡

⎣
⎢

⎤

⎦
⎥

t=2

T

∑  

Now I can maximize log likelihood function using with parameter set 

φ = α0 ,α1,α2 ,α 3,α 4 ,α5 ,α6 ,β0 ,β1,β2 ,β3,β4{ } , which can found using following 

equation: 

φ̂ = argmax(ln(L))  

Data and Estimation 
Before I start with estimation I want to introduce the relationship between different 

parameters. I checked different studies which used same or similar kind of 

specifications but with conflicting results depending on the interest rate series 

selection. Why so much inconsistencies? The probable answer can be due to 

estimation bias.  Let me present a table which shows different parameters relationship 

with each other under somehow similar specification used by Ait-Sahalia (1996b).  

The specification used is: 

rt − rt−Δ = (α0 +α1rt +α2rt
2 +α−1rt

−1)Δ + (β0 + β1rt + β2rt
β3 )Δεt  

Here are some conditions applied on these parameters:  

Condition Occurrence 

β0 ≥ 0  Always 

β1 > 0  β0 = 0  and β3 > 0  

β1 > 0  0 < β3 < 1  and β2 = 0  

β2 > 0  β0 = 0  and 0 < β3 < 1  

β2 > 0  β3 > 0  or β1 = 0  
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β3 > 1  β2 > 0  

 

I am using three different interest-rate data series; overnight federal funds rate, 3-

month US Treasury Bill yield and one-month Eurodollar deposit rate. These series 

comprises almost all of the literature used to understand short-term interest-rate 

dynamics. There have been different choices for data series with in short-term interest 

rate dynamics articles. Using one particular data series as proxy for analyzing short-

term interest rate has been criticized. There is not consensus on whether to use or not 

a certain data series, which can fully encompass all the significant factors influencing 

short-term interest rate diffusion process.  But there has been some consistency in 

choosing three interest rate series. Most of the authors used either one of them or 

combined them in their studies. They used different observation frequency and 

different sizes of sample. I am going to use all three-interest rate series with daily 

frequencies except weekends. These interest rate series are Federal Funds rate, US 

Treasury bill, and Eurodollar Deposit rate. These series were acquired from Board of 

Governors of the Federal Reserve System website. These series are available to 

everyone on their Statistics and Historical Data segment. Federal Funds are short-term 

borrowing dealt between financial institutions. Financial institutions required to hold 

reserves with Federal Reserve Banks can only borrow them.  Federal Funds are 

quintessential part of overnight credit market in US with their current and expected 

interest rates are basis of money market in US. Federal funds rate used in the series is 

weighted average of rates on brokered trades. Eurodollar Deposits are bank deposits 

denominated in US dollars located outside US. Eurodollar Deposits are located in 

London in the series. US Treasury bills are short-term Securities issued by US 

Treasury. US Treasury bill yield is quoted on a discount of 360 days per year.  I chose 

recent sample of these interest rate series. Total number of daily observations is 3545 

for each interest rate series starting from January 1996 to July 2009. One reason of 

not choosing nearest observations could be due to Current Credit crunch, which may 

or may not influence the prices of these instruments. Giving benefit of doubt to that 

factor delimited me to use most recent observations. If I use these observations, I have 

to make necessary adjustments and assumptions that do not come under given topics 

and would make this paper messy.  I am going to assume no exogenous factor 

influencing especially current credit crunch. Given are three graphs of these interest 
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rate series. The red line shows Eurodollar deposit rate, green is for US Treasury bill 

and blue is for Federal funds rate.  It look obvious that their movement is quite similar 

over period of time, keeping in mind that these rates sample of taken from same 

period of time.  The only major shock which can not be seen in other series is sudden 

upward movement of Federal funds rate and sudden collapse probably within the 

week. These sudden movements were possibly due to panic in the market.  Other than 

that I see gradual decline in interest rates in all the series, reaching to nearest of zero 

in contemporary times.  All series are currently at their lowest in past almost fifteen 

years time span. 

 

All three-interest rate series show extreme kurtosis and negative skewness. For 

normal distribution, kurtosis has to be 3 and skewness has to be zero. Our data is 

mostly based on the left side of mean and kurtosis is less than 3, which means that our 

interest rate series are less outlier-prone. The Unconditional means of Federal Funds 

rate, Eurodollar deposit rates and US Treasury bill Yield are 3.7322, 3.9022, and 3.41 

respectively.  

Interest rate series Mean Variance Std. Dev. Skewness Kurtosis 

Fed. Funds Rate 3.7322 3.7715 1.9420 -0.3989 1.6734 

Eurodollar Dep. Rate 3.9022 3.4535 1.8584 -0.4128 1.6248 

US Treasury bill 3.4147 3.2157 1.7932 -0.3820 1.6539 
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Results 
Before going into my general analysis of nonlinearity of interest rate diffusion 

process, I am going present working explicitly solved closed form vasicek parameter 

estimation for Maximum likelihood. For each interest rate series the result are as 

follows: 

Interest rate series Kappa Theta sigma 

Federal Funds rate 0.9475 0.0329 0.0277 

Eurodollar deposit rate 0.1358 0.0123 0.0126 

US Treasury bill yield 0.0463 -0.0396 0.0093 

One knows that theta is level of drift in a long term where interest rate is pulled with 

speed of kappa. This seems implausible when one looks at theta value of US Treasury 

bill yield. When using almost same kind of interest rate series with similar movement 

over the time with almost similar shocks, the level of interest rate over long run is 

near, the theta should lay near each other. Federal funds rate and Eurodollar has 

positive values with 3.29 and 1.22 respectively. US Treasury bill yield, according to 

vasicek model, has long term mean of -3.94 with speed 0.05. This inconsistency 

creates confusion in my mind over effectiveness of Vasicek model. This may give 

strong support for claiming that interest rate is highly nonlinear and using a linear 

model like vasicek may result in miscalculation and hence inference on interest rate 

dynamics.  

Nonlinearity in Drift Function of Specification 

For analysis I have chosen different nested specification to my original specification 

to estimated original results for parameter estimation. Here are details to my nested 

tests with same variance for all the cases: 

Specification Drift 

Affine α0 +α1rt  

Fifth-order polynomial α0 +α1rt +α2rt
2 +α 3rt

3 +α 4rt
4 +α5rt

5  

 

Following graph shows the movements of drift function of the specification after 

model parameters were estimated. As one can see that there is positive drift in Federal 

Funds rate when interest rates are over 3, In Eurodollar deposit rate and US Treasury 
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bill yield, the drift is negative when Eurodollar deposit rate is over 2.5 and US 

Treasury bill yield is over 2. Less than this rate there is no drift. 

 

Following table shows Log likelihood parameters and concerning standard errors for 

general specification, fifth-order polynomial, and affine specifications for daily 

observations of Eurodollar deposit rate.  All parameter except α2 ,α 3,α 4 ,α5 ,β4  have 

small t-statistics. There is identification problem with general specification used by 

me.  There have been inconsistencies between different parameter estimation among 

different studies. The t test statistics shows that α2 ,α 3,α 4 ,α5 ,β4  may be significantly 

different from zero.  When I ran test with fifth-order polynomial shows rather 

different t test significance test.  Here most of the parameters have smaller values than 

in general specification. α1,α2 ,α 3,β2 ,β3,β4  has t-test statistics values which may be 

explained as these parameters may be significantly different from zero.  Now I ran 

test with affine specification and inference.  All t-test statistics have smaller values 

expect β2 ,β3,β4 ,  which may be significantly different from zero.  The log likelihood 

values increased from general to fifth-order polynomial and again decreased in affine 

case slightly. 

Parameters General Fifth Affine 

α0  

0.0077 

(0.0392) 

-0.0280 

(0.0208) 

-0.0002 

(0.0448) 

α1  

-0.0072 

(0.0142) 

-0.0434 

(0.0142) 

-0.0010 

(0.0137) 
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α2  

0.1078 

(0.0030) 

0.0596 

(0.0044) - 

α 3  

-0.0183 

(0.0006) 

-0.0106 

(0.0009) - 

α 4  

-0.1631 

(0.0142) 

-0.0044 

(0.0142) - 

α5  

0.0001 

(1.8e-05) 

4.9e-05 

(3.0e-05) - 

α6  

0.0636 

(0.0515) - - 

β0  

0.7528 

(0.4455) 

0.0056 

(0.0270) 

0.0889 

(0.9321) 

β1  

-0.0936 

(0.2369) 

0.0779 

(0.0294) 

0.7907 

(0.3972) 

β2  

0.01374 

(0.0850) 

0.0077 

(0.0281) 

0.5174 

(0.0844) 

β3  

0.0120 

(0.0182) 

0.0383 

(0.0158) 

-0.2838 

(0.0493) 

β4  

0.0332 

(0.0075) 

0.0362 

(0.0040) 

0.0231 

(0.0010) 

Log L 3315.11 3313.95 3304.03 

Following table shows Log likelihood parameters and concerning standard errors for 

general specification, fifth-order polynomial, and affine specifications for one month 

Federal funds rate.  When I ran my general specification, almost all parameter 

α0 ,α2 ,α 3,α5 ,α6 ,β0 ,β1,β2 ,β3,β4  have larger t-statistics, only one parameter has 

smaller t-statistics. There are inconsistencies more or less with same kind of 

specification or same short-term interest rate series. The t test statistics shows that 

α0 ,α2 ,α 3,α5 ,α6 ,β0 ,β1,β2 ,β3,β4  may be significantly different from zero.  This fact 

shows that nonlinearity is caused by selection of proxy for analyzing short-term 

interest rate dynamics. When I ran test with fifth-order polynomial shows rather 

different t test significance test.  Here β0  has smaller value than in general 

specification and shows that parameter may not be significantly different from zero. 

α0 ,α1,α2 ,α 3,α5 ,α6 ,β0 ,β2 ,β3,β4  has t-test statistics values which may be explained 

as these parameters may be significantly different from zero.   This shows nearly 
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consistent results theoretical but notice the difference of parameter estimated. Now I 

ran test with affine specification and results are more confusing. All t-test statistics 

have smaller values expect β4  which may be significantly different from zero.  The 

log likelihood values decreased from general to fifth-order polynomial and affine 

slightly. 

Parameters General Fifth Affine 

α0  

-0.0623 

(0.0267) 

0.4625 

(0.0785) 

0.0097 

(0.0604) 

α1  

-0.0040 

(0.0058) 

0.3628 

(0.0330) 

-0.0037 

(0.0313) 

α2  

-0.1426 

(0.0011) 

0.03039 

(0.0079) - 

α 3  

0.0412 

(0.0002) 

-0.0391 

(0.0016) - 

α 4  

0.0113 

(0.0058) 

-1.0583 

(0.0330) - 

α5  

-0.0005 

(6.0e-06) 

0.0002 

(0.0001) - 

α6  

0.1454 

(0.0215) - - 

β0  

1.4558 

(0.0440) 

4.7250 

(1.1807) 

-0.2430 

(0.3765) 

β1  

-0.0368 

(0.0075) 

0.6995 

(0.6479) 

2.5427 

(1.7379) 

β2  

-0.0072 

(0.0012) 

-3.3488 

(0.3016) 

-0.0864 

(0.4562) 

β3  

-0.0136 

(0.0024) 

1.8217 

(0.1863) 

2.3657 

(1.5106) 

β4  

0.0161 

(0.0007) 

0.0257 

(0.0011) 

0.0118 

(0.0043) 

Log L 3350.81 3317.42 3313.83 

Following table shows Log likelihood parameters and concerning standard errors for 

general specification, fifth-order polynomial, and affine specifications for US 
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Treasury bill yield daily observations.  When I ran my general specification all 

parameter except α2 ,α 3,α 4 ,α5  have smaller t-statistics. There are inconsistencies 

more or less with same kind of specification or same short-term interest rate series. 

The t test statistics shows that α2 ,α 3,α 4 ,α5  may be significantly different from zero.  

This fact shows that nonlinearity is caused by selection of proxy for analyzing short-

term interest rate dynamics. When I ran test with fifth-order polynomial shows rather 

different t test significance test.  I see another inconsistency, here all parameters 

except α1,α2 ,α 3,α 4 ,β3  has smaller value than in general specification hence 

α1,α2 ,α 3,α 4 ,β3  can only be shown as may be significantly different from zero.  As I 

wanted to conclude as US Treasury bill to be almost perfect proxy for my general 

specification, the fifth-order polynomial result dazzled me. Let us see what happens 

when I run test with affine specification. Results are way more satisfying than fifth-

order polynomials. All t-test statistics have larger values expect a0 ,a1  . All other 

parameter may be significantly different from zero.  The log likelihood values 

decreased from general to fifth-order polynomial and affine slightly. 

Parameters General Fifth Affine 

α0  

-0.0146 

(0.0444) 

-0.0249 

(0.0383) 

-0.0012 

(0.0370) 

α1  

-0.0166 

(0.0204) 

0.1862 

(0.0092) 

-0.0006 

(0.0085) 

α2  

0.0618 

(0.0050) 

-0.0166 

(0.0019)  

α 3  

-0.0130 

(0.0100) 

0.0028 

(0.0004)  

α 4  

-0.0523 

(0.0204) 

-0.1540 

(0.0092)  

α5  

0.0001 

(3.9e-05) 

-2.5e-05 

(1.3e-05)  

α6  

0.0158 

(0.0462) -  

β0  

-0.0409 

(0.2038) 

0.0094 

(0.7779) 

2.9678 

(0.6679) 
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β1  

0.1582 

(0.2477) 

0.0087 

(0.1918) 

-0.4580 

(0.1369) 

β2  

0.4891 

(0.4133) 

-0.0163 

(0.4190) 

-0.2739 

(0.0255) 

β3  

0.0833 

(0.0668) 

2.8612 

(0.9819) 

0.6377 

(0.0541) 

β4  

-0.0321 

(0.0166) 

-0.0020 

(0.0026) 

0.0156 

(0.0005) 

Log L 3308.13 3300.49 3300.33 

Now from our Log likelihood values I can test parameters with likelihood ratio test. I 

used affine drift specifications and fifth-order polynomial specifications for Federal 

funds rate, US Treasury bill yield, and Eurodollar deposit rate, as used by T.G. Bali 

and L. Wu (2006). 

Goodness of fit using Likelihood Ratio Test 
 The likelihood ratio test for three short-term interest rate series is: 

LR = 2(ΔLogL) ~ χ 2 (4)   

I am going to run test forα2 = α 3 = α 4 = α5 = 0 , which mean that all given 

parameters are jointly zero.  The results from likelihood ratio are 0.3316, 2.2300, and 

7.1815, respectively for US Treasury bill yield, Eurodollar deposit rate, and Federal 

funds rate.  When comparing test-statistics to Critical value with degree of freedom of 

4 and 95% confidence interval; 9.49. I cannot reject null hypothesis of parameter 

jointly zero for US Treasury bill yield and Federal funds rates and Eurodollar deposit 

rate with degree of freedom of 4 and 95% confidence interval. 

These conflicting result shows that diffusion process of short-term interest rate is 

highly nonlinear depending upon the selection of proxy for short-term interest rate 

diffusion process. These results are somewhat consistent in some areas with previous 

studies and inconsistent at the same time.   

Nonlinearity in Variance Function of Specification 
I analyzed the presence of nonlinearity in drift function in previous part and came up 

with confusing results. I noticed that sometimes affine specification or Constant 

elasticity volatility specification does not explain the nonlinearity in short-term 
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interest rate diffusion. Therefore one might think to compare the general variance 

specification with affine and Constant Elasticity Volatility variance specification.  

Following table shows the different variance specification used for likelihood ratio 

test to check the nonlinearity of interest rate diffusion: 

Specification Fed. funds Eu/dollar dep. US Treasury bill 

β0 + β1rt  3307.19 3314.39 3301.64 

β3rt
β4  3311.64 3307.09 3300.64 

β0 + β1rt + β2rt
2 + β3rt

β4  3350.81 3315.11 3308.13 

 

Now I am going to test for likelihood ratio for general variance specification to affine 

specification and Constant elasticity volatility specification. The likelihood ratio test 

for three short-term interest rate series is, if I jointly check thatβ2 = β3 = β4 = 0  and 

thatβ0 = β1 = β2 = 0 : 

LR = 2(ΔLogL) ~ χ 2 (3)   

Following table shows the likelihood values of Federal funds rate, Eurodollar deposit 

rates and US Treasury bill yield: 

Likelihood ratio test Federal funds Eurodollar deposit US Treasury bill 

LR = 2(LogLgeneral − LogLaffine )  87.24 1.44 12.98 

LR = 2(LogLgeneral − LogLCEV )  78.74 16.04 14.98 

The critical value of chi-square with degree of freedom of 3 and confidence interval 

of 95% is 7.815. Comparing the critical value with test-statistics, I may reject the 

hypothesis that β2 = β3 = β4 = 0  for Federal funds rate, and US Treasury bill. This 

shows that affine specification may not explain the diffusion process of short-term 

interest rate model using these interest rate series as proxies. Likelihood test on 

Eurodollar deposit rate shows that null hypothesis of β2 = β3 = β4 = 0may not be 

rejected.  Comparing the test statistics ofβ0 = β1 = β2 = 0 , I may reject the hypothesis 

for all three interest rate series, which means that Constant elasticity volatility 

specification may not be able to explain interest rate diffusion process using these 
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interest rate series. I may conclude that diffusion is highly nonlinear or following a 

random path.  

Conclusion 
There has not been any agreement on the effective models for analyzing short-term 

interest rate dynamics. This paper studied a variety of short-rate interest rate models 

for different widely used interest rate series. I took a step further from a flexible 

specification for the analysis of short-term interest rate model presented by Turan G. 

Bali, Liuren Wu (2006), which in fact was influenced by originally given Ait-Sahalia 

(1996) and further improved in Ait-Sahalia (2002). For the estimation of parameters I 

used Quasi-maximum likelihood method. Started my analysis from the traditional, 

easily tractable model, such as Vasicek model and Cox, Ingersoll, Ross model to 

more modern models, such as Turan G. Bali, Liuren Wu, 2006’s specification enabled 

me to understand the diffusion process dilemma. I ran nested test under general 

specification from affine to fifth-order polynomial specification. My results showed 

that nonlinearity of short-term interest rate diffusion process depends upon data series 

as interest rate proxy. Result showed inconsistencies, but one can examine that 

nonlinearity is more visible when one runs test under different variance specifications. 

For that I tested CEV variance specification and affine specification. My result 

showed that CEV and affine specifications are unable to tackle with diffusion process 

of short-term interest rate. More attention to be made on variance specification rather 

than drift specification, Variance specification played a vital role in my study.  One 

can thrive for a better specification to understand short-term interest rate dynamics. 

Currently used specifications are ineffective but widely used for a better 

approximation. Interest rate series did not show same kind of likelihood statistics for 

that one can object on the usage of these specifications, but these inconsistencies have 

been a part of interest rate analysis throughout the life of the subject. I have to 

formally acknowledge the existence of nonlinearity which actually will have a great 

impact on high interest rate levels. 
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