

University of Gothenburg

Department of Computer Science and Engineering

Göteborg, Sweden, June 2009

Form construction and system integration

David Carlberg

Karl Wallin

2

The Author grants to Chalmers University of Technology and University of Gothenburg

the non-exclusive right to publish the Work electronically and in a non-commercial

purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work

does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example

a publisher or a company), acknowledge the third party about this agreement. If the

Author has signed a copyright agreement with a third party regarding the Work, the

Author warrants hereby that he/she has obtained any necessary permission from this

third party to let Chalmers University of Technology and University of Gothenburg

store the Work electronically and make it accessible on the Internet.

Form construction and system integration

David Carlberg

Karl Wallin

© David Carlberg, June 2009

© Karl Wallin, June 2009

Examiner: Joachim von Hacht

Chalmers University of Technology

Department of Computer Science and Engineering

SE-412 96 Göteborg

Sweden

Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering

Göteborg, Sweden June 2009

3

1 Abstract
When constructing forms with the help of online tools, these forms will be bound to the online

tool. The online tools offer hosting of forms and handling of the submission data. The work in

this thesis analyzes the possibilities to move the constructed forms and there data handling to

an arbitrary web server and presents what must be done to completely move the forms. It also

shortly describes the implementation of such a tool that solves this issue.

4

2 Preface
This is a master thesis in computer science at University of Gothenburg. The work in this thesis

was done from January 2009 to June 2009.

We would like to thank the following:

Joachim von Hacht, who was our examiner and whose support has been very valuable for this

thesis.

Märt Kalmo, for giving us feedback on this thesis.

5

3 Table of contents

1 Abstract ... 3

2 Preface ... 4

3 Table of contents ... 5

4 Background .. 7

5 Purpose .. 9

6 Method ...10

7 Dictionary ...11

8 Role Dictionary ..13

9 Environment ...15

10 System integration ..16

10.1 No integration ...17

10.2 Form to web server integration ...18

10.3 Web server integration ..19

10.4 Database integration ...20

10.5 Server side script to web server integration ...21

10.6 Complete integration ...22

11 Web server integration ..24

12 Database integration ...25

13 Evaluation of existing form builder applications...27

13.1 System integration...27

14 JavaScript ..30

14.1 Object oriented JavaScript ...30

14.2 Namespaces in JavaScript ..30

14.3 Debugging JavaScript ...32

15 AJAX ..33

16 Architecture ..34

17 Design ...35

17.1 Data representation ..35

17.2 Test application client ..36

17.3 Test application server ...37

18 Implementation...38

6

18.1 Code generation ..38

19 Discussion and conclusion ...40

20 Appendix A – Implementation issues ...41

20.1 Data representation ..41

20.2 Database connection ...41

20.3 Iframe URL length ..42

21 Appendix B – Test application server scripts ..43

22 Appendix C – XML database ..44

7

4 Background
The standard for data collection on the internet today is by the use of forms. A form contains

controls that collect input data from the user. A typical form can look like this (Figure 4.1).

A more advance form can look like this (Figure 4.2).

Figure 4-1. A typical login form used online.

Figure 4-2. An advanced form used to register users.

8

Developing forms that can be used on the web isn't a trivial task, unless the developer posses

knowledge about HTML, JavaScript and databases. Even with these skills the process of

developing forms can still be very time consuming. Because of this a number of online tools for

creating forms were developed to satisfy the needs of both the regular customers as well as

the professional customers.

The service these tools offer includes a visual editor for the form creation, hosting of the

completed forms as well as storage and retrieval of submitted data. Because of all these

services, almost no resources or even programming knowledge is needed to create and publish

a form online. None of today's online tools can however help customers to move a form and its

data handling into the customer web server. All data handling is done by the form builder

application system and the customers have no way of customizing the data handling. So forms

created with these tools are bound to the form builder application system and there is

currently no existing solution for the customers to move the forms and data handling into to

their own system. The term that will be used for moving forms and data handling into a

customer system will be system integration. So what the customer gain in simplicity and speed

from these services they loose in system integration. This is however only problems that need

to be considered by the professional customers as the option of developing forms by hand is

none existing for the regular customers. So the problem facing the professional customers

today is weighing the time issue against the system integration issue.

9

5 Purpose
The purpose of this thesis is to present a solution which enables customers to integrate

created forms with their own system.

10

6 Method
System integration will be solved by implementing a new form builder application that is able

to construct forms that can be moved to and integrated with a customer system.

11

7 Dictionary

Server side script

Programming language used on web servers for dynamic web pages. There are many Server

side script languages available. Some of the more known is ASP/ASP.NET, PHP, Java, Perl,

Python and Ruby.

HTML (Hyper Text Markup Language)

HTML is the standard for writing static web pages.

CSS (Cascading Style Sheets)

CSS is used to describe the presentation (font, color, position etc) of a markup language, like

HTML.

DOM (Document Object Model)

DOM is the object representation of a web page that can be manipulated from JavaScript.

ODBC (Open Database Connectivity)

ODBC is a database access API which is software that makes it possible to connect to an

arbitrary database from code.

OLEDB (Object Linking and Embedding Database)

OLEDB is a database access API which is software that makes it possible to connect to an

arbitrary database from code (Microsoft only).

JDBC (Java Database Connectivity)

JDBC is a database access API which is software that makes it possible to connect to an

arbitrary database from code.

Database driver

Software that is used by the database access APIs (JDBC, ODBC , OLEDB) for communication

with proper database.

Database metadata

Metadata is data about data. In the case of databases, metadata describes the structure of the

database.

INFORMATION_SCHEMA

INFORMATION_SCHEMA is part of the SQL standard. INFORMATION_SCHEMA is a table that

provides access to the database metadata.

Connection string

Connection string specifies information about a database and the means of connecting to it.

This information includes database driver, host, port, username and password.

http://en.wikipedia.org/wiki/String_%28computer_science%29

12

Equation

A form equation is when values from one or more controls together forms a mathematical

expression which result will be placed in a single separate control.

Validation

Form validations is restrictions that has been placed on controls within the form. These

restrictions can vary. Some common restrictions that are often placed on controls are:

 Required: When the form is submitted the restricted control must have a value.

 Number: A control with a number restriction will only pass the validation if its value is
a numeric value.

 Email: This restriction means that the value of the control must have the form of a
valid email address.

 Value length (max/min): This restriction means that the value in the control can only
have a specified number of characters.

13

8 Role Dictionary

End user

Fills out a form, using a web browser.

Form builder application

 An online application for building forms where no programming knowledge is needed.

Form builder application web server

The web server where the form builder application is located.

Form builder application database

The database used by the form builder application and the completed forms.

Form builder application system

All hardware and software used by the form builder application including the form builder

application web server and database.

Customer

A user of the form builder application.

Customer database

The database owned by the customer.

Customer web server

The web server owned by the customer.

Customer system

All hardware and software owned by the customer including the customer web server and

database.

14

Figure 8-1. A view of the different roles.

15

9 Environment
A form is a collection of HTML controls within a web page that can be filled out and submitted

by end users. The form is viewed in a browser and the code that the browser uses to display

the form is written as HTML and CSS. A form can also have dynamic functionality with the help

of JavaScript.

This is the common view of what a form is but in reality there is a lot more functionality in the

background that is not visible to the end user. When the data is submitted it is sent to a web

server where it is handled by a Server side script. The Server side script can have different tasks

including verifying, modifying and store the submitted data.

Figure 9-1. Common view of a form

Figure 9-2. Server side script and database functionality

16

10 System integration
Form builder applications offers a service that helps the customer create complicated forms

without needing any programming knowledge. One thing that can be viewed as a problem

with this service is that the customer to some extent can become dependent of the form

builder application system that provides this service. This level of dependency depends on how

much of the created form needs the form builder application system to perform its functions.

The level of dependency can be reduced by increasing the level of integration. Integration of

the form to the customer system can be divided into two parts. The first part involves the

adjustment of the form as well as the server side script which handle the form submission

data, so they can be published on the customer web server. This will be referred to as web

server integration. The second part of the system integration is where the server side script

associated with the form, is adjusted so that the submitted data can be sent to the customer

database. This will be referred to as Database integration.

In order to measure the level of system integration, different categories was created that

shows how integrated a build form is to the customer system. The range of these categories

goes from no integration to complete integration. These categories can also be viewed as a

measurement of how dependent of the form builder application system the customer of the

service becomes.

17

10.1 No integration
The form is in this case located on the form builder application web server. When the end user

fills out the form, they need to access it from the form builder application system. When a

form is not integrated at all the server side script associated with the form is also located on

the form builder application web server. The submission data is stored in the form builder

application database. This is the most common scenario used by form builder applications

because it is the most convenient alternative for the customer as no external resources is

needed.

Figure 10-1. No integration

18

10.2 Form to web server integration
This is when the form can be exported and published on the customer web server. The server

side script is still located on the form builder application web server and all submission data is

stored in the form builder application database. So whenever end users fills out a form it is

accessed from the customer web server, but the submission data is still sent back to the form

builder application web server where it is handled by the server side script. This step requires

more from the customer since the customer need to have access to a web server where the

form can be published. This alternative can provide the possibility to make small changes to

the form by hand, but for this some programming knowledge is needed.

Figure 10-2. Form to web server integration

19

10.3 Web server integration
This is when both the form and the server side script are integrated with the customer web

server. The server side script however, still sends the submission data back to the form builder

application database. This solution may however impose a security risk since vital information

about connection to the form builder application database is included in the server side script.

Figure 10-3 Web server integration

20

10.4 Database integration
Database integration is when the form and the server side script both are located on the form

builder application web server, but submission data is sent to the customer database. This

requires that the customer provides a database and have some knowledge about databases.

Figure 10-4. Database integration

21

10.5 Server side script to web server integration
In this case the server side script is located on the customer web server but the form is still

located on the form builder application web server. The submission data is sent to the

customer database. This solution is similar to database integration. As the server side script

only is a connector between form and the database, its location is of small difference when the

form is located at the form builder application web server.

Figure 10-5. Server side script to web server integration

22

10.6 Complete integration
This is when both web server integration and database integration is achieved. Both the form

and the server side script are located on the customer web server and the submission data is

sent to the customer database. This means that the form has been completely integrated with

the customer system and has no association with the form builder application system. This step

requires that the customer can provide a web server and a database.

Figure 10-6. Complete integration or System integration

23

There is another solution to integrate forms into a customer system that is used by some form

builder applications but still doesn't fit into the definition of system integration. In this solution

the customer must install a copy of the entire form builder application system on its own

system. With this solution the customer is in no way dependent on the form builder application

system but the forms are still dependent on the installed copy of the form builder application

system.

Figure 10-7. Special type of system integration

24

11 Web server integration
Web server integration consists of two parts, the integration of the form as well as the server

side script to the customer web server. In the Evaluation of existing form builder applications

chapter, there is a closer description of how existing form builder applications have solved

system integration. None of the existing form builder applications have a solution to web

server integration. Most of them supports form to web server integration but none of them

supports integration of the server side script.

When adding server side script integration capabilities to a form builder application, some new

aspects must be considered. One of the more significant new things to consider is the need for

adapting the server side script to the customer web server's platform. The problem here is that

the customer web server usually only supports one specific web server software and this may

differ from customer to customer as there are many competing web server software on the

market. Different web server software may also support different server side scripting

languages. When integrating the server side script with the customer web server it must be of

the same server side scripting language as the customer web server supports. To solve this

difficulty the form builder application must be able to construct the server side script in

different server side scripting languages. Some of the more popular server side scripting

languages are ASP/ASP.net, PHP, Cold Fusion, JSP, Python, Ruby and Pearl.

The server side scripting languages differs a lot and they are all executed on the web server.

The form however is executed by the end user's web browser and the support differences

between web browsers are much less complicated since the form uses HTML, CSS and

JavaScript which all browsers have almost the same support for. The small problem here is

JavaScript where some support differences may occur but this is insignificant in comparison to

the differences between different server side scripting languages.

As mentioned earlier, a second form of system integration exists, where the customers had the

possibility to integrate the complete form builder application system on their own system. This

only works if the customer system and the form builder application system are compatible. If

they are not, the customer may have to install new software and hardware which supports the

form builder application system.

25

12 Database integration
Database integration means that the server side script is able to communicate with the

customer database. This communication can be divided into two areas. The main area is

handling submission data from the form. The other area is reading data from the database

which can be used to interact with the form. This interaction can be to fill the form with

predefined values or to control form actions depending on existing data.

The platform adaption problem that was mentioned in web server integration also exists in

database integration. There are several number of database systems that need to be

supported. Most database systems use a standard communication protocol, SQL, which in its

most basic functions behaves in the same way for most database systems. Because of this, the

adaptation problem for database systems is not as significant as with web server platform

adaptation. The problem here is the initial connection as it's often not possible to directly

connect to the database from a server side script. Server side scripts often use a database

access API like ODBC, JDBC or OLEDB to communicate with arbitrary databases. This is where

the largest platform adaption problem occurs for database integration as these database

accesses APIs uses drivers to communicate with the database, and these drivers are

independent services that need to be installed on the customer web server. These drivers are

also different for different databases.

On a customer web server, the database drivers are already installed if database

communication has been used. Some server side scripting languages have optimized support

for specific database systems which means that no database access API is needed for

communication and therefore no drivers are needed.

The platform adaption problem however is not the main problem whit database integration.

The main problem is to adapt the server side script to the structure of the customer database

which of course varies a lot from database to database.

For the server side script to be integrated with the database it need to know the structure of

the database. This can be done in two ways, reading the structure from the database itself or

having the customer manually describe the structure. Reading the structure directly from the

database is much less error prone, as the whole process is automatic. But both alternatives

must still be supported to accommodate all customers, since connection to the database isn't

always possible. Both of these alternatives require that the customers have database

connection information knowledge. The information needed to connect to a database is the

location of the database (host, port), the driver to the database, the user name and password

to the database. When entering the structure manually customers also need to know the

database's exact structure.

The structure of a database can be very complicated for large systems, but as there are very

strict rules on how to structure the database this is of little importance. So by following all the

rules of the database structure the solution will be scalable. The core of the database is its

relations which are built up using keys. The database relation structure is needed for inserting

the data correctly into the database. Because of the relation dependencies, data sometimes

26

must be inserted in a specific order. This means that the form builder application needs to

know the database relation structure.

To learn the structure of a database the form application system must read the metadata

information from the database. There is a standard protocol which is a part of the SQL

standard that can be used to retrieve metadata from a database. This part of the SQL standard

however is not very well supported by many of the larger database systems which instead

implements their own way of retrieving the metadata. This means that to support automatic

learning of the database structure, the form builder application need to be able to adjust to

different databases.

27

13 Evaluation of existing form builder applications
There exist a number of form builder applications online and all of them have very similar ways

in handling forms both in the construction phase as well as integration phase. Four of these

applications were evaluated more thoroughly.

Wufoo - http://www.wufoo.com

FormSpring - http://www.formspring.com

Frevvo - http://www.frevvo.com

Comfact designer - http://designer.hubbus.com

13.1 System integration
The main features of almost all the evaluated form builder applications lies under the form to

web server integration category. Of the evaluated form builder applications there was only one

exception to this. The exception is Comfact designer which falls under the no integration

category. All forms developed by these form builder applications handle submission data in the

same way, by storing it in the form builder application database.

No integration

This level of integration is supported by all evaluated form builder applications and in the case

of Comfact designer, this is the only level that is supported. In order to access forms at this

level, users must navigate to the form builder application web server. The most common way

of achieving this is to provide a link directly to the form. Some form builder application systems

also supports access restrictions which forces users to log in before accessing forms.

Form to web server integration

The form to web server integration is also widely supported among the form builder

applications. The difference between this level and the no integration level is that end users

can access forms from the customer’s web server. The evaluated form builder applications

offer a few integration alternatives to the customers. These integration alternatives includes

form download and form embed. The form download alternative gives customers a web page

containing full client side source code that can be placed on their own web server. The embed

alternative is when forms are placed within an existing web page which can be done by the use

of embed, iframe or script tags.

As mentioned before there is an alternative of system integration which requires customers to

install a copy of the form builder application system on their own system. This feature is

supported by both Comfact designer and Frevvo.

None of the form builder applications found has a higher level of support than the form to web

server integration.

28

Figure 13-1 Comfact designer overview

Figure 13-2. FormSpring overview

29

Figure 13-3 Wufoo overview

Figure 13-4 Frevvo overview

30

14 JavaScript
JavaScript is the main language used in the development of the form builder application

implemented to solve the system integration issue. This chapter gives a short description

about the language and also highlights a few useful features for developing larger JavaScript

projects.

JavaScript is used to create dynamic web pages and executes on the client browser. It is often

used to only enhance small parts of the web page, like visual changes in real time. This is often

done using small snippets of JavaScript code that is applied to the web page. Using JavaScript

for small tasks is a fast and effective way of manipulating a web page, but when creating a

larger project mainly built using JavaScript, the code can easily become unstructured. The

reasons why JavaScript can be messy in large projects can be many. One of the reasons is the

lack of type checking which forces the developer to keep track of all variables. One of the

major problems is the browser incompatibility which can require different solutions for the

same problem. This can lead to large if statement code which often makes little sense and may

be hard to read and understand.

14.1 Object oriented JavaScript
JavaScript is not an object oriented language but it is still possible to use JavaScript as if this

was the case by simulating it. This is achieved using the keywords function and new.

14.2 Namespaces in JavaScript
One problem that can occur when using pre-built JavaScript libraries or toolkits is name

collisions. This problem is solved in other programming languages using namespaces which

doesn't exist in JavaScript. As with object orientation in JavaScript namespaces can be

simulated. This is done using global objects. Here is an example on how to simulate a very

simple namespace in JavaScript.

function Class1()

{

 var counter = 0;

 this.getCounter = function()

 {

 return counter;

 }

}

var class1 = new Class1();

var counter = class1.getCounter();

31

In this example two namespaces are created (ns1, ns2) each with a variable named counter.

The variables are accessed through the namespace objects. Both counter variables will have

the value 1.

It is also possible to simulate nested namespaces if needed, by creating namespace objects

within an existing namespace.

There is also an option to add functions to namespaces which can be used to add simulated

classes to namespaces, as seen in Object oriented JavaScript.

Using these methods the developer can protect it´s code from name collisions when using

other libraries or toolkits. This also helps the developer to structure the code and separate it

logically which can increase the structure of the code significantly.

namespace1.inc = function()

{

 namespace1.counter++;

};

namespace1.EmptyClass = function(){};

var newEmptyClass = new namespace1.EmptyClass();

namespace1.nestednamespace = {};

namespace1.nestednamespace.counter = 0;

var namespace1 = {};

namespace1.counter = 0;

var namespace2 = {};

namespace2.counter = 0;

namespace1.counter++;

namespace2.counter++;

32

14.3 Debugging JavaScript
When writing large projects independent of programming language, one important part is

debugging. This can be especially difficult in JavaScript as it is a dynamically typed language

and there is no help from a compiler.

Another difficulty with debugging JavaScript is the implementation differences between

browsers. This means that debugging must be done in all browsers for the project to achieve

full browser support.

There are some useful debugging tools for JavaScript in almost all of today's larger browsers.

These tools are essential when developing and testing large JavaScript projects as well as

smaller JavaScript snippets. There are also some aids that control that the syntax is correct and

almost work as a small compiler.

33

15 AJAX
AJAX stands for Asynchronous JavaScript and XML and is used in web pages for retrieving data

from the server without reloading the web page which will make the web page faster and act

more like a desktop application. Some known web sites that use this functionality are Gmail,

Google Maps and Facebook. AJAX can for example be used for real time validation of form

input data, to give text proposals when end users start writing text in text fields.

The form builder application developed during this thesis will use AJAX for server

communication to avoid page loads.

34

16 Architecture
To solve system integration a test form builder application (test application) was developed.

When it comes to server technologies the difference in functionality is small and the choice is

of small importance. The test application was implemented using .NET and C# as server

technology and the client side where implemented using HTML, JavaScript and AJAX. The

database used by the test application is of type MySql.

35

17 Design
The purpose of test application is to handle the system integration feature that other form

builder applications don't support. Before implementing the test application a few important

decisions regarding what platform to run on as well as the languages and technologies to use

had to be considered. When looking at other form builder applications the majority of them

focus on JavaScript and AJAX. These technologies will also be the focus for the test application,

but the focus, in comparison to other form builder applications, is more centered around

JavaScript and less on AJAX and server communication. The reason for this is to avoid

communicating with the server at every step of the building process and by this increase the

application speed.

This chapter describes the different design parts of the test application and is divided into

three parts. Each part describes one major design area.

17.1 Data representation
As the test application is going to store forms, both completed and uncompleted, a structured

format that could represent the form is needed. The complete form will be exported to HTML

and JavaScript, but a way to store the information that can represent a form before it is

exported is needed. The form should be stored in such a way that it can be easily analyzed and

modified. The combination of HTML and JavaScript is not well suited for these specifications so

another format to store the not yet exported forms had to be developed. So an XML structure

was developed for this purpose. The XML structure is a representation of a form used by the

test application during form development.

In order for the database integration to work the XML structure store connection information,

the structure of the database as well as the connection between database fields and form

controls.

Here is a very small example of how the database structure could look like.

<Database name="Database" databaseType="MySql" username="username"… >

 <DatabaseTable name="users">

 <DatabaseColumn name="username" isPrimaryKey="true" isForeignKey="true"…/>

 <DatabaseColumn name="email" isPrimaryKey="false" isForeignKey="false"… />

 <DatabaseRow>

 <DatabaseCell columnName="username" controlId="textBox1" />

 <DatabaseCell columnName="email" controlId="textBox2" />

 </DatabaseRow>

 </DatabaseTable>

</Database>

36

17.2 Test application client
The test application was designed to be as fast as possible and also to have the look and feel of

a desktop application. This is achieved by using as mush JavaScript as possible and by placing

almost the whole application on the client. As most of the application is placed on the client,

both GUI code as well as most of the application logic is in JavaScript.

On the client, the XML file is converted to JavaScript objects which are modified by the

application during the form building process. The main usage for these objects is to construct

the GUI of the form by generating DOM elements which are inserted into the DOM tree. These

objects can also be converted back to XML.

Figure 17-1. Test application client

37

17.3 Test application server
The test application server consists of a number of server side scripts implemented as aspx.

The test application client communicates with the test application server with the use of AJAX

calls. Many of the server side scripts only perform small tasks which include communication

with the test application database.

Figure 17-2. Test application server

38

18 Implementation

18.1 Code generation
In order to support web server integration the test application need to generate the form as

well as its server side script. For the form to be fully functional it also must be able to generate

the server side script in different languages depending on the customer web server platform.

When exporting, the generation of the form and the server side script are done separately. All

generation is done using the information in the XML file.

Form generation

The form generation includes generating the HTML and the JavaScript needed. The HTML and

JavaScript generation will be done in the same way independent of the customer web server

platform since the form is handled by web browsers. First all tags in the XML that describe the

visual part of the form will be used to generate a HTML string. For the more advanced

functionality, like Equation and validation, JavaScript code is generated and added to the

HTML string.

Server side script generation

When generating the server side script the type of web server platform where it should be

placed must be taken into account. The server side script will be generated as a string and the

string will differ depending on the web server platform. The test application will, like with the

form, use the information in the XML file to generate the sever side script string, but only the

information from the Database tags will be used.

The first though was to have the form as a separate HTML file that communicated with the

server side script, but since all server side scripts supports HTML code as well, the form code

was moved into the server side script. The test application now only generates one file that

represents the form which includes both the form HTML code and the server side script.

39

Database connection and analyzing

To read and analyze the structure of a database automatically, the connection information is

needed. Customers are prompted for most of the necessary connection information and use

this to construct a connection string which is used to connect to the customer database. If the

connection was successful the metadata is read to obtain the structure of the database. The

metadata is then used to create an XML Database tag that will be added to the XML structure.

Customers can then select different form controls and associate them to the appropriate

database column which modifies the Database tag accordingly.

Key sorting

When inserting data into a database, the data must be inserted in a correct order which

depends on the relations of the columns. Therefore the DatabaseRow tags are sorted before

generating the server side script. The key sorting algorithm implemented in the test application

looks for these dependencies and sorts them accordingly so that there will be no insertion

errors.

Figure 18-1. Code generation at test application server.

40

19 Discussion and conclusion
The purpose of this thesis was to present a solution to the system integration issue that no

form builder application currently handles. The method used to solve this was an

implementation of a new form builder application which could handle system integration. The

implementation of the test application was successful and even if the implementation is in an

early stage the system integration issue has been solved.

41

20 Appendix A – Implementation issues

20.1 Data representation
One of the first discussions was about the underlying structure that would represent a form

during development. As mentioned in the Implementation section an XML based protocol was

created for this purpose. Before XML was chosen however, some other alternative formats

that would be well suited for data representation was considered. The three formats

considered were SQL, XML and JSON.

SQL

Using SQL gives a lot for free, like speed, structure, security and wide support. SQL could

therefore be used for the exact this purpose. The problem is that most of the work is done at

the client side of the application, which means that the form data must be sent between client

and server and SQL isn't well suited for easy distribution. SQL is built for extracting specific

data from its structure which is needed, but this is needed on the client side and a SQL

database is located on the server side of the application. So what is needed is a format that

can represent a form in a structured way so that specific data can easily be extracted on the

client side.

XML

XML is good for representing data in such a way that the test application could make use of it.

XML is well structured and can be read easily. The forms can with XML be separated into single

XML files. XML can be handled in many different environments and be easily distributed

because it's a stand alone document that does not rely on an engine to work like SQL. Two

important things with XML is the support in the languages chosen to implement the test

application. Both .NET and JavaScript has good support for XML.

JSON

JSON is many ways similar to XML and as with XML, JSON can store forms in different files.

Since the test application is going to use a lot of JavaScript and AJAX, JSON would be a perfect

way of storing the forms as JSON is very easily handled with JavaScript.

The choice was between XML and JSON as they are very similar and both fitted the needs of

the test application. The decision to go with XML was made simply because XML has wider

support and is more recognized.

20.2 Database connection
In order to connect to a database using a connection string the following information is

needed:

 username - the user login name for the database

 password - the password associated with the username

 host - the address to the database (name or IP)

 port - the port number that the database is listening on

 driver - what driver to use when connecting

42

For some customers this information can be difficult to acquire, especially the port number

and the driver. The first three (username, password and host) is information that is very

customer specific and must be supplied by the customer. The port and driver however can

both be database specific so the process of retrieving them can in most cases be done

automatically. The amount of drivers is limited so they can all be tested for connectivity to

determine the correct driver. The different database types use standard port numbers that will

be used by default. The port can however be set manually by the database administrator

(customer) and in that case there is no effective way of automatically choose the port since all

ports would have to be tested. So if the port has been set manually, the customer must specify

the port as well as the host, username and password.

To make this as user friendly as possible the test application will have automated test for ports

and drivers whereas the host, username and password always must be supplied by the

customer.

Metadata

Acquiring metadata isn't a trivial task when it comes to databases because of the differences in

the implementation between the database systems. There is a section in the SQL standard that

describes how to obtain metadata from a database using the INFORMATION_SCHEMA. The

INFORMATION_SCHEMA is a built in group of tables containing metadata about the database.

The problem here is that the support for this part of the SQL standard is not widely

implemented by the different database systems. The systems which do support this standard

still have differences in their interpretation. Systems that don't implement this standard have

often implemented their own way of obtaining metadata from their database. So even if there

is a standard for obtaining metadata from a database, each individual database system must

be thoroughly analyzed so the test application can read metadata from all different systems.

20.3 Iframe URL length
The test application use AJAX for transmitting data from the client to the server. A problem

was encountered during the exportation of the form. When exporting a form, the test

application client sent the full XML structure as a parameter in the iframe URL. The XML was

handled at the server by generating the form and the server side script and the test application

server then sent them back to the customer as a compressed file. The problem, which only

occurred in Firefox and when the URL exceeded 2048 characters, was that the compressed file

was blocked for download for unknown security reasons. Because of this the test application

had to use AJAX to send the XML to the server first and then fetch the compressed file using

the iframe with an URL without parameters.

43

21 Appendix B – Test application server scripts

SaveForm.aspx

This server side script receives the XML from client through the URL as a parameter and stores

it at the correct place in the database.

OpenForm.aspx

After receiving a form name from the client, the correct XML file is read from the database and

is sent back to the client.

BrowseForms.aspx

Reads all form names, for a specified customer, from the database and sends them to the

client along with other information about the form.

ExportForm.aspx

This server side script receives the XML from the client in the same way as SaveForm.aspx

does. Then it uses the XML to generate a form as well as the server side script associated with

the form. The generated form and server side script is sent back to the client as a compressed

file.

GetDatabaseMetadata.aspx

This server side script receives information about connecting to a specific remote database.

The server side script uses this information to connect to the specified database and read its

metadata. It then constructs an XML structure from the metadata and sends it back to the

client.

Login.aspx

After receiving customer login information, this server side script validates the information

against the login information stored in the database. If the login information given by the

customer is correct the customer is logged in.

44

22 Appendix C – XML database

Database

The Database tag holds all the mentioned information for one database. The XML structure

can have one or many Database tags which make it possible to connect one form to multiple

databases. The Database tag's attributes holds all connection information needed. It also

contains zero or more children of the XML tag DatabaseTable.

DatabaseTable

The DatabaseTable represents a table in the database. It can contain two different child tags,

DatabaseColumn and DatabaseRow. It also has the table name as an attribute.

DatabaseColumn

The DatabaseColumn corresponds to a column in a database table and holds database relation

information data. This includes what data type the value of the column is, what type of key, if

any, the column is and also the reference information if the key is of the type foreign key.

DatabaseRow

The DatabaseRow tag represents one insertion into the database table. There can be zero or

more DatabaseRow tags inside a DatabaseTable so that it can be possible to insert multiple

rows in the database table from a single form. DatabaseRow contains one or more

DatabaseCell tags.

DatabaseCell

This tag describes the database field to form control connections by having two attributes,

columnName and controlId. The columnName is the name of the database column in the

database table where the value from the control with id equal to controlId will be stored.

