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ABSTRACT 

Although antiretroviral therapy (ART) can effectively inhibit replication of human 
immunodeficiency virus type 1 (HIV-1), the virus is able to persist in cellular and 
anatomical viral reservoirs. Latently infected resting memory CD4+ T-cells are an 
important cellular reservoir, and the central nervous system (CNS) an important 
anatomical reservoir for HIV-1 infection. The overall aim of this thesis was to gain 
greater understanding of HIV-1 persistence, in regards to latent infection as well as 
the central nervous system.  

The initial viral decay rate after initiation of ART has been proposed as a measure of 
relative regimen potency. We compared initial viral decay in subjects treated with 
three ART regimens, and found that efavirenz-based therapy gave a faster initial viral 
decay than protease inhibitor (PI) treated subjects. In turn, lopinavir/ritonavir-based 
therapy gave a faster initial viral decay than atazanavir/ritonavir-based therapy. This 
may reflect different inherent antiretroviral potency between the treatment regimens.  

Latently infected CD4+ T-cells constitute a major barrier for the eradication of HIV-1 
infection. We investigated if a high dose of intravenous immunoglobulin (IVIG) 
given in addition to effective ART could reduce the size of the pool of latently 
infected resting cells, and found a reduction in the pool size in five of seven 
individuals where the latent reservoir was quantifiable. Our findings suggest that the 
reservoir became accessible through IVIG treatment, and indicate that novel modes 
of intervention can have an effect on the latent reservoir.  

Increased levels of intrathecal immune activation are often found in cerebrospinal 
fluid (CSF) of treated patients despite effective systemic suppression of HIV-1. We 
investigated intrathecal immune activation, measured as neopterin and IgG-index, in 
patients with several years of successful therapy, and found that although ART has a 
substantial effect on lowering viral replication and immune activation in the CSF, a 
majority of patients still have ongoing intrathecal immune activation despite effective 
suppression of the virus for extended periods of time.  

Occasional cases of CSF viral escape have been reported. We investigated the 
occurrence of CSF viral escape in neuroasymptomatic patients effectively treated 
with commonly used ART regimens. We found that 7 (10%) of 69 patients had 
evidence of CSF viral escape, which is more common than previously recognized 
and may have important implications for future treatment strategies and the use of 
new drug combinations. 

Keywords: HIV-1; antiretroviral therapy; latency; cerebrospinal fluid; central nervous 
system; efavirenz; lopinavir; atazanavir; neopterin; viral decay. 
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SAMMANFATTNING PÅ SVENSKA 
Humant immunbristvirus (HIV) infekterar och skadar viktiga celler i 
kroppens immunförsvar. När immunförsvaret blivit så nedsatt att kroppen 
inte längre kan försvara sig mot infektioner leder det till 
immunbristsyndromet AIDS. HIV är spritt över hela världen och många 
miljoner människor smittas av viruset och dör av dess skadeverkningar varje 
år. Idag finns ett flertal effektiva läkemedel som bromsar virusets förmåga att 
föröka sig, men trots detta kan infektionen inte botas, utan återkommer 
snabbt om man slutar med medicineringen. Viruset har förmågan att gömma 
sig i så kallade reservoarer, där behandlingen inte har någon effekt. En typ av 
reservoar utgörs av ”sovande” immunförsvarsceller. Där kan virus finnas 
vilande (”latent”) inne i värdcellens arvsmassa i en inaktiv form som inte 
påverkas av behandling. En annan typ av reservoarer är anatomiska vävnader 
som har egenskaper som gör att behandlingen där skiljer sig åt från resten 
kroppen, och en viktig sådan vävnad är det centrala nervsystemet (CNS). I 
den här avhandlingen har jag studerat olika aspekter av kvarvarande, eller 
”persisterande”, infektion med HIV. 

En förutsättning för att kunna bromsa virusets förmåga att föröka sig och 
skada immunförsvaret är att vi har tillgång till effektiva bromsmediciner. Ett 
sätt att jämföra hur effektiv en behandling är, är att mäta hur snabbt 
virusnivåerna i blodet sjunker efter att man påbörjar medicinering. Vi har 
jämfört hur snabbt viruset sjunker efter start av medicinering mellan tre olika 
kombinationsbehandlingar mot HIV baserade på endera av läkemedlen 
efavirenz, lopinavir eller atazanavir. Vi fann att patienter som behandlades 
med kombinationer av läkemedel innehållande efavirenz sjönk snabbare i 
virustal än vad patienterna gjorde som behandlades med någon av de andra 
kombinationerna. Detta kan innebära att kombinationer innehållande 
efavirenz är mer potenta i att bromsa viruset än de båda andra 
kombinationerna, men för att se om detta stämmer måste man se hur bra 
behandlingarna fungerar på längre sikt. 

Sovande immunförsvarsceller, så kallade ”minnesceller”, är viktiga för att vi 
snabbt ska kunna försvara oss mot infektioner, och dessa celler kan leva i 
kroppen under mycket lång tid i väntan på att de ska behövas. Problemet är 
att minnescellerna kan infekteras med HIV och bära med sig viruset lika 
länge som de lever, och detta är en av de viktigaste anledningarna till att 
infektionen finns kvar i kroppen trots effektiv behandling. Vi har studerat om 
intravenöst immunoglobulin, förkortat IVIG (så kallat ”gammaglobulin”) 
givet i höga doser kan minska andelen av minnescellerna i kroppen som bär 
på viruset. Vi fann att andelen infekterade minnesceller minskade hos en 



majoritet av de patienter vi undersökte efter att de fått behandling med IVIG i 
tillägg till vanlig behandling med bromsmediciner. Detta tyder på att det går 
att påverka reservoaren av infekterade minnesceller med nya typer av 
behandling, även om det återstår mycket forskning innan vi vet om det är 
något som innebär någon fördel för patienter på lång sikt. 

HIV infekterar även hjärnan och kan där orsaka nervskador, och hos patienter 
med långt gången infektion en typ av demensliknande sjukdom som kan vara 
svårt handikappande för patienterna. Lyckligtvis är detta ovanligt om man har 
tillgång till behandling, eftersom bromsmedicinering är effektiv även i CNS. 
Däremot är det troligt att viruset kan finnas kvar i hjärnan trots behandling, 
precis som det kan göra i övriga kroppen. Det är inte säkert att läkemedel 
fungerar fullt ut i CNS, eftersom hjärnan omges av en skyddande barriär, den 
så kallade blod-hjärn-barriären, som hindrar många läkemedel från att tränga 
in i CNS. Dessutom infekterar viruset celltyper i hjärnan som kan leva under 
mycket lång tid och därmed skulle kunna bära på viruset länge. 

Vi undersökte tecken på inflammation (dvs. ett retningstillstånd som orsakas 
av en infektion med ett smittämne) i ryggvätskan hos patienter som fått 
effektiv HIV-behandling under flera års tid. Trots att de inte haft något 
mätbart virus i kroppen under lång tid kunde vi se att de flesta ändå hade 
tecken på inflammation i hjärnan om vi jämförde med friska personer. Detta 
kan tyda på att virus kan fortsätta att föröka sig i hjärnan trots att man får 
effektiv bromsmedicinering, men för att ta reda på om det verkligen är så 
måste man göra ytterligare forskning på området. 

Vi har också undersökt hur vanligt det är att man kan hitta virus i 
ryggvätskan på patienter som får så effektiv behandling att vi inte kan mäta 
något virus i blodet. Vi fann att tio procent av de patienter vi undersökte 
faktisk hade påvisbart virus i ryggvätskan, vilket är en betydligt större andel 
än vad man vetat om tidigare. En möjlig förklaring till att det är så är att vissa 
av de nyare läkemedlen inte kan ta sig in i hjärnan tillräckligt effektivt. För 
att kunna ta reda på om det verkligen är så måste vi göra fler undersökningar, 
där man tittar på hur det förhåller sig hos ett större antal patienter. 

HIV som finns kvar i kroppen trots effektiv behandling förhindrar att 
infektionen kan botas. För att komma närmare en slutlig bot av infektionen 
måste vi lära oss mer om vilka läkemedel som är mest effektiva och hur man 
kan komma åt virus som inte påverkas av behandlingen, till exempel i vilande 
minnesceller och i hjärnan. Min förhoppning är att de arbeten som ingår i 
denna avhandling kan bidra på något sätt till all den ökade kunskap som 
behövs för att bättre behandla HIV. 
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1 INTRODUCTION 
 

1.1 The HIV epidemic 
 

In 1981, the first cases of what was later termed acquired immunodeficiency 
syndrome (AIDS) was described in previously healthy young Californian 
men suffering from Pneumocystis carinii (jiroveci) pneumonia (PCP)[1]. 
Only a few years later the causative agent, the human immunodeficiency 
virus type-1 (HIV-1) was identified [2]. Since its discovery, increased 
understanding of the scope of the global epidemic has led to the recognition 
that the HIV-epidemic constitutes one of the most dramatic challenges to 
human health and development worldwide. The HIV epidemic now affects 
more than 30 million people globally, with an estimated 2.7 million newly 
infected people, and 2 million AIDS-related deaths occurring in 2007 [3]. 
Since the beginning of the epidemic, an estimated 25 million people have 
died of HIV-related causes. Sub-Saharan Africa remains the region most 
heavily affected, containing 67 % of the worlds HIV-infected individuals 
(Figure 1), and in these countries, the HIV epidemic has had dramatic 
consequences for society, affecting the age distribution of national 
populations, slowing economic growth and increasing poverty [3].  

Although the prevalence of infection has declined since the year 2000, 
infection rates remains high, and the total number of people living with HIV 
has increased due to higher infection rates than the number of HIV-related 
deaths. While the epidemic in sub-Saharan Africa appears to have stabilized, 
it continues to grow alarmingly in other regions of the world, such as Eastern 
Europe and Asia. Heterosexual transmission is the most important mode of 
transmission worldwide, and remains the driving force behind the epidemic 
in southern Africa, while intravenous drug use is a major contributor to the 
epidemics in Eastern Europe and Asia. Since the overlap between intravenous 
drug use and commercial sex work in these regions is considerable, there is a 
significant risk for the development of an extensive sexually transmitted 
epidemic in these regions [3]. In Sweden, HIV prevalence remains low, 
although a slight increase has occurred in recent years [4]. However, condom 
use in Sweden is low and has decreased in recent years [5], as illustrated by 
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the massive increase in incidence of Chlamydia infection in the last decade, 
which is a cause for concern regarding the risk for HIV transmission [6]. 

1.2 The origin of HIV 
 

Two distinct viruses cause AIDS in humans, HIV-1 and HIV-2 [7]. Of the 
two, HIV-1 is the virus primarily responsible for the global HIV epidemic, 
while HIV-2 is more geographically restricted [8]. HIV-1 can further be 
divided into three groups; M (main), N (non-M, non-O) and O (outlier). The 
M group is the cause of the global epidemic, and can be further divided into 
subtypes (A, B, C, D, F, G, H, J and K), circulating recombinant forms (CRF) 
and unique recombinant forms (URF) [8-11]. Compelling phylogenetic 
evidence demonstrates that HIV-1 and HIV-2 originate from simian 
immunodeficiency virus (SIV) in African non-human primates. The natural 
reservoir of HIV-1 is the chimpanzee subspecies Pan troglodytes troglodytes 
which harbors the closely related SIVcpz virus [12-13] that has, with the 
possible exception for group O [14], been transmitted to humans as HIV-1. 
These primates are found in southern Cameroon, and this region is 
considered as the epicenter of the HIV-1 epidemic (Figure 2) [13, 15]. HIV-2 
closely resembles the SIVsm found in West African sooty mangabey 
(Cercocebus torquatus atys) monkeys [16-17]. Both animals come into close 
contact with humans both as sources of meat and as pets, and direct exposure 
to animal blood through butchering or consumption of contaminated animals 
is a likely route of transmission to humans [18]. Although both HIV-1 and 
HIV-2 can cause immunodeficiency, HIV-2 has a lower transmission rate and 
is less virulent compared to HIV-1 and does not cause AIDS in all infected 
individuals [16-17]. HIV-2 is not discussed further in this thesis. 

HIV-1 likely entered the human population in the beginning of the twentieth 
century [18-20]. The earliest known case of HIV-1 was retrospectively 
identified in a plasma sample obtained in 1959 in Leopoldville, now 
Kinshasa, in the Democratic Republic of Congo [21]. However, even if virus 
was present in humans as early as the year 1900, the epidemic did not pick up 
speed until later in the century. Several possible factors may have contributed 
to the acceleration of the HIV-1 epidemic; increased travel, urbanization, 
enslavement, prostitution and societal disruption in the beginning of the 
century have been proposed to have facilitated the spread of the epidemic. In 
addition, the increased use of injections using unsterile medical equipment 
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Figure 1. A global view of HIV infection. Highest prevalence rates are found 
in sub-Saharan Africa, where up to a quarter of the population is infected 
with HIV. High rates of transmission are now seen in Asia and Eastern 
Europe. (Source: UNAIDS 2008 Report on the global AIDS epidemic) 

 

 

 

 

 

 

 

 

 

Figure 2. Natural ranges of the four chimpanzee species in western Africa. The 
natural reservoir of HIV-1 is the subspecies P. t. troglodytes resident in southern 
Cameroon. (From [13]. Reprinted with permission from AAAS.)  

 

 



HIV Persistence and Viral Reservoirs 

4 

 

 

 

 

 

 

 

 

 

Figure 3. The life-cycle of HIV. HIV-1 enters the target cell by fusion. Subsequent 
steps in the viral life-cycle involve reverse transcription of viral RNA, integration of 
proviral DNA into the host cell genome and assembly of viral proteins into new 
virions budding from the cell surface. Adapted from [22] (Reprinted by permission 
from Macmillan Publishers Ltd: Nat Rev Microbiol, copyright 2003, reference [22].) 

 

 

 

 

 

 

 

 

Figure 4. The natural course of untreated HIV-1 infection. After an initial 
peak, viral load stabilizes at a set-point (blue line). With disease 
progression, CD4+ T-cell count gradually declines over a period of years 
(red line). (Reprinted by permission from Macmillan Publishers Ltd: Nat 
Rev Microbiol, copyright 2003, reference [22].) 
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during medical treatment or vaccination campaigns may have promoted viral 
adaptation to the human host by serial passage in humans [18, 23-24]. 

1.3 The lifecycle of HIV 
 

HIV-1 is a retrovirus belonging to the genus Lentivirus, and as a retrovirus 
carries an RNA genome that is transcribed into DNA by the use of viral 
reverse transcriptase after the virion enters the target cell. The viral genome 
contains 9 genes encoding 16 viral proteins; three major genes (gag, pol, env) 
encoding structural proteins and three viral enzymes: protease, integrase and 
reverse transcriptase (RT); two regulatory (rev, tat) and four accessory (vif, 
vpu, nef, vpr) genes [25]. The viral surface protein gp120 of HIV-1 binds to 
the cluster of differentiation (CD) 4 receptor on the host cell, inducing a 
conformational change that enables binding to a β−chemokine coreceptor, 
either CCR5 or CXCR4 [25-28].  The CD4 receptor is expressed on the 
surface of T lymphocytes, monocytes, macrophages, microglia and dendritic 
cells [29]. During the earlier part of the infection, viral strains (called R5 or 
M-tropic strains) use the CCR5 coreceptor, primarily expressed on activated 
memory CD4+ T-cells and macrophages. At later stages of the disease, about 
50 % of infected individuals experience a shift in viral tropism to a 
predominately CXCR4-tropic (X4 or T-tropic strains) or mixed R5/X4 
(dualtropic strains) viral population. The shift to the use of CXCR4, 
expressed mainly on naïve T-cells, is usually accompanied by a rapid decline 
in CD4+ T-lymphocytes numbers and clinical progression to AIDS [26, 28-
33]. After binding to the cell surface, fusion of the viral and cell membranes 
allows the virus to enter the cell (Figure 3). By reverse transcription, the 
RNA genome is transcribed into a DNA intermediate (unintegrated provirus) 
that is subsequently transported to the nucleus and integrated into the host 
cell genome by viral integrase [25]. The process of reverse transcription is 
very error-prone, likely due to the lack of proof-reading capacity of RT. As a 
consequence, the virus is highly mutagenic, allowing it to evade neutralizing 
antibodies and to develop resistance to antiretroviral agents [34-36]. 
Following integration, production of viral proteins and assembly of new 
virions takes place at the cell surface [25]. 
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1.4 Natural course of HIV-1 infection 
 

After infection with HIV-1, the virus rapidly multiplies in the infected host, 
and reaches high levels in plasma within weeks of transmission (Figure 4) 
[37]. Parallel to the rapid rise in viremia, the CD4 cell count falls [38]. 
During this primary infection phase, a majority of infected patients develops 
clinical symptoms, called acute retroviral syndrome, typically characterized 
by fever, fatigue, sore throat, myalgia, headache, lymphadenopathy and rash 
[39-40]. At this stage, infected individuals have a high risk of disease 
transmission due to the high levels of plasma viremia. After an additional 
period of a few weeks, viral load begins to decrease as HIV-1 specific 
immune responses develop [41]. During the subsequent chronic phase of 
infection, plasma viremia stabilizes at a viral set-point, which varies 
significantly between individuals. The level of the viral set-point has been 
shown to be predictive of the long-term prognosis, where higher levels of 
viremia is associated with a more rapid loss of CD4+ T-cells and progression 
to AIDS [42-44]. During the chronic phase of disease, patients have few 
clinical symptoms; however, virus replication proceeds at high rates in blood 
and lymphoid tissues as CD4+ T-cells are continuously destroyed and 
replenished [45-47]. Over a period of years, the CD4 cell count is gradually 
depleted, and with progressive immunosuppression, the infected individual 
becomes susceptible to opportunistic infections and malignancies leading to 
the diagnosis of AIDS (Figure 4). The time from primary infection to 
development of AIDS is highly variable, but in average is around 10 years 
[48]. The diagnosis of AIDS is defined by the occurrence of clinical AIDS-
defining conditions. . In the American classification system designed by the 
Centers for Disease Control and Prevention (CDC), a CD4+ T-cell count 
<200 x106/l is also defined as AIDS. 

1.5 Antiretroviral treatment of HIV-1 
 

The first antiretroviral drug to become available for the treatment of HIV-1 
infection, the nucleoside reverse transcriptase inhibitor (NRTI) zidovudine, 
was introduced as early as 1987, only a few years after the virus was 
identified. However, monotherapy with zidovudine or other NRTIs 
developed subsequently had only transient effects at best due to the rapid 
emergence of drug resistance, and did not prevent disease progression [49]. 
The turning point came in 1995 and 1996, when the first protease inhibitors 
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(PI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) were 
registered for use. By combining drugs with different mechanisms of action, 
a potent inhibition of viral replication was achieved, and such drug 
combinations were aptly named highly active antiretroviral therapy 
(HAART). The potency of HAART led to hopes that the virus could be 
eradicated by treatment, and that therapy should be initiated as early as 
possible (“Hit early and hard” [50]). HAART was subsequently shown to 
have dramatic effects on disease progression in clinical trials [51-52]. The 
hope for cure of the infection by HAART treatment was tempered by the 
discovery of a reservoir of latently infected cell capable of sustaining HIV-1 
infection even during potent therapy [53-55]. It was also recognized that 
antiretroviral drugs had important side effects, leading to a shift in treatment 
strategy to waiting as long as possible before treatment initiation. However, 
when available, HAART has had a dramatic impact on reducing AIDS-
related disease and death [56-57]. 

 

Table 1. Antiretroviral drugs currently used in Sweden. 

 

 

 

 

 

 

 

 

 

 

 

Class Group Generic name Abbreviation Trade name 

Reverse transcriptase inhibitors 
 Nucleoside analogues (NRTI) 
  abakavir ABC  Ziagen  

  didanosin  ddI  Videx  

  emitricitabin  FTC  Emtriva  

  lamivudin  3TC  Epivir  

  stavudin  d4T  Zerit  

  tenofovir TDF  Viread  

  zidovudin  AZT, ZDV  Retrovir  

 Non-nucleoside analogues (NNRTI) 
  efavirenz EFV  Stocrin  

  nevirapin  NVP  Viramune  

  etravirin  ETR Intelence 

Protease inhibitors (PI) 
  atazanavir  ATV  Reyataz  

  darunavir  DRV  Prezista  

  fosamprenavir  fAPV  Telzir  

  indinavir  IDV  Crixivan  

  lopinavir  LPV  Kaletra  

  nelfinavir NFV  Viracept  

  saquinavir  SQV  Invirase  

  ritonavir* RTV  Norvir  

  tipranavir  TPV  Aptivus  

Integrase inhibitors (II) 
  raltegravir  RAL  Isentress  

Entry inhibitors 
 Fusion inhibitors (FI) 
  enfuvirtid  T-20  Fuzeon  

 CCR5 antagonists 
  maraviroc  MVC  Celsentri  

* only used for boosting other PIs 
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The principle for antiretroviral therapy (ART) of HIV-1 infection is to 
combine three  active drugs from at least two different drug classes (Figure 3) 
to achieve potent inhibition of viral replication. Over 20 different drugs from 
4 different classes are now available for treatment of HIV-1 in Sweden 
(Table 1) [58]. Current Swedish guidelines recommend the use of two NTRIs 
in combination with either a ritonavir-boosted PI (PI/r) or a NNRTI as first-
line therapy for previously treatment naïve patients [58].  

The virological goal of ART is to maintain plasma HIV-1 RNA below the 
detection level of clinical assays (<50 copies/ml), which is often achievable 
in adherent patients without multiple drug resistance. Thereby immune 
function is maintained and disease progression prevented. However, 
adherence to therapy is crucial for the success of therapy. The high error-rate 
of viral reverse transcriptase leads to rapid emergence of drug resistance 
mutations if suboptimal drug concentrations fail to effectively inhibit viral 
replication [34]. 
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2 PERSISTENCE, LATENCY AND VIRAL 
RESERVOIRS 

 

It has become evident that suppression of viral replication by the use of 
antiretroviral therapy is not in itself sufficient for clearing the infection. Virus 
persists despite treatment, and if antiretroviral therapy is halted, a rapid 
rebound in viremia is usually seen [59-60]. Residual, low-level viremia can 
be detected in most treated subjects if sensitive assays are used [61]. Viral 
persistence may potentially arise from reactivation of long-lived cells 
infected before therapy was initiated. Alternatively, persistent viremia may 
result from incomplete suppression of viral replication by antiretroviral 
therapy, related either to insufficient efficacy of antiretroviral drugs or to 
insufficient penetration of drugs into distinct anatomical compartments [62-
63]. A viral reservoir may thus be defined as a compartment where 
replication-competent virus can persist for a longer time than is the case in 
the main pool of actively replicating virus, whether it arises from activation 
of long-lived cell populations or from anatomical compartments [64]. In this 
section, I will review important aspects of viral persistence and cellular as 
well as anatomical reservoirs. 

2.1 Dynamics of viral decay 
 

When antiretroviral therapy is initiated, plasma viral load decreases as 
antiretroviral drugs suppress viral replication and prevent infection of new 
target cells. Free plasma virus has a short half-life of up to 6 hours [65], and 
consequently viral load in plasma is strongly correlated to the lifetime of 
productively infected cells releasing HIV into the blood. The rate of viral 
decay after initiation of therapy is therefore dependent on the half-life of the 
cells producing HIV [62]. Several phases of viral decay during antiretroviral 
therapy can be identified (Figure 5).  

After a short lag of 1-2 days, a rapid, exponential decrease in plasma viral 
load is seen during the first days of therapy [46, 66]. The absolute majority of 
plasma virus in untreated HIV infection is produced by activated and 
productively infected CD4+ T-cells, cells that have a short half-life of 1-2 
days [46, 63, 65-68], and the rapid initial drop in plasma HIV-1 RNA after 
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treatment initiation is attributed largely to the subsequent block of infection 
of this cell population [22, 69]. The initial rapid first phase is followed by a 
more gradual second phase of viral decay over the following months. During 
the second decay phase, patients on successful therapy suppress plasma viral 
load to below the limit of detection of standard assays used in clinical 
practice (50 HIV-1 RNA copies/ml) [51-52]. The slower decay rate of the 
second phase has been attributed to other populations of virus-producing 
cells, with longer life spans than activated CD4+ T-cells, and an estimated 
half-life of 14-21 days [70]. The source of the phase 2 viremia is not entirely 
clear, although phase 2 decay has been attributed to virus produced by 
macrophages, partially activated CD4+ T-cells, or release of trapped viral 
particles from follicular dendritic cells [64, 70-74]. 

 

 

 

 

 

 

 

 

Figure 5. Phases of viral decay after initiation of ART. During phase 1, a rapid drop 
in plasma viral load is seen. During the more gradual phase 2, viral load decreases 
below the detection limit of clinical assays. During phases 3 and 4, viral load is 
stable, or decays at a very slow rate. Dotted line shows the limit of detection (50 
copies/ml) of clinical PCR assays. (Reprinted from Antiviral Research, reference 
[62], Copyright (2010), with permission from Elsevier.)  

 

Based on the rate of the decay of phase 2 viremia, it was initially estimated 
that the HIV-1 infection could be eliminated in 2-3 years with completely 
inhibitory treatment [70]. However, as mentioned above, it soon became 
apparent that additional sources of virus were not eliminated in such a short 
time span [55, 64, 74-77]. One important barrier to eradication is latently 
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infected, resting memory CD4+ T-cells, which will be discussed in further 
detail below. Using more sensitive PCR assays, capable of detecting and 
quantifying low-level viremia [78], it was shown that a majority of subjects 
on suppressive antiretroviral therapy with plasma HIV-1 RNA below the 
limit of detection of clinical assays (<50 copies/ml) still had low-grade, but 
detectable viremia ≥1 copy/ml [61]. This residual viremia was found to be 
related to pre-treatment levels of HIV-1 RNA in treated subjects, but not to 
the specific antiretroviral regimens used. Additional longitudinal studies 
showed that a third and fourth phase of viral decay under antiretroviral 
therapy could be identified [62, 79]. 

As is the case with the initial viral decay, the decay of residual viremia 
appears to be biphasic. During suppressive therapy, a third phase of decay 
with a slow rate of decline of viral load corresponds to a cell population with 
a half-life of approximately 9 months. Latently infected CD4+ T-cells, which 
have a reported half-life of 6-44 months [74, 80], is a possible source of the 
plasma virus in the third phase of decay, and likely also contribute to the 
fourth phase of viremia, during which no observable decline in HIV-1 RNA 
can be detected.  The lack of observable decay during the fourth phase of 
HIV-1 RNA viremia may suggest that a small number of infected cells with a 
high degree of stability are present in individuals with chronic HIV-1 
infection [79], and it has been hypothesized that infection of a cell that has 
proliferative capacity, such as a stem cell of monocyte-macrophage lineage, 
may contribute to the stability of residual phase four viremia [81-82]. 

2.2 Viral latency 
 

HIV has the ability to establish a latent infection, where viral provirus is 
present in the host cell, without resulting in active transcription or production 
of new virions. Latent infection can occur either at the pre-integration or 
post-integration level of the viral life cycle [83]. Pre-integration latency 
occurs when HIV enters non-dividing resting lymphocytes, where reverse 
transcription can take place, but subsequent integration of viral DNA into the 
host cell genome and production of new virus particles is halted [84-86]. The 
unintegrated viral DNA is labile and decays rapidly, with an estimated half 
life of 1-5 days [84, 87-88], thus making it unlikely that pre-integration viral 
DNA contributes to long-term viral persistence in any significant way. 

Post-integration latency is thought to be established when active CD4+ T-
cells are infected with HIV-1 before reverting to a resting state as memory 
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cells. The result is a stably integrated form of the virus, where proviral DNA 
can persist as integrated DNA in the host cell genome [89]. In a resting state, 
memory cells have a low metabolic rate and transcriptional activity, and the 
integrated provirus can remain transcriptionally silent as long as the host cell 
remains in a resting state. Upon activation of the host cell, viral production 
can resume; however, in the resting state latently infected cells do not 
produce virus and are thus not affected by antiretroviral drugs [62, 85, 90]. 
Although not significant in untreated individuals, the ability of HIV to 
establish a latent infection has important implications for treatment of the 
infection, as it provides a mechanism for the virus to persist when active 
replication is suppressed by antiretroviral drugs. Latently infected memory 
CD4 cells are present in patients despite effective ART [53-55], constituting 
a major barrier for eradication of the infection. 

The pool of latently infected memory CD4 cells is established already during 
primary HIV-infection [91], and although the size of the latent reservoir is 
estimated to be quite small [54, 92], it is highly stable. Initial estimates 
calculated a half life of latently infected cells to roughly 6 months, which 
indicated that continuous effective ART with suppression of viral replication 
would be able to eliminate the latently infected CD4 cells over a time of 
seven to ten years [74]. However, additional studies have shown that latently 
infected memory CD4 cells decay very slowly even in subject treated for 
several years with antiretroviral therapy, with a half life that may be as long 
as 44 months or more. This indicates that it would take over 60 years of 
effective therapy to deplete the latent reservoir, making  eradication of 
infection under current treatment regimens all but impossible [77, 80]. In 
addition, it has recently been shown that HIV-1 can infect bone marrow 
derived hematopoietic progenitor cells (HPC) establishing both active and 
latent infection. These cells may be long lived and could carry latent HIV-1 
for extended periods of time [93]. In another recent study by Chomont and 
colleagues, it was shown that integrated HIV-1 DNA can be found in 
different subsets of memory CD4+ T-cells in individuals on ART, mainly in 
central memory (TCM) and transitional memory (TTM) T-cells. In patients 
responding well to treatment or starting therapy early in the course of 
infection, thus maintaining higher CD4 cell counts, TCM cells appeared to be 
the main long term reservoir. The low degree of proliferation in these cells 
allows them to survive for long periods of time, providing a possible long-
lasting reservoir for HIV-1. In subjects with low CD4 cell counts, HIV-1 
DNA was preferentially found in TTM cells that persist by low-level 
homeostatic proliferation, also making them a very stable viral reservoir [94]. 
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2.3 Persistent viremia 
 

As has been discussed above, persistent low-level viremia is a common 
feature in patients treated with highly active antiretroviral therapy. An 
important question to address is whether residual viremia is the result of 
ongoing cycles of replication even under suppressive ART, or rather signifies 
a release of virus from stable reservoirs, infected before the initiation of 
therapy (Figure 6). When the presence of residual viremia was initially 
identified, it was assumed that viral replication was responsible for the 
plasma virus detected despite effective treatment [76]. However, this view 
has been challenged based on additional studies on the nature of residual 
viremia [82]. 

Viral evolution during ongoing therapy would suggest the presence of 
ongoing replication; however, studies on viral evolution have given 
somewhat conflicting results. Some studies have found signs of viral 
evolution [74, 95]. A recent study of a therapeutic vaccine found sequence 
evolution that was correlated to episodes of quantifiable residual viremia in a 
small subset of subjects, although residual viremia related to virus from the 
latent reservoir was found in others [96]. Several reports have shown no viral 
evolution in treated patients [81, 97-100], indicating that ART completely 
stops viral replication at least in some subjects [82]. In a study of patients 
interrupting therapy during structured treatment interruptions (STI), 
rebounding virus populations resembled pretreatment virus and did not show 
evidence of genetic evolution over time [101]. The lack of new resistance 
mutations detected in patients on ART with suppressed plasma viremia (<50 
copies/ml) further argues against ongoing viral replication, and points to the 
release of virus from stable cellular reservoirs as an important source for 
residual viremia [97-98, 100, 102]. Virus isolated from resting memory CD4+ 
T-cells has been shown to be closely related to residual plasma virus 
populations found in subjects with ongoing ART, thus pointing to the latent 
reservoir as the source of residual viremia in these patients [81-82, 97, 100]. 

It has been suggested that ongoing replication, if present, would permit 
replenishment of the latent reservoir [103-106]. However, by the study of 
predominant plasma clones (PPC) present in a subset of individuals under 
ongoing ART, Sedaghat and colleagues failed to demonstrate any temporal 
evolution of sequences in the latent reservoir, indicating that replenishment of 
the reservoir due to ongoing viral replication does not occur [81-82, 107]. 
Although results from viral evolution studies may have varying conclusions, 
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it is important to note that for some individuals, no evidence of ongoing 
replication can be seen, thus indicating that ART has the potential to fully 
inhibit viral replication at least in some cases. Differences in residual viremia 
for varying treatment regimens have been reported in a cross-sectional study 
lacking pretreatment characteristics [108]; however, the correlation between 
the level of residual viremia and pretreatment viral load, but lack of 
correlation to antiretroviral drug regimen demonstrated in longitudinal 
studies further implicates events occurring before the initiation of therapy as 
crucial to the residual viremia seen in patients on ART [61, 79].  

If persistent viremia results from ongoing cycles of HIV-1 replication despite 
antiretroviral treatment, it can be assumed that intensifying treatment by 
adding additional active drugs to the treatment regimens used would have an 
effect on the level of residual viremia. However, in recent reports, this has 
not been the case. In patients with suppressive ART (HIV-1 RNA <50 
copies/ml), adding an additional active drug from a drug class not previously 
used by the study subjects had no effect on the level of residual virema [109]. 
Addition of a fusion inhibitor or integrase inhibitor to standard ART 
regimens did not affect the decay rate of the latent reservoir [110], the 
frequency of infection of resting memory CD4+ T-cells, or low-level residual 
viremia [111]. After intensification with abacavir or efavirenz to protease-
inhibitor based regimens, a decrease in the number of episodes of transiently 
detectable viremia (viral blips), has been reported [105]. However, viral blips 
may be a consequence of low-level variations in plasma HIV-1 RNA close to 
the level of detection, representing release from stable reservoirs and not 
ongoing viral replication [102]. Thus, intensification of ART has not 
convincingly been proven effective in reducing residual viremia in subjects 
with ART. Moreover, when simplifying ART to boosted protease inhibitor 
monotherapy, increased levels of residual viremia preceded virologic failure 
in subjects for whom monotherapy was not effective in controlling viremia, 
and viral replication was later evident [112]. 

Interestingly, in a recent study, a transient increase in episomal 2-LTR circles 
was seen in a subset of subjects after intensification of suppressive ART with 
raltegravir [113]. Raltegravir inhibits integration of linear HIV-1 cDNA into 
the host cell genome; instead viral DNA is converted to episomal cDNAs 
[114]. The increase in episomal cDNA after adding raltegravir to previous 
treatment regimens may represent ongoing viral replication in a subset of the 
patients studied [113]; however, another recent study found no discernable 
effect on residual viremia after raltegravir intensification, and thus no 
indication of ongoing replication, in patients with highly suppressive therapy 
[115]. 
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2.4 Sanctuary sites 
 

Studies of residual viremia and trials of intensification of ART do not fully 
exclude the possibility that HIV-1 may persist in sanctuary sites where 
ongoing replication may be possible either because of limited penetration of 
antiretroviral drugs or special biological properties of these compartments. 
Anatomical locations such as the central nervous system (CNS) and 
genitourinary (GU) tract, as well as tissues such as the gut-associated 
lymphoid tissue (GALT) are regarded as distinct compartments of HIV-1 
infection [62-63]. 

A majority of HIV-1 replication during untreated infection takes place in 
lymphoid organs, such as lymph nodes and the GALT [116]. GALT CD4+ T-
cells are depleted during untreated infection, and immune reconstitution after 
initiation of ART is impaired [117]. The high frequency of infected cells as 
well as possible cross-infection between the blood and GALT compartment 
may indicate persistent replication, and the possibility that the GALT may act 
as a reservoir for HIV-1 infection [118].  

The GU tract is also considered as a potential reservoir for HIV-1 infection. 
HIV-1 has been detected in several cell types in seminal fluid [119-120]. 
Differences in viral load and viral sequences between seminal fluid and blood 
in untreated individuals [121], as well as reduced penetration of antiretroviral 
drugs into seminal tissue [122-123], suggest that the GU tract may act as a 
separate compartment of infection. Antiretroviral therapy reduces viral load 
in seminal fluid, although detectable virus is still found in some individuals 
on suppressive therapy, indicating that the GU tract may be a potential 
reservoir for viral persistence in HIV-1 infection [76, 124-126]. 

Another important compartment of HIV-1 infection is the central nervous 
system, to which I will turn in the following section. 
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3 HIV-1 AND THE CENTRAL NERVOUS 
SYSTEM 

 

Human immunodeficiency virus type-1 is a neurotropic virus, and infection 
of the CNS begins during the primary systemic infection [39, 127-128]. HIV-
1 remains detectable in cerebrospinal fluid (CSF) of most infected individuals 
at all stages of the disease [129-130]. Occasionally, patients experience 
neurological symptoms during primary infection, mainly in the form of 
aseptic meningitis [131-132]. However, the majority of CNS complications 
to chronic HIV-1 infection occur as immune function deteriorates with 
progressive disease, including CNS opportunistic infections and 
malignancies, and HIV associated dementia (HAD), also described as the 
AIDS dementia complex (ADC) [131, 133-134]. Opportunistic diseases 
commonly seen in advanced HIV-1 disease include cerebral toxoplasmosis, 
progressive multifocal leucoencephalopathy (PML), cryptococcal meningitis, 
CNS lymphoma and cytomegaloviral (CMV) encephalitis [135]. HAD, seen 
in about 20% of untreated individuals with advanced disease is directly 
caused by the HIV-1 infection itself. 

HAD is a clinical syndrome including cognitive, motor, and behavioral 
dysfunction [136-137]. The diagnosis of HAD is based on a clinical and 
neuropsychological evaluation of symptoms and the exclusion of other 
ongoing CNS diseases or preexisting comorbidities that can explain 
neuropsychological impairment [138]. With the advent of ART, the incidence 
of HAD has been greatly reduced [139], and is now almost exclusively seen 
in untreated patients, or patients failing ART because of drug resistance or 
nonadherence [140]. Moreover, patients with HAD frequently experience 
improvement in neurocognitive impairment after initiation of treatment, 
although to a varying degree; residual symptoms or signs can remain despite 
therapy [140-144]. 

In addition to HAD, which represents a severe complication to the disease, 
more subtle forms of neurological manifestations are also related to chronic 
HIV-1 infection. Treatment has reduced the incidence of HAD, but it is 
recognized that neurocognitive impairment remains prevalent in HIV-1 
infected patients [145-146]. Collectively termed HIV-associated 
neurocognitive disorders (HAND), such impairments are, in addition to 
HAD, classified as asymptomatic neurocognitive impairment (ANI) or HIV-1 
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associated mild neurocognitive disorder (MND) [138]. However, the 
diagnosis of less significant neurocognitive impairment in chronic HIV-1 
disease is problematic, as other disorders affecting the general population, or 
affecting those with risk factors for acquiring HIV-1 infection, may influence 
diagnostic results making identification of HIV-1 related disease difficult 
[140]. Reduced performance in neuropsychological testing in HIV-1 infected 
individuals may be biased by other co-morbidities such as complications of 
substance abuse, age-related degenerative disease, or mental illness affecting 
adherence to medication. In addition, diagnostic neuropsychiatric testing does 
not necessarily differentiate active disease from residual symptoms related to 
previous neurological injury. For this reason, the complimentary use of 
biomarkers to detect ongoing neuronal injury or inflammatory activity has 
been suggested as a pathobiological tool in the evaluation of CNS disease in 
HIV-1 infected individuals [147-148]. 

3.1 Biomarkers of CNS infection 
 

Because of its proximity to, and shared barriers with the brain, CSF 
represents an accessible compartment for evaluating CNS responses to HIV-1 
infection and antiretroviral treatment of the infection [149]. HIV-1 infection 
generates a chronic inflammatory reaction in the CNS measurable in CSF by 
analysis of immunological markers and the presence of white blood cells 
(WBC) [130, 149-150]. Several immunological markers have been evaluated 
in relation to HIV-1 infection of the CNS [148]. Here, I will briefly overview 
the biomarkers relevant to this thesis. 

HIV-1 RNA is detectable in CSF in a majority of untreated individuals 
during all stages of the disease [129-130], although CSF viral load can vary 
considerably between individual patients [151], and is usually lower than in 
plasma [130]. High levels of CSF HIV-1 RNA are seen during primary 
infection and in patients with HAD, as well as during concomitant 
opportunistic infections [129, 152-154]. In patients with successful systemic 
suppression of HIV-1 RNA during ART, a parallel suppression of CSF HIV-
1 RNA is usually seen as well [149, 155]. 

Elevated WBC count, pleocytosis (defined as >4 x106 cells/l), is a frequent 
finding in the CSF of untreated patients, more common in the early stages of 
infection, and is correlated to CSF viral load [149, 156-157]. Of WBC, 85-
95% are lymphocytes, mainly T-cells, and the rest monocytes [140]. As 
immune function deteriorates with progressive disease, CSF pleocytosis 
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becomes less common, and CSF WBC is generally markedly lower when 
blood CD4 cell count reaches <50 x106 cells/l [140]. CSF WBC is usually 
also normalized after initiation of ART [149]. 

HIV-1 infection in the CNS also induces intrathecal antibody production, 
measurable as elevated immunoglobulin G (IgG) index or by detection of 
specific oligoclonal bands in CSF. Intrathecal antibody production measured 
as elevated IgG-index increases during disease progression [156, 158-159]. 

Neopterin is produced primarily by cells of monocyte/macrophage lineage 
after stimulation by interferon-γ (IFN- γ) [160], and appears to be involved in 
the antimicrobial function of activated cells [161]. Elevated levels of 
neopterin reflect immune activation through macrophage activation or in the 
CNS activation of microglia, and in blood neopterin levels have been found 
to correlate to disease progression in HIV-1 infection [160].  In untreated 
individuals, CSF neopterin is commonly elevated, and increases with 
progressive immunodeficiency and declining CD4 cell count. The highest 
levels are seen in subjects with HAD [162-164]. With ART, CSF neopterin is 
markedly reduced, although not to levels seen in uninfected controls. A low-
level increase in CSF neopterin is frequently found even in subjects 
successfully treated with antiretroviral drugs [165]. 

3.2 Neuropathogenesis 
 

HIV-1 enters the CNS primarily by means of monocytes infected before 
trafficking across the blood-brain-barrier (BBB), and settling in the CNS as 
perivascular macrophages [166-168]. The main targets of HIV-1 infection in 
the CNS are cells of bone-marrow lineage, macrophages and micoglial cells 
that express CD4 as well as CCR5; these are the cells that are productively 
infected in the brain (Figure 7) [132, 166, 169-170]. The pathological 
correlate to HAD is HIV-1 encephalitis, characterized by accumulation of 
infected macrophages, microglial cells, and multinucleated giant cells formed 
by fusion of multiple macrophages or microglia, mediated through expression 
of the viral protein gp 120. Multinucleated giant cells are a characteristic 
neuropathological finding in HIV encephalitis [132, 170]. 
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Figure 6. Origin of low-level residual viremia (RV) in patients using ART. In 
scenario A, RV represents ongoing viral replication. In scenario B, ART stops all 
replication and RV represents release of virus from stable reservoirs. (Reprinted 
from J Allergy Clin Immunol, reference [82], Copyright (2008), with permission from 
Elsevier) 

 

 

 



HIV Persistence and Viral Reservoirs 

20 

 

 

 

 

 

 

 

 

 

Figure 7. Different cell types in the brain. The primary target cells for HIV-1 
infection in the CNS are macrophages and microglia. Macrophages are localized in 
the perivascular space surrounding the brain capillaries, and are replenished by 
circulating monocytes. Microglia are found in the brain parenchyma. (Reprinted by 
permission from Macmillan Publishers Ltd: Nat Rev Immunol, reference [170], 
copyright 2004) 

 

 

 

 

 

 

 

 

Figure 8. NORTHIV study design. Patients were randomized to one of three study 
arms. Randomization was stratified according to baseline CD4+ T-cell count and 
plasma HIV-1 RNA. For the viral dynamics sub-study, patients with known non-
adherence or treatment interruption were excluded from the analysis. 
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Although viral products may have direct toxic effects against neurons or 
astrocytes, the primary mechanism of neuronal damage in HIV-1 infection is 
likely to be a consequence of the inflammatory process initiated by virus-
infected cells [131, 171], where macrophages act as both the major targets for 
HIV-1 replication and as the source of important toxins [172]. Secreted 
cellular products such as cytokines, quinolinic and arachidonic acids and 
nitric oxide can have neurotoxic effects, and chemokines and pro-
inflammatory cytokines promote further cell activation and recruitment of 
additional macrophages and T-cells, thereby amplifying HIV-1 induced 
neurotoxicity [132, 170, 173]. The improvement seen in patients after 
initiation of ART suggests that neurological dysfunction is an active, 
reversible toxic process initiated by the infection with HIV-1 [140]. 

3.3 CNS as a reservoir for HIV-1 
 

The CNS is an important potential reservoir for persistent HIV-1 infection. 
Several features that characterize the CNS influence the infectious process as 
well as treatment of HIV-1 in the CNS and suggest that it may act as a 
separate compartment, or sanctuary site, in HIV-1 infection. Importantly, as 
previously mentioned, cellular targets for HIV-1 infection and viral 
production differ partly from the systemic infection. The brain is a non-
lymphatic organ; the main target cells for HIV-1 enter the CNS primarily 
through trafficking across the BBB from the systemic circulation before 
settling in the CNS as perivascular macrophages, with the notable exception 
of brain-resident microglial cells [132, 166, 170] (Figure 7). Additionally, in 
the CSF migrating CD4+ T-cells contribute to local viral production as well 
as the transport of viral strains from the systemic compartment into the CNS 
[174]. The half life of these cell types differ significantly. As previously 
discussed, productively infected CD4+ T-cells have a very short half life, 
while tissue macrophages turn over more slowly. Parenchymal microglia are 
much more quiescent cells and have a considerably longer lifespan [175].  

Compelling evidence from several studies demonstrate that HIV-1 infection 
in the CNS is compartmentalized from the systemic infection, although to 
varying degrees at different stages of the infection. Because direct sampling 
of brain tissue is not possible except in rare circumstances, most studies rely 
on post-mortem analyses or, more commonly, of CSF. Analyses of HIV-1 in 
brain tissue from autopsies or biopsies have shown that brain-derived variants 
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are genetically distinct from HIV-1 isolated in peripheral blood [176-178]. In 
CSF, viral populations can originate from both the CNS and blood [179-180], 
and genetic compartmentalization between viral populations in CSF and 
blood has been demonstrated in several studies [181-183]. In untreated 
subjects, viral populations in CSF and blood diverge with progressive 
disease, being closely related in early infection but showing greater 
compartmentalization over time [184]. After initiation of therapy, 
compartmentalized variants decay rapidly in neurologically asymptomatic 
subjects, in parallel with the viral plasma decay rate, suggesting that short-
lived cells (CD4+ T-cells) are the main source of CSF virus in these patients. 
However, in neurologically impaired subjects, the decay rate of 
compartmentalized virus is reduced, indicating other cellular sources of CSF 
viral populations in patients with HAD/HIVE [185]. Functional 
compartmentalization regarding drug resistance profiles and cell tropism 
have also been demonstrated in the CSF, further indicating that the CNS can 
act as a separate compartment in HIV-1 infection [186-189]. 

Anatomically, the CNS is separated from the systemic circulation by the 
BBB; the CSF compartment is also separated from the periphery by the 
blood-CSF-barrier (BCB) of the epithelium of the choroid plexus [190]. The 
main function of these barriers is to maintain a stable environment for the 
brain; however, the BBB and BCB restrict the penetration of antiretroviral 
drugs into the CNS compartment [191]. Drug penetration into CSF varies in 
and among drug classes, although it is important to note that evaluation of 
drug penetration and potential antiretroviral efficacy in the CNS is largely 
based on pharmacokinetic data, rather than clinical trials on antiviral efficacy 
[192-198]. Even less is known regarding the CNS efficacy of drug 
combinations used for treatment of HIV-1 infection [140, 194, 199]. In 
addition to lower drug concentrations in the CSF, some antiretroviral drugs 
may be less effective in chronically infected macrophages, the primary target 
cell for treatment in the CNS [200]. 

Despite the potential problems with lower availability of antiretroviral drugs 
in CSF, patients generally respond well to ART. In subjects on effective 
therapy, HIV-1 RNA is usually suppressed in CSF as well as in plasma [155, 
188, 201-202]; furthermore, as previously mentioned, ART has proved to be 
effective in preventing neurological complications to chronic HIV-1 infection 
[139]. Even in patients failing therapy systemically, ART is often more 
effective in CSF than in blood [188]. Likely, effective treatment of the 
systemic infection has an important influence on CSF viral load as well. 
Reduced numbers of productively infected cells in the periphery also reduces 
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the number of infected cells transitioning into the CSF. Furthermore, reduced 
levels of systemic immune activation likely contributes to treatment effects in 
the CSF, as activated CD4+ T-cells are more permissive to infection, and 
subsequent viral production [174]. However, the slow viral decay rate and 
compartmentalized viral population seen in patients with advanced infection 
and more profound immunodeficiency suggest that an important component 
of CSF virus is derived from more long-lived cells, likely in the CNS itself 
[174, 185]. Thus, penetration of antiretroviral drugs into the CNS remains an 
important issue for the treatment of HIV-1 in the brain, as suboptimal drug 
levels may allow virus to replicate in the CNS despite effective suppression 
in the blood. 
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4 AIMS 
 

The overall aim of this thesis was to gain greater understanding of the clinical 
aspects of HIV-1 persistence, in regards to latent infection as well as the 
anatomic reservoir that is the central nervous system. The specific aims were: 

 

I. to investigate differences in viral decay rate among three recommended 
first-line ART combinations in treatment naïve patients as a potential 
reflection of drug potency 

II.  to investigate the effect on the pool of latently infected resting CD4+ T-
cells of adjuvant treatment with a high dose of intravenous 
immunoglobulin (IVIG) in addition to suppressive antiretroviral 
therapy 

III.  to investigate the effect of long-term suppressive antiretroviral therapy 
on intrathecal immune activation in cerebrospinal fluid 

IV.  to investigate the occurrence of detectable HIV-1 RNA in the 
cerebrospinal fluid of patients with suppressive systemic therapy 
(“viral escape”), and its relation to intrathecal immune activation and 
antiretroviral drug regimens 
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5 PATIENTS AND METHODS 
 

For more detailed information on the methods used in this thesis, I refer to 
the methods section of the specific papers. However, I will use this section to 
overview the patient populations upon which the work in this thesis is based. 

5.1 The NORTHIV study 
 

The analysis of initial viral decay rates in paper I is based on the NORTHIV 
study cohort. NORTHIV (“a study on ART Naïve patients On different 
Regimens to Treat HIV ”) is a randomized, open label, multicenter clinical 
trial comparing the efficacy and safety of three different antiretroviral drug 
regimens in treatment naïve patients in Sweden and Norway (Figure 8). The 
study protocol was approved by the Research Ethics Committee of the 
University of Gothenburg, the Regional Committees for Medical Research 
Ethics in Norway, and the Swedish Medical Products Agency. Between 2004 
and 2007, a total of 242 patients were recruited into the study; of these 
subjects, 239 received at least one dose of the study drugs. Randomization 
was also stratified according to plasma HIV-1 RNA (above or below 100.000 
copies/ml), and CD4+ T-cell count (above or below 200x106 cells/l), at the 
time of inclusion. The three treatment arms were based on the drug regimens 
recommended at the time of trial design as first-line choices for initial 
therapy in treatment naïve HIV-1 infected patients, and included: (a) 
efavirenz 600 mg q.d. + 2 NRTIs q.d., (b) lopinavir 400 mg b.i.d. + ritonavir 
100 mg b.i.d. + 2 NRTIs b.i.d., or (c) atazanavir 300 mg q.d. + ritonavir 100 
mg q.d. + 2 NRTIs q.d.. The choice of NRTI “backbone” was up to the 
recruiting center, and was not regulated in the study protocol. Furthermore, 
change in backbone was allowed during the study period, and did not 
constitute a protocol violation leading to exclusion or failure in the overall 
analysis. One of the study arms was designed for twice-daily dosing 
(lopinavir-containing treatment regimens), while the remaining two arms 
contained drug combinations taken once daily. Subjects were followed for a 
protocol-stated 144 weeks. The main results of the NORTHIV trial have not 
yet been reported. 
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5.2 Adjuvant IVIG pilot study 
 

In order to study potential effects of IVIG-treatment we included 9 highly 
motivated subjects followed at the Department of Infectious Diseases at 
Sahlgrenska University Hospital/Östra. All subjects had a history of effective 
viral suppression, with continuous ongoing therapy ≥ 2 years and plasma 
HIV-1 RNA levels <50 copies/ml for ≥ 1.5 years. In this small, proof-of-
concept study, no controls were included. 

5.3 Studies on cerebrospinal fluid 
 

The Department of Infectious Diseases at the Sahlgrenska University 
Hospital/Östra began a longitudinal research project on HIV-1 infection in 
the CNS as early as 1985. Since that time, CSF responses to HIV-1 disease 
and therapy have been monitored in subjects willing to undergo lumbar 
punctures for research purposes. Individual patients undergo yearly paired 
sampling of CSF and blood; additionally lumbar and venous punctures are 
performed at the start of, as well as three months after initiation or cessation 
of therapy. This thesis includes 66 patients thus monitored. In addition, a 
total of 18 subjects monitored in similar protocols at the Department of 
Neurology, University of California, San Francisco, are included in the 
studies on cerebrospinal fluid (papers III and IV). At each recruiting site, 
study protocols have been approved by respective research ethics committees 
and all included patients have provided informed consent for participation. 
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6 RESULTS 
 

6.1 Paper I 
 

It has been suggested that the initial viral decay kinetics after initiation of 
ART may be representative for the potency of an antiretroviral drug regimen 
[203]. Presumably, a more effective combination of antiretroviral drugs can 
inhibit new rounds of viral infection in permissive cells, and thereby viral 
replication, to a greater degree than less potent therapies. This difference in 
viral replication would then be measurable as variations in the rate at which 
plasma viral load falls after initiation of ART. In addition to the long-term 
evaluation of treatment outcome, we were therefore interested in evaluating 
the initial viral decay kinetics in the setting of a clinical population 
representative of Scandinavian HIV-1 infected patients, the NORTHIV study 
cohort. 

To evaluate initial viral decay, we analyzed the decline in plasma viral load 
from baseline to after four weeks of therapy. For the purpose of studying 
viral decay kinetics, we excluded patients who did not regularly take the 
study drugs during the time period, either because of treatment interruption or 
from lack of adherence. Consequently, 227 of the 239 patients in the 
NORTHIV study were included in the analysis. A sub-group of 157 patients 
underwent more frequent sampling with an additional one to three weekly 
study visits. We used the decline in plasma HIV-1 RNA from treatment 
initiation to first sampling (days 5-9) as an estimation of phase 1 decay, and 
from days 14 (12-16) to 28 (24-35) for phase 2 decay. In addition, we also 
measured the increase in CD4+ T-cell count from treatment initiation to day 
28. 

The greatest initial viral decay was seen in the efavirenz-treated patients. This 
group had a significantly larger decline in plasma viral load at all time points 
compared to atazanavir/ritonavir (atazanavir/r)-treated patients, and to 
lopinavir/ritonavir (lopinavir/r)-treated patients up to day 21. The lopinavir/r-
based treatment group in turn had a significantly greater decrease in plasma 
viral load compared to the atazanavir/r-based group from days 14 through 28. 
The larger HIV-1 RNA decline in the efavirenz-based treatment arm was also 
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followed by a greater increase in CD4+ T-cell count after four weeks of 
treatment; however, in the two PI-based treatment arms, the increase in CD4+ 
T-cell count was quite similar. Estimations of phase 1 decay rate again 
showed a significant difference between the efavirenz-treated patients and the 
patients receiving PI-based treatment regimens. Median viral decay 
corresponded to phase 1 half-lives in the study groups ranging from 1.17 in 
the efavirenz- based arm, to 1.77 in the atazanavir/r-based arm. No difference 
was seen in estimations of phase 2 decay rates (ranging from 8.8 to 13 days). 
Overall, our estimations of phase 1 and 2 decay rates were found to be 
comparable to previously reported findings [70, 204-205]. From our results, 
we concluded that efavirenz combined with two NRTIs may hold the 
potential for greater antiretroviral potency than either of the two protease 
inhibitors studied. 

6.2 Paper II 
 

As I have described in the second chapter, the pool of latently infected 
memory CD4+ T-cells constitutes a major obstacle for the eradication of 
HIV-1 infection. In this proof-of-concept study, we investigated the effect on 
the latent reservoir of intravenous immunoglobulin (IVIG), given in addition 
to suppressive ART. The choice of IVIG as an adjuvant therapy was based on 
observations made on an HIV-1 infected patient with Guillain-Barré 
Syndrome, who received treatment with IVIG in addition to ongoing 
antiretroviral therapy [206]. During IVIG treatment, a temporary elevation of 
plasma viral load was detected, and when ART was later discontinued, the 
patient remained aviremic for a period of several months. This raised the 
question of whether IVIG treatment had contributed to the transient increase 
in plasma viremia by activating latently infected memory cells, and if the 
unusually long aviremic period after cessation of ART was a result of a 
decrease in the size of this cell pool. 

To test this hypothesis, we treated 9 patients with a high dose of IVIG for 
five consecutive days. All subjects had been on continuous ART for ≥ 2 
years, with plasma HIV-1 RNA levels < 50 copies/ml for at least 1.5 years. 
The pool of resting CD4+ T-cells was quantified at baseline, and 8-12 weeks 
after IVIG treatment. Seven of the 9 patients had detectable levels of 
replication-competent virus in the isolated resting memory CD4+ T-cells, five 
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of whom experienced a decrease in the latent reservoir after treatment. In 
these five patients, plasma viral RNA was detectable within two weeks after 
IVIG administration, and the highest HIV-1 RNA level was correlated to the 
size of the latent reservoir at baseline. Moreover, all of the five responding 
patients had detectable low-level viremia at baseline, compared to only one at 
follow-up. In two subjects, viral sequences from plasma and activated 
memory CD4+ T-cells were compared and found to be closely related. We 
also noted an increase in serum interleukin 7 (IL-7) during the first eight days 
after IVIG intervention in the five subjects who responded to treatment. In 
addition, a consistent increase in CD25+CD127- regulatory T-cells (Tregs) was 
found in all subjects after IVIG treatment. Our results indicate that treatment 
with IVIG had an effect on the latent reservoir. 

6.3 Paper III 
 

Antiretroviral therapy is commonly effective in lowering HIV-1 RNA levels 
in CSF as well as in blood. However, intrathecal immune activation can be 
detected in the CSF of many patients even when RNA is suppressed to levels 
below the limit of detection of clinical assays (<50 copies/ml). To evaluate 
the effect of suppressive ART on intrathecal immune activation over time, we 
identified 15 neurologically asymptomatic or stable patients who had been 
successfully treated with ART (plasma HIV-1 RNA <50) for ≥3.5 years 
(median 4.6 years). Ten patients from the Gothenburg cohort and five from 
the San Francisco cohort (see methods section) were included in the analysis. 

Despite several years of suppressive therapy, we found that a majority of the 
patients had signs of ongoing intrathecal immune activation. Abnormal levels 
of neopterin as well as IgG-index were found in 60% of the subjects. 
However, both biomarkers decreased significantly when compared to pre-
treatment levels, and all subjects had undetectable HIV-1 RNA in CSF as 
well as in blood. Although ART has a substantial effect on viral replication 
and immune activation in CSF, a majority of patients still have ongoing 
intrathecal immune activation despite effective suppression of the virus for 
extended periods of time. 
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6.4 Paper IV 
 

As illustrated in paper III, ART is usually effective in lowering HIV-1 RNA 
levels in CSF in most patients who achieve systemic suppression with 
treatment. However, occasional subjects have detectable virus in CSF despite 
being suppressed to undetectable (<50 copies/ml) levels in blood. Such viral 
escape in CSF may signify ongoing viral replication in the CNS, posing a risk 
for neurological complications and potentially emergence of drug resistant 
virus. We investigated the occurrence of viral escape in CSF in a cross-
sectional analysis of patients successfully treated with commonly used and 
recommended drug regimens. 

We included a total of 69 patients in the analysis, 56 from the Gothenburg 
cohort and 13 from San Francisco. All had undetectable HIV-1 RNA in 
clinical assays (<50 copies/ml) in blood and had been treated with ART ≥6 
months, with no change in treatment regimen for ≥3 months. Subjects were 
neurologically asymptomatic or stable, and used treatment combinations 
including efavirenz, lopinavir/r or atazanavir/r in combination with 2 NRTIs; 
tenofovir, abacavir or zidovudine in addition to emtricitabine or lamivudine. 
Seven (10%) of the 69 patients had evidence of viral escape in CSF, with 
HIV-1 RNA > 50 copies/ml. This group of patients had significantly higher 
levels of intrathecal immune activation measured with neopterin. In addition, 
these subjects also had significantly longer treatment time, more episodes of 
treatment interruptions and number of plasma viral blips than the subjects 
without CSF viral escape. The study size did not allow for conclusive 
comparisons of the relative efficacy of different antiretroviral drugs or drug 
combinations. We did not detect any difference in CNS penetration 
effectiveness (CPE) rank [194] in subjects with, and without, CSF viral 
escape. Our data suggests that viral escape in CSF is more frequent than 
previously recognized. 
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7 DISCUSSION 
 

Although antiretroviral therapy has had a major impact on controlling HIV-1 
disease, it has been made evident that elimination of the infection by means 
of the currently available drugs is not possible. The ability of HIV-1 to 
establish a stable, integrated, latent infection in resting memory CD4+ T-cells 
constitutes a major obstacle for the eradication of the infection. Moreover, the 
presence of anatomical reservoirs, such as the CNS, poses additional 
challenges to the ultimate goal of achieving a cure for the infection. In this 
thesis, I have addressed several important topics regarding the persistence of 
HIV-1 infection. How potent are the antiretroviral drugs currently in use? 
Can the pool of latently infected resting memory CD4+ T-cells be affected by 
new modes of therapy? Is the CNS a possible reservoir for the infection? 
Although these questions are by no means conclusively answered by the 
work presented here, several observations can be made. 

 
Drug potency and latent resting cell infection  
 

The efficacy of antiretroviral therapy is an unsettled issue. Some argue that 
the drug combinations currently used have the potential to fully block viral 
replication in infected patients, while other data suggest that viral replication 
can be ongoing, despite effective suppression of plasma viremia (Figure 6). 
This issue has been reviewed in chapter 2. Briefly, studies of viral evolution 
during ART in some cases support ongoing viral replication [95-96]. On the 
other hand, the lack of sequence evolution in other studies [81, 99], in 
addition to the lack of correlation between residual viremia and treatment 
regimen [61, 79], and the failure of intensification trials to influence the 
magnitude of residual viremia [109, 111], suggest that current ART regimens 
do have the potential to fully inhibit viral replication.  

In paper I, we measured initial viral decay rates in patients starting treatment 
with three potent antiretroviral drug combinations. It has been hypothesized 
that more potent inhibition of new rounds of infection would eliminate virus 
at a higher rate than seen in less efficient therapy, and the initial viral decay 
rate has been put forward as an early measure of the inherent antiretroviral 
potency of a given treatment regimen [203]. Initial viral decay has been 
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found to correlate with long-term clinical outcome in previous studies [205, 
207-208]. Importantly however, some of these trials have included 
suboptimal treatment regimens, such as monotherapy trials or older treatment 
combinations. Thus, the relation between initial viral decay and long-term 
treatment success found may be a reflection of the overall inferiority of some 
of the regimens studied. In contrast, no correlation was found between viral 
decay and treatment success in a study comparing two NNRTI-based 
treatment regimens [209]. Although longitudinal results from the NORTHIV 
trial are still pending, the differences in viral decay noted in the three 
treatment groups are in accordance with comparative clinical trials on the 
long-term efficacy of included drugs [210-211], and may thus represent a true 
variation in antiretroviral potency for the treatment regimens studied.  

Interestingly, treatment with the integrase inhibitor raltegravir has been 
shown to result in a more rapid viral decay when compared to efavirenz 
[212]. It has been proposed that raltegravir alters the decay kinetics by its 
mode of action, reducing the pool of cells able to contribute to the phase 2 
decay by blocking integration of proviral DNA into the host cell genome. 
These findings illustrate that the mechanism of action of a drug class may be 
important for the decay kinetics observed after treatment initiation. The stage 
in the viral life cycle at which different drugs act may determine the  decay 
rate after initiation of therapy, independent of drug efficacy [213]. In vitro 
analyses of drug inhibition on viral infectivity have shown that the PIs and 
NNRTIs currently used (including those studied in paper I) have a very high 
potential to inhibit viral replication [82, 214], which is in accordance with the 
success of ART-combinations including these drugs in clinical trials [215-
216]. 

It must also be noted that higher efficacy does not automatically mean that a 
treatment regimen will do better in clinical practice. Any drug combination 
with enough potency to inhibit viral infectivity to a high enough degree will 
perform well in treatment of the infection [214]. In a routine clinical setting, 
the ultimate success of a treatment regimen is influenced by other factors. 
Importantly, adherence issues must always be considered in the evaluation of 
therapeutic efficacy. In addition, side effects are important for the long-term 
durability of ART, either by influencing the patients’ drug intake, or by 
necessitating changes in therapy due to adverse effects. 

Despite the potent drug regimens currently available, residual viremia can be 
detected in most subjects when using high-sensitivity assays [61, 79]. As I 
have outlined in the second chapter, the pool of latently infected resting 
memory CD4+ T-cells is an important source of viral persistence and residual 
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viremia. Activation of resting cells leading to virus expression and lytic 
destruction of infected cells, while preventing de-novo infection of 
susceptible targets by maintaining effective antiretroviral therapy, would 
potentially allow for the elimination of infection. Several strategies have been 
investigated in order to decrease the size of the latent reservoir. Interleukin 2 
(IL-2) given in addition to ART decreased the size of the latent reservoir in 
one study [217], but rapid viral rebound was seen after cessation of ART 
[218-220]. IL-2 has also been given in combinations with OKT-3 (an anti-
CD3 monoclonal antibody) with or without addition of hydroxyurea and 
didanosine, to achieve T-cell activation [221-224]. However, either lack of 
decrease in total HIV-1 DNA, or rapid rebound of plasma virus after 
treatment interruption, was noted in these trials [221-222]. Much interest has 
also been invested in valproic acid (VPA) as a possible promoter of HIV-1 
gene expression in resting CD4+ T-cells. VPA is an anticonvulsant drug that 
inhibits histone deacetylase (HDAC), an enzyme involved in chromatin 
remodeling, and regulation of HIV-1 gene expression [225]. In a pilot study 
of four patients, a decline in the latent reservoir was seen in three individuals 
after addition of VPA and enfuvirtide to effective ART [226]. In an extended 
study, only 4 of 11 VPA-treated patients had a decline in resting cell 
infection [227]. Recently however, longitudinal data showed that no long-
term effect on resting cell infection could be seen after VPA treatment [111]. 
Moreover, others failed to demonstrate any difference in resting cell infection 
in HIV-1 infected patients regularly using VPA for neurological disorders 
compared to HIV-1 infected controls using ART alone [228-230]. 

In paper II, we demonstrate an effect of IVIG as adjuvant to effective ART 
on the latent reservoir. The transient increase in plasma virus seen in the 
patients who experienced a decline in the size of the latent reservoir likely 
originated from resting CD4+ T-cells, as suggested by the sequence analyses. 
It is unlikely that IVIG had a direct effect on HIV-1 expression in resting 
CD4+ T-cells. However, an indirect effect mediated by cytokines such as IL-
7, is possible. IL-7 has been shown to induce proviral activation from resting 
CD4+ T-cells in vitro [231], and induced transient plasma blips in a subset of 
individuals in a randomized, controlled study [232]. In addition, we noticed a 
consistent increase in Tregs after IVIG-treatment, which has also been shown 
by others [233-234].  Tregs are important in modulating chronic inflammatory 
responses [235] and interestingly, elite controllers (individuals capable of 
controlling viral load without ART) maintain higher serum levels of Tregs than 
individuals with progressive disease do [236]. It is possible that IVIG has a 
modulating effect on the immune activation seen in chronic HIV-1 infection. 
Our results indicate that IVIG-treatment had an effect on the latent reservoir; 
however, data must be interpreted with caution. This was a small, 
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uncontrolled study, and results need confirmation in expanded, controlled 
trials. Furthermore, it is unclear whether the decrease in size of the latent 
reservoir observed will influence HIV-1 persistence over time. After VPA-
interventions, resting cell infection reverted to baseline levels over time 
[111]. Homeostatic processes may prevent a stable reduction in the latent 
reservoir, as indicated in recent work by Chomont et al [94]. Moreover, 
additional highly stable reservoirs of persistent HIV-1 infection may need to 
be considered if HIV-1 latency is to be successfully eliminated [93]. 

 

CNS persistence 
 

As is the case with the systemic infection, it is not clear if HIV-1 can 
replicate in the CNS during suppressive ART. For obvious reasons, it is not 
possible to directly sample brain tissue in living patients except under very 
special circumstances. Therefore, the absolute majority of studies on CNS 
responses to ART have been done through evaluation of CSF. As previously 
described, ART regularly reduces CSF HIV-1 RNA to below standard levels 
of detection [155, 188, 201-202]. Despite effective suppression of CSF virus 
however, signs of intrathecal immune activation can be detected in treated 
patients [165], and it has been suggested that persistent immune activation 
may represent ongoing low-level viral replication within the brain, generating 
an inflammatory response measurable in CSF [237]. We show in paper III 
that intrathecal immune activation, measured as neopterin and IgG-index, 
remains elevated in a majority of patients even after several years of effective 
viral suppression. CSF neopterin has been shown to be intimately correlated 
with CSF viral load, where subjects with highly suppressed CSF virus (<2.5 
copies/ml) have significantly lower neopterin levels than subjects with CSF 
HIV-1 RNA below the routine clinical detection limit of 50 copies/ml [237]. 
These findings are in agreement with the higher neopterin levels noted in 
patients with viral escape in CSF (paper IV).  

Thus, the presence of HIV-1 is a likely trigger of the intrathecal inflammatory 
response. However, as CSF virus can originate from blood cells trafficking 
into the CNS as well as from productive infection within the brain itself 
[179], elevated CSF neopterin alone does not conclusively demonstrate 
ongoing viral replication in the CNS. Release of virus from activated, latently 
infected T-cells migrating into the CSF compartment may trigger an immune 
response in the CNS measurable as elevated levels of neopterin [140]. 
Conversely, ongoing low-grade viral replication in long-lived cells resident in 



Arvid Edén 

35 

the brain may initiate an inflammatory response even in the absence of HIV-1 
RNA levels measurable in CSF. It has also been suggested that the 
inflammatory response may result from autoimmune phenomena, or a self-
sustaining state of cellular activation, initially triggered by HIV-1 but 
persisting even in the absence of virus during effective therapy [140, 170]. 
This may also be true for the humoral response, measured as elevated IgG-
index (paper III). Although HIV-1 infection triggers intrathecal antibody 
production, HIV-specific antibodies constitute only a minor part and may 
result from non-specific immunologic or autoimmune reactions as well as 
active viral replication [238-239]. It must be noted however, that a significant 
decrease in intrathecal immune activation was seen in treated patients 
compared to pre-treatment levels, indicating that suppression of virus has 
important effects on reducing, if not eliminating, immune responses in the 
CNS triggered by HIV-1 infection (paper III). 

Residual, low-level viremia can be detected in CSF as well as in plasma, 
although it appears to be a less frequent finding than in blood [188, 202, 
240]. The origin of residual CSF viremia is less well characterized than in 
blood. Latently infected resting memory CD4+ T-cells may become activated 
as they traffic across the BCB, exposing the CSF compartment to low levels 
of virus which would implicate a common source of residual viremia in both 
compartments. In contrast, several factors point to CNS-resident cells as 
potential reservoirs for persistent CSF viremia. Differentiated tissue 
macrophages are not affected by the cytopathic effect of HIV-1 to the same 
extent as activated CD4+ T-cells are, which may enable continuous low-level 
virus production to take place for the entire life span of the infected cells 
[241-242]. The perivascular macrophage pool is continuously replenished by 
bone-marrow derived cells, potentially recruiting additional targets for 
ongoing infection [175]. Microglia may also be replenished by monocytes 
[175]; in addition, the long life span of microglia makes this cell population a 
potentially significant source of persistent HIV-1 infection in the CNS. 

The BBB limits the passage of most antiretroviral drugs into the CNS, which 
may lead to suboptimal concentrations in the brain parenchyma, thus 
reducing antiretroviral potency in the CNS [243-244]. Although little is 
known about actual drug concentrations in the brain itself, studies of CSF 
have shown that not all drugs reach adequate concentrations in the CSF 
compartment [192]. However, experience has shown that CSF viral load 
generally responds well to effective systemic therapy regardless of treatment 
regimen [155, 188, 237]. Cases of viral escape in CSF under suppressive 
systemic ART have been rare [188], and as mentioned above, residual low-
level CSF virus appears to be less common than in plasma. In paper IV 
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however, we demonstrate that CSF viral escape (here defined as CSF HIV-1 
RNA >50 copies/ml while plasma HIV-1 RNA is <50 copies/ml) in a cohort 
of neuroasymptomatic patients treated with contemporary and recommended 
ART  combinations was more common than previously experienced. Ten 
percent of systemically suppressed patients had CSF HIV-1 RNA above the 
detection limit of clinical assays, which was correlated to higher levels of 
intrathecal immune activation measured as CSF neopterin. 

Insufficient drug concentrations due to limited penetration may lower ART 
potency in the CNS, possibly allowing some degree of viral replication to 
occur. Over time, this may establish a CNS infection that is independent of 
viral reseeding from the periphery, eventually leading to viral escape in CSF. 
Interestingly, subjects with detectable CSF virus had been treated with ART 
for a significantly longer time than subjects with suppressed CSF viral load 
(paper IV). Additionally, we found that previous treatment interruptions as 
well as previous plasma viral blips were more common in the group of 
subjects with CSF viral escape. Treatment interruptions result in a rapid 
rebound of plasma viremia, and have proved to increase the overall risk of 
adverse events and disease progression [245]. Viral load also increases 
rapidly in the CSF, and results in increased levels of intrathecal immune 
activation, as well as neuronal injury [246]. After interruption of therapy an 
increase in CSF levels of neurofilament light protein (NFL), a marker of 
axonal injury, has been observed suggesting that the rapid elevation of viral 
load during treatment interruption has potential CNS-damaging effects [246]. 
Exposure of the CNS to HIV-1 RNA may promote the establishment of an 
autonomous infection within CNS-resident cells. Viral blips have also been 
shown to be associated with decreased adherence [247]. The higher 
frequency of plasma viral blips in subjects with CSF viral escape suggests 
that intermittent reseeding of the CNS, whether due to limited potency or lack 
of adherence, may promote persistent infection in the brain. 

The importance of drug penetration across the BBB for controlling HIV-1 
infection in the CNS is not fully elucidated. Based on pharmacokinetic CSF 
studies, the CPE rank has been proposed as a simple way to estimate the 
potency of drug combinations in the CNS [194, 248]. However, other factors 
may influence antiretroviral potency in the CNS, and indeed, we did not see 
any correlation between CPE rank and CSF viral escape in our subjects. We 
could not demonstrate a correlation between CSF viral escape and the 
specific drugs included in ART regimens; however, variations in CNS 
penetration may still be important. Differences in efficacy between the 
studied drugs were not large enough to be detected in our study cohort, 
although we did see a trend towards significance when comparing the NRTIs 
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tenofovir, abacavir and zidovudine. Notably, none of the subjects treated with 
zidovudine, a drug with well demonstrated CNS efficacy, had CSF viral 
escape (paper IV). 

The clinical significance of ongoing intrathecal immune activation with or 
without detectable CSF virus is not fully established. ART has been effective 
in preventing severe forms of HIV-1 related neurological disease [139], 
suggesting that persistent immune activation may be clinically benign. 
However, less apparent neurocognitive impairment may be prevalent in HIV-
1 infected patients [145-146], and may signify ongoing low-grade 
neurological damage. Recent reports have demonstrated CSF viral escape 
linked to concurrent neurological symptoms, illustrating the potential impact 
of suboptimal viral control in the CNS [249-251]. This may have important 
implications for future antiretroviral therapy, as new treatment strategies, for 
example NRTI-sparing regimens, as well as the implementation of new drug 
combinations with less CNS-penetrating properties, become more common in 
clinical practice. 

 

Concluding remarks 
 

The potency of antiretroviral drug regimens is not fully elucidated. 
Interesting new ways of evaluating the relative inhibitory effect of ART have 
been proposed recently, where in vitro measurement of the reduction in viral 
infectivity, or instantaneous inhibitory potential (IIP), of an antiretroviral 
drug may influence antiviral activity in vivo [82, 214]. However, in the future 
additional clinical studies are needed to further clarify the efficacy of 
recommended drug regimens both from a virological and a clinical 
perspective. It is not fully established if initial viral decay rate reflects the 
potency of a given drug regimen or is related to pharmacological mechanisms 
of HIV-1 inhibition, and if the difference in decay seen between different 
drugs have an impact on residual viral replication in vivo. This is especially 
true in the CNS, where current knowledge of the efficacy of drug 
combinations is insufficient. As I have discussed here, intrathecal immune 
activation is a common finding, and viral escape can be detected in 
individuals on modern drug regimens. If these findings represent an actual 
lack of therapeutic effect in the CNS, new strategies may need to be 
developed in the treatment of neurological HIV-1 disease. The most 
immediate way of investigating this issue is to expand our observations into 
larger, preferably randomized and controlled, clinical trials. 
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The origin of residual virus in CSF is not well known. As CSF represents a 
compartment shared between the peripheral circulation and the CNS, viral 
strains may originate from any of these sources. Sequence analyses have been 
performed by many groups in plasma. Very few, if any, such studies have 
investigated residual CSF virus and this could potentially be a very 
interesting focus for future research. Although CSF is an accessible 
compartment, patients are sometimes unwilling to partake in sampling, and 
the procedure requires some degree of proficiency. However, with sufficient 
knowledge and organization in the clinic and the lab, such studies may be 
possible to perform. 

Furthermore, the pool of latently infected resting memory CD4+ T-cells 
constitute an important barrier to the elimination of HIV-1 disease. We have 
shown that this reservoir is probably accessible by adjuvant interventions; 
however, lasting effects and clinical benefit is unclear. In the case of IVIG 
treatment, our findings are interesting but must be interpreted with caution. 
Again, expanded, controlled trials as well as long-term follow-up are needed 
to properly evaluate the potential benefit of such strategies. 

Although it is not known if viral replication in the CNS can take place during 
potent ART, we and others have shown that the CNS is a compartment that 
must be taken into consideration when approaching the subject of HIV-1 
persistence. While ART can have a great impact on controlling the infection, 
intrathecal immune activation as well as viral escape demonstrates that 
treatment does not fully suppress the CNS responses caused by HIV-1 
infection, whether it is due to ongoing viral replication in the brain or release 
of virus from stable reservoirs in the periphery. If ongoing viral replication 
occurs in blood during treatment with ART is also an unsettled issue. As in 
the CNS, the impact of ART on HIV-1 disease cannot be overestimated, even 
if eradication of the infection has proved to be unachievable thus far. If this 
ultimate goal is to be realized, many of the issues addressed in the studies 
included in this thesis remain to be elucidated. 
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8 CONCLUSIONS 
 

• The NNRTI efavirenz, when used in combination with 2 NRTIs, 
lowers plasma viral load at a faster rate than ART combinations 
containing either of the PIs lopinavir/r or atazanavir/r. In turn, the 
rate of decline is greater with lopinavir/r-based than atazanavir/r-
based therapy. This may reflect different inherent antiretroviral 
potency between the treatment regimens 

• Addition of IVIG to effective ART reduced the size of the pool of 
latently infected resting memory CD4+ T-cells. Although findings 
need replication in controlled trials, the results indicate that novel 
modes of intervention can have an effect on the latent reservoir 

• Despite several years of effective virologic suppression, a majority of 
subjects still have elevated levels of intrathecal immune activation. 
The nature of the immune response is not entirely clear, but may 
result from ongoing replication of virus in the brain or exposure of 
the CNS to low levels of virus originating from the systemic 
circulation. 

• As many as ten percent of effectively treated, neurologically 
asymptomatic individuals have viral escape in CSF. The cause of 
viral escape is again not clearly defined. Viral escape in CSF may 
result from insufficient drug penetration, allowing virus to replicate 
despite systemic suppression. Autonomous CNS infection 
established through intermittent reseeding of the CNS compartment 
during treatment interruptions or temporary increases in viremia may 
be of importance for CSF viral escape. 
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